1051
|
Zhang ZN, Freitas BC, Qian H, Lux J, Acab A, Trujillo CA, Herai RH, Nguyen Huu VA, Wen JH, Joshi-Barr S, Karpiak JV, Engler AJ, Fu XD, Muotri AR, Almutairi A. Layered hydrogels accelerate iPSC-derived neuronal maturation and reveal migration defects caused by MeCP2 dysfunction. Proc Natl Acad Sci U S A 2016; 113:3185-90. [PMID: 26944080 PMCID: PMC4812712 DOI: 10.1073/pnas.1521255113] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Probing a wide range of cellular phenotypes in neurodevelopmental disorders using patient-derived neural progenitor cells (NPCs) can be facilitated by 3D assays, as 2D systems cannot entirely recapitulate the arrangement of cells in the brain. Here, we developed a previously unidentified 3D migration and differentiation assay in layered hydrogels to examine how these processes are affected in neurodevelopmental disorders, such as Rett syndrome. Our soft 3D system mimics the brain environment and accelerates maturation of neurons from human induced pluripotent stem cell (iPSC)-derived NPCs, yielding electrophysiologically active neurons within just 3 wk. Using this platform, we revealed a genotype-specific effect of methyl-CpG-binding protein-2 (MeCP2) dysfunction on iPSC-derived neuronal migration and maturation (reduced neurite outgrowth and fewer synapses) in 3D layered hydrogels. Thus, this 3D system expands the range of neural phenotypes that can be studied in vitro to include those influenced by physical and mechanical stimuli or requiring specific arrangements of multiple cell types.
Collapse
Affiliation(s)
- Zhen-Ning Zhang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Beatriz C Freitas
- Department of Pediatrics, Rady Children's Hospital-San Diego, San Diego, CA 92123; Stem Cell Program, Department of Cellular & Molecular Medicine, University of California, San Diego School of Medicine, Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037
| | - Hao Qian
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093-0651
| | - Jacques Lux
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Allan Acab
- Department of Pediatrics, Rady Children's Hospital-San Diego, San Diego, CA 92123; Stem Cell Program, Department of Cellular & Molecular Medicine, University of California, San Diego School of Medicine, Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037
| | - Cleber A Trujillo
- Department of Pediatrics, Rady Children's Hospital-San Diego, San Diego, CA 92123; Stem Cell Program, Department of Cellular & Molecular Medicine, University of California, San Diego School of Medicine, Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037
| | - Roberto H Herai
- Department of Pediatrics, Rady Children's Hospital-San Diego, San Diego, CA 92123; Stem Cell Program, Department of Cellular & Molecular Medicine, University of California, San Diego School of Medicine, Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037
| | - Viet Anh Nguyen Huu
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Jessica H Wen
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - Shivanjali Joshi-Barr
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Jerome V Karpiak
- Department of Pediatrics, Rady Children's Hospital-San Diego, San Diego, CA 92123; Stem Cell Program, Department of Cellular & Molecular Medicine, University of California, San Diego School of Medicine, Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037
| | - Adam J Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093-0651
| | - Alysson R Muotri
- Department of Pediatrics, Rady Children's Hospital-San Diego, San Diego, CA 92123; Stem Cell Program, Department of Cellular & Molecular Medicine, University of California, San Diego School of Medicine, Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037;
| | - Adah Almutairi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093;
| |
Collapse
|
1052
|
Abstract
Despite a lack of recent progress in the treatment of schizophrenia, our understanding of its genetic and environmental causes has considerably improved, and their relationship to aberrant patterns of neurodevelopment has become clearer. This raises the possibility that 'disease-modifying' strategies could alter the course to - and of - this debilitating disorder, rather than simply alleviating symptoms. A promising window for course-altering intervention is around the time of the first episode of psychosis, especially in young people at risk of transition to schizophrenia. Indeed, studies performed in both individuals at risk of developing schizophrenia and rodent models for schizophrenia suggest that pre-diagnostic pharmacotherapy and psychosocial or cognitive-behavioural interventions can delay or moderate the emergence of psychosis. Of particular interest are 'hybrid' strategies that both relieve presenting symptoms and reduce the risk of transition to schizophrenia or another psychiatric disorder. This Review aims to provide a broad-based consideration of the challenges and opportunities inherent in efforts to alter the course of schizophrenia.
Collapse
|
1053
|
McMurtrey RJ. Analytic Models of Oxygen and Nutrient Diffusion, Metabolism Dynamics, and Architecture Optimization in Three-Dimensional Tissue Constructs with Applications and Insights in Cerebral Organoids. Tissue Eng Part C Methods 2016; 22:221-249. [PMID: 26650970 PMCID: PMC5029285 DOI: 10.1089/ten.tec.2015.0375] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/02/2015] [Indexed: 12/12/2022] Open
Abstract
Diffusion models are important in tissue engineering as they enable an understanding of gas, nutrient, and signaling molecule delivery to cells in cell cultures and tissue constructs. As three-dimensional (3D) tissue constructs become larger, more intricate, and more clinically applicable, it will be essential to understand internal dynamics and signaling molecule concentrations throughout the tissue and whether cells are receiving appropriate nutrient delivery. Diffusion characteristics present a significant limitation in many engineered tissues, particularly for avascular tissues and for cells whose viability, differentiation, or function are affected by concentrations of oxygen and nutrients. This article seeks to provide novel analytic solutions for certain cases of steady-state and nonsteady-state diffusion and metabolism in basic 3D construct designs (planar, cylindrical, and spherical forms), solutions that would otherwise require mathematical approximations achieved through numerical methods. This model is applied to cerebral organoids, where it is shown that limitations in diffusion and organoid size can be partially overcome by localizing metabolically active cells to an outer layer in a sphere, a regionalization process that is known to occur through neuroglial precursor migration both in organoids and in early brain development. The given prototypical solutions include a review of metabolic information for many cell types and can be broadly applied to many forms of tissue constructs. This work enables researchers to model oxygen and nutrient delivery to cells, predict cell viability, study dynamics of mass transport in 3D tissue constructs, design constructs with improved diffusion capabilities, and accurately control molecular concentrations in tissue constructs that may be used in studying models of development and disease or for conditioning cells to enhance survival after insults like ischemia or implantation into the body, thereby providing a framework for better understanding and exploring the characteristics and behaviors of engineered tissue constructs.
Collapse
Affiliation(s)
- Richard J. McMurtrey
- Institute of Neural Regeneration & Tissue Engineering, Highland, Utah, United States
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
1054
|
Vargas-Caballero M, Willaime-Morawek S, Gomez-Nicola D, Perry VH, Bulters D, Mudher A. The use of human neurons for novel drug discovery in dementia research. Expert Opin Drug Discov 2016; 11:355-67. [PMID: 26878555 DOI: 10.1517/17460441.2016.1154528] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Although many disease models exist for neurodegenerative disease, the translation of basic research findings to clinic is very limited. Studies using freshly resected human brain tissue, commonly discarded from neurosurgical procedures, should complement on-going work using stem cell-derived human neurons and glia thus increasing the likelihood of success in clinical trials. AREAS COVERED Herein, the authors discuss key issues in the lack of translation from basic research to clinic. They also review the evidence that human neurons, both freshly resected brain tissue and stem cell-derived neurons, such as induced pluripotent stem cells (iPSCs), can be used for analysis of physiological and molecular mechanisms in health and disease. Furthermore, the authors compare and contrast studies using live human brain tissue and studies using induced human stem cell-derived neuron models. Using an example from the area of neurodegeneration, the authors suggest that replicating elements of research findings from animals and stem cell models in resected human brain tissue would strengthen our understanding of disease mechanisms and the therapeutic strategies and aid translation. EXPERT OPINION The use of human brain tissue alongside iPSC-derived neural models can validate molecular mechanisms identified in rodent disease models and strengthen their relevance to humans. If drug target engagement and mechanism of cellular action can be validated in human brain tissue, this will increase the success rate in clinical research. The combined use of resected human brain tissue, alongside iPSC-derived neural models, could be considered a standard step in pre-clinical research and help to bridge the gap to clinical trials.
Collapse
Affiliation(s)
- Mariana Vargas-Caballero
- a Centre for Biological Sciences , University of Southampton , Southampton , UK.,b Institute for Life Sciences , University of Southampton , Southampton , UK
| | - Sandrine Willaime-Morawek
- c Clinical Neurosciences and Psychiatry, Faculty of Medicine and Centre for Human Development, Stem Cells and Regeneration , University of Southampton , Southampton , UK
| | - Diego Gomez-Nicola
- a Centre for Biological Sciences , University of Southampton , Southampton , UK
| | - V Hugh Perry
- a Centre for Biological Sciences , University of Southampton , Southampton , UK
| | - Diederik Bulters
- d Wessex Neurological Centre , Southampton General Hospital , Southampton , UK
| | - Amrit Mudher
- a Centre for Biological Sciences , University of Southampton , Southampton , UK
| |
Collapse
|
1055
|
Bejoy J, Song L, Li Y. Wnt-YAP interactions in the neural fate of human pluripotent stem cells and the implications for neural organoid formation. Organogenesis 2016; 12:1-15. [PMID: 26901039 DOI: 10.1080/15476278.2016.1140290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) have shown the ability to self-organize into different types of neural organoids (e.g., whole brain organoids, cortical spheroids, midbrain organoids etc.) recently. The extrinsic and intrinsic signaling elicited by Wnt pathway, Hippo/Yes-associated protein (YAP) pathway, and extracellular microenvironment plays a critical role in brain tissue morphogenesis. This article highlights recent advances in neural tissue patterning from hPSCs, in particular the role of Wnt pathway and YAP activity in this process. Understanding the Wnt-YAP interactions should provide us the guidance to predict and modulate brain-like tissue structure through the regulation of extracellular microenvironment of hPSCs.
Collapse
Affiliation(s)
- Julie Bejoy
- a Department of Chemical and Biomedical Engineering , FAMU-FSU College of Engineering, Florida State University , Tallahassee , FL , USA
| | - Liqing Song
- a Department of Chemical and Biomedical Engineering , FAMU-FSU College of Engineering, Florida State University , Tallahassee , FL , USA
| | - Yan Li
- a Department of Chemical and Biomedical Engineering , FAMU-FSU College of Engineering, Florida State University , Tallahassee , FL , USA
| |
Collapse
|
1056
|
Vrij EJ, Espinoza S, Heilig M, Kolew A, Schneider M, van Blitterswijk CA, Truckenmüller RK, Rivron NC. 3D high throughput screening and profiling of embryoid bodies in thermoformed microwell plates. LAB ON A CHIP 2016; 16:734-742. [PMID: 26775648 DOI: 10.1039/c5lc01499a] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
3D organoids using stem cells to study development and disease are now widespread. These models are powerful to mimic in vivo situations but are currently associated with high variability and low throughput. For biomedical research, platforms are thus necessary to increase reproducibility and allow high-throughput screens (HTS). Here, we introduce a microwell platform, integrated in standard culture plates, for functional HTS. Using micro-thermoforming, we form round-bottom microwell arrays from optically clear cyclic olefin polymer films, and assemble them with bottom-less 96-well plates. We show that embryonic stem cells aggregate faster and more reproducibly (centricity, circularity) as compared to a state-of-the-art microwell array. We then run a screen of a chemical library to direct differentiation into primitive endoderm (PrE) and, using on-chip high content imaging (HCI), we identify molecules, including regulators of the cAMP pathway, regulating tissue size, morphology and PrE gene activity. We propose that this platform will benefit to the systematic study of organogenesis in vitro.
Collapse
Affiliation(s)
- E J Vrij
- Merln Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
1057
|
Panchision DM. Concise Review: Progress and Challenges in Using Human Stem Cells for Biological and Therapeutics Discovery: Neuropsychiatric Disorders. Stem Cells 2016; 34:523-36. [PMID: 26840228 DOI: 10.1002/stem.2295] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/29/2015] [Accepted: 12/09/2015] [Indexed: 12/12/2022]
Abstract
In facing the daunting challenge of using human embryonic and induced pluripotent stem cells to study complex neural circuit disorders such as schizophrenia, mood and anxiety disorders, and autism spectrum disorders, a 2012 National Institute of Mental Health workshop produced a set of recommendations to advance basic research and engage industry in cell-based studies of neuropsychiatric disorders. This review describes progress in meeting these recommendations, including the development of novel tools, strides in recapitulating relevant cell and tissue types, insights into the genetic basis of these disorders that permit integration of risk-associated gene regulatory networks with cell/circuit phenotypes, and promising findings of patient-control differences using cell-based assays. However, numerous challenges are still being addressed, requiring further technological development, approaches to resolve disease heterogeneity, and collaborative structures for investigators of different disciplines. Additionally, since data obtained so far is on small sample sizes, replication in larger sample sets is needed. A number of individual success stories point to a path forward in developing assays to translate discovery science to therapeutics development.
Collapse
Affiliation(s)
- David M Panchision
- Division of Neuroscience and Basic Behavioral Science, National Institute of Mental Health, Bethesda, Maryland, USA
| |
Collapse
|
1058
|
Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat Biotechnol 2016; 34:204-9. [PMID: 26829320 PMCID: PMC5088052 DOI: 10.1038/nbt.3440] [Citation(s) in RCA: 717] [Impact Index Per Article: 79.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 11/23/2015] [Indexed: 01/08/2023]
Abstract
Recombinant adeno-associated viruses (rAAVs) are commonly used vehicles for in vivo gene transfer. However, the tropism repertoire of naturally occurring AAVs is limited, prompting a search for novel AAV capsids with desired characteristics. Here we describe a capsid selection method, called Cre recombination-based AAV targeted evolution (CREATE), that enables the development of AAV capsids that more efficiently transduce defined Cre-expressing cell populations in vivo. We use CREATE to generate AAV variants that efficiently and widely transduce the adult mouse central nervous system (CNS) after intravenous injection. One variant, AAV-PHP.B, transfers genes throughout the CNS with an efficiency that is at least 40-fold greater than that of the current standard, AAV9 (refs. 14,15,16,17), and transduces the majority of astrocytes and neurons across multiple CNS regions. In vitro, it transduces human neurons and astrocytes more efficiently than does AAV9, demonstrating the potential of CREATE to produce customized AAV vectors for biomedical applications.
Collapse
|
1059
|
Wen Z, Christian KM, Song H, Ming GL. Modeling psychiatric disorders with patient-derived iPSCs. Curr Opin Neurobiol 2016; 36:118-27. [PMID: 26705693 PMCID: PMC4738077 DOI: 10.1016/j.conb.2015.11.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/11/2015] [Accepted: 11/20/2015] [Indexed: 12/22/2022]
Abstract
Psychiatric disorders are heterogeneous disorders characterized by complex genetics, variable symptomatology, and anatomically distributed pathology, all of which present challenges for effective treatment. Current treatments are often blunt tools used to ameliorate the most severe symptoms, often at the risk of disrupting functional neural systems, thus there is a pressing need to develop rational therapeutics. Induced pluripotent stem cells (iPSCs) reprogrammed from patient somatic cells offer an unprecedented opportunity to recapitulate both normal and pathologic human tissue and organ development, and provides new approaches for understanding disease mechanisms and for drug discovery with higher predictability of their effects in humans. Here we review recent progress and challenges in using human iPSCs for modeling neuropsychiatric disorders and developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Zhexing Wen
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kimberly M Christian
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hongjun Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Guo-li Ming
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
1060
|
Advancing drug discovery for neuropsychiatric disorders using patient-specific stem cell models. Mol Cell Neurosci 2016; 73:104-15. [PMID: 26826498 DOI: 10.1016/j.mcn.2016.01.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 12/17/2022] Open
Abstract
Compelling clinical, social, and economic reasons exist to innovate in the process of drug discovery for neuropsychiatric disorders. The use of patient-specific, induced pluripotent stem cells (iPSCs) now affords the ability to generate neuronal cell-based models that recapitulate key aspects of human disease. In the context of neuropsychiatric disorders, where access to physiologically active and relevant cell types of the central nervous system for research is extremely limiting, iPSC-derived in vitro culture of human neurons and glial cells is transformative. Potential applications relevant to early stage drug discovery, include support of quantitative biochemistry, functional genomics, proteomics, and perhaps most notably, high-throughput and high-content chemical screening. While many phenotypes in human iPSC-derived culture systems may prove adaptable to screening formats, addressing the question of which in vitro phenotypes are ultimately relevant to disease pathophysiology and therefore more likely to yield effective pharmacological agents that are disease-modifying treatments requires careful consideration. Here, we review recent examples of studies of neuropsychiatric disorders using human stem cell models where cellular phenotypes linked to disease and functional assays have been reported. We also highlight technical advances using genome-editing technologies in iPSCs to support drug discovery efforts, including the interpretation of the functional significance of rare genetic variants of unknown significance and for the purpose of creating cell type- and pathway-selective functional reporter assays. Additionally, we evaluate the potential of in vitro stem cell models to investigate early events of disease pathogenesis, in an effort to understand the underlying molecular mechanism, including the basis of selective cell-type vulnerability, and the potential to create new cell-based diagnostics to aid in the classification of patients and subsequent selection for clinical trials. A number of key challenges remain, including the scaling of iPSC models to larger cohorts and integration with rich clinicopathological information and translation of phenotypes. Still, the overall use of iPSC-based human cell models with functional cellular and biochemical assays holds promise for supporting the discovery of next-generation neuropharmacological agents for the treatment and ultimately prevention of a range of severe mental illnesses.
Collapse
|
1061
|
Chen HI, Jgamadze D, Serruya MD, Cullen DK, Wolf JA, Smith DH. Neural Substrate Expansion for the Restoration of Brain Function. Front Syst Neurosci 2016; 10:1. [PMID: 26834579 PMCID: PMC4724716 DOI: 10.3389/fnsys.2016.00001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 01/04/2016] [Indexed: 01/11/2023] Open
Abstract
Restoring neurological and cognitive function in individuals who have suffered brain damage is one of the principal objectives of modern translational neuroscience. Electrical stimulation approaches, such as deep-brain stimulation, have achieved the most clinical success, but they ultimately may be limited by the computational capacity of the residual cerebral circuitry. An alternative strategy is brain substrate expansion, in which the computational capacity of the brain is augmented through the addition of new processing units and the reconstitution of network connectivity. This latter approach has been explored to some degree using both biological and electronic means but thus far has not demonstrated the ability to reestablish the function of large-scale neuronal networks. In this review, we contend that fulfilling the potential of brain substrate expansion will require a significant shift from current methods that emphasize direct manipulations of the brain (e.g., injections of cellular suspensions and the implantation of multi-electrode arrays) to the generation of more sophisticated neural tissues and neural-electric hybrids in vitro that are subsequently transplanted into the brain. Drawing from neural tissue engineering, stem cell biology, and neural interface technologies, this strategy makes greater use of the manifold techniques available in the laboratory to create biocompatible constructs that recapitulate brain architecture and thus are more easily recognized and utilized by brain networks.
Collapse
Affiliation(s)
- H Isaac Chen
- Department of Neurosurgery, University of PennsylvaniaPhiladelphia, PA, USA; Philadelphia Veterans Affairs Medical CenterPhiladelphia, PA, USA
| | - Dennis Jgamadze
- Department of Neurosurgery, University of Pennsylvania Philadelphia, PA, USA
| | - Mijail D Serruya
- Department of Neurology, Thomas Jefferson University Philadelphia, PA, USA
| | - D Kacy Cullen
- Department of Neurosurgery, University of PennsylvaniaPhiladelphia, PA, USA; Philadelphia Veterans Affairs Medical CenterPhiladelphia, PA, USA
| | - John A Wolf
- Department of Neurosurgery, University of PennsylvaniaPhiladelphia, PA, USA; Philadelphia Veterans Affairs Medical CenterPhiladelphia, PA, USA
| | - Douglas H Smith
- Department of Neurosurgery, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
1062
|
Disease signatures for schizophrenia and bipolar disorder using patient-derived induced pluripotent stem cells. Mol Cell Neurosci 2016; 73:96-103. [PMID: 26777134 DOI: 10.1016/j.mcn.2016.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/05/2016] [Accepted: 01/11/2016] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia and bipolar disorder are complex psychiatric disorders that present unique challenges in the study of disease biology. There are no objective biological phenotypes for these disorders, which are characterized by complex genetics and prominent roles for gene-environment interactions. The study of the neurobiology underlying these severe psychiatric disorders has been hindered by the lack of access to the tissue of interest - neurons from patients. The advent of reprogramming methods that enable generation of induced pluripotent stem cells (iPSCs) from patient fibroblasts and peripheral blood mononuclear cells has opened possibilities for new approaches to study relevant disease biology using iPSC-derived neurons. While early studies with patient iPSCs have led to promising and intriguing leads, significant hurdles remain in our attempts to capture the complexity of these disorders in vitro. We present here an overview of studies to date of schizophrenia and bipolar disorder using iPSC-derived neuronal cells and discuss potential future directions that can result in the identification of robust and valid cellular phenotypes that in turn can lay the groundwork for meaningful clinical advances.
Collapse
|
1063
|
Bouyer C, Chen P, Güven S, Demirtaş TT, Nieland TJF, Padilla F, Demirci U. A Bio-Acoustic Levitational (BAL) Assembly Method for Engineering of Multilayered, 3D Brain-Like Constructs, Using Human Embryonic Stem Cell Derived Neuro-Progenitors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:161-7. [PMID: 26554659 DOI: 10.1002/adma.201503916] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/14/2015] [Indexed: 05/27/2023]
Abstract
A bio-acoustic levitational assembly method for engineering of multilayered, 3D brainlike constructs is presented. Acoustic radiation forces are used to levitate neuroprogenitors derived from human embryonic stem cells in 3D multilayered fibrin tissue constructs. The neuro-progenitor cells are subsequently differentiated in neural cells, resulting in a 3D neuronal construct with inter and intralayer neurite elongations.
Collapse
Affiliation(s)
- Charlène Bouyer
- Bio-Acoustic MEMS in Medicine (BAMM) Lab, Canary Center for Early Cancer Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
- Inserm, U1032, LabTau, University of Lyon, Lyon, F-69003, France
- LabEx DEVweCAN, University of Lyon, Lyon, F-69003, France
| | - Pu Chen
- Bio-Acoustic MEMS in Medicine (BAMM) Lab, Canary Center for Early Cancer Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | - Sinan Güven
- Bio-Acoustic MEMS in Medicine (BAMM) Lab, Canary Center for Early Cancer Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | - Tuğrul Tolga Demirtaş
- Bio-Acoustic MEMS in Medicine (BAMM) Lab, Canary Center for Early Cancer Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | - Thomas J F Nieland
- Bio-Acoustic MEMS in Medicine (BAMM) Lab, Canary Center for Early Cancer Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | - Frédéric Padilla
- Inserm, U1032, LabTau, University of Lyon, Lyon, F-69003, France
- LabEx DEVweCAN, University of Lyon, Lyon, F-69003, France
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Lab, Canary Center for Early Cancer Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
- Department of Electrical Engineering (By Courtesy), Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
1064
|
Handel AE, Chintawar S, Lalic T, Whiteley E, Vowles J, Giustacchini A, Argoud K, Sopp P, Nakanishi M, Bowden R, Cowley S, Newey S, Akerman C, Ponting CP, Cader MZ. Assessing similarity to primary tissue and cortical layer identity in induced pluripotent stem cell-derived cortical neurons through single-cell transcriptomics. Hum Mol Genet 2016; 25:989-1000. [PMID: 26740550 PMCID: PMC4754051 DOI: 10.1093/hmg/ddv637] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/31/2015] [Indexed: 12/12/2022] Open
Abstract
Induced pluripotent stem cell (iPSC)-derived cortical neurons potentially present a powerful new model to understand corticogenesis and neurological disease. Previous work has established that differentiation protocols can produce cortical neurons, but little has been done to characterize these at cellular resolution. In particular, it is unclear to what extent in vitro two-dimensional, relatively disordered culture conditions recapitulate the development of in vivo cortical layer identity. Single-cell multiplex reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) was used to interrogate the expression of genes previously implicated in cortical layer or phenotypic identity in individual cells. Totally, 93.6% of single cells derived from iPSCs expressed genes indicative of neuronal identity. High proportions of single neurons derived from iPSCs expressed glutamatergic receptors and synaptic genes. And, 68.4% of iPSC-derived neurons expressing at least one layer marker could be assigned to a laminar identity using canonical cortical layer marker genes. We compared single-cell RNA-seq of our iPSC-derived neurons to available single-cell RNA-seq data from human fetal and adult brain and found that iPSC-derived cortical neurons closely resembled primary fetal brain cells. Unexpectedly, a subpopulation of iPSC-derived neurons co-expressed canonical fetal deep and upper cortical layer markers. However, this appeared to be concordant with data from primary cells. Our results therefore provide reassurance that iPSC-derived cortical neurons are highly similar to primary cortical neurons at the level of single cells but suggest that current layer markers, although effective, may not be able to disambiguate cortical layer identity in all cells.
Collapse
Affiliation(s)
- Adam E Handel
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, Oxfordshire OX1 3QX, UK, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, Oxfordshire OX3 9DS, UK
| | - Satyan Chintawar
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, Oxfordshire OX3 9DS, UK
| | - Tatjana Lalic
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, Oxfordshire OX3 9DS, UK
| | - Emma Whiteley
- Department of Pharmacology, University of Oxford, Oxford, Oxfordshire OX1 3QT, UK
| | - Jane Vowles
- Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire OX1 3RE, UK
| | - Alice Giustacchini
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, Oxfordshire OX3 9DS, UK
| | - Karene Argoud
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire OX3 7BN and
| | - Paul Sopp
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, Oxfordshire OX3 9DS, UK
| | - Mahito Nakanishi
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Rory Bowden
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire OX3 7BN and
| | - Sally Cowley
- Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire OX1 3RE, UK
| | - Sarah Newey
- Department of Pharmacology, University of Oxford, Oxford, Oxfordshire OX1 3QT, UK
| | - Colin Akerman
- Department of Pharmacology, University of Oxford, Oxford, Oxfordshire OX1 3QT, UK
| | - Chris P Ponting
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, Oxfordshire OX1 3QX, UK
| | - M Zameel Cader
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, Oxfordshire OX3 9DS, UK,
| |
Collapse
|
1065
|
Simão D, Arez F, Terasso AP, Pinto C, Sousa MFQ, Brito C, Alves PM. Perfusion Stirred-Tank Bioreactors for 3D Differentiation of Human Neural Stem Cells. Methods Mol Biol 2016; 1502:129-142. [PMID: 27032948 DOI: 10.1007/7651_2016_333] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Therapeutic breakthroughs in neurological disorders have been hampered by the lack of accurate central nervous system (CNS) models. The development of these models allows the study of the disease onset/progression mechanisms and the preclinical evaluation of new therapeutics. This has traditionally relied on genetically engineered animal models that often diverge considerably from the human phenotype (developmental, anatomic, and physiological) and 2D in vitro cell models, which fail to recapitulate the characteristics of the target tissue (cell-cell and cell-matrix interactions, cell polarity, etc.). Recapitulation of CNS phenotypic and functional features in vitro requires the implementation of advanced culture strategies, such as 3D culture systems, which enable to mimic the in vivo structural and molecular complexity. Models based on differentiation of human neural stem cells (hNSC) in 3D cultures have great potential as complementary tools in preclinical research, bridging the gap between human clinical studies and animal models. The development of robust and scalable processes for the 3D differentiation of hNSC can improve the accuracy of early stage development in preclinical research. In this context, the use of software-controlled stirred-tank bioreactors (STB) provides an efficient technological platform for hNSC aggregation and differentiation. This system enables to monitor and control important physicochemical parameters for hNSC culture, such as dissolved oxygen. Importantly, the adoption of a perfusion operation mode allows a stable flow of nutrients and differentiation/neurotrophic factors, while clearing the toxic by-products. This contributes to a setting closer to the physiological, by mimicking the in vivo microenvironment. In this chapter, we address the technical requirements and procedures for the implementation of 3D differentiation strategies of hNSC, by operating STB under perfusion mode for long-term cultures. This strategy is suitable for the generation of human 3D neural in vitro models, which can be used to feed high-throughput screening platforms, contributing to expand the available in vitro tools for drug screening and toxicological studies.
Collapse
Affiliation(s)
- Daniel Simão
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Francisca Arez
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana P Terasso
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Catarina Pinto
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Marcos F Q Sousa
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
1066
|
Yan Y, Song L, Tsai AC, Ma T, Li Y. Generation of Neural Progenitor Spheres from Human Pluripotent Stem Cells in a Suspension Bioreactor. Methods Mol Biol 2016; 1502:119-128. [PMID: 26837215 DOI: 10.1007/7651_2015_310] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Conventional two-dimensional (2-D) culture systems cannot provide large numbers of human pluripotent stem cells (hPSCs) and their derivatives that are demanded for commercial and clinical applications in in vitro drug screening, disease modeling, and potentially cell therapy. The technologies that support three-dimensional (3-D) suspension culture, such as a stirred bioreactor, are generally considered as promising approaches to produce the required cells. Recently, suspension bioreactors have also been used to generate mini-brain-like structure from hPSCs for disease modeling, showing the important role of bioreactor in stem cell culture. This chapter describes a detailed culture protocol for neural commitment of hPSCs into neural progenitor cell (NPC) spheres using a spinner bioreactor. The basic steps to prepare hPSCs for bioreactor inoculation are illustrated from cell thawing to cell propagation. The method for generating NPCs from hPSCs in the spinner bioreactor along with the static control is then described. The protocol in this study can be applied to the generation of NPCs from hPSCs for further neural subtype specification, 3-D neural tissue development, or potential preclinical studies or clinical applications in neurological diseases.
Collapse
Affiliation(s)
- Yuanwei Yan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, FL, 32310, USA
| | - Liqing Song
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, FL, 32310, USA
| | - Ang-Chen Tsai
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, FL, 32310, USA
| | - Teng Ma
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, FL, 32310, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, FL, 32310, USA.
| |
Collapse
|
1067
|
Holmqvist S, Lehtonen Š, Chumarina M, Puttonen KA, Azevedo C, Lebedeva O, Ruponen M, Oksanen M, Djelloul M, Collin A, Goldwurm S, Meyer M, Lagarkova M, Kiselev S, Koistinaho J, Roybon L. Creation of a library of induced pluripotent stem cells from Parkinsonian patients. NPJ Parkinsons Dis 2016; 2:16009. [PMID: 28725696 PMCID: PMC5516589 DOI: 10.1038/npjparkd.2016.9] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/01/2016] [Accepted: 04/11/2016] [Indexed: 02/07/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) are becoming an important source of pre-clinical models for research focusing on neurodegeneration. They offer the possibility for better understanding of common and divergent pathogenic mechanisms of brain diseases. Moreover, iPSCs provide a unique opportunity to develop personalized therapeutic strategies, as well as explore early pathogenic mechanisms, since they rely on the use of patients' own cells that are otherwise accessible only post-mortem, when neuronal death-related cellular pathways and processes are advanced and adaptive. Neurodegenerative diseases are in majority of unknown cause, but mutations in specific genes can lead to familial forms of these diseases. For example, mutations in the superoxide dismutase 1 gene lead to the motor neuron disease amyotrophic lateral sclerosis (ALS), while mutations in the SNCA gene encoding for alpha-synuclein protein lead to familial Parkinson's disease (PD). The generations of libraries of familial human ALS iPSC lines have been described, and the iPSCs rapidly became useful models for studying cell autonomous and non-cell autonomous mechanisms of the disease. Here we report the generation of a comprehensive library of iPSC lines of familial PD and an associated synucleinopathy, multiple system atrophy (MSA). In addition, we provide examples of relevant neural cell types these iPSC can be differentiated into, and which could be used to further explore early disease mechanisms. These human cellular models will be a valuable resource for identifying common and divergent mechanisms leading to neurodegeneration in PD and MSA.
Collapse
Affiliation(s)
- Staffan Holmqvist
- Stem Cell Laboratory for CNS Disease Modeling, Wallenberg Neuroscience Center, Department of Experimental Medical Science, BMC A10, Lund University, Lund, Sweden
- Strategic Research Area MultiPark, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Šárka Lehtonen
- Stem Cell Laboratory of Molecular Brain Research Group, Department of Neurobiology, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Margarita Chumarina
- Stem Cell Laboratory for CNS Disease Modeling, Wallenberg Neuroscience Center, Department of Experimental Medical Science, BMC A10, Lund University, Lund, Sweden
- Strategic Research Area MultiPark, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Katja A Puttonen
- Stem Cell Laboratory of Molecular Brain Research Group, Department of Neurobiology, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Carla Azevedo
- Stem Cell Laboratory for CNS Disease Modeling, Wallenberg Neuroscience Center, Department of Experimental Medical Science, BMC A10, Lund University, Lund, Sweden
- Strategic Research Area MultiPark, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Olga Lebedeva
- Russian Academy of Sciences, Vavilov Institute of General Genetics, Moscow, Russia
| | - Marika Ruponen
- Stem Cell Laboratory of Molecular Brain Research Group, Department of Neurobiology, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Minna Oksanen
- Stem Cell Laboratory of Molecular Brain Research Group, Department of Neurobiology, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Mehdi Djelloul
- Stem Cell Laboratory for CNS Disease Modeling, Wallenberg Neuroscience Center, Department of Experimental Medical Science, BMC A10, Lund University, Lund, Sweden
- Strategic Research Area MultiPark, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Anna Collin
- Department of Clinical Genetics and Biobanks, Office for Medical Services, Division of Laboratory Medicine, Lund, Sweden
| | - Stefano Goldwurm
- Parkinson Institute, Istituti Clinici di Perfezionamento, Milan, Italy
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Maria Lagarkova
- Russian Academy of Sciences, Vavilov Institute of General Genetics, Moscow, Russia
| | - Sergei Kiselev
- Russian Academy of Sciences, Vavilov Institute of General Genetics, Moscow, Russia
| | - Jari Koistinaho
- Stem Cell Laboratory of Molecular Brain Research Group, Department of Neurobiology, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
- ()
| | - Laurent Roybon
- Stem Cell Laboratory for CNS Disease Modeling, Wallenberg Neuroscience Center, Department of Experimental Medical Science, BMC A10, Lund University, Lund, Sweden
- Strategic Research Area MultiPark, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- ()
| |
Collapse
|
1068
|
Livesey MR, Magnani D, Hardingham GE, Chandran S, Wyllie DJA. Functional properties of in vitro excitatory cortical neurons derived from human pluripotent stem cells. J Physiol 2015; 594:6573-6582. [PMID: 26608229 PMCID: PMC5108911 DOI: 10.1113/jp270660] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/04/2015] [Indexed: 12/04/2022] Open
Abstract
The in vitro derivation of regionally defined human neuron types from patient‐derived stem cells is now established as a resource to investigate human development and disease. Characterization of such neurons initially focused on the expression of developmentally regulated transcription factors and neural markers, in conjunction with the development of protocols to direct and chart the fate of differentiated neurons. However, crucial to the understanding and exploitation of this technology is to determine the degree to which neurons recapitulate the key functional features exhibited by their native counterparts, essential for determining their usefulness in modelling human physiology and disease in vitro. Here, we review the emerging data concerning functional properties of human pluripotent stem cell‐derived excitatory cortical neurons, in the context of both maturation and regional specificity.
![]()
Collapse
Affiliation(s)
- Matthew R Livesey
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK.,Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Dario Magnani
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK.,MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Giles E Hardingham
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK.,Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Siddharthan Chandran
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK.,MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, 560065, India
| | - David J A Wyllie
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK.,Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, 560065, India
| |
Collapse
|
1069
|
Wang L, Xu C, Zhu Y, Yu Y, Sun N, Zhang X, Feng K, Qin J. Human induced pluripotent stem cell-derived beating cardiac tissues on paper. LAB ON A CHIP 2015; 15:4283-4290. [PMID: 26430714 DOI: 10.1039/c5lc00919g] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
There is a growing interest in using paper as a biomaterial scaffold for cell-based applications. In this study, we made the first attempt to fabricate a paper-based array for the culture, proliferation, and direct differentiation of human induced pluripotent stem cells (hiPSCs) into functional beating cardiac tissues and create "a beating heart on paper." This array was simply constructed by binding a cured multi-well polydimethylsiloxane (PDMS) mold with common, commercially available paper substrates. Three types of paper material (print paper, chromatography paper and nitrocellulose membrane) were tested for adhesion, proliferation and differentiation of human-derived iPSCs. We found that hiPSCs grew well on these paper substrates, presenting a three-dimensional (3D)-like morphology with a pluripotent property. The direct differentiation of human iPSCs into functional cardiac tissues on paper was also achieved using our modified differentiation approach. The cardiac tissue retained its functional activities on the coated print paper and chromatography paper with a beating frequency of 40-70 beats per min for up to three months. Interestingly, human iPSCs could be differentiated into retinal pigment epithelium on nitrocellulose membrane under the conditions of cardiac-specific induction, indicating the potential roles of material properties and mechanical cues that are involved in regulating stem cell differentiation. Taken together, these results suggest that different grades of paper could offer great opportunities as bioactive, low-cost, and 3D in vitro platforms for stem cell-based high-throughput drug testing at the tissue/organ level and for tissue engineering applications.
Collapse
Affiliation(s)
- Li Wang
- Department of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, China.
| | - Cong Xu
- Department of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, China.
| | - Yujuan Zhu
- Department of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, China.
| | - Yue Yu
- Department of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, China.
| | - Ning Sun
- Department of Physiology and Pathophysiology, College of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Xiaoqing Zhang
- Department of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, China.
| | - Ke Feng
- Department of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, China.
| | - Jianhua Qin
- Department of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, China.
| |
Collapse
|
1070
|
Goodwin SJ. A Brain in a Dish. POSTDOC JOURNAL : A JOURNAL OF POSTDOCTORAL RESEARCH AND POSTDOCTORAL AFFAIRS 2015; 3:31-35. [PMID: 27429994 PMCID: PMC4946643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ohio State University researchers have made a leap forward in disease research by creating an eraser sized human "brain" in a petri dish1. Although lacking a circulatory system their brain model includes spinal cord, cortex, midbrain, brain stem, and even the beginnings of an eye- aiding in the effectiveness of research on complex neurological disease. To create their new brain model, the researchers converted adult skin cells into pluripotent stem cells, which afforded the opportunity to build the multiple nervous cell types required for such a complex system. Having this tissue model will assist researchers in developing new disease models, and thus, facilitate the development of novel clinical interventions.
Collapse
Affiliation(s)
- Shikha Jain Goodwin
- Department of Biomedical Engineering, Neuroscience and Veterinary Medicine, University of Minnesota and Brain Sciences Center, VA Medical Center, Minneapolis, MN, USA
| |
Collapse
|
1071
|
Begum AN, Guoynes C, Cho J, Hao J, Lutfy K, Hong Y. Rapid generation of sub-type, region-specific neurons and neural networks from human pluripotent stem cell-derived neurospheres. Stem Cell Res 2015; 15:731-741. [PMID: 26613348 DOI: 10.1016/j.scr.2015.10.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 09/26/2015] [Accepted: 10/21/2015] [Indexed: 10/22/2022] Open
Abstract
Stem cell-based neuronal differentiation has provided a unique opportunity for disease modeling and regenerative medicine. Neurospheres are the most commonly used neuroprogenitors for neuronal differentiation, but they often clump in culture, which has always represented a challenge for neurodifferentiation. In this study, we report a novel method and defined culture conditions for generating sub-type or region-specific neurons from human embryonic and induced pluripotent stem cells derived neurosphere without any genetic manipulation. Round and bright-edged neurospheres were generated in a supplemented knockout serum replacement medium (SKSRM) with 10% CO2, which doubled the expression of the NESTIN, PAX6 and FOXG1 genes compared with those cultured with 5% CO2. Furthermore, an additional step (AdSTEP) was introduced to fragment the neurospheres and facilitate the formation of a neuroepithelial-type monolayer that we termed the "neurosphederm". The large neural tube-type rosette (NTTR) structure formed from the neurosphederm, and the NTTR expressed higher levels of the PAX6, SOX2 and NESTIN genes compared with the neuroectoderm-derived neuroprogenitors. Different layers of cortical, pyramidal, GABAergic, glutamatergic, cholinergic neurons appeared within 27 days using the neurosphederm, which is a shorter period than in traditional neurodifferentiation-protocols (42-60 days). With additional supplements and timeline dopaminergic and Purkinje neurons were also generated in culture too. Furthermore, our in vivo results indicated that the fragmented neurospheres facilitated significantly better neurogenesis in severe combined immunodeficiency (SCID) mouse brains compared with the non-fragmented neurospheres. Therefore, this neurosphere-based neurodifferentiation protocol is a valuable tool for studies of neurodifferentiation, neuronal transplantation and high throughput screening assays.
Collapse
Affiliation(s)
- Aynun N Begum
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Caleigh Guoynes
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Jane Cho
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Jijun Hao
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA; Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Kabirullah Lutfy
- College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Yiling Hong
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA; Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA.
| |
Collapse
|
1072
|
Chen C, Chan A, Wen H, Chung SH, Deng W, Jiang P. Stem and Progenitor Cell-Derived Astroglia Therapies for Neurological Diseases. Trends Mol Med 2015; 21:715-729. [PMID: 26443123 DOI: 10.1016/j.molmed.2015.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/04/2015] [Accepted: 09/08/2015] [Indexed: 02/07/2023]
Abstract
Astroglia are a major cellular constituent of the central nervous system (CNS) and play crucial roles in brain development, function, and integrity. Increasing evidence demonstrates that astroglia dysfunction occurs in a variety of neurological disorders ranging from CNS injuries to genetic diseases and chronic degenerative conditions. These new insights herald the concept that transplantation of astroglia could be of therapeutic value in treating the injured or diseased CNS. Recent technological advances in the generation of human astroglia from stem and progenitor cells have been prominent. We propose that a better understanding of the suitability of astroglial cells in transplantation as well as of their therapeutic effects in animal models may lead to the establishment of astroglia-based therapies to treat neurological diseases.
Collapse
Affiliation(s)
- Chen Chen
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, USA
| | - Albert Chan
- Department of Pediatrics, University of California, Davis, CA, USA
| | - Han Wen
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, USA
| | | | - Wenbin Deng
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, USA.
| | - Peng Jiang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, USA; Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, NE, USA.
| |
Collapse
|
1073
|
Nestor MW, Phillips AW, Artimovich E, Nestor JE, Hussman JP, Blatt GJ. Human Inducible Pluripotent Stem Cells and Autism Spectrum Disorder: Emerging Technologies. Autism Res 2015; 9:513-35. [DOI: 10.1002/aur.1570] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 09/03/2015] [Accepted: 09/08/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Michael W. Nestor
- The Hussman Institute for Autism; 801 W. Baltimore St., Suite 301 Baltimore Maryland 21201
| | - Andre W. Phillips
- The Hussman Institute for Autism; 801 W. Baltimore St., Suite 301 Baltimore Maryland 21201
| | - Elena Artimovich
- The Hussman Institute for Autism; 801 W. Baltimore St., Suite 301 Baltimore Maryland 21201
| | - Jonathan E. Nestor
- The Hussman Institute for Autism; 801 W. Baltimore St., Suite 301 Baltimore Maryland 21201
| | - John P. Hussman
- The Hussman Institute for Autism; 801 W. Baltimore St., Suite 301 Baltimore Maryland 21201
| | - Gene J. Blatt
- The Hussman Institute for Autism; 801 W. Baltimore St., Suite 301 Baltimore Maryland 21201
| |
Collapse
|
1074
|
Choi SH, Kim YH, D'Avanzo C, Aronson J, Tanzi RE, Kim DY. Recapitulating amyloid β and tau pathology in human neural cell culture models: clinical implications. ACTA ACUST UNITED AC 2015; 11:102-105. [PMID: 27019672 DOI: 10.17925/usn.2015.11.02.102] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The "amyloid β hypothesis" of Alzheimer's disease (AD) has been the reigning hypothesis explaining pathogenic mechanisms of AD over the last two decades. However, this hypothesis has not been fully validated in animal models, and several major unresolved issues remain. We recently developed a human neural cell culture model of AD based on a three-dimensional (3D) cell culture system. This unique, cellular model recapitulates key events of the AD pathogenic cascade, including β-amyloid plaques and neurofibrillary tangles. Our 3D human neural cell culture model system provides a premise for a new generation of cellular AD models that can serve as a novel platform for studying pathogenic mechanisms and for high-throughput drug screening in a human brain-like environment.
Collapse
Affiliation(s)
- Se Hoon Choi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Young Hye Kim
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju-si, Chungbuk 363-883, Republic of Korea
| | - Carla D'Avanzo
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jenna Aronson
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Doo Yeon Kim
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|