1051
|
Hemeryck LY, Decloedt AI, Vanden Bussche J, Geboes KP, Vanhaecke L. High resolution mass spectrometry based profiling of diet-related deoxyribonucleic acid adducts. Anal Chim Acta 2015; 892:123-31. [PMID: 26388482 DOI: 10.1016/j.aca.2015.08.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/07/2015] [Indexed: 11/19/2022]
Abstract
Exposure of DNA to endo- and exogenous DNA binding chemicals can result in the formation of DNA adducts and is believed to be the first step in chemically induced carcinogenesis. DNA adductomics is a relatively new field of research which studies the formation of known and unknown DNA adducts in DNA due to exposure to genotoxic chemicals. In this study, a new UHPLC-HRMS(/MS)-based DNA adduct detection method was developed and validated. Four targeted DNA adducts, which all have been linked to dietary genotoxicity, were included in the described method; O(6)-methylguanine (O(6)-MeG), O(6)-carboxymethylguanine (O(6)-CMG), pyrimidopurinone (M1G) and methylhydroxypropanoguanine (CroG). As a supplementary tool for DNA adductomics, a DNA adduct database, which currently contains 123 different diet-related DNA adducts, was constructed. By means of the newly developed method and database, all 4 targeted DNA adducts and 32 untargeted DNA adducts could be detected in different DNA samples. The obtained results clearly demonstrate the merit of the described method for both targeted and untargeted DNA adduct detection in vitro and in vivo, whilst the diet-related DNA adduct database can distinctly facilitate data interpretation.
Collapse
Affiliation(s)
- Lieselot Y Hemeryck
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, 9820, Belgium
| | - Anneleen I Decloedt
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, 9820, Belgium
| | - Julie Vanden Bussche
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, 9820, Belgium
| | - Karen P Geboes
- Division of Digestive Oncology, Department of Gastroenterology, University Hospital Ghent, De Pintelaan 185, Ghent, 9000, Belgium
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, 9820, Belgium.
| |
Collapse
|
1052
|
Targeting oxidant-dependent mechanisms for the treatment of COPD and its comorbidities. Pharmacol Ther 2015; 155:60-79. [PMID: 26297673 DOI: 10.1016/j.pharmthera.2015.08.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 08/14/2015] [Indexed: 12/30/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is an incurable global health burden and is characterised by progressive airflow limitation and loss of lung function. In addition to the pulmonary impact of the disease, COPD patients often develop comorbid diseases such as cardiovascular disease, skeletal muscle wasting, lung cancer and osteoporosis. One key feature of COPD, yet often underappreciated, is the contribution of oxidative stress in the onset and development of the disease. Patients experience an increased burden of oxidative stress due to the combined effects of excess reactive oxygen species (ROS) and nitrogen species (RNS) generation, antioxidant depletion and reduced antioxidant enzyme activity. Currently, there is a lack of effective treatments for COPD, and an even greater lack of research regarding interventions that treat both COPD and its comorbidities. Due to the involvement of oxidative stress in the pathogenesis of COPD and many of its comorbidities, a unique therapeutic opportunity arises where the treatment of a multitude of diseases may be possible with only one therapeutic target. In this review, oxidative stress and the roles of ROS/RNS in the context of COPD and comorbid cardiovascular disease, skeletal muscle wasting, lung cancer, and osteoporosis are discussed and the potential for therapeutic benefit of anti-oxidative treatment in these conditions is outlined. Because of the unique interplay between oxidative stress and these diseases, oxidative stress represents a novel target for the treatment of COPD and its comorbidities.
Collapse
|
1053
|
Distinct functional consequences of MUTYH variants associated with colorectal cancer: Damaged DNA affinity, glycosylase activity and interaction with PCNA and Hus1. DNA Repair (Amst) 2015; 34:39-51. [PMID: 26377631 DOI: 10.1016/j.dnarep.2015.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 08/03/2015] [Indexed: 12/13/2022]
Abstract
MUTYH is a base excision repair (BER) enzyme that prevents mutations in DNA associated with 8-oxoguanine (OG) by catalyzing the removal of adenine from inappropriately formed OG:A base-pairs. Germline mutations in the MUTYH gene are linked to colorectal polyposis and a high risk of colorectal cancer, a syndrome referred to as MUTYH-associated polyposis (MAP). There are over 300 different MUTYH mutations associated with MAP and a large fraction of these gene changes code for missense MUTYH variants. Herein, the adenine glycosylase activity, mismatch recognition properties, and interaction with relevant protein partners of human MUTYH and five MAP variants (R295C, P281L, Q324H, P502L, and R520Q) were examined. P281L MUTYH was found to be severely compromised both in DNA binding and base excision activity, consistent with the location of this variation in the iron-sulfur cluster (FCL) DNA binding motif of MUTYH. Both R295C and R520Q MUTYH were found to have low fractions of active enzyme, compromised affinity for damaged DNA, and reduced rates for adenine excision. In contrast, both Q324H and P502L MUTYH function relatively similarly to WT MUTYH in both binding and glycosylase assays. However, P502L and R520Q exhibited reduced affinity for PCNA (proliferation cell nuclear antigen), consistent with their location in the PCNA-binding motif of MUTYH. Whereas, only Q324H, and not R295C, was found to have reduced affinity for Hus1 of the Rad9-Hus1-Rad1 complex, despite both being localized to the same region implicated for interaction with Hus1. These results underscore the diversity of functional consequences due to MUTYH variants that may impact the progression of MAP.
Collapse
|
1054
|
Lindblom R, Higgins G, Coughlan M, de Haan JB. Targeting Mitochondria and Reactive Oxygen Species-Driven Pathogenesis in Diabetic Nephropathy. Rev Diabet Stud 2015; 12:134-56. [PMID: 26676666 DOI: 10.1900/rds.2015.12.134] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Diabetic kidney disease is one of the major microvascular complications of both type 1 and type 2 diabetes mellitus. Approximately 30% of patients with diabetes experience renal complications. Current clinical therapies can only mitigate the symptoms and delay the progression to end-stage renal disease, but not prevent or reverse it. Oxidative stress is an important player in the pathogenesis of diabetic nephropathy. The activity of reactive oxygen and nitrogen species (ROS/NS), which are by-products of the diabetic milieu, has been found to correlate with pathological changes observed in the diabetic kidney. However, many clinical studies have failed to establish that antioxidant therapy is renoprotective. The discovery that increased ROS/NS activity is linked to mitochondrial dysfunction, endoplasmic reticulum stress, inflammation, cellular senescence, and cell death calls for a refined approach to antioxidant therapy. It is becoming clear that mitochondria play a key role in the generation of ROS/NS and their consequences on the cellular pathways involved in apoptotic cell death in the diabetic kidney. Oxidative stress has also been associated with necrosis via induction of mitochondrial permeability transition. This review highlights the importance of mitochondria in regulating redox balance, modulating cellular responses to oxidative stress, and influencing cell death pathways in diabetic kidney disease. ROS/NS-mediated cellular dysfunction corresponds with progressive disease in the diabetic kidney, and consequently represents an important clinical target. Based on this consideration, this review also examines current therapeutic interventions to prevent ROS/NS-derived injury in the diabetic kidney. These interventions, mainly aimed at reducing or preventing mitochondrial-generated oxidative stress, improving mitochondrial antioxidant defense, and maintaining mitochondrial integrity, may deliver alternative approaches to halt or prevent diabetic kidney disease.
Collapse
Affiliation(s)
- Runa Lindblom
- Glycation, Nutrition and Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Gavin Higgins
- Glycation, Nutrition and Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Melinda Coughlan
- Glycation, Nutrition and Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Judy B de Haan
- Oxidative Stress Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| |
Collapse
|
1055
|
Chepelev NL, Kennedy DA, Gagné R, White T, Long AS, Yauk CL, White PA. HPLC Measurement of the DNA Oxidation Biomarker, 8-oxo-7,8-dihydro-2'-deoxyguanosine, in Cultured Cells and Animal Tissues. J Vis Exp 2015:e52697. [PMID: 26273842 DOI: 10.3791/52697] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Oxidative stress is associated with many physiological and pathological processes, as well as xenobiotic metabolism, leading to the oxidation of biomacromolecules, including DNA. Therefore, efficient detection of DNA oxidation is important for a variety of research disciplines, including medicine and toxicology. A common biomarker of oxidatively damaged DNA is 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dGuo; often erroneously referred to as 8-hydroxy-2'-deoxyguanosine (8-OH-dGuo or 8-oxo-dG)). Several protocols for 8-oxo-dGuo measurement by high pressure liquid chromatography with electrochemical detection (HPLC-ED) have been described. However, these were mainly applied to purified DNA treated with pro-oxidants. In addition, due to methodological differences between laboratories, mainly due to differences in analytical equipment, the adoption of published methods for detection of 8-oxo-dGuo by HPLC-ED requires careful optimization by each laboratory. A comprehensive protocol, describing such an optimization process, is lacking. Here, a detailed protocol is described for the detection of 8-oxo-dGuo by HPLC-ED, in DNA from cultured cells or animal tissues. It illustrates how DNA sample preparation can be easily and rapidly optimized to minimize undesirable DNA oxidation that can occur during sample preparation. This protocol shows how to detect 8-oxo-dGuo in cultured human alveolar adenocarcinoma cells (i.e., A549 cells) treated with the oxidizing agent KBrO3, and from the spleen of mice exposed to the polycyclic aromatic hydrocarbon dibenzo(def,p)chrysene (DBC, formerly known as dibenzo(a,l)pyrene, DalP). Overall, this work illustrates how an HPLC-ED methodology can be readily optimized for the detection of 8-oxo-dGuo in biological samples.
Collapse
Affiliation(s)
| | - Dean A Kennedy
- Environmental Health Science and Research Bureau, Health Canada
| | - Remi Gagné
- Environmental Health Science and Research Bureau, Health Canada
| | - Taryn White
- Environmental Health Science and Research Bureau, Health Canada
| | | | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada
| | - Paul A White
- Environmental Health Science and Research Bureau, Health Canada
| |
Collapse
|
1056
|
Wessels M, Rimkus J, Leyhausen G, Volk J, Geurtsen W. Genotoxic effects of camphorquinone and DMT on human oral and intestinal cells. Dent Mater 2015; 31:1159-68. [PMID: 26187530 DOI: 10.1016/j.dental.2015.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 06/08/2015] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Released components of oral biomaterials can leach into the oral cavity and may subsequently reach the gastrointestinal tract. Camphorquinone (CQ) is the most common used photoinitiator in resinous restorative materials and is often combined with the co-initiator N,N-dimethyl-p-toluidine (DMT). It has been shown that CQ exerts cytotoxic effects, at least partially due to the generation of reactive oxygen species (ROS). Objective of this study was to examine the cytotoxic and genotoxic potential of CQ in human oral keratinocytes (OKF6/TERT2) and immortalized epithelial colorectal adenocarcinoma cells (Caco-2). Furthermore, the effects of visible-light irradiation and the co-initiator DMT were investigated as well as the generation of ROS, the potential protective effect of glutathione (GSH) and a recovery period of CQ-treated Caco-2 cells. METHODS The alkaline comet assay was used to determine DNA damage. Additionally, an enzyme modified comet assay was applied, which detects 7,8-dihydro-8-oxoguanine (8-oxoguanine), a reliable marker for oxidative stress. RESULTS Our data revealed that high concentrations of CQ induced DNA lesions in OKF6/TERT2 cells. This DNA damage is at least partly caused by the generation of 8-oxoguanine. In addition, CQ and DMT increased ROS formation and induced DNA damage in Caco-2 cells. CQ-treatment resulted in generation of 8-oxoguanine. The antioxidant GSH efficiently prevented CQ-associated DNA damage. Furthermore, a recovery following CQ-treatment significantly reduced DNA damage. SIGNIFICANCE We conclude that CQ-induced DNA damage is caused by oxidative stress in oral and intestinal cells. These lesions can be prevented and possibly repaired by GSH-treatment and recovery of cells after the photoinitiator is removed from cultures.
Collapse
Affiliation(s)
- Miriam Wessels
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Julia Rimkus
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Gabriele Leyhausen
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Joachim Volk
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Werner Geurtsen
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
1057
|
Pylväs-Eerola M, Karihtala P, Puistola U. Preoperative serum 8-hydroxydeoxyguanosine is associated with chemoresistance and is a powerful prognostic factor in endometrioid-type epithelial ovarian cancer. BMC Cancer 2015; 15:493. [PMID: 26134400 PMCID: PMC4489129 DOI: 10.1186/s12885-015-1504-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/19/2015] [Indexed: 01/30/2023] Open
Abstract
Background Oxidative stress is a widely seen phenomenon in several carcinomas. Increasing evidence also suggests that it has a significant role in the development of epithelial ovarian carcinoma (EOC). 8-Hydroxydeoxyguanosine (8-OHdG) is one of the main indicators of oxidative stress and increased expression of 8-OHdG has previously been seen in EOC. DJ-1 is an oncoprotein connected to oxidative stress regulation, but its role in ovarian cancer is not well known. We investigated redox status in different histotypes of EOC by measuring serum 8-OHdG and DJ-1 concentrations and their associations with known prognostic factors. Methods Serum samples from newly diagnosed EOC patients were collected in 1996–2009 and stored at the Department of Obstetrics and Gynecology, Oulu University Hospital. Serum 8-OHdG and DJ-1 levels were measured by using commercially available ELISA kits. Clinical data was gathered retrospectively from the patients` files. Results were analyzed by using SPSS software. Results In total, 112 patient samples were analyzed (38 serous, 20 mucinous, 34 endometrioid and 20 clear-cell). High serum 8-OHdG levels were associated with poor overall survival (OS) (p = 0.019), poor disease-free survival (DFS) (p = 0.020), platinum resistance (p = 0.002), serous histology versus other (p = 0.033), stage III–IV versus I–II (p = 0.009) and suboptimal surgical outcome (p = 0.012). Regarding histotypes, in the endometrioid EOC group in particular, serum 8-OHdG levels were significantly associated with poor DFS (p = 0.005), suboptimal surgical outcome (p = 0.025), and platinum resistance (p = 0.007). The prognostic significance of 8-OHdG in patients with endometrioid cancer in terms of DFS was confirmed in Cox regression analysis. High DJ-1 levels were associated with high histological grade (p = 0.029) and nonsignificantly associated with serous histology vs. other histology (p = 0.089). Conclusions An elevated serum 8-OHdG level is a significant predictor of poor prognosis, especially in cases of the endometrioid subtype of ovarian carcinoma. High 8-OHdG levels are associated with all traditional factors of poor prognosis in ovarian cancer and they also predict earlier development of platinum resistance. These results could be valuable when deciding the primary treatment mode for EOC patients.
Collapse
Affiliation(s)
- Marjo Pylväs-Eerola
- Department of Obstetrics and Gynecology, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.
| | - Peeter Karihtala
- Department of Oncology and Radiotherapy, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, P.O. Box 22, FIN-90029, Oulu, Finland.
| | - Ulla Puistola
- Department of Obstetrics and Gynecology, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.
| |
Collapse
|
1058
|
Georgiev AV, Thompson ME, Mandalaywala TM, Maestripieri D. Oxidative stress as an indicator of the costs of reproduction among free-ranging rhesus macaques. J Exp Biol 2015; 218:1981-5. [PMID: 25908058 PMCID: PMC4510843 DOI: 10.1242/jeb.121947] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/20/2015] [Indexed: 11/20/2022]
Abstract
Sex differences in longevity may reflect sex-specific costs of intra-sexual competition and reproductive effort. As male rhesus macaques experience greater intrasexual competition and die younger, we predicted that males would experience greater oxidative stress than females and that oxidative stress would reflect sex-specific measures of reproductive effort. Males, relative to females, had higher concentrations of 8-OHdG and malondialdehyde, which are markers of DNA oxidative damage and lipid peroxidation, respectively. Older macaques had lower 8-OHdG levels than younger ones, suggesting that oxidative stress decreases in parallel with known age-related declines in reproductive investment. Among males, a recent period of social instability affected oxidative status: males who attacked others at higher rates had higher 8-OHdG levels. Multiparous lactating females with daughters had higher 8-OHdG levels than those with sons. No differences in antioxidant capacity were found. These results lend initial support for the use of oxidative stress markers to assess trade-offs between reproductive effort and somatic maintenance in primates.
Collapse
Affiliation(s)
- Alexander V Georgiev
- Institute for Mind and Biology, The University of Chicago, 940 E 57th St, Chicago, IL 60637, USA
| | - Melissa Emery Thompson
- Department of Anthropology, University of New Mexico, 500 University Blvd NE, Albuquerque, NM 87131, USA
| | - Tara M Mandalaywala
- Institute for Mind and Biology, The University of Chicago, 940 E 57th St, Chicago, IL 60637, USA Department of Psychology, New York University, 6 Washington Place, New York, NY 10003, USA
| | - Dario Maestripieri
- Institute for Mind and Biology, The University of Chicago, 940 E 57th St, Chicago, IL 60637, USA
| |
Collapse
|
1059
|
Roy A, Queirolo E, Peregalli F, Mañay N, Martínez G, Kordas K. Association of blood lead levels with urinary F₂-8α isoprostane and 8-hydroxy-2-deoxy-guanosine concentrations in first-grade Uruguayan children. ENVIRONMENTAL RESEARCH 2015; 140:127-35. [PMID: 25863186 PMCID: PMC4492803 DOI: 10.1016/j.envres.2015.03.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/27/2015] [Accepted: 03/03/2015] [Indexed: 05/20/2023]
Abstract
Oxidative stress (OS) is a potential molecular mechanism for lead-induced toxicities, yet, we have limited understanding of the relation between low-level lead (Pb) exposure and OS, especially in children. This cross-sectional study examines the association between blood lead level (BLL) and two OS markers-urinary F2-8α isoprostane or isoprostane (a marker of lipid peroxidation) and 8-hydroxy-2-deoxy-Guanosine or 8-OH-dG (a marker of DNA damage) in 211 children, aged 5-8 years, from Montevideo, Uruguay. The role of dietary intakes of vitamin C and zinc in modifying the relation between BLL and OS was also examined. The mean (SD) BLL of the study children was 4.7 (2.2) µg/dL, with 30.2% children having BLL ≥5 µg/dL, the current reference level set by the US Centre for Disease Control for identifying, monitoring and management of children with elevated BLL. In covariate-adjusted analysis, there was a weak positive association between BLL and urinary isoprostane (adjusted for specific gravity) [β=0.09, p<0.1]. No association was found between children's BLL and urinary 8-OH-dG. Interactions between dietary intakes of vitamin C or zinc and BLL on OS biomarkers were not consistent. However, when BLL and vitamin C or BLL and zinc were modeled together, BLL was independently associated with isoprostane concentration [β=0.10, p<0.05] but vitamin C or zinc intake was not. These findings suggest that there may be a potential adverse effect of BLL on OS in children with low-level Pb exposure. There is a need to study the effects of Pb on other OS measures, as well as the role of OS in mediating low-level Pb toxicity on functional outcomes.
Collapse
Affiliation(s)
- Aditi Roy
- Department of Nutritional Sciences, Pennsylvania State University, University Park, USA.
| | - Elena Queirolo
- Centre for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Fabiana Peregalli
- Centre for Research, Catholic University of Uruguay, Montevideo, Uruguay; Department of Gastroenterology, Hepatology and Nutrition, Hospital Pereira Rossell, Montevideo, Uruguay
| | - Nelly Mañay
- Faculty of Chemistry, University of the Republic of Uruguay, Montevideo, Uruguay
| | - Gabriela Martínez
- Faculty of Chemistry, University of the Republic of Uruguay, Montevideo, Uruguay
| | - Katarzyna Kordas
- Department of Nutritional Sciences, Pennsylvania State University, University Park, USA; School of Social and Community Medicine, University of Bristol, Bristol, UK
| |
Collapse
|
1060
|
Mirowsky J, Gordon T. Noninvasive effects measurements for air pollution human studies: methods, analysis, and implications. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2015; 25:354-80. [PMID: 25605444 PMCID: PMC6659729 DOI: 10.1038/jes.2014.93] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/26/2014] [Accepted: 11/05/2014] [Indexed: 05/09/2023]
Abstract
Human exposure studies, compared with cell and animal models, are heavily relied upon to study the associations between health effects in humans and air pollutant inhalation. Human studies vary in exposure methodology, with some work conducted in controlled settings, whereas other studies are conducted in ambient environments. Human studies can also vary in the health metrics explored, as there exists a myriad of health effect end points commonly measured. In this review, we compiled mini reviews of the most commonly used noninvasive health effect end points that are suitable for panel studies of air pollution, broken into cardiovascular end points, respiratory end points, and biomarkers of effect from biological specimens. Pertinent information regarding each health end point and the suggested methods for mobile collection in the field are assessed. In addition, the clinical implications for each health end point are summarized, along with the factors identified that can modify each measurement. Finally, the important research findings regarding each health end point and air pollutant exposures were reviewed. It appeared that most of the adverse health effects end points explored were found to positively correlate with pollutant levels, although differences in study design, pollutants measured, and study population were found to influence the magnitude of these effects. Thus, this review is intended to act as a guide for researchers interested in conducting human exposure studies of air pollutants while in the field, although there can be a wider application for using these end points in many epidemiological study designs.
Collapse
Affiliation(s)
- Jaime Mirowsky
- Department of Environmental Medicine, New York University School of Medicine, Nelson Institute of Environmental Medicine, Tuxedo, New York, USA
| | - Terry Gordon
- Department of Environmental Medicine, New York University School of Medicine, Nelson Institute of Environmental Medicine, Tuxedo, New York, USA
| |
Collapse
|
1061
|
Wu Y, Yang X, Zhang B, Guo LH. An electrochemiluminescence biosensor for 8-oxo-7,8-dihydro-2′-deoxyguanosine quantification and DNA repair enzyme activity analysis using a novel bifunctional probe. Biosens Bioelectron 2015; 69:235-40. [DOI: 10.1016/j.bios.2015.02.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/13/2015] [Accepted: 02/25/2015] [Indexed: 10/23/2022]
|
1062
|
Dincer Y, Yüksel S, Batar B, Güven M, Onaran I, Celkan T. DNA Repair Gene Polymorphisms and Their Relation With DNA Damage, DNA Repair, and Total Antioxidant Capacity in Childhood Acute Lymphoblastic Leukemia Survivors. J Pediatr Hematol Oncol 2015; 37:344-50. [PMID: 24577548 DOI: 10.1097/mph.0000000000000133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Oxidative stress and defective DNA repair are major contributory factors in the initiation and progression of carcinogenesis. Chemotherapy and radiotherapy cause oxidative DNA damage, consume antioxidant capacity, and impair DNA repair activity. These effects of chemotherapy and radiotherapy may be contributory factors in the development of secondary malignancy in cancer survivors. Basal, H2O2-induced, and postrepair DNA damage; urinary 8-hydroxydeoxyguanosine level as a marker of oxidatively damaged DNA; and serum total antioxidant capacity were measured; XPD Lys751Gln, XRCC1 Arg399Gln, and XRCC1 Arg194Trp polymorphisms were analyzed in childhood acute lymphoblastic leukemia (ALL) survivors. Basal and H2O2-induced DNA damage were found to be higher in the ALL survivor group versus the control group, however, there was no significant difference between the other parameters. No association was found between the examined parameters and polymorphisms of XPD 751 and XRCC1 399 and both the groups. XRCC1 194Trp allele was found to be associated with a low level of postrepair DNA damage in the ALL survivors. In conclusion, basal DNA damage and susceptibility to oxidation are high in childhood ALL survivors. This situation which may easily lead to occurrence of a secondary cancer does not seem to be a result of deficient DNA repair.
Collapse
Affiliation(s)
- Yildiz Dincer
- Departments of *Biochemistry †Medical Biology ‡Pediatric Hematology-Oncology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
1063
|
Illeperuma RP, Kim DK, Park YJ, Son HK, Kim JY, Kim J, Lee DY, Kim KY, Jung DW, Tilakaratne WM, Kim J. Areca nut exposure increases secretion of tumor-promoting cytokines in gingival fibroblasts that trigger DNA damage in oral keratinocytes. Int J Cancer 2015; 137:2545-57. [PMID: 26076896 PMCID: PMC4744697 DOI: 10.1002/ijc.29636] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 05/28/2015] [Accepted: 05/28/2015] [Indexed: 02/06/2023]
Abstract
Molecular crosstalk between cancer cells and fibroblasts has been an emerging hot issue in understanding carcinogenesis. As oral submucous fibrosis (OSF) is an inflammatory fibrotic disease that can potentially transform into squamous cell carcinoma, OSF has been considered to be an appropriate model for studying the role of fibroblasts during early stage carcinogenesis. In this sense, this study aims at investigating whether areca nut (AN)‐exposed fibroblasts cause DNA damage of epithelial cells. For this study, immortalized hNOF (hTERT‐hNOF) was used. We found that the levels of GRO‐α, IL‐6 and IL‐8 increased in AN‐exposed fibroblasts. Cytokine secretion was reduced by antioxidants in AN‐exposed fibroblasts. Increase in DNA double strand breaks (DSB) and 8‐oxoG FITC‐conjugate was observed in immortalized human oral keratinocytes (IHOK) after the treatment of cytokines or a conditioned medium derived from AN‐exposed fibroblasts. Cytokine expression and DNA damage were also detected in OSF tissues. The DNA damage was reduced by neutralizing cytokines or antioxidant treatment. Generation of reactive oxygen species (ROS) and DNA damage response, triggered by cytokines, were abolished when NADPH oxidase (NOX) 1 and 4 were silenced in IHOK, indicating that cytokine‐triggered DNA damage was caused by ROS generation through NOX1 and NOX4. Taken together, this study provided strong evidence that blocking ROS generation might be a rewarding approach for cancer prevention and intervention in OSF. What's new? Fibroblasts in the tumor microenvironment influence tumor initiation and growth and are of particular interest in oral submucous fibrosis (OSF), a progressive fibrotic disease of malignant potential. This study shows that the release of tumor‐promoting cytokines by fibroblasts exposed to areca nut, the primary cause of OSF, induce DNA damage in oral keratinocytes. The findings suggest that fibroblasts indirectly promote epithelial transformation in OSF by secreting cytokines, whereby DNA damage of epithelial cells is inflicted by reactive oxygen species generated via NADPH oxidases. These insights could inform the development of new therapeutic approaches for OSF.
Collapse
Affiliation(s)
- Rasika P Illeperuma
- Oral Cancer Research Institute, Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Korea.,Faculty of Allied Health Sciences, Department of Medical Laborotary Science, University of Peradeniya, Sri Lanka
| | - Do Kyeong Kim
- Oral Cancer Research Institute, Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Korea.,BK 21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Young Jin Park
- Oral Cancer Research Institute, Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Korea.,BK 21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Hwa Kyung Son
- Oral Cancer Research Institute, Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Korea.,Department of Dental Hygiene, Yeungnam University College, Daegu, Korea
| | - Jue Young Kim
- Oral Cancer Research Institute, Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Korea.,BK 21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Jinmi Kim
- Oral Cancer Research Institute, Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Korea
| | - Doo Young Lee
- Oral Cancer Research Institute, Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Korea
| | - Ki-Yeol Kim
- Oral Cancer Research Institute, Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Korea
| | - Da-Woon Jung
- Department of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | | | - Jin Kim
- Oral Cancer Research Institute, Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Korea.,BK 21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| |
Collapse
|
1064
|
Kılıç Y, Geyikoglu F, Çolak S, Turkez H, Bakır M, Hsseinigouzdagani M. Carvacrol modulates oxidative stress and decreases cell injury in pancreas of rats with acute pancreatitis. Cytotechnology 2015; 68:1243-56. [PMID: 26093481 DOI: 10.1007/s10616-015-9885-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/08/2015] [Indexed: 02/06/2023] Open
Abstract
Acute pancreatitis (AP) is considered as major problem around the world and the incidence of AP is increasing. Carvacrol (CAR), a monoterpenic phenol, has good antioxidant activity. This in vivo study was designed to evaluate whether CAR provide protection against AP that developed by pancreas injury. The rats were randomised into groups to receive (I) no therapy; (II) 50 µg/kg cerulein at 1 h intervals by four intraperitonally (i.p.) injections; (III) 50, 100 and 200 mg/kg CAR by one i.p. injection; and (IV) cerulein plus CAR after 2 h of cerulein administration. 12 h later, serum samples were obtained to assess pancreatic function, the lipase and amylase values. The oxidative stress markers were evaluated by changes in the amount of lipid peroxides measured as malondialdehyde (MDA) and changes in main tissue antioxidant enzyme levels including SOD, CAT and GSH-PX. Histopathological examination was performed using scoring systems. Additionally, oxidative DNA damage was determined by measuring the increases of 8-hydroxy-deoxyguanosine (8-OH-dG) formations. We found that the increasing doses of CAR decreased AP-induced MDA and 8-OH-dG levels. Moreover, the pancreas antioxidant enzyme activities were higher than that of the rats in the AP group when compared to the AP plus CAR group. In the treatment groups, the lipase and amylase were reduced. Besides, histopathological findings in the pancreatic tissue were alleviated (p < 0.05). We suggest that CAR could be a safe and potent new drug candidate for treating AP through its antioxidative mechanism of action for the treatment of a wide range of disorders related to pancreas.
Collapse
Affiliation(s)
- Yeliz Kılıç
- Department of Biology, Faculty of Science, Ataturk University, 25240, Erzurum, Turkey
| | - Fatime Geyikoglu
- Department of Biology, Faculty of Science, Ataturk University, 25240, Erzurum, Turkey.
| | - Suat Çolak
- Üzümlü Vocational School, Erzincan University, Erzincan, Turkey
| | - Hasan Turkez
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey.,Department of Pharmacy, University "G. D'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy
| | - Murat Bakır
- Department of Biology, Faculty of Science, Ataturk University, 25240, Erzurum, Turkey
| | | |
Collapse
|
1065
|
Abstract
The present cross-sectional study assessed the potential relationships of carotenoid intake with lipid and oxidative stress markers in middle-aged men. A total of 296 apparently healthy middle-aged men (mean age 50.5 (SD 5.0) years, BMI 25.8 (SD 3.5) kg/m(2)) were recruited to participate in the study. Dietary intake, anthropometry, blood pressure, lifestyle features, blood and urine biomarkers were assessed using validated procedures. The lipid markers included NEFA, Castelli index, and TAG:HDL ratio; oxidative stress markers included urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), 8-iso-PGF2α and plasma oxidised-LDL (ox-LDL). We observed a significant inverse association (P < 0.05) between NEFA concentrations and consumption of lutein plus zeaxanthin, β-carotene, α-carotene and total carotenoid, while Castelli index was negatively associated with daily intake of lycopene, β-carotene and total carotenoids. Regarding oxidative stress biomarkers, urinary 8-OHdG and ox-LDL concentrations were also inversely associated (P < 0.05) with consumption of lycopene, lutein plus zeaxanthin, β-carotene, α-carotene and total carotenoids, regardless of confounding variables. Moreover, there was a negative association of urinary 8-iso-PGF2α concentration with dietary lutein plus zeaxanthin (β - 0.135, 95% CI - 0.268, - 0.001), β-carotene (β - 0.156, 95% CI - 0.277, - 0.034) and with the sum of all carotenoids (β - 0.189, 95% CI - 0.333, - 0.046). In conclusion, total daily carotenoid intake based on five investigated carotenoid types (β-cryptoxanthin, lycopene, lutein plus zeaxanthin, β-carotene and α-carotene) was inversely associated with relevant lipid and oxidative stress markers in middle-aged men, with emphasis on β-carotene that was negatively associated with five of the six lipid and oxidative stress markers evaluated in the present study.
Collapse
|
1066
|
Wei X, Yin H. Covalent modification of DNA by α, β-unsaturated aldehydes derived from lipid peroxidation: Recent progress and challenges. Free Radic Res 2015; 49:905-17. [PMID: 25968945 DOI: 10.3109/10715762.2015.1040009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Oxidative stress-induced lipid peroxidation (LPO) has been associated with human physiology and pathophysiology. LPO generates an array of oxidation products and among them reactive lipid aldehydes have received intensive research attentions due to their roles in modulating functions of biomolecules through covalent modification. Thus, covalent modification of DNA by these reactive lipid electrophiles has been postulated to be partially responsible for the biological roles of LPO. In this review, we summarized recent progress and challenges in studying the roles of covalent modification of DNA including nuclear and mitochondrial DNA by reactive lipid metabolites from LPO. We focused on the novel mechanistic insights into generation of lipid aldehydes from cellular membranes especially mitochondria through LPO. Recent advances in the technological front using mass spectrometry have also been highlighted in the settings of studying DNA damage caused by LPO and its biological relevance.
Collapse
Affiliation(s)
- X Wei
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) , Shanghai , China
| | | |
Collapse
|
1067
|
Gavia-García G, González-Martínez H, Miliar-García Á, Bonilla-González E, Rosas-Trejo MDLÁ, Königsberg M, Nájera-Medina O, Luna-López A, González-Torres MC. Oxidative damage and antioxidant defense in thymus of malnourished lactating rats. Nutrition 2015; 31:1408-15. [PMID: 26429663 DOI: 10.1016/j.nut.2015.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/29/2015] [Accepted: 05/10/2015] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Malnutrition has been associated with oxidative damage by altered antioxidant protection mechanisms. Specifically, the aim of this study was to evaluate oxidative damage (DNA and lipid) and antioxidant status (superoxide dismutase [SOD], glutathione peroxidase [GPx], and catalase [CAT] mRNA, and protein expression) in thymus from malnourished rat pups. METHODS Malnutrition was induced during the lactation period by the food competition method. Oxidative DNA damage was determined quantifying 8-oxo-7, 8-dihydro-2'-deoxyguanosine adduct by high-performance liquid chromatography. Lipid peroxidation was assessed by the formation of thiobarbituric acid-reactive substances. Levels of gene and protein expression of SOD, GPx, and CAT were evaluated by real-time polymerase chain reaction and Western blot, respectively. Antioxidant enzyme activities were measured spectrophotometrically. RESULTS Oxidative DNA damage and lipid peroxidation significantly increased in second-degree (MN-2) and third-degree malnourished (MN-3) rats compared with well-nourished rats. Higher amounts of oxidative damage, lower mRNA expression, and lower relative concentrations of protein, as well as decreased antioxidant activity of SOD, GPx, and CAT were associated with the MN-2 and MN-3 groups. CONCLUSIONS The results of this study demonstrated that higher body-weight deficits were related to alterations in antioxidant protection, which contribute to increased levels of damage in the thymus. To our knowledge, this study demonstrated for the first time that early in life, malnutrition leads to increased DNA and lipid oxidative damage, attributable to damaged antioxidant mechanisms including transcriptional and enzymatic activity alterations. These findings may contribute to the elucidation of the causes of previously reported thymus dysfunction, and might explain partially why children and adults who have overcome child undernourishment experience immunologic deficiencies.
Collapse
Affiliation(s)
- Graciela Gavia-García
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, México City, Mexico; Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, México City, Mexico
| | - Haydeé González-Martínez
- Centro de Nanociencias y Micro y Nanotecnologías, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico
| | - Ángel Miliar-García
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, Mexico
| | - Edmundo Bonilla-González
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, México City, Mexico
| | | | - Mina Königsberg
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, México City, Mexico
| | - Oralia Nájera-Medina
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, México City, Mexico
| | - Armando Luna-López
- Departamento de Investigación Básica, Instituto Nacional de Geriatría, México City, Mexico
| | | |
Collapse
|
1068
|
Oxidative stress markers induced by hyperosmolarity in primary human corneal epithelial cells. PLoS One 2015; 10:e0126561. [PMID: 26024535 PMCID: PMC4449087 DOI: 10.1371/journal.pone.0126561] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/03/2015] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress has been known to be involved in pathogenesis of dry eye disease. However, few studies have comprehensively investigated the relationship between hyperosmolarity and oxidative damage in human ocular surface. This study was to explore whether and how hyperosmolarity induces oxidative stress markers in primary human corneal epithelial cells (HCECs). Primary HCECs were established from donor limbal explants. The hyperosmolarity model was made in HCECs cultured in isosmolar (312 mOsM) or hyperosmotic (350, 400, 450 mOsM) media. Production of reactive oxygen species (ROS), oxidative damage markers, oxygenases and anti-oxidative enzymes were analyzed by DCFDA kit, RT-qPCR, immunofluorescent and immunohistochemical staining and Western blotting. Compared to isosmolar medium, ROS production significantly increased at time- and osmolarity-dependent manner in HCECs exposed to media with increasing osmolarities (350–450 mOsM). Hyperosmolarity significantly induced oxidative damage markers in cell membrane with increased toxic products of lipid peroxidation, 4–hydroxynonenal (4-HNE) and malondialdehyde (MDA), and in nuclear and mitochondria DNA with increased aconitase-2 and 8-OHdG. Hyperosmotic stress also increased the mRNA expression and protein production of heme oxygenase-1 (HMOX1) and cyclooxygenase-2 (COX2), but reduced the levels of antioxidant enzymes, superoxide dismutase-1 (SOD1), and glutathione peroxidase-1 (GPX1). In conclusion, our comprehensive findings demonstrate that hyperosmolarity induces oxidative stress in HCECs by stimulating ROS production and disrupting the balance of oxygenases and antioxidant enzymes, which in turn cause cell damage with increased oxidative markers in membrane lipid peroxidation and mitochondrial DNA damage.
Collapse
|
1069
|
Noh SR, Cheong HK, Ha M, Eom SY, Kim H, Choi YH, Paek D. Oxidative stress biomarkers in long-term participants in clean-up work after the Hebei Spirit oil spill. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 515-516:207-214. [PMID: 25727518 DOI: 10.1016/j.scitotenv.2015.02.039] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 02/08/2015] [Accepted: 02/09/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND The oil tanker Hebei Spirit spilled 12,547kL of oil near the western coastline of Korea on December 7, 2007. We aimed to investigate the relationship between oil spill exposure and oxidative stress in residents living near the affected area. METHODS Study subjects were 671 residents who participated in a health examination between February and September 2009. As surrogates for oil spill exposure, we used the total duration of clean-up work and levels of urinary metabolites of polycyclic aromatic hydrocarbons (PAHs), 1-hydroxypyrene (1-OHP) and 2-naphthol (2-NAPH). Oxidative stress was measured using urinary levels of malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG), indicators of lipid peroxidation and oxidative DNA damage, respectively. RESULTS Levels of oxidative stress biomarkers were significantly increased with longer involvement in clean-up work over one year after the Hebei Spirit oil spill (MDA, p-trend<0.0001; 8-OHdG, p-trend<0.0001). As more time elapsed since the last involvement in clean-up, the total duration of clean-up work participation and levels of PAH metabolites (1-OHP and 2-NAPH), as well as levels of the oxidative stress biomarkers (MDA and 8-OHdG) decreased further. The level of 1-OHP had a significant positive correlation with the total duration of clean-up work involvement, with a higher level found in those who participated in clean-up for >100 days. Increasing levels of 1-OHP were significantly associated with increased MDA and 8-OHdG after adjusting for covariates, while the strength of association weakened as time passed since the last participation in clean-up work. The significance of the association was maintained for up to 12 months after the last clean-up work. CONCLUSIONS The results suggested that oil exposure from prolonged clean-up activity likely induced oxidative stress in clean-up participants up to at least one year after the last exposure.
Collapse
Affiliation(s)
- Su Ryeon Noh
- Taean Environmental Health Center, Taean, Republic of Korea; Department of Environmental Health, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Hae-Kwan Cheong
- Department of Social and Preventive Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Mina Ha
- Department of Preventive Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea.
| | - Sang-Yong Eom
- Department of Preventive Medicine, Medical Research Institute, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Heon Kim
- Department of Preventive Medicine, Medical Research Institute, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | | | - Domyung Paek
- Department of Environmental Health, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
1070
|
Xie Z, Lin H, Fang R, Shen W, Li S, Chen B. Effects of a fruit-vegetable dietary pattern on oxidative stress and genetic damage in coke oven workers: a cross-sectional study. Environ Health 2015; 14:40. [PMID: 25943758 PMCID: PMC4428115 DOI: 10.1186/s12940-015-0028-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 04/22/2015] [Indexed: 05/16/2023]
Abstract
BACKGROUND Coke oven workers (COWs) are exposed to high level of genotoxic chemicals that induce oxidative stress and genetic damage. The dietary intake of certain types of foods may reverse these effects. METHODS We conducted a cross-sectional study with 51 topside COWs, 79 other COWs, and 67 controls, to assess the effects of dietary patterns on oxidative stress and genetic damage. RESULTS Compared to the controls, both topside and other COWs had significantly higher urinary 1-hydroxypyrene levels, serum oxidant levels [malondialdehyde, (MDA)], and genetic damage [micronucleus (MN) frequency & 8-oxo-2'-deoxyguanosine (8-OH-dG)], but lower antioxidant levels [superoxide dismutase (SOD) and glutathione peroxidase, (GPx)]. The fruit-vegetable (FV) dietary pattern was positively correlated with serum SOD levels and negative correlated with serum MDA, MN frequency, and urinary 8-OH-dG. COWs with an FV patter in the highest quartile (Q4) had significantly increased antioxidant levels (SOD and GPx) and decreased oxidant levels (MDA) and genetic damage (MN frequency and 8-OH-dG) than those with an FV pattern in the lowest quartile (Q1). CONCLUSION Compared to control subjects, COWs had increased oxidative stress and genetic damage. A FV dietary pattern may reverse oxidative stress and genetic damage in COWs.
Collapse
Affiliation(s)
- Zheng Xie
- School of Public Health, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100191, P. R. China.
| | - Haijiang Lin
- Taizhou City Center for Disease Control and Prevention, 608 The east China sea avenue, Taizhou city, Zhejiang Province, 318000, P. R. China.
| | - Renfei Fang
- School of Public Health, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100191, P. R. China.
| | - Weiwei Shen
- Taizhou City Center for Disease Control and Prevention, 608 The east China sea avenue, Taizhou city, Zhejiang Province, 318000, P. R. China.
| | - Shuguang Li
- Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, 138 Yixueyuan Road, Shanghai, 20032, P. R. China.
| | - Bo Chen
- Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, 138 Yixueyuan Road, Shanghai, 20032, P. R. China.
| |
Collapse
|
1071
|
Atmaca E, Aksoy A. d-Phenothrin-induced oxidative DNA damage in rat liver and kidney determined by HPLC-ECD/DAD. ENVIRONMENTAL TOXICOLOGY 2015; 30:607-613. [PMID: 24339023 DOI: 10.1002/tox.21938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 11/28/2013] [Accepted: 11/29/2013] [Indexed: 06/03/2023]
Abstract
The objective of this study was to assess the risk of genotoxicity of d-phenothrin by measuring the oxidative stress it causes in rat liver and kidney. The level of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG)/10(6) 2'-deoxyguanosine (dG) was measured by using high performance liquid chromatography (HPLC) with a diode array (DAD) and an electrochemical detector (ECD). Sixty male Wistar albino rats were randomly divided into five experimental groups and one control group of 10 rats/group. d-phenothrin was administered intraperitoneally (IP) to the five experimental groups at 25 mg/kg (Group I), 50 mg/kg (Group II), 66.7 mg/kg (Group III), 100 mg/kg (Group IV), and 200 mg/kg (Group V) for 14 consecutive days, and the control group received only the vehicle, dimethyl sulfoxide (DMSO). DNA from samples frozen in liquid nitrogen was isolated with a DNA isolation kit. Following digestion with nuclease P1 and alkaline phosphatase (ALP), hydrolyzed DNA was subjected to HPLC. The dG and 8-oxodG levels were analyzed with a DAD and ECD, respectively. In the experimental groups, the mean 8-oxodG/10(6) dG levels were 48.15 ± 7.43, 68.92 ± 20.66, 82.07 ± 14.15, 85.08 ± 28.50, and 89.14 ± 21.73 in livers and 39.06 ± 7.63, 59.69 ± 14.22, 61.13 ± 17.46, 65.13 ± 23.40, and 72.66 ± 19.04 in kidneys of Groups I, II, III, IV, and V, respectively. The mean 8-oxodG/10(6) dG levels in the control groups were 44.96 ± 12.66 for the liver and 39.07 ± 4.80 for the kidney. A statistically significant (p < 0.05), dose-dependent increase in oxidative DNA damage was observed in both organs of animals exposed to d-phenothrin when compared to controls. Furthermore, the liver showed a significantly higher level of oxidative DNA damage than the kidney (p < 0.01). In conclusion, d-phenothrin administered to rats intraperitoneally for 14 consecutive days generated free radical species in a dose-dependent manner and caused oxidative DNA damage in the liver and kidney.
Collapse
Affiliation(s)
- Enes Atmaca
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Ondokuz Mayıs University, TR-55139, Samsun, Turkey
| | | |
Collapse
|
1072
|
The role of antioxidants in the chemistry of oxidative stress: A review. Eur J Med Chem 2015; 97:55-74. [PMID: 25942353 DOI: 10.1016/j.ejmech.2015.04.040] [Citation(s) in RCA: 1531] [Impact Index Per Article: 153.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 04/13/2015] [Accepted: 04/18/2015] [Indexed: 02/07/2023]
Abstract
This Review Article is focused on the action of the reactive oxygenated species in inducing oxidative injury of the lipid membrane components, as well as on the ability of antioxidants (of different structures and sources, and following different mechanisms of action) in fighting against oxidative stress. Oxidative stress is defined as an excessive production of reactive oxygenated species that cannot be counteracted by the action of antioxidants, but also as a perturbation of cell redox balance. Reactive oxygenated/nitrogenated species are represented by superoxide anion radical, hydroxyl, alkoxyl and lipid peroxyl radicals, nitric oxide and peroxynitrite. Oxidative stress determines structure modifications and function modulation in nucleic acids, lipids and proteins. Oxidative degradation of lipids yields malondialdehyde and 4-hydroxynonenal, but also isoprostanes, from unsaturated fatty acids. Protein damage may occur with thiol oxidation, carbonylation, side-chain oxidation, fragmentation, unfolding and misfolding, resulting activity loss. 8-hydroxydeoxyguanosine is an index of DNA damage. The involvement of the reactive oxygenated/nitrogenated species in disease occurrence is described. The unbalance between the oxidant species and the antioxidant defense system may trigger specific factors responsible for oxidative damage in the cell: over-expression of oncogene genes, generation of mutagen compounds, promotion of atherogenic activity, senile plaque occurrence or inflammation. This leads to cancer, neurodegeneration, cardiovascular diseases, diabetes, kidney diseases. The concept of antioxidant is defined, along with a discussion of the existent classification criteria: enzymatic and non-enzymatic, preventative or repair-systems, endogenous and exogenous, primary and secondary, hydrosoluble and liposoluble, natural or synthetic. Primary antioxidants are mainly chain breakers, able to scavenge radical species by hydrogen donation. Secondary antioxidants are singlet oxygen quenchers, peroxide decomposers, metal chelators, oxidative enzyme inhibitors or UV radiation absorbers. The specific mechanism of action of the most important representatives of each antioxidant class (endogenous and exogenous) in preventing or inhibiting particular factors leading to oxidative injury in the cell, is then reviewed. Mutual influences, including synergistic effects are presented and discussed. Prooxidative influences likely to occur, as for instance in the presence of transition metal ions, are also reminded.
Collapse
|
1073
|
Kumar D, Tewari-Singh N, Agarwal C, Jain AK, Inturi S, Kant R, White CW, Agarwal R. Nitrogen mustard exposure of murine skin induces DNA damage, oxidative stress and activation of MAPK/Akt-AP1 pathway leading to induction of inflammatory and proteolytic mediators. Toxicol Lett 2015; 235:161-71. [PMID: 25891025 DOI: 10.1016/j.toxlet.2015.04.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/11/2015] [Accepted: 04/12/2015] [Indexed: 01/01/2023]
Abstract
Our recent studies in SKH-1 hairless mice have demonstrated that topical exposure to nitrogen mustard (NM), an analog of sulfur mustard (SM), triggers the inflammatory response, microvesication and apoptotic cell death. Here, we sought to identify the mechanism/s involved in these NM-induced injury responses. Results obtained show that NM exposure of SKH-1 hairless mouse skin caused H2A.X and p53 phosphorylation and increased p53 accumulation, indicating DNA damage. In addition, NM also induced the activation of MAPKs/ERK1/2, JNK1/2 and p38 as well as that of Akt together with the activation of transcription factor AP1. Also, NM exposure induced robust expression of pro-inflammatory mediators namely cyclooxygenase 2 and inducible nitric oxide synthase and cytokine tumor necrosis factor alpha, and increased the levels of proteolytic mediator matrix metalloproteinase 9. NM exposure of skin also increased lipid peroxidation, 5,5-dimethyl-2-(8-octanoic acid)-1-pyrroline N-oxide protein adduct formation, protein and DNA oxidation indicating an elevated oxidative stress. We also found NM-induced increase in the homologous recombinant repair pathway, suggesting its involvement in the repair of NM-induced DNA damage. Collectively, these results indicate that NM induces oxidative stress, mainly a bi-phasic response in DNA damage and activation of MAPK and Akt pathways, which activate transcription factor AP1 and induce the expression of inflammatory and proteolytic mediators, contributing to the skin injury response by NM. In conclusion, this study for the first time links NM-induced mechanistic changes with our earlier reported murine skin injury lesions with NM, which could be valuable to identify potential therapeutic targets and rescue agents.
Collapse
Affiliation(s)
- Dileep Kumar
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora 80045, CO, USA
| | - Neera Tewari-Singh
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora 80045, CO, USA
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora 80045, CO, USA
| | - Anil K Jain
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora 80045, CO, USA
| | - Swetha Inturi
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora 80045, CO, USA
| | - Rama Kant
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora 80045, CO, USA
| | - Carl W White
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora 80045, CO, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora 80045, CO, USA.
| |
Collapse
|
1074
|
The pleiotropic effect of physical exercise on mitochondrial dynamics in aging skeletal muscle. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:917085. [PMID: 25945152 PMCID: PMC4402202 DOI: 10.1155/2015/917085] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/18/2015] [Indexed: 12/25/2022]
Abstract
Decline in human muscle mass and strength (sarcopenia) is one of the principal hallmarks of the aging process. Regular physical exercise and training programs are certain powerful stimuli to attenuate the physiological skeletal muscle alterations occurring during aging and contribute to promote health and well-being. Although the series of events that led to these muscle adaptations are poorly understood, the mechanisms that regulate these processes involve the “quality” of skeletal muscle mitochondria. Aerobic/endurance exercise helps to maintain and improve cardiovascular fitness and respiratory function, whereas strength/resistance-exercise programs increase muscle strength, power development, and function. Due to the different effect of both exercises in improving mitochondrial content and quality, in terms of biogenesis, dynamics, turnover, and genotype, combined physical activity programs should be individually prescribed to maximize the antiaging effects of exercise.
Collapse
|
1075
|
Totan A, Miricescu D, Parlatescu I, Mohora M, Greabu M. Possible salivary and serum biomarkers for oral lichen planus. Biotech Histochem 2015; 90:552-8. [PMID: 25839238 DOI: 10.3109/10520295.2015.1016115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
There are few reports concerning the potential for clinical application of oxidative stress (OS) and collagen degradation markers in oral lichen planus (OLP) patients. We investigated the possibility of using some disease-related biomarkers in saliva and serum of OLP patients. Our study included 30 patients with OLP and 30 controls. We evaluated serum and salivary OS biomarkers including 8-OHdG, MDA, uric acid, TAC and GPx. We also investigated collagen degradation markers such as CTX I and MMP-8. We found significantly increased salivary levels of MMP-8 and CTX I in the OLP group compared to controls and significant differences between the OLP and control groups in serum and saliva for 8-OHdG, MDA (significantly increased), uric acid, TAC and GPx (significantly reduced). Currently there are no criteria for evaluating which OLP patients have a greater risk of malignant transformation. In addition to clinical surveillance, the serum and salivary biomarkers that we evaluated may be useful biomarkers for monitoring OLP patients in the future.
Collapse
Affiliation(s)
- A Totan
- a Biochemistry Department, Faculty of Dental Medicine , University of Medicine Carol Davila , Bucharest , Romania
| | - D Miricescu
- a Biochemistry Department, Faculty of Dental Medicine , University of Medicine Carol Davila , Bucharest , Romania
| | - I Parlatescu
- b Oral Pathology Department, Faculty of Dental Medicine , University of Medicine Carol Davila , Bucharest , Romania
| | - M Mohora
- a Biochemistry Department, Faculty of Dental Medicine , University of Medicine Carol Davila , Bucharest , Romania
| | - M Greabu
- a Biochemistry Department, Faculty of Dental Medicine , University of Medicine Carol Davila , Bucharest , Romania
| |
Collapse
|
1076
|
Moazamian R, Polhemus A, Connaughton H, Fraser B, Whiting S, Gharagozloo P, Aitken RJ. Oxidative stress and human spermatozoa: diagnostic and functional significance of aldehydes generated as a result of lipid peroxidation. ACTA ACUST UNITED AC 2015; 21:502-15. [DOI: 10.1093/molehr/gav014] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/26/2015] [Indexed: 12/28/2022]
|
1077
|
Abstract
As the understanding of the immune system pathways, cytokine balances, and cellular interactions continues to expand, so must the potential applications of therapies that can impact the process of diseases instead of just controlling their symptoms. In the case of Polypodium leucotomos extract, which is derived from a tropical fern of the Polypodiaceae family, the future potential of applications in dermatology and beyond will be better understood as its incorporation into daily routines gives rise to the development of new regimens. Clinicians may position this agent as an option for daily maintenance, accept its use in combinations, or use it as a template for further development of oral supplementation that may evolve into a true immunomodulator. The antioxidant activity of P. leucotomos extract is primarily driven by caffeic acid and ferulic acid, resulting in the control of cutaneous responses to ultraviolet-induced erythema, in the interception of inflammatory mechanisms, and the promotion of other cytotoxic responses. Histologically, the impact of P. leucotomos extract induces an effect on the overall reduction of angiogenesis, photocarcinogenesis, and solar elastosis, while on the cellular level there are improvements in cell membrane integrity and elastin expression. Future applications for P. leucotomos extract could include the potential for photoprotective effects, and subsequent research efforts should focus on determining the optimal dosage regimen, duration of action, and utility of combinations with sunscreens, among other outcomes. Recently published data have also demonstrated how the antioxidant effects of oral P. leucotomos extract can delay tumor development in mice models, suggesting there might be a protective role that could be described with further clinical research. In addition, it is important to recognize the distinction between photoprotection and chemoprevention, in that there has yet to be any in vivo or controlled clinical trial data in human subjects that show a role for P. leucotomos extract in the prevention of carcinogenesis.
Collapse
Affiliation(s)
- Neal Bhatia
- Director of Clinical Dermatology, Therapeutics Clinical Research, San Diego, CA, USA,
| |
Collapse
|
1078
|
Esmadi FT, Khabour OF, Abbas K, Mohammad AE, Obeidat RT, Mfady D. Synthesis, characterization and biological activity of some unsymmetrical Schiff base transition metal complexes. Drug Chem Toxicol 2015; 39:41-7. [PMID: 25791998 DOI: 10.3109/01480545.2015.1017882] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this study, several unsymmetrical Schiff bases and their cobalt and manganese complexes have been synthesized and characterized. The unsymmetrical Schiff bases were prepared from reaction of o-phenylendiamine derivatives with 1-hydroxy-2-acetonaphthone and then the product was reacted with the following aldehydes: salicyaldehyde, 2-hydroxynaphthaldehyde, 2-pyridinecarboxaldehyde and 2-qinolinecarboxaldehyde to produce the desired tetradentate unsymmetrical Schiff base ligands H2SL, H2NL, HPYL and HQN, respectively. Reaction of these ligands with cobalt and manganese salts produced complexes of the general formula [M(SL)], [(NL)], [M(PYL)] and [M(QL)]. All the complexes were characterized by elemental analysis, infrared spectroscopy, UV-visible spectroscopy, electrical conductivity and magnetic susceptibility measurements. The prepared complexes were examined for their anti-bacterial activity using gram-positive and gram-negative pathogens. The following complexes showed strong antibacterial activity against Staphylococcus aureus: MnSL1, MnSL2 and MnSL3. The genotoxic activity of four complexes, which are MnNL1, MnSL1, CoNL1 and CoSL1, were examined using 8-hydroxy-2-deoxy guanosine (8-OHdG) assay in cultured human blood lymphocytes. All examined complexes were found to be genotoxic at examined concentrations (0.1-100 µg/mL), but with variable magnitudes (p < 0.05). The levels of 8-OHdG induced by MnNL1 and MnSL1 were significantly higher than that induced by CoNL1 and CoSL1 ones. In general, the order of mutagenicity of the compounds is MnSL1 > MnNL1 > CoSL1 > CoNL1. In conclusion, some of the prepared complexes showed some biological activities that might be of interest for future research.
Collapse
Affiliation(s)
- Fatima T Esmadi
- a Department of Chemistry , Yarmouk University , Irbid , Jordan
| | - Omar F Khabour
- b Department of Biology, Faculty of Science , Taibah University , Medina , Saudi Arabia , and.,c Department of Medical Laboratory Sciences , Jordan University of Science and Technology , Irbid , Jordan
| | - Khamis Abbas
- a Department of Chemistry , Yarmouk University , Irbid , Jordan
| | | | - Ra'ad T Obeidat
- b Department of Biology, Faculty of Science , Taibah University , Medina , Saudi Arabia , and
| | - Doa'a Mfady
- b Department of Biology, Faculty of Science , Taibah University , Medina , Saudi Arabia , and
| |
Collapse
|
1079
|
Mohmood I, Ahmad I, Asim M, Costa L, Lopes CB, Trindade T, Duarte AC, Pereira E. Interference of the co-exposure of mercury with silica-coated iron oxide nanoparticles can modulate genotoxicity induced by their individual exposures--a paradox depicted in fish under in vitro conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:3687-3696. [PMID: 25256583 DOI: 10.1007/s11356-014-3591-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 09/09/2014] [Indexed: 06/03/2023]
Abstract
The study aimed to assess the genotoxic potential of silica-coated iron oxide nanoparticle functionalized with dithiocarbamate groups (IONP, 100 nm) in vitro exposure alone or its interference with mercury (Hg) co-exposure in the blood of European eel (Anguilla anguilla L.) by evaluating 8-hydroxy-2'-deoxyguanosine (8-OHdG), lipid peroxidation (LPO), and erythrocytic nuclear abnormalities (ENA). Four groups were made: (i) 2 × 10(6) erythrocytes + Roswell Park Memorial Institute-1640 (RPMI-1640) (control), (ii) 2 × 10(6) erythrocytes + IONP (2.5 mg L(-1)), (iii) 2 × 10(6) erythrocytes + Hg (50 μg L(-1)), and (iv) 2 × 10(6) erythrocytes + IONP + Hg. Blood plasma was also processed following the previous exposure conditions. Samplings were performed at 0, 2, 4, 8, 16, 24, 48, and 72 h of exposure. The results revealed significant ENA increases at both early (2, 4, 8) and late (16, 24, 48, 72) hours of exposure to IONP alone. However, IONP exposure combined with Hg co-exposure revealed no ENA increase at 2 h, suggesting that IONP-Hg complex formation is efficient to eliminate the DNA damage induced by individual exposure to IONP or Hg at early hours. Hence, the initial occurrence of antagonism between IONP and Hg was perceptible; however, at late hours of exposure, IONP was unable to mitigate the mercury-accrued negative impacts. Plasma exposure to IONP alone displayed a significant increase in 8-OHdG levels at 2 and 48 h of exposure. However, IONP in combination with Hg co-exposure revealed an increase in 8-OHdG levels at all the exposure length (except 16 h), suggesting that both IONP and Hg independently oxidized DNA. In addition, an additive effect on 8-OHdG levels at both early and late hours, and on LPO only at late hours (except 24 h), suggested that DNA is more susceptible to peroxidative damage than lipid.
Collapse
Affiliation(s)
- Iram Mohmood
- Department of Chemistry & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
1080
|
Sumner SCJ, Snyder RW, Wingard C, Mortensen NP, Holland NA, Shannahan JH, Dhungana S, Pathmasiri W, Han L, Lewin AH, Fennell TR. Distribution and biomarkers of carbon-14-labeled fullerene C60 ([(14) C(U)]C60 ) in female rats and mice for up to 30 days after intravenous exposure. J Appl Toxicol 2015; 35:1452-64. [PMID: 25727383 DOI: 10.1002/jat.3110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/18/2014] [Accepted: 12/02/2014] [Indexed: 01/16/2023]
Abstract
A comprehensive distribution study was conducted in female rats and mice exposed to a suspension of uniformly carbon-14-labeled C60 ([(14) C(U)]C60 ). Rodents were administered [(14) C(U)]C60 (~0.9 mg kg(-1) body weight) or 5% polyvinylpyrrolidone-saline vehicle alone via a single tail vein injection. Tissues were collected at 1 h and 1, 7, 14 and 30 days after administration. A separate group of rodents received five daily injections of suspensions of either [(14) C(U)]C60 or vehicle with tissue collection 14 days post exposure. Radioactivity was detected in over 20 tissues at all time points. The highest concentration of radioactivity in rodents at each time point was in liver, lungs and spleen. Elimination of [(14) C(U)]C60 was < 2% in urine and feces at any 24 h time points. [(14) C(U)]C60 and [(14) C(U)]C60 -retinol were detected in liver of rats and together accounted for ~99% and ~56% of the total recovered at 1 and 30 days postexposure, respectively. The blood radioactivity at 1 h after [(14) C(U)]C60 exposure was fourfold higher in rats than in mice; blood radioactivity was still in circulation at 30 days post [(14) C(U)]C60 exposure in both species (<1%). Levels of oxidative stress markers increased by 5 days after exposure and remained elevated, while levels of inflammation markers initially increased and then returned to control values. The level of cardiovascular marker von Willebrand factor, increased in rats, but remained at control levels in mice. This study demonstrates that [(14) C(U)]C60 is retained in female rodents with little elimination by 30 days after i.v. exposure, and leads to systemic oxidative stress.
Collapse
Affiliation(s)
- Susan C J Sumner
- Discovery - Science - Technology, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, USA
| | - Rodney W Snyder
- Discovery - Science - Technology, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, USA
| | - Christopher Wingard
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Ninell P Mortensen
- Discovery - Science - Technology, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, USA
| | - Nathan A Holland
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Jonathan H Shannahan
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Suraj Dhungana
- Discovery - Science - Technology, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, USA
| | - Wimal Pathmasiri
- Discovery - Science - Technology, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, USA
| | - Li Han
- Discovery - Science - Technology, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, USA
| | - Anita H Lewin
- Discovery - Science - Technology, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, USA
| | - Timothy R Fennell
- Discovery - Science - Technology, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, USA
| |
Collapse
|
1081
|
Lodovici M, Bigagli E, Tarantini F, Di Serio C, Raimondi L. Losartan reduces oxidative damage to renal DNA and conserves plasma antioxidant capacity in diabetic rats. Exp Biol Med (Maywood) 2015; 240:1500-4. [PMID: 25710927 DOI: 10.1177/1535370215570826] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/19/2014] [Indexed: 12/22/2022] Open
Abstract
Increased reactive oxygen species (ROS) levels produced by hyperglycemia and angiotensin-II (AT-II) are considered among the pathogenic factors in the malignant transformation of diabetic renal cells. We aimed to investigate the potential role of AT-II in the increased cancer risk seen in diabetes; measuring oxidative damage to renal DNA and protective antioxidant defenses, including adiponectin (Adp) and plasma antioxidant capacity by the Ferric Reducing Ability of Plasma (FRAP) method. In the kidney of streptozotocin (STZ)-induced (55 mg/kg) diabetic rats either treated or not treated for 3 weeks with losartan, an AT-II type 1 receptor antagonist (20 mg/kg/day); we measured 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) levels, as an index of oxidative DNA damage, circulating Adp and FRAP. Diabetic rats showed significantly higher 8-oxodGuo levels in renal DNA (8.48 ± 0.98 × 10(-6) dG, mean ± SEM n = 11) than normoglycemic ones (1.18 ± 0.04 × 10(-6) dG, mean ± SEM, n=7) and lower plasma Adp and FRAP levels in comparison to normoglycemics. The treatment of diabetic rats with losartan significantly (P < 0.01) reduced 8-oxodGuo levels (5.4 ± 0.58 × 10(-6) dG, mean ± SEM n=9) in renal DNA and conserved FRAP values. Moreover, an inverse correlation was found between 8-oxodGuo in kidney DNA and circulating Adp levels in normoglycemic and diabetic rats. Losartan treatment preserves FRAP levels, reduces DNA oxidative injury and thus the carcinogenesis risk. Furthermore, our results indicate that Adp plasma levels are a further marker of oxidative injury to the kidney and confirm that it is an important part of the plasma antioxidant defense.
Collapse
Affiliation(s)
- Maura Lodovici
- Department of NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy
| | - Elisabetta Bigagli
- Department of NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy
| | - Francesca Tarantini
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| | - Claudia Di Serio
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| | - Laura Raimondi
- Department of NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy
| |
Collapse
|
1082
|
Li J, Fan R, Lu S, Zhang D, Zhou Y, Lv Y. Exposure to polycyclic aromatic hydrocarbons could cause their oxidative DNA damage: a case study for college students in Guangzhou, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:1770-1777. [PMID: 24691933 DOI: 10.1007/s11356-014-2769-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/10/2014] [Indexed: 06/03/2023]
Abstract
Human exposure to carcinogenic polycyclic aromatic hydrocarbons (PAHs) in cigarette smoking might result in generation of reactive oxygen species (ROS) and induce formation of 8-hydroxy-2'-deoxyguanosine (8-OHdG). This study was designed to examine whether levels of 8-OHdG are associated with levels of urinary metabolites of PAHs. Two groups (smokers and non-smokers) were recruited from college students in Guangzhou, China. Their urine samples were collected and analyzed for ten urinary mono-hydroxylated PAHs (OH-PAHs) and 8-OHdG by liquid chromatography equipped with tandem mass spectrometer (LC/MS/MS). Multiple linear regression analysis was performed to examine correlations between urinary levels of 8-OHdG and OH-PAHs. No significant difference was observed for creatinine-adjusted OH-PAHs between smokers and non-smokers. The levels of 8-OHdG between smokers and non-smokers were comparative. OH-PAH levels in this study were 2-50 times higher than those in populations from other countries and areas. The estimated daily intake (EDI; μg/day) of PAHs ranged from 0.02 to 371.4, which were far lower than the reference doses (RfDs) specified by U.S. Environmental Protection Agency (EPA). Though smoking was a main factor, which affected the PAH exposure, it was not a dominant factor in the exposure to PAHs of Guangzhou college students. The environmental exposure could not be ignored. The sum concentrations of OH-PAHs (∑OH-PAHs) had a dose-increase relationship with 8-OHdG both for smokers and non-smokers, especially for smokers. Though people in Guangzhou bore higher PAH hazards, the estimated environmental risk was still under safe ranges.
Collapse
Affiliation(s)
- Junnan Li
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, 510631, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
1083
|
Ma WW, Li CQ, Yu HL, Zhang DD, Xi YD, Han J, Liu QR, Xiao R. The Oxysterol 27-Hydroxycholesterol Increases Oxidative Stress and Regulate Nrf2 Signaling Pathway in Astrocyte Cells. Neurochem Res 2015; 40:758-66. [DOI: 10.1007/s11064-015-1524-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/13/2015] [Accepted: 01/17/2015] [Indexed: 11/30/2022]
|
1084
|
Hu S, Chen F, Wang M. Photoprotective effects of oxyresveratrol and Kuwanon O on DNA damage induced by UVA in human epidermal keratinocytes. Chem Res Toxicol 2015; 28:541-8. [PMID: 25588103 DOI: 10.1021/tx500497u] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ultraviolet A not only plays a major part in photoaging and skin tanning but also induces genetic damage and mutation in the epidermal basal layer of human skin. The photoprotective effect of oxyresveratrol and kuwanon O, two phenolic compounds from the root extract of Morus australis, in human primary epidermal keratinocytes was investigated in this study. Both of them were nontoxic to cells at a concentration less than 10 and 0.5 μM, respectively. After pretreatment at the concentrations of 5 and 10 μM, oxyresveratrol increased cell viability, exhibited significant suppressions on UVA- or H2O2-induced cellular ROS. UVA-enhanced nitrotyrosine was also reduced by post-treatment with oxyresveratrol at theses concentrations. Kuwanon O presented similar inhibitions on cellular ROS and nitrotyrosine with lower concentrations (0.25 and 0.5 μM), but there is no significant protection on cell survival after UVA irradiation. Their photoprotective effects also involved the enhanced repair of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and cyclobutane pyrimidine dimers (CPDs) as mediated by the augment of p53 expression after UVA radiation.
Collapse
Affiliation(s)
- Shuting Hu
- School of Biological Sciences, The University of Hong Kong , Pokfulam, Hong Kong
| | | | | |
Collapse
|
1085
|
Estrogen-like metabolites and DNA-adducts in urogenital schistosomiasis-associated bladder cancer. Cancer Lett 2015; 359:226-32. [PMID: 25615421 DOI: 10.1016/j.canlet.2015.01.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/08/2015] [Accepted: 01/14/2015] [Indexed: 01/26/2023]
Abstract
An estrogen-DNA adduct mediated pathway may be involved in the pathogenesis of the squamous cell carcinoma of the bladder associated with infection with the blood fluke Schistosoma haematobium. Extracts from developmental stages of S. haematobium, including eggs, induce tumor-like phenotypes in cultured cells. In addition, estrogen-derived, reactive metabolites occur in this pathogen and in sera of infected persons. Liquid chromatography-mass spectrometry analysis was performed on urine from 40 Angolans diagnosed with urogenital schistosomiasis (UGS), half of who also presented UGS-associated squamous cell carcinoma and/or urothelial cell carcinoma. The analysis revealed numerous estrogen-like metabolites, including seven specifically identified in UGS cases, but not reported in the database of metabolites in urine of healthy humans. These schistosome infection-associated metabolites included catechol estrogen quinones (CEQ) and CEQ-DNA-adducts, two of which had been identified previously in S. haematobium. In addition, novel metabolites derived directly from 8-oxo-7, 8-dihydro-2'-deoxyguanosine (8-oxodG) were identified in urine of all 40 cases of UGS. These metabolites can be expected to provide deeper insights into the carcinogenesis UGS-induced bladder cancer, and as biomarkers for diagnosis and/or prognosis of this neglected tropical disease-linked cancer.
Collapse
|
1086
|
Lee SL, Thomas P, Fenech M. Genome instability biomarkers and blood micronutrient risk profiles associated with mild cognitive impairment and Alzheimer's disease. Mutat Res 2015; 776:54-83. [PMID: 26364206 DOI: 10.1016/j.mrfmmm.2014.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 12/06/2014] [Accepted: 12/30/2014] [Indexed: 12/13/2022]
Abstract
Successful maintenance of metabolic systems relating to accurate DNA replication and repair is critical for optimal lifelong human health. Should this homeostatic balance become impaired, genomic instability events can arise, compromising the integrity of the genome, which may result in gene expression and human disease. Both genome instability and micronutrient imbalance have been identified and implicated in diseases associated with accelerated ageing which potentially leads to an increased risk for the future development of clinically defined neurodegenerative disorders. Cognitive decline leading to the clinical diagnosis of mild cognitive impairment (MCI) has been shown to predict an increased risk in later life of developing Alzheimer's disease (AD). Knowledge on the impact of dietary factors in relation to MCI and AD risk is improving but incomplete; in particular the role of nutrient combinations (i.e. nutriomes) has not been thoroughly investigated. Currently, there is a need for preventative strategies as well as the identification of robust and reproducible diagnostic biomarkers that will allow identification of those individuals with increased risk for neurodegenerative diseases. Growing evidence suggests cells originating from different somatic tissues derived from individuals that have been clinically diagnosed with neurodegenerative disorders exhibit elevated frequencies of DNA damage compared to tissues of cognitively normal individuals which could be due to malnutrition. The objective of this review is to discuss current evidence and identify knowledge gaps relating to genome instability biomarkers and blood micronutrient profiles from human studies of MCI and AD that may be specific to and contribute to the increased risk of these diseases. This is a vital step in order to create research strategies for the future development of diagnostics that are indicative of dementia risk and to inform preventative therapies.
Collapse
Affiliation(s)
- Sau Lai Lee
- Commonwealth Scientific and Industrial Research Organisation, Animal, Food, and Health Sciences, PO Box 10041, Adelaide BC, Adelaide, SA 5000, Australia; Discipline of Physiology, School of Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Philip Thomas
- Commonwealth Scientific and Industrial Research Organisation, Animal, Food, and Health Sciences, PO Box 10041, Adelaide BC, Adelaide, SA 5000, Australia
| | - Michael Fenech
- Commonwealth Scientific and Industrial Research Organisation, Animal, Food, and Health Sciences, PO Box 10041, Adelaide BC, Adelaide, SA 5000, Australia.
| |
Collapse
|
1087
|
Black CN, Bot M, Scheffer PG, Cuijpers P, Penninx BWJH. Is depression associated with increased oxidative stress? A systematic review and meta-analysis. Psychoneuroendocrinology 2015; 51:164-75. [PMID: 25462890 DOI: 10.1016/j.psyneuen.2014.09.025] [Citation(s) in RCA: 486] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/23/2014] [Accepted: 09/24/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND It has been suggested that depressed persons have increased oxidative stress and decreased anti-oxidant defences. 8-Hydroxy-2'-deoxyguanosine (8-OHdG) and F2-isoprostanes, measures of oxidative DNA and lipid damage respectively, are among the most reliable oxidative stress markers, but studies on their association with depression show conflicting results. This meta-analysis quantifies the association between depression and these markers and explores factors that may explain inconsistencies in the results. METHODS A systematic literature search was conducted in PubMed, EMBASE and PsycINFO. Studies assessing the association of 8-OHdG or F2-isoprostanes with elevated depressive symptoms, major depressive disorder (MDD) or bipolar disorder (BD) were pooled in two random-effect models. RESULTS The pooled effect size (Hedges' g) for the association of depression with oxidative stress was 0.31 (p=0.01, I(2)=75%) for 8-OHdG (10 studies, 1308 subjects) and 0.48 (p=0.001, I(2)=73%) for F2-isoprostanes (8 studies, 2471 subjects), indicating that both markers are increased in depression. There was no indication of publication bias for either marker. The F2-isoprostane results did not differ by type of depression, biological specimen, laboratory method or quality, however subgroup analyses in the 8-OHdG studies showed significantly stronger associations in plasma/serum vs. urine samples (p<0.01), in measurements performed with immuno-assay vs. chromatography-mass spectrometry (p<0.01) and weaker associations in high quality studies vs. low (p=0.02). CONCLUSION This meta-analysis finds that oxidative stress, as measured by 8-OHdG and F2-isoprostanes, is increased in depression. Larger-scale studies are needed to extend the evidence on oxidative stress in depression, and examine the potential impact of treatment.
Collapse
Affiliation(s)
- Catherine N Black
- Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands; EMGO Institute for Health and Care Research, Amsterdam, The Netherlands.
| | - Mariska Bot
- Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands; EMGO Institute for Health and Care Research, Amsterdam, The Netherlands
| | - Peter G Scheffer
- Department of Clinical Chemistry, Metabolic Laboratory, VU University Medical Center, Amsterdam, The Netherlands
| | - Pim Cuijpers
- Department of Clinical Psychology, VU University Amsterdam, The Netherlands; EMGO Institute for Health and Care Research, Amsterdam, The Netherlands
| | - Brenda W J H Penninx
- Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands; EMGO Institute for Health and Care Research, Amsterdam, The Netherlands
| |
Collapse
|
1088
|
Interaction between cadmium (Cd), selenium (Se) and oxidative stress biomarkers in healthy mothers and its impact on birth anthropometric measures. Int J Hyg Environ Health 2015; 218:66-90. [DOI: 10.1016/j.ijheh.2014.08.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/19/2014] [Accepted: 08/26/2014] [Indexed: 01/13/2023]
|
1089
|
Discordant HIF1A mRNA levels and oxidative stress in placental shares of monochorionic twins with selective intra-uterine growth restriction. Placenta 2014; 36:297-303. [PMID: 25573093 DOI: 10.1016/j.placenta.2014.12.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 12/18/2014] [Accepted: 12/21/2014] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Oxidative stress is a key factor in the pathogenesis of intra-uterine growth restriction in singleton. However, its role in selective intra-uterine growth restriction (sIUGR) in monochorionic twins (MCT) is still unknown. This study explored the characteristics of oxidative stresses in the placenta shares of MCT and analyzed their possible connections with sIUGR. METHODS The placental levels of hypoxia inducible factor-1α gene (HIF1A)mRNA, malondialdehyde (MDA), and 8-hydroxydeoxyguanosine (8-OHdG) were evaluated in normal MCT (Group A) and sIUGR MCT (Group B). The results were compared between the placental shares of the larger twins (A1/B1) and smaller twins (A2/B2). RESULTS Placental HIF1A mRNA level significantly increased in Group B. Particularly, HIF1A mRNA level was elevated in the placenta share of the growth-restricted fetus (B2) than the co-twin (B1) (P = 0.036). More discordant HIF1A mRNA level was detected in Group B than Group A with larger inter-twin difference (P = 0.021). The levels of MDA and 8-OHdG were significantly higher in B2 than B1 in sIUGR MCT (P < 0.05). Both the inter-twin differences of MDA and 8-OHdG were also significantly larger in Group B (P < 0.05), indicating that discordant oxidative stress existed in the placental shares of sIUGR pregnancies. Finally, MDA concentration was found inversely correlated with neonatal birth weight, in both sIUGR (r = -0.650, P = 0.022) and normal MCT (r = -0.632, P = 0.027) pregnancies. DISCUSSION The elevation of HIF1A mRNA, and MDA/8-OHdG levels in placenta shares of sIUGR MCT suggests that oxidative stress may be involved in the pathogenesis of sIUGR.
Collapse
|
1090
|
Raposo D, Morgado C, Pereira-Terra P, Tavares I. Nociceptive spinal cord neurons of laminae I-III exhibit oxidative stress damage during diabetic neuropathy which is prevented by early antioxidant treatment with epigallocatechin-gallate (EGCG). Brain Res Bull 2014; 110:68-75. [PMID: 25522867 DOI: 10.1016/j.brainresbull.2014.12.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/05/2014] [Accepted: 12/08/2014] [Indexed: 12/20/2022]
Abstract
Spinal cord neurons located in laminae I-III respond to nociceptive stimuli and participate in the transmission of painful information to the brain. In the present study we evaluated if nociceptive laminae I-III neurons are affected by oxidative stress damage in a model of diabetic neuropathic pain (DNP), the streptozotocin-induced diabetic rat (STZ rat). Additionally, we evaluated the effects of a preventive antioxidant treatment with epigallocatechin-gallate (EGCG) in nociceptive neuronal activation and behavioural signs of DNP. Three days after diabetes induction, a treatment protocol of STZ rats with an aqueous solution of EGCG in the drinking water was initiated. Ten weeks after the onset of treatment, the spinal cords were immunoreacted against validated markers of oxidative stress damage (8-hydroxy-2'-deoxyguanosine; 8-OHdG) and of nociceptive neuronal activation (Fos). Mechanical hypersensitivity was assessed before and after EGCG treatment. Untreated STZ rats presented increased levels of 8-OHdG immunoreaction, higher numbers of Fos-immunoreacted neurons and high levels of co-localization of 8-OHdG and Fos in laminae I-III. Treatment with EGCG normalized the increase of the above mentioned parameters and ameliorated mechanical hypersensitivity. The present study shows that nociceptive neurons in spinal cord laminae I-III exhibit oxidative stress damage during diabetic neuropathy, which probably affects ascending pain transmission during DNP. The neurobiological mechanisms and translational perspectives of the beneficial effects of a preventive and sustained EGCG treatment in DNP need to be evaluated in the future.
Collapse
Affiliation(s)
- D Raposo
- Department of Experimental Biology, Faculty of Medicine, University of Porto, Portugal; IBMC, University of Porto, Portugal
| | - C Morgado
- Department of Experimental Biology, Faculty of Medicine, University of Porto, Portugal; IBMC, University of Porto, Portugal
| | - P Pereira-Terra
- Department of Experimental Biology, Faculty of Medicine, University of Porto, Portugal; IBMC, University of Porto, Portugal
| | - I Tavares
- Department of Experimental Biology, Faculty of Medicine, University of Porto, Portugal; IBMC, University of Porto, Portugal.
| |
Collapse
|
1091
|
Eren OO, Ozturk MA, Sonmez OU, Oyan B. Should we be more cautious about replacement of vitamin B12 in patients with cancer receiving cytotoxic chemotherapy? Med Hypotheses 2014; 83:726-9. [PMID: 25459143 DOI: 10.1016/j.mehy.2014.09.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 09/08/2014] [Accepted: 09/25/2014] [Indexed: 12/01/2022]
Abstract
Vitamin B12 (Cbl) deficiency may cause hematologic and neurologic dysfunction. Replacement therapy is effective in correcting hematologic abnormalities and improving neurologic symptoms. Cbl is known to have antioxidant activity. This antioxidant activity may antagonize the effects of chemotherapeutics (i.e. genotoxic effects of paclitaxel) on tumor DNA. We claim that Cbl replacement should be done more cautiously in patients receiving cytotoxic chemotherapy.
Collapse
Affiliation(s)
- Orhan Onder Eren
- Department of Medical Oncology, Yeditepe University Hospital, Istanbul, Turkey.
| | - Mehmet Akif Ozturk
- Department of Internal Medicine, Yeditepe University Hospital, Istanbul, Turkey
| | - Ozlem Uysal Sonmez
- Department of Medical Oncology, Yeditepe University Hospital, Istanbul, Turkey
| | - Basak Oyan
- Department of Medical Oncology, Yeditepe University Hospital, Istanbul, Turkey
| |
Collapse
|
1092
|
Guo H, Wu B, Cui H, Peng X, Fang J, Zuo Z, Deng J, Wang X, Deng J, Yin S, Li J, Tang K. NiCl2-down-regulated antioxidant enzyme mRNA expression causes oxidative damage in the broiler(')s kidney. Biol Trace Elem Res 2014; 162:288-95. [PMID: 25253428 DOI: 10.1007/s12011-014-0132-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 09/15/2014] [Indexed: 11/29/2022]
Abstract
The kidney serves as a major organ of nickel (Ni) excretion and is a target organ for acute Ni toxicity due to Ni accumulation. There are no studies on the Ni or Ni compound-regulated antioxidant enzyme mRNA expression in animals and human beings at present. This study was conducted to investigate the pathway of nickel chloride (NiCl2)-caused renal oxidative damage by the methods of biochemistry, quantitative real-time polymerase chain reaction, and enzyme-linked immunosorbent assay. Two hundred and eighty one-day-old broilers were randomly divided into four groups and fed on a control diet and three experimental diets supplemented with 300, 600, and 900 mg/kg of NiCl2 for 42 days. Dietary NiCl2 elevated the malondialdehyde (MDA), nitric oxide (NO), 8-hydroxy-2'-deoxyguanosine (8-OHdG) contents, and reduced the ability to inhibit hydroxy radical in the NiCl2-treated groups. Also, the renal inducible nitric oxide synthase (iNOS) activity and mRNA expression levels were increased. The total antioxidant (T-AOC) and activities of antioxidant enzymes including copper zinc superoxide dismutase (CuZn-SOD), manganese superoxide dismutase (Mn-SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GR), and glutathione-s-transferase (GST) were decreased, and the glutathione (GSH) contents as well were decreased in the kidney. Concurrently, the renal CuZn-SOD, Mn-SOD, CAT, GSH-Px, GST, and GR mRNA expression levels were decreased. The above-mentioned results showed that dietary NiCl2 in excess of 300 mg/kg caused renal oxidative damage by reducing mRNA expression levels and activities of antioxidant enzymes, and then enhancing free radicals generation, lipid peroxidation, and DNA oxidation.
Collapse
Affiliation(s)
- Hongrui Guo
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Yaan, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1093
|
Protano C, Andreoli R, Mutti A, Petti S, Vitali M. Biomarkers of oxidative stress to nucleic acids: background levels and effects of body mass index and life-style factors in an urban paediatric population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 500-501:44-51. [PMID: 25217743 DOI: 10.1016/j.scitotenv.2014.08.095] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/18/2014] [Accepted: 08/26/2014] [Indexed: 06/03/2023]
Abstract
The aims of the present study were to establish the background levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo), 8-oxo-7,8-dihydroguanosine (8-oxoGuo), 8-oxo-7,8-dihydroguanine (8-oxoGua) among a group of healthy Italian children, and to evaluate the contribution of some potential interfering/confounding factors to the urinary (u) levels of these biomarkers of oxidised guanine derivatives. The levels of 8-oxodGuo, 8-oxoGuo, 8-oxoGua, and u-cotinine in urine samples from 159 healthy children (5-11years) recruited in a cross-sectional study were measured via liquid chromatography-tandem mass spectrometry. Data regarding the anthropometric and life-style characteristics of the participants were obtained from questionnaires. The 5th-95th percentiles of the levels of 8-oxodGuo, 8-oxoGuo, and 8-oxoGua for all children were 2.4-13.9, 3.8-19.9 and 5.4-79.5μg/L and 2.9-12.6, 4.8-15.2, and 5.1-93.4μg/g creatinine, respectively. Significant correlations were found between the level of 8-oxoGuo and that of 8-oxoGua and 8-oxodGuo but not between the level of 8-oxoGua and that of 8-oxodGuo in all children and in both the male and female subgroups. Multiple linear regression analyses revealed the independent effect of the investigated variables on 8-oxodGuo, 8-oxoGuo, and 8-oxoGua. u-Creatinine was the most significant predictor of the urinary excretion of both 8-oxoGuo and 8-oxodGuo, age displayed a significant positive independent effect on the level of 8-oxoGuo, whereas the weight status according to the BMI was negatively associated with the level of 8-oxodGuo. None of the chosen independent variables influenced the levels of 8-oxoGua.
Collapse
Affiliation(s)
- Carmela Protano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Roberta Andreoli
- Laboratory of Industrial Toxicology, Department of Clinical and Experimental Medicine, University of Parma, via Gramsci 14, I-43126 Parma, Italy.
| | - Antonio Mutti
- Laboratory of Industrial Toxicology, Department of Clinical and Experimental Medicine, University of Parma, via Gramsci 14, I-43126 Parma, Italy.
| | - Stefano Petti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Matteo Vitali
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
1094
|
Martinc B, Grabnar I, Vovk T. Antioxidants as a preventive treatment for epileptic process: a review of the current status. Curr Neuropharmacol 2014; 12:527-50. [PMID: 25977679 PMCID: PMC4428026 DOI: 10.2174/1570159x12666140923205715] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 07/29/2014] [Accepted: 09/22/2014] [Indexed: 11/25/2022] Open
Abstract
Epilepsy is known as one of the most frequent neurological diseases, characterized by an enduring predisposition to generate epileptic seizures. Oxidative stress is believed to directly participate in pathways leading to neurodegeneration, which serves as the most important propagating factor, leading to the epileptic condition and cognitive decline. Moreover, there is also a growing body of evidence showing the disturbance of antioxidant system balance and consequently increased production of reactive species in patients with epilepsy. A meta-analysis, conducted in the present review confirms an association between epilepsy and increased lipid peroxidation. Furthermore, it was also shown that some of the antiepileptic drugs could potentially be responsible for additionally increased lipid peroxidation. Therefore, it is reasonable to propose that during the epileptic process neuroprotective treatment with antioxidants could lead to less sever structural damages, reduced epileptogenesis and milder cognitive deterioration. To evaluate this hypothesis studies investigating the neuroprotective therapeutic potential of various antioxidants in cells, animal seizure models and patients with epilepsy have been reviewed. Numerous beneficial effects of antioxidants on oxidative stress markers and in some cases also neuroprotective effects were observed in animal seizure models. However, despite these encouraging results, till now only a few antioxidants have been further applied to patients with epilepsy as an add-on therapy. Based on the several positive findings in animal models, a strong need for more carefully planned, randomized, double-blind, cross-over, placebo-controlled clinical trials for the evaluation of antioxidants efficacy in patients with epilepsy is warranted.
Collapse
Affiliation(s)
| | | | - Tomaž Vovk
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
1095
|
Everson CA, Henchen CJ, Szabo A, Hogg N. Cell injury and repair resulting from sleep loss and sleep recovery in laboratory rats. Sleep 2014; 37:1929-40. [PMID: 25325492 DOI: 10.5665/sleep.4244] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 06/20/2014] [Indexed: 12/29/2022] Open
Abstract
STUDY OBJECTIVES Increased cell injury would provide the type of change in constitution that would underlie sleep disruption as a risk factor for multiple diseases. The current study was undertaken to investigate cell injury and altered cell fate as consequences of sleep deprivation, which were predicted from systemic clues. DESIGN Partial (35% sleep reduction) and total sleep deprivation were produced in rats for 10 days, which was tolerated and without overtly deteriorated health. Recovery rats were similarly sleep deprived for 10 days, then allowed undisturbed sleep for 2 days. The plasma, liver, lung, intestine, heart, and spleen were analyzed and compared to control values for damage to DNA, proteins, and lipids; apoptotic cell signaling and death; cell proliferation; and concentrations of glutathione peroxidase and catalase. MEASUREMENTS AND RESULTS Oxidative DNA damage in totally sleep deprived rats was 139% of control values, with organ-specific effects in the liver (247%), lung (166%), and small intestine (145%). Overall and organ-specific DNA damage was also increased in partially sleep deprived rats. In the intestinal epithelium, total sleep deprivation resulted in 5.3-fold increases in dying cells and 1.5-fold increases in proliferating cells, compared with control. Recovery sleep restored the balance between DNA damage and repair, and resulted in normal or below-normal metabolic burdens and oxidative damage. CONCLUSIONS These findings provide physical evidence that sleep loss causes cell damage, and in a manner expected to predispose to replication errors and metabolic abnormalities; thereby providing linkage between sleep loss and disease risk observed in epidemiological findings. Properties of recovery sleep include biochemical and molecular events that restore balance and decrease cell injury.
Collapse
Affiliation(s)
- Carol A Everson
- Department of Neurology, The Medical College of Wisconsin, Milwaukee, WI
| | | | - Aniko Szabo
- Department of Population Health, The Medical College of Wisconsin, Milwaukee, WI
| | - Neil Hogg
- Department of Biophysics, The Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
1096
|
Stiefel C, Schwack W. Photoprotection in changing times - UV filter efficacy and safety, sensitization processes and regulatory aspects. Int J Cosmet Sci 2014; 37:2-30. [DOI: 10.1111/ics.12165] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/20/2014] [Indexed: 12/14/2022]
Affiliation(s)
- C. Stiefel
- Institute of Food Chemistry; University of Hohenheim; Garbenstrasse 28 70599 Stuttgart Germany
| | - W. Schwack
- Institute of Food Chemistry; University of Hohenheim; Garbenstrasse 28 70599 Stuttgart Germany
| |
Collapse
|
1097
|
Kim KC, Lee IK, Kang KA, Piao MJ, Ryu MJ, Kim JM, Lee NH, Hyun JW. Triphlorethol-A from Ecklonia cava up-regulates the oxidant sensitive 8-oxoguanine DNA glycosylase 1. Mar Drugs 2014; 12:5357-71. [PMID: 25353254 PMCID: PMC4245535 DOI: 10.3390/md12115357] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/02/2014] [Accepted: 10/14/2014] [Indexed: 11/21/2022] Open
Abstract
This study investigated the protective mechanisms of triphlorethol-A, isolated from Ecklonia cava, against oxidative stress-induced DNA base damage, especially 8-oxoguanine (8-oxoG), in Chinese hamster lung fibroblast V79-4 cells. 8-Oxoguanine DNA glycosylase-1 (OGG1) plays an important role in the removal of 8-oxoG during the cellular response to DNA base damage. Triphlorethol-A significantly decreased the levels of 8-oxoG induced by H2O2, and this correlated with increases in OGG1 mRNA and OGG1 protein levels. Furthermore, siOGG1-transfected cell attenuated the protective effect of triphlorethol-A against H2O2 treatment. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor for OGG1, and Nrf2 combines with small Maf proteins in the nucleus to bind to antioxidant response elements (ARE) in the upstream promoter region of the OGG1 gene. Triphlorethol-A restored the expression of nuclear Nrf2, small Maf protein, and the Nrf2-Maf complex, all of which were reduced by oxidative stress. Furthermore, triphlorethol-A increased Nrf2 binding to ARE sequences and the resulting OGG1 promoter activity, both of which were also reduced by oxidative stress. The levels of the phosphorylated forms of Akt kinase, downstream of phosphatidylinositol 3-kinase (PI3K), and Erk, which are regulators of OGG1, were sharply decreased by oxidative stress, but these decreases were prevented by triphlorethol-A. Specific PI3K, Akt, and Erk inhibitors abolished the cytoprotective effects of triphlorethol-A, suggesting that OGG1 induction by triphlorethol-A involves the PI3K/Akt and Erk pathways. Taken together, these data indicate that by activating the DNA repair system, triphlorethol-A exerts protective effects against DNA base damage induced by oxidative stress.
Collapse
Affiliation(s)
- Ki Cheon Kim
- School of Medicine, Jeju National University, Jeju 690-756, Korea.
| | - In Kyung Lee
- Radiation Effect Research Team, Radiation Health Research Institute, Korea Hydro & Nuclear Power Co., LTD., Seoul 135-881, Korea.
| | - Kyoung Ah Kang
- School of Medicine, Jeju National University, Jeju 690-756, Korea.
| | - Mei Jing Piao
- School of Medicine, Jeju National University, Jeju 690-756, Korea.
| | - Min Ju Ryu
- Food and Nutrition, Duksung Women's University, Seoul 132-714, Korea.
| | - Jeong Mi Kim
- Department of Chemistry, College of Natural Sciences, Jeju National University, Jeju 690-756, Korea.
| | - Nam Ho Lee
- Department of Chemistry, College of Natural Sciences, Jeju National University, Jeju 690-756, Korea.
| | - Jin Won Hyun
- School of Medicine, Jeju National University, Jeju 690-756, Korea.
| |
Collapse
|
1098
|
Wang X, Yu P, YongYang, Liu X, Jiang J, Liu D, Xue G. Hydrogen-rich saline resuscitation alleviates inflammation induced by severe burn with delayed resuscitation. Burns 2014; 41:379-85. [PMID: 25440852 DOI: 10.1016/j.burns.2014.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/12/2014] [Accepted: 07/22/2014] [Indexed: 01/03/2023]
Abstract
Severe burns with delayed resuscitation are associated with high morbidity which is attributed to ischemia-reperfusion injury. This study was undertaken to investigate the effect of hydrogen-rich saline known as a significant selective antioxidant on the inflammatory reaction induced by severe burns with delayed resuscitation. By establishing the model of severe burns with delayed resuscitation in rats, we recorded improvement on the mortality, secretion of cytokines and reaction of oxidative stress of rats treated with hydrogen-rich saline. We found that resuscitation by hydrogen-rich saline alleviated inflammation significantly. We further detected the change of the key nuclear factor NF-κB contributed to inflammation. The expression of both NF-κB and phosphorylated NF-κB in rats having severe burns with delayed resuscitation by hydrogen-rich saline was lower than that in rats with delayed resuscitation with Ringers' solution. Our data imply that hydrogen-rich saline significantly improves the inflammatory reaction in rats with severe burns with delayed resuscitation, possibly by inhibiting activation of NF-κB.
Collapse
Affiliation(s)
- Xiaojuan Wang
- Department of Burn and Plastic Surgery, Chengdu Military General Hospital, No. 270, Rongdu Avenue, Jinniu District, Chengdu, Sichuan 610083, PR China.
| | - Pan Yu
- Department of Burn and Plastic Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, PR China
| | - YongYang
- Department of Burn and Plastic Surgery, Chengdu Military General Hospital, No. 270, Rongdu Avenue, Jinniu District, Chengdu, Sichuan 610083, PR China
| | - Xiaocong Liu
- Department of Digestive Diseases, Chengdu Military General Hospital, No. 270, Rongdu Avenue, Jinniu District, Chengdu, Sichuan 610083, PR China
| | - Jinheng Jiang
- Department of Burn and Plastic Surgery, Chengdu Military General Hospital, No. 270, Rongdu Avenue, Jinniu District, Chengdu, Sichuan 610083, PR China
| | - Degui Liu
- Department of Burn and Plastic Surgery, Chengdu Military General Hospital, No. 270, Rongdu Avenue, Jinniu District, Chengdu, Sichuan 610083, PR China
| | - Gang Xue
- Department of Burn and Plastic Surgery, Chengdu Military General Hospital, No. 270, Rongdu Avenue, Jinniu District, Chengdu, Sichuan 610083, PR China.
| |
Collapse
|
1099
|
Koureas M, Tsezou A, Tsakalof A, Orfanidou T, Hadjichristodoulou C. Increased levels of oxidative DNA damage in pesticide sprayers in Thessaly Region (Greece). Implications of pesticide exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 496:358-364. [PMID: 25089694 DOI: 10.1016/j.scitotenv.2014.07.062] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/17/2014] [Accepted: 07/17/2014] [Indexed: 06/03/2023]
Abstract
The widespread use of pesticides substances nowadays largely guarantees the protection of crops and people from undesired pests. However, exposure to pesticides was related to a variety of human health effects. The present study was conducted in the region of Thessaly which is characterized by intensive agricultural activities and wide use of pesticides. The study aimed at estimating the oxidative damage to DNA in different subpopulations in Thessaly region (Greece) and investigating its correlation with exposure to pesticides and other potential risk factors. In total, the study involved 80 pesticide sprayers, 85 rural residents and 121 individuals, inhabitants of the city of Larissa. Demographic characteristics, habits, medical history and exposure history of the participants to pesticides were recorded by personal interviews. Blood and urine samples were collected from all participants. For the measurement of exposure to organophosphorus insecticides, dialkylphosphate (DAP) metabolites were quantified in urine, by gas chromatography-mass spectrometry. Genomic DNA was extracted from peripheral blood samples and the oxidation by-product 8-hydroxydeoxyguanosine (8-OHdG) was determined by Enzyme Immuno-Assay. Urinary metabolite concentrations were not associated with 8-OHdG levels but it was found that pesticide sprayers had significantly higher levels of 8-OHdG (p=0.007) in comparison to the control group. Last season's exposure to insecticides and fungicides, expressed as total area treated multiplied by the number of applications, showed a statistically significant association with the risk of having high 8-OHdG levels [RR: 2.19 (95%CI:1.09-4.38) and RR: 2.32 (95% CI:1.16-4.64) respectively]. Additionally, from the subgroups of pesticides examined, seasonal exposure to neonicotinoid insecticides [RR: 2.22 (95% CI:1.07-4.63)] and glufosinate ammonium [RR: 3.26 (95% CI:1.38-7.69)] was found to have the greater impact on 8-OHdG levels. This study produced findings that support the hypothesis that pesticide exposure is involved in the induction of oxidative damage to DNA and identified chemical groups of pesticides which should be given greater attention in future investigations.
Collapse
Affiliation(s)
- Michalis Koureas
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 22 Papakyriazi Street, Larissa 41222, Greece
| | - Aspasia Tsezou
- Laboratory of Cytogenetics and Molecular Genetics, University of Thessaly, School of Medicine, Larissa, Greece
| | - Andreas Tsakalof
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 22 Papakyriazi Street, Larissa 41222, Greece; Department of Chemistry, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Timoklia Orfanidou
- Department of Biomedical Research and Technology, Institute for Research and Technology-Thessaly (I.RE.TE.TH), 51 Papanastasiou Street, Larissa 41222, Greece
| | - Christos Hadjichristodoulou
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 22 Papakyriazi Street, Larissa 41222, Greece.
| |
Collapse
|
1100
|
Li P, Gu Y, Yu S, Li Y, Yang J, Jia G. Assessing the suitability of 8-OHdG and micronuclei as genotoxic biomarkers in chromate-exposed workers: a cross-sectional study. BMJ Open 2014; 4:e005979. [PMID: 25300459 PMCID: PMC4194798 DOI: 10.1136/bmjopen-2014-005979] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVES We aimed to investigate suitable conditions of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and micronucleus (MN) as genotoxic biomarkers at different levels of occupational chromate exposure. DESIGN A cross-sectional study was used. PARTICIPANTS 84 workers who were exposed to chromate for at least 1 year were chosen as the chromate exposed group, while 30 non-exposed individuals were used as controls. MAIN OUTCOME MEASURES Environmental and biological exposure to chromate was respectively assessed by measuring the concentration of chromate in the air (CrA) and blood (CrB) by inductively coupled plasma mass spectrometer (ICP-MS) in all participants. MN indicators, including micronucleus cell count (MNCC), micro-nucleus count (MNC), nuclear bridge (NPB) and nuclear bud (NBUD) were calculated by the cytokinesis-block micronucleus test (CBMN), while the urinary 8-OHdG was measured by the ELISA method and normalised by the concentration of Cre. RESULTS Compared with the control group, the levels of CrA, CrB, MNCC, MNC and 8-OHdG in the chromate-exposed group were all significantly higher (p<0.05). There were positive correlations between log(8-OHdG) and LnMNCC or LnMNC (r=0.377 and 0.362). The levels of LnMNCC, LnMNC and log (8-OHdG) all have parabola correlations with the concentration of CrB. However, there was a significantly positive correlation between log (8-OHdG) and CrB when the CrB level was below 10.50 µg/L (r=0.355), while a positive correlation was also found between LnMNCC or LnMNC and CrB when the CrB level was lower than 9.10 µg/L (r=0.365 and 0.269, respectively). CONCLUSIONS MN and 8-OHdG can be used as genotoxic biomarkers in the chromate-exposed group, but it is only when CrB levels are lower than 9.10 and 10.50 µg/L, respectively, that they can accurately reflect the degree of genetic damage.
Collapse
Affiliation(s)
- Ping Li
- Department of Occupational and Environmental Health Science, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Yongen Gu
- Department of Occupational and Environmental Health Science, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Shanfa Yu
- Department of Occupational Health Science, Institute of Occupational Medicine, Zhengzhou, Henan, People's Republic of China
| | - Yang Li
- Department of Occupational and Environmental Health Science, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Jinglin Yang
- Department of Occupational and Environmental Health Science, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Guang Jia
- Department of Occupational and Environmental Health Science, School of Public Health, Peking University, Beijing, People's Republic of China
| |
Collapse
|