1051
|
|
1052
|
Giraud A, Matic I, Tenaillon O, Clara A, Radman M, Fons M, Taddei F. Costs and benefits of high mutation rates: adaptive evolution of bacteria in the mouse gut. Science 2001; 291:2606-8. [PMID: 11283373 DOI: 10.1126/science.1056421] [Citation(s) in RCA: 339] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We have shown that bacterial mutation rates change during the experimental colonization of the mouse gut. A high mutation rate was initially beneficial because it allowed faster adaptation, but this benefit disappeared once adaptation was achieved. Mutator bacteria accumulated mutations that, although neutral in the mouse gut, are often deleterious in secondary environments. Consistently, the competitiveness of mutator bacteria is reduced during transmission to and re-colonization of similar hosts. The short-term advantages and long-term disadvantages of mutator bacteria could account for their frequency in nature.
Collapse
Affiliation(s)
- A Giraud
- E9916, Institut National de la Santé et de la Recherche Médicale, Faculté de Médicine "Necker Enfants Malades," Université René Descartes-Paris V, 156 Rue de Vaugirard, 75015 Paris, France
| | | | | | | | | | | | | |
Collapse
|
1053
|
Abstract
Mismatch repair (MMR) systems play a central role in promoting genetic stability by repairing DNA replication errors, inhibiting recombination between non-identical DNA sequences and participating in responses to DNA damage. The discovery of a link between human cancer and MMR defects has led to an explosion of research on eukaryotic MMR. The key proteins in MMR are highly conserved from bacteria to mammals, and this conservation has been critical for defining the components of eukaryotic MMR systems. In eukaryotes, there are multiple homologs of the key bacterial MutS and MutL MMR proteins, and these homologs form heterodimers that have discrete roles in MMR-related processes. This review describes the genetic and biochemical approaches used to study MMR, and summarizes the diverse roles that MMR proteins play in maintaining genetic stability.
Collapse
Affiliation(s)
- B D Harfe
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
1054
|
Brown EW, LeClerc JE, Li B, Payne WL, Cebula TA. Phylogenetic evidence for horizontal transfer of mutS alleles among naturally occurring Escherichia coli strains. J Bacteriol 2001; 183:1631-44. [PMID: 11160094 PMCID: PMC95048 DOI: 10.1128/jb.183.5.1631-1644.2001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2000] [Accepted: 11/30/2000] [Indexed: 11/20/2022] Open
Abstract
mutS mutators accelerate the bacterial mutation rate 100- to 1,000-fold and relax the barriers that normally restrict homeologous recombination. These mutators thus afford the opportunity for horizontal exchange of DNA between disparate strains. While much is known regarding the mutS phenotype, the evolutionary structure of the mutS(+) gene in Escherichia coli remains unclear. The physical proximity of mutS to an adjacent polymorphic region of the chromosome suggests that this gene itself may be subject to horizontal transfer and recombination events. To test this notion, a phylogenetic approach was employed that compared gene phylogeny to strain phylogeny, making it possible to identify E. coli strains in which mutS alleles have recombined. Comparison of mutS phylogeny against predicted E. coli "whole-chromosome" phylogenies (derived from multilocus enzyme electrophoresis and mdh sequences) revealed striking levels of phylogenetic discordance among mutS alleles and their respective strains. We interpret these incongruences as signatures of horizontal exchange among mutS alleles. Examination of additional sites surrounding mutS also revealed incongruous distributions compared to E. coli strain phylogeny. This suggests that other regional sequences are equally subject to horizontal transfer, supporting the hypothesis that the 61.5-min mutS-rpoS region is a recombinational hot spot within the E. coli chromosome. Furthermore, these data are consistent with a mechanism for stabilizing adaptive changes promoted by mutS mutators through rescue of defective mutS alleles with wild-type sequences.
Collapse
Affiliation(s)
- E W Brown
- Molecular Biology Branch, Center for Food Safety & Applied Nutrition, Food and Drug Administration, Washington, D.C. 20204, USA
| | | | | | | | | |
Collapse
|
1055
|
McKenzie GJ, Lee PL, Lombardo MJ, Hastings PJ, Rosenberg SM. SOS mutator DNA polymerase IV functions in adaptive mutation and not adaptive amplification. Mol Cell 2001; 7:571-9. [PMID: 11463382 DOI: 10.1016/s1097-2765(01)00204-0] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Adaptive point mutation and amplification are induced responses to environmental stress, promoting genetic changes that can enhance survival. A specialized adaptive mutation mechanism has been documented in one Escherichia coli assay, but its enzymatic basis remained unclear. We report that the SOS-inducible, error-prone DNA polymerase (pol) IV, encoded by dinB, is required for adaptive point mutation in the E. coli lac operon. A nonpolar dinB mutation reduces adaptive mutation frequencies by 85% but does not affect adaptive amplification, growth-dependent mutation, or survival after oxidative or UV damage. We show that pol IV, together with the major replicase, pol III, can account for all adaptive point mutations at lac. The results identify a role for pol IV in inducible genetic change.
Collapse
Affiliation(s)
- G J McKenzie
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030-3411, USA
| | | | | | | | | |
Collapse
|
1056
|
Patel PH, Kawate H, Adman E, Ashbach M, Loeb LA. A single highly mutable catalytic site amino acid is critical for DNA polymerase fidelity. J Biol Chem 2001; 276:5044-51. [PMID: 11069916 DOI: 10.1074/jbc.m008701200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA polymerases contain active sites that are structurally superimposable and conserved in amino acid sequence. To probe the biochemical and structure-function relationship of DNA polymerases, a large library (200,000 members) of mutant Thermus aquaticus DNA polymerase I (Taq pol I) was created containing random substitutions within a portion of the dNTP binding site (Motif A; amino acids 605-617), and a fraction of all selected active Taq pol I (291 out of 8000) was tested for base pairing fidelity; seven unique mutants that efficiently misincorporate bases and/or extend mismatched bases were identified and sequenced. These mutants all contain substitutions of one specific amino acid, Ile-614, which forms part of the hydrophobic pocket that binds the base and ribose portions of the incoming nucleotide. Mutant Taq pol Is containing hydrophilic substitution I614K exhibit 10-fold lower base misincorporation fidelity, as well as a high propensity to extend mispairs. In addition, these low fidelity mutants containing hydrophilic substitution for Ile-614 can bypass damaged templates that include an abasic site and vinyl chloride adduct ethenoA. During polymerase chain reaction, Taq pol I mutant I614K exhibits an error rate that is >20-fold higher relative to the wild-type enzyme and efficiently catalyzes both transition and transversion errors. These studies have generated polymerase chain reaction-proficient mutant polymerases containing substitutions within the active site that confers low base pairing fidelity and a high error rate. Considering the structural and sequence conservation of Motif A, it is likely that a similar substitution will yield active low fidelity DNA polymerases that are mutagenic.
Collapse
Affiliation(s)
- P H Patel
- Joseph Gottstein Memorial Cancer Laboratory, Departments of Pathology and Biological Structure, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
1057
|
Høiby N, Krogh Johansen H, Moser C, Song Z, Ciofu O, Kharazmi A. Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth. Microbes Infect 2001; 3:23-35. [PMID: 11226851 DOI: 10.1016/s1286-4579(00)01349-6] [Citation(s) in RCA: 264] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The biofilm mode of growth is the survival strategy of environmental bacteria like Pseudomonas aeruginosa. Such P. aeruginosa biofilms also occur in the lungs of chronically infected cystic fibrosis patients, where they protect the bacteria against antibiotics and the immune response. The lung tissue damage is due to immune complex mediated chronic inflammation dominated by polymorphonuclear leukocytes releasing proteases and oxygen radicals.
Collapse
Affiliation(s)
- N Høiby
- Department of Clinical Microbiology 9301, Rigshospitalet and Institute of Medical Microbiology and Immunology, Juliane Maries Vej 22, University of Copenhagen, DK-2100, Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
1058
|
Picard B, Duriez P, Gouriou S, Matic I, Denamur E, Taddei F. Mutator natural Escherichia coli isolates have an unusual virulence phenotype. Infect Immun 2001; 69:9-14. [PMID: 11119483 PMCID: PMC97849 DOI: 10.1128/iai.69.1.9-14.2001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2000] [Accepted: 09/29/2000] [Indexed: 11/20/2022] Open
Abstract
A small percentage of natural Escherichia coli isolates (both commensal and pathogenic) have a mutator phenotype related to defects in methyl-directed mismatch repair (MR) genes. We investigated whether there was a direct link between the mutator phenotype and virulence by (i) studying the relationships between mutation rate and virulence in a mouse model of extraintestinal virulence for 88 commensal and extraintestinal pathogenic E. coli isolates and (ii) comparing the virulence in mice of MR-deficient and MR-proficient strains that were otherwise isogenic. The results provide no support for the hypothesis that the mutator phenotype has a direct role in virulence or is associated with increased virulence. Most of the natural mutator strains studied displayed an unusual virulence phenotype with (i) a lack of correspondence between the number of virulence determinants and pathogenicity in mice and (ii) an intermediate level of virulence. On a large evolutionary scale, the mutator phenotype may help parasites to achieve an intermediate rate of virulence which mathematical models predict to be selected for during long-term parasite-host interactions.
Collapse
Affiliation(s)
- B Picard
- Laboratoire de Microbiologie, Faculté de Médecine, Brest, Paris, France
| | | | | | | | | | | |
Collapse
|
1059
|
Valdezate S, Vindel A, Maiz L, Baquero F, Escobar H, Cantón R. Persistence and variability of Stenotrophomonas maltophilia in cystic fibrosis patients, Madrid, 1991-1998. Emerg Infect Dis 2001; 7:113-22. [PMID: 11266301 PMCID: PMC2631694 DOI: 10.3201/eid0701.010116] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
During 1991 to 1998 at least one Stenotrophomonas maltophilia pulmonary infection was observed in 25 (24%) of 104 cystic fibrosis patients at the same unit of our hospital in Spain. Ribotyping and pulse-field gel electrophoresis (PFGE) characterization of 76 S. maltophilia isolates from these patients indicated an overall clonal incidence of 47.1%, reflecting new strains in 44% of patients with repeated positive cultures for S. maltophilia. Six patients with repeated episodes were persistently colonized (> or = 6 months) with the same strain. S. maltophilia bacterial counts were higher (geometric mean, 2.9 x 10(8) cfu/mL) in patients with repeated episodes than in those with a single episode (8.4 x 10(4) cfu/mL, p < 0.01). Single episodes of S. maltophilia occurred in patients < 10 years of age (43% [6/14]), whereas chronic colonization occurred more frequently in older patients (> 16 years of age).
Collapse
|
1060
|
Abstract
Natural selection can adjust the rate of mutation in a population by acting on allelic variation affecting processes of DNA replication and repair. Because mutation is the ultimate source of the genetic variation required for adaptation, it can be appealing to suppose that the genomic mutation rate is adjusted to a level that best promotes adaptation. Most mutations with phenotypic effects are harmful, however, and thus there is relentless selection within populations for lower genomic mutation rates. Selection on beneficial mutations can counter this effect by favoring alleles that raise the mutation rate, but the effect of beneficial mutations on the genomic mutation rate is extremely sensitive to recombination and is unlikely to be important in sexual populations. In contrast, high genomic mutation rates can evolve in asexual populations under the influence of beneficial mutations, but this phenomenon is probably of limited adaptive significance and represents, at best, a temporary reprieve from the continual selection pressure to reduce mutation. The physiological cost of reducing mutation below the low level observed in most populations may be the most important factor in setting the genomic mutation rate in sexual and asexual systems, regardless of the benefits of mutation in producing new adaptive variation. Maintenance of mutation rates higher than the minimum set by this "cost of fidelity" is likely only under special circumstances.
Collapse
Affiliation(s)
- P D Sniegowski
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
1061
|
Middleton P. Mutator strains of Pseudomonas commonly found in CF lungs. Respir Res 2000. [DOI: 10.1186/rr-2001-68578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
1062
|
Denamur E, Lecointre G, Darlu P, Tenaillon O, Acquaviva C, Sayada C, Sunjevaric I, Rothstein R, Elion J, Taddei F, Radman M, Matic I. Evolutionary implications of the frequent horizontal transfer of mismatch repair genes. Cell 2000; 103:711-21. [PMID: 11114328 DOI: 10.1016/s0092-8674(00)00175-6] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mutation and subsequent recombination events create genetic diversity, which is subjected to natural selection. Bacterial mismatch repair (MMR) deficient mutants, exhibiting high mutation and homologous recombination rates, are frequently found in natural populations. Therefore, we have explored the possibility that MMR deficiency emerging in nature has left some "imprint" in the sequence of bacterial genomes. Comparative molecular phylogeny of MMR genes from natural Escherichia coli isolates shows that, compared to housekeeping genes, individual functional MMR genes exhibit high sequence mosaicism derived from diverse phylogenetic lineages. This apparent horizontal gene transfer correlates with hyperrecombination phenotype of MMR-deficient mutators. The sequence mosaicism of MMR genes may be a hallmark of a mechanism of adaptive evolution that involves modulation of mutation and recombination rates by recurrent losses and reacquisitions of MMR gene functions.
Collapse
Affiliation(s)
- E Denamur
- INSERM U 458 Hôpital Robert Debré 48 boulevard Sérurier 75935 Cedex 19, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1063
|
|
1064
|
Schmitz FJ, Fluit AC, Hafner D, Beeck A, Perdikouli M, Boos M, Scheuring S, Verhoef J, Köhrer K, Von Eiff C. Development of resistance to ciprofloxacin, rifampin, and mupirocin in methicillin-susceptible and -resistant Staphylococcus aureus isolates. Antimicrob Agents Chemother 2000; 44:3229-31. [PMID: 11036061 PMCID: PMC101641 DOI: 10.1128/aac.44.11.3229-3231.2000] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A relationship between resistance to methicillin and resistance to fluoroquinolones, rifampin, and mupirocin has been described for Staphylococcus aureus. Differences in resistance rates may be explainable by a higher spontaneous mutation rate (MR) or a faster development of resistance (DIFF) in methicillin-resistant S. aureus (MRSA). No differences in MR, DIFF, and mutations in grlA and gyrA were detected between methicillin-susceptible S. aureus and MRSA. The higher resistance rates in MRSA are not the result of hypermutability of target genes or a faster emergence of different mutations and may be the consequence of clonal spread of multiresistant MRSA.
Collapse
Affiliation(s)
- F J Schmitz
- Institute for Medical Microbiology and Virology, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1065
|
Goldberg JB, Pier GB. The role of the CFTR in susceptibility to Pseudomonas aeruginosa infections in cystic fibrosis. Trends Microbiol 2000; 8:514-20. [PMID: 11121762 DOI: 10.1016/s0966-842x(00)01872-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent molecular and cellular studies have shed new light on the basis for the susceptibility of cystic fibrosis (CF) patients to Pseudomonas aeruginosa infection. Changes in airway liquid composition and/or viscosity, enhanced bacterial binding to mucin and epithelial cell receptors, increased innate inflammation owing to disruptions in lipid metabolism and a role for the CFTR protein in bacterial ingestion and clearance have all been postulated. The high P. aeruginosa infection rate in CF patients can potentially be explained by the specificity of the interaction between the CFTR and P. aeruginosa.
Collapse
Affiliation(s)
- J B Goldberg
- Dept of Microbiology, University of Virginia Health Science Center, Charlottesville 22908, USA
| | | |
Collapse
|
1066
|
Spiers AJ, Buckling A, Rainey PB. The causes of Pseudomonas diversity. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 10):2345-2350. [PMID: 11021911 DOI: 10.1099/00221287-146-10-2345] [Citation(s) in RCA: 218] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Andrew J Spiers
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK1
| | - Angus Buckling
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK1
| | - Paul B Rainey
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK1
| |
Collapse
|
1067
|
Hancock REW, Speert DP. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment. Drug Resist Updat 2000; 3:247-255. [PMID: 11498392 DOI: 10.1054/drup.2000.0152] [Citation(s) in RCA: 311] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonas aeruginosa continues to be a major cause of infections in Western society, in part because of its high intrinsic resistance to antibiotics. It has been demonstrated that this intrinsic resistance arises from the combination of unusually restricted outer-membrane permeability and secondary resistance mechanisms such as energy-dependent multidrug efflux and chromosomally encoded periplasmic beta-lactamase. Given this high level of natural resistance, mutational resistance to most classes of antibiotics can readily arise. In this review we summarize new insights into the mechanisms of resistance, and describe therapeutic approaches that can be used in the face of this continuing resistance threat, as well as new approaches that are being developed to combat resistance. Copyright 2000 Harcourt Publishers Ltd.
Collapse
Affiliation(s)
- Robert E. W. Hancock
- Departments of Microbiology, Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
1068
|
Björkman J, Andersson DI. The cost of antibiotic resistance from a bacterial perspective. Drug Resist Updat 2000; 3:237-245. [PMID: 11498391 DOI: 10.1054/drup.2000.0147] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The emergence, spread and stability of antibiotic resistance in a bacterial population will be determined by several factors including (a) the volume of drug use, (b) the rate of formation of resistant mutants, (c) the biological cost of resistance and (d) the rate and extent of the genetic compensation of the costs. Generally, resistance is associated with a cost, suggesting that the frequency of resistant bacteria might decline when the use of antibiotics is decreased. However, evolution to reduce these costs, without a concomitant loss of resistance, can occur and result in a stabilization of the resistant bacteria in the population. The rate and trajectory of this compensatory evolution is dependent on the bacterial species, the specific resistance mutation and the environmental conditions under which evolution occurs. Copyright 2000 Harcourt Publishers Ltd.
Collapse
Affiliation(s)
- Johanna Björkman
- Dept. of Bacteriology, Swedish Institute for Infectious Disease Control, Solna, Sweden
| | | |
Collapse
|