1101
|
Abstract
Photodynamic therapy is a method for local destruction of tissue or organisms by generating toxic oxygen and other reactive species using light absorbed by an administered or an endogenously generated photosensitiser. It is a highly promising treatment for patients with cancer. More recently it has found increasing use as a method of therapy for non-cancerous illnesses. It depends on the exploitation of natural and vital reactions widespread in nature that have driven and preserved life on this planet. Following administration of a photosensitiser or its precursor there is an accumulation or retention in areas of cancer and disease relative to adjacent normal tissue. The photosensitiser is inactive until irradiated by light, following which cellular destruction occurs. The clear attraction of this method is the possibility of some targeting of the disease by drug and by the area irradiated. This explanation although oversimplified has been the reason for the scientific and clinical interest in photodynamic therapy. An understanding of evolutionary photobiology is enormously helpful to understand disease response and clinical outcomes.
Collapse
Affiliation(s)
- Hugh Barr
- Department of Surgery, Cranfield Postgraduate Medical School, Gloucestershire Royal Hospital, Great Western Road, Gloucester GL1 3NN, UK.
| | | | | | | |
Collapse
|
1102
|
Szymanski M, Barciszewska MZ, Erdmann VA, Barciszewski J. 5S Ribosomal RNA Database. Nucleic Acids Res 2002; 30:176-8. [PMID: 11752286 PMCID: PMC99124 DOI: 10.1093/nar/30.1.176] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2001] [Accepted: 10/10/2001] [Indexed: 11/12/2022] Open
Abstract
Ribosomal 5S RNA (5S rRNA) is an integral component of the large ribosomal subunit in all known organisms with the exception only of mitochondrial ribosomes of fungi and animals. It is thought to enhance protein synthesis by stabilization of a ribosome structure. This paper presents the updated database of 5S rRNA and their genes (5S rDNA). Its short characteristics are presented in the Introduction. The database contains 2280 primary structures of 5S rRNA and 5S rRNA genes. These include 536 eubacterial, 61 archaebacterial, 1611 eukaryotic and 72 organelle sequences. The database is available on line through the World Wide Web at http://biobases.ibch.poznan.pl/5SData/.
Collapse
Affiliation(s)
- Maciej Szymanski
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Noskowskiego 12, 61704 Poznan, Poland
| | | | | | | |
Collapse
|
1103
|
Abstract
The aetiology of type 2, or non-insulin-dependent, diabetes mellitus has been characterized in only a limited number of cases. Among these, mitochondrial diabetes, a rare subform of the disease, is the consequence of pancreatic beta-cell dysfunction caused by mutations in mitochondrial DNA, which is distinct from the nuclear genome. The impact of such mutations on beta-cell function reflects the importance of mitochondria in the control of insulin secretion. The beta-cell mitochondria serve as fuel sensors, generating factors that couple nutrient metabolism to the exocytosis of insulin-containing vesicles. The latter process requires an increase in cytosolic Ca2+, which depends on ATP synthesized by the mitochondria. This organelle also generates other factors, of which glutamate has been proposed as a potential intracellular messenger.
Collapse
Affiliation(s)
- P Maechler
- Division of Clinical Biochemistry, Department of Internal Medicine, University Medical Centre, 1211 Geneva 4, Switzerland.
| | | |
Collapse
|
1104
|
Millar AH, Sweetlove LJ, Giegé P, Leaver CJ. Analysis of the Arabidopsis mitochondrial proteome. PLANT PHYSIOLOGY 2001. [PMID: 11743115 DOI: 10.1104/pp.010387] [Citation(s) in RCA: 284] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The complete set of nuclear genes that encode proteins targeted to mitochondria in plants is currently undefined and thus the full range of mitochondrial functions in plants is unknown. Analysis of two-dimensional gel separations of Arabidopsis cell culture mitochondrial protein revealed approximately 100 abundant proteins and 250 low-abundance proteins. Comparison of subfractions of mitochondrial protein on two-dimensional gels provided information on the soluble, membrane, or integral membrane locations of this protein set. A total of 170 protein spots were excised, trypsin-digested, and matrix-assisted laser desorption ionization/time of flight mass spectrometry spectra obtained. Using this dataset, 91 of the proteins were identified by searching translated Arabidopsis genomic databases. Of this set, 81 have defined functions based on sequence comparison. These functions include respiratory electron transport, tricarboxylic acid cycle metabolism, amino acid metabolism, protein import, processing, and assembly, transcription, membrane transport, and antioxidant defense. A total of 10 spectra were matched to Arabidopsis putative open reading frames for which no specific function has been determined. A total of 64 spectra did not match to an identified open reading frame. Analysis of full-length putative protein sequences using bioinformatic tools to predict subcellular targeting (TargetP, Psort, and MitoProt) revealed significant variation in predictions, and also a lack of mitochondrial targeting prediction for several characterized mitochondrial proteins.
Collapse
Affiliation(s)
- A H Millar
- Department of Biochemistry, Faculty of Medicine and Dentistry, The University of Western Australia, Crawley, Australia.
| | | | | | | |
Collapse
|
1105
|
Adams KL, Ong HC, Palmer JD. Mitochondrial gene transfer in pieces: fission of the ribosomal protein gene rpl2 and partial or complete gene transfer to the nucleus. Mol Biol Evol 2001; 18:2289-97. [PMID: 11719578 DOI: 10.1093/oxfordjournals.molbev.a003775] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mitochondrial genes are usually conserved in size in angiosperms. A notable exception is the rpl2 gene, which is considerably shorter in the eudicot Arabidopsis than in the monocot rice. Here, we show that a severely truncated mitochondrial rpl2 gene (termed 5' rpl2) was created by the formation of a premature stop codon early in eudicot evolution. This 5' rpl2 gene was subsequently lost many times from the mitochondrial DNAs of 179 core eudicots surveyed by Southern hybridization. The sequence corresponding to the 3' end of rice rpl2 (termed 3' rpl2) has been lost much more pervasively among the mitochondrial DNAs of core eudicots than has 5' rpl2. Furthermore, where still present in these mitochondrial genomes, 3' rpl2 always appears to be a pseudogene, and there is no evidence that 3' rpl2 was ever a functional mitochondrial gene. An intact and expressed 3' rpl2 gene was discovered in the nucleus of five diverse eudicots (tomato, cotton, Arabidopsis, soybean, and Medicago). In the first three of these species, 5' rpl2 is still present in the mitochondrion, unlike the two legumes, where both parts of rpl2 are present in the nucleus as separate genes. The full-length rpl2 gene has been transferred intact to the nucleus in maize. We propose that the 3' end of rpl2 was functionally transferred to the nucleus early in eudicot evolution, and that this event then permitted the nonsense mutation that gave rise to the mitochondrial 5' rpl2 gene. Once 5' rpl2 was established as a stand-alone mitochondrial gene, it was then lost, and was probably transferred to the nucleus many times. This complex history of gene fission and gene transfer has created four distinct types of rpl2 structures or compartmentalizations in angiosperms: (1) intact rpl2 gene in the mitochondrion, (2) intact gene in the nucleus, (3) split gene, 5' in the mitochondrion and 3' in the nucleus, and (4) split gene, both parts in the nucleus.
Collapse
Affiliation(s)
- K L Adams
- Department of Biology, Indiana University, Bloomington, USA.
| | | | | |
Collapse
|
1106
|
Affiliation(s)
- David M. Rand
- Department of Ecology and Evolutionary Biology, Brown University, 69 Brown Street, Providence, Box G-W, Rhode Island 02912; e-mail:
| |
Collapse
|
1107
|
Martin W, Hoffmeister M, Rotte C, Henze K. An overview of endosymbiotic models for the origins of eukaryotes, their ATP-producing organelles (mitochondria and hydrogenosomes), and their heterotrophic lifestyle. Biol Chem 2001; 382:1521-39. [PMID: 11767942 DOI: 10.1515/bc.2001.187] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The evolutionary processes underlying the differentness of prokaryotic and eukaryotic cells and the origin of the latter's organelles are still poorly understood. For about 100 years, the principle of endosymbiosis has figured into thoughts as to how these processes might have occurred. A number of models that have been discussed in the literature and that are designed to explain this difference are summarized. The evolutionary histories of the enzymes of anaerobic energy metabolism (oxygen-independent ATP synthesis) in the three basic types of heterotrophic eukaryotes those that lack organelles of ATP synthesis, those that possess mitochondria and those that possess hydrogenosomes--play an important role in this issue. Traditional endosymbiotic models generally do not address the origin of the heterotrophic lifestyle and anaerobic energy metabolism in eukaryotes. Rather they take it as a given, a direct inheritance from the host that acquired mitochondria. Traditional models are contrasted to an alternative endosymbiotic model (the hydrogen hypothesis), which addresses the origin of heterotrophy and the origin of compartmentalized energy metabolism in eukaryotes.
Collapse
Affiliation(s)
- W Martin
- Institut für Botanik III, Universität Düsseldorf, Germany
| | | | | | | |
Collapse
|
1108
|
Abstract
Mitochondrial biogenesis consists of the sum of all processes required for the formation of the mitochondrial membranes as well as the soluble compartments they contain. Furthermore, it includes the replication of the mitochondrial genome and correct segregation of the organelles during cell division. Mitochondrial proteins come from two sources, a limited but essential set of inner membrane proteins is encoded by the mitochondrial genome, whereas the large majority (90-95%) is derived from nucleus-encoded genes and are posttranslationally imported into the organelle. Trypanosomatids belong to the earliest diverging branches of the eukaryotic evolutionary tree which have mitochondria. This is reflected in the organisation of their mitochondrial DNA that consists of a network of two classes of topologically interlocked circular DNA molecules as well as many unique features in their mitochondrial biogenesis. The proteins encoded on the mitochondrial genome are conventional for a mitochondrial genome, their expression, however, involves a complex series of processes. Many genes represent incomplete open reading frames and their primary transcripts have to remodelled by RNA editing to convert them into translatable mRNAs. RNA editing is mediated by small mitochondria-encoded transcripts, the guide RNAs, and is in that form specific for trypanosomatids and closely related organisms. Mitochondrial translation is also unconventional. No tRNA genes are encoded on the mitochondrial genome. Instead, mitochondrial protein synthesis functions exclusively with imported cytosolic, eukaryotic-type tRNAs. The composition of mitochondrial ribosomes is also unusual in that they contain the smallest known rRNAs. They are about 30% shorter than the already much reduced rRNAs in human mitochondria. Furthermore, the topological organisation of the mitochondrial genome requires an elaborate replication machinery involving topoisomerases. Finally, some trypanosomatids have life cycle stages exhibiting very different mitochondrial activities and can therefore serve as a model system for the regulation of mitochondrial biogenesis.
Collapse
Affiliation(s)
- A Schneider
- Department of Biology/Zoology, University of Fribourg, Chemin du Musee 10, CH-1700 Fribourg, Switzerland.
| |
Collapse
|
1109
|
Broughton RE, Milam JE, Roe BA. The complete sequence of the zebrafish (Danio rerio) mitochondrial genome and evolutionary patterns in vertebrate mitochondrial DNA. Genome Res 2001; 11:1958-67. [PMID: 11691861 PMCID: PMC311132 DOI: 10.1101/gr.156801] [Citation(s) in RCA: 268] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We describe the complete sequence of the 16,596-nucleotide mitochondrial genome of the zebrafish (Danio rerio); contained are 13 protein genes, 22 tRNAs, 2 rRNAs, and a noncoding control region. Codon usage in protein genes is generally biased toward the available tRNA species but also reflects strand-specific nucleotide frequencies. For 19 of the 20 amino acids, the most frequently used codon ends in either A or C, with A preferred over C for fourfold degenerate codons (the lone exception was AUG: methionine). We show that rates of sequence evolution vary nearly as much within vertebrate classes as between them, yet nucleotide and amino acid composition show directional evolutionary trends, including marked differences between mammals and all other taxa. Birds showed similar compositional characteristics to the other nonmammalian taxa, indicating that the evolutionary trend in mammals is not solely due to metabolic rate and thermoregulatory factors. Complete mitochondrial genomes provide a large character base for phylogenetic analysis and may provide for robust estimates of phylogeny. Phylogenetic analysis of zebrafish and 35 other taxa based on all protein-coding genes produced trees largely, but not completely, consistent with conventional views of vertebrate evolution. It appears that even with such a large number of nucleotide characters (11,592), limited taxon sampling can lead to problems associated with extensive evolution on long phyletic branches.
Collapse
Affiliation(s)
- R E Broughton
- Oklahoma Biological Survey and Department of Zoology, University of Oklahoma, Norman, OK 73019, USA.
| | | | | |
Collapse
|
1110
|
Abstract
Bacterial and archaeal complete genome sequences have been obtained from a wide range of evolutionary lines, which allows some general conclusions about the phylogenetic distribution and evolution of bioenergetic pathways to be drawn. In particular, I searched in the complete genomes for key enzymes involved in aerobic and anaerobic respiratory pathways and in photosynthesis, and mapped them into an rRNA tree of sequenced species. The phylogenetic distribution of these enzymes is very irregular, and clearly shows the diverse strategies of energy conservation used by prokaryotes. In addition, a thorough phylogenetic analysis of other bioenergetic protein families of wide distribution reveals a complex evolutionary history for the respective genes. A parsimonious explanation for these complex phylogenetic patterns and for the irregular distribution of metabolic pathways is that the last common ancestor of Bacteria and Archaea contained several members of every gene family as a consequence of previous gene or genome duplications, while different patterns of gene loss occurred during the evolution of every gene family. This would imply that the last universal ancestor was a bioenergetically sophisticated organism. Finally, important steps that occurred during the evolution of energetic machineries, such as the early evolution of aerobic respiration and the acquisition of eukaryotic mitochondria from a proteobacterium ancestor, are supported by the analysis of the complete genome sequences.
Collapse
Affiliation(s)
- J Castresana
- European Molecular Biology Laboratory, Biocomputing Unit, Meyerhofstrasse 1, D-69117 Heidelberg, Germany.
| |
Collapse
|
1111
|
Horner DS, Embley TM. Chaperonin 60 phylogeny provides further evidence for secondary loss of mitochondria among putative early-branching eukaryotes. Mol Biol Evol 2001; 18:1970-5. [PMID: 11557802 DOI: 10.1093/oxfordjournals.molbev.a003737] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
1112
|
Abstract
tRNA CCA-termini are generated and maintained by tRNA nucleotidyltransferases. Together with poly(A) polymerases and other enzymes they belong to the nucleotidyltransferase superfamily. However, sequence alignments within this family do not allow to distinguish between CCA-adding enzymes and poly(A) polymerases. Furthermore, due to the lack of sequence information about animal CCA-adding enzymes, identification of corresponding animal genes was not possible so far. Therefore, we looked for the human homolog using the baker's yeast tRNA nucleotidyltransferase as a query sequence in a BLAST search. This revealed that the human gene transcript CGI-47 (#AF151805) deposited in GenBank is likely to encode such an enzyme. To identify the nature of this protein, the cDNA of the transcript was cloned and the recombinant protein biochemically characterized, indicating that CGI-47 encodes a bona fide CCA-adding enzyme and not a poly(A) polymerase. This confirmed animal CCA-adding enzyme allowed us to identify putative homologs from other animals. Calculation of a neighbor-joining tree, using an alignment of several CCA-adding enzymes, revealed that the animal enzymes resemble more eubacterial ones than eukaryotic plant and fungal tRNA nucleotidyltransferases, suggesting that the animal nuclear cca genes might have been derived from the endosymbiotic progenitor of mitochondria and are therefore of eubacterial origin.
Collapse
Affiliation(s)
- A S Reichert
- Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | | |
Collapse
|
1113
|
Siqueira SF, Dias SM, Lejeune B, de Souza AP. Marchantia polymorpha mitochondrial orf identifies transcribed sequence in angiosperm mitochondrial genome. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1520:203-11. [PMID: 11566356 DOI: 10.1016/s0167-4781(01)00273-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Heterologous hybridizations performed using nine Marchantia polymorpha mitochondrial orfs and the sdh4 gene against angiosperm mtDNA suggested that three of them and the sdh4 gene have been conserved in the mitochondrial genome of different angiosperm species. Solanum tuberosum mtDNA fragments, which hybridized to M. polymorpha orf207 and sdh4 gene, were cloned, sequenced, and their expressions evaluated by Northern and RT-PCR. Hybridizing fragments to sdh4 gene and orf207 from potato mtDNA were shown to be transcribed, but only in the case of sdh4 gene was there homology between the protein encoded by the DNA sequence from M. polymorpha and the potato mitochondrial genome. M. polymorpha orf207 showed little similarity to an open reading frame from potato mtDNA, named here orf78. The putative proteins encoded by both orf207 and orf78 were not related, indicating that these orfs do not constitute homologous sequences.
Collapse
Affiliation(s)
- S F Siqueira
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Cidade Universitária Zererino Vaz, Campinas, SP, Brazil
| | | | | | | |
Collapse
|
1114
|
Rand DM, Clark AG, Kann LM. Sexually antagonistic cytonuclear fitness interactions in Drosophila melanogaster. Genetics 2001; 159:173-87. [PMID: 11560895 PMCID: PMC1461777 DOI: 10.1093/genetics/159.1.173] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Theoretical and empirical studies have shown that selection cannot maintain a joint nuclear-cytoplasmic polymorphism within a population except under restrictive conditions of frequency-dependent or sex-specific selection. These conclusions are based on fitness interactions between a diploid autosomal locus and a haploid cytoplasmic locus. We develop a model of joint transmission of X chromosomes and cytoplasms and through simulation show that nuclear-cytoplasmic polymorphisms can be maintained by selection on X-cytoplasm interactions. We test aspects of the model with a "diallel" experiment analyzing fitness interactions between pairwise combinations of X chromosomes and cytoplasms from wild strains of Drosophila melanogaster. Contrary to earlier autosomal studies, significant fitness interactions between X chromosomes and cytoplasms are detected among strains from within populations. The experiment further demonstrates significant sex-by-genotype interactions for mtDNA haplotype, cytoplasms, and X chromosomes. These interactions are sexually antagonistic--i.e., the "good" cytoplasms in females are "bad" in males--analogous to crossing reaction norms. The presence or absence of Wolbachia did not alter the significance of the fitness effects involving X chromosomes and cytoplasms but tended to reduce the significance of mtDNA fitness effects. The negative fitness correlations between the sexes demonstrated in our empirical study are consistent with the conditions that maintain cytoplasmic polymorphism in simulations. Our results suggest that fitness interactions with the sex chromosomes may account for some proportion of cytoplasmic variation in natural populations. Sexually antagonistic selection or reciprocally matched fitness effects of nuclear-cytoplasmic genotypes may be important components of cytonuclear fitness variation and have implications for mitochondrial disease phenotypes that differ between the sexes.
Collapse
Affiliation(s)
- D M Rand
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912, USA.
| | | | | |
Collapse
|
1115
|
Gallois JL, Achard P, Green G, Mache R. The Arabidopsis chloroplast ribosomal protein L21 is encoded by a nuclear gene of mitochondrial origin. Gene 2001; 274:179-85. [PMID: 11675010 DOI: 10.1016/s0378-1119(01)00613-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Many chloroplast genes of cyanobacterial origin have been transferred to the nucleus during evolution and their products are re-addressed to chloroplasts. The RPL21 gene encoding the plastid r-protein L21 has been lost in higher plant chloroplast genomes after the divergence from bryophytes. Based on phylogenetic analysis and intron conservation, we now provide evidence that in Arabidopsis a nuclear RPL21c gene of mitochondrial origin has replaced the chloroplast gene. The control of expression of this gene has been adapted to the needs of chloroplast development by the acquisition of plastid-specific regulatory promoter cis-elements.
Collapse
Affiliation(s)
- J L Gallois
- Laboratoire de Génétique Moléculaire des Plantes, Université J. Fourier and Centre National de la Recherche Scientifique, BP 53, F-38041 Grenoble Cedex 09, France
| | | | | | | |
Collapse
|
1116
|
|
1117
|
|
1118
|
Oldenburg DJ, Bendich AJ. Mitochondrial DNA from the liverwort Marchantia polymorpha: circularly permuted linear molecules, head-to-tail concatemers, and a 5' protein. J Mol Biol 2001; 310:549-62. [PMID: 11439023 DOI: 10.1006/jmbi.2001.4783] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mapping predicts that the mitochondrial genome of the liverwort Marchantia polymorpha exists as a circular molecule, although nearly all the mitochondrial DNA (mtDNA) is found as genome-sized and multigenomic molecules in linear and branched form. We used restriction enzymes with one recognition site per genome, end-specific exonucleases and pulsed-field gel electrophoresis (PFGE) to analyze the arrangement of genomic units and the terminal structure of the molecules. We find a head-to-tail arrangement in the concatemers and circular permutation in both the monomeric and multigenomic molecules. The termini contain covalently bound protein at the 5' end and an open (unblocked) 3' end. We find that the standard in-gel procedure used to prepare large DNA molecules for PFGE may introduce extraction artifacts leading to erroneous conclusions about the termini. These artifacts can be reduced by omitting high salt (high EDTA) and protease during mitochondrial lysis. Our results suggest that the mtDNA may use a T4 phage-like mechanism of replication and that the linear molecules may be due to strand breaks mediated by type II topoisomerase.
Collapse
MESH Headings
- Artifacts
- DNA Replication
- DNA Restriction Enzymes/metabolism
- DNA Topoisomerases, Type II/metabolism
- DNA, Circular/chemistry
- DNA, Circular/genetics
- DNA, Circular/metabolism
- DNA, Mitochondrial/chemistry
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/metabolism
- DNA-Binding Proteins/metabolism
- Edetic Acid/pharmacology
- Electrophoresis, Gel, Pulsed-Field
- Endopeptidase K/metabolism
- Exodeoxyribonucleases/metabolism
- Genome
- Mitochondria/drug effects
- Mitochondria/genetics
- Mitochondria/metabolism
- Models, Genetic
- Nucleic Acid Conformation
- Plant Cells
- Plant Proteins/metabolism
- Plants/genetics
- Salts/pharmacology
- Viral Proteins
Collapse
Affiliation(s)
- D J Oldenburg
- Department of Botany, University of Washington, Seattle, WA 98195-5325, USA
| | | |
Collapse
|
1119
|
Abstract
This review attempts to summarize our present state of knowledge of mitochondria in relation to a number of areas of biology, and to indicate where future research might be directed. In the evolution of eukaryotic cells mitochondria have for a long time played a prominent role. Nowadays their integration into many activities of a cell, and their dynamic behavior as subcellular organelles within a cell and during cell division are a major focus of attention. The crystal structures of the major complexes of the electron transport chain (except complex I) have been established, permitting increasingly detailed analyses of the important mechanism of proton pumping coupled to electron transport. The mitochondrial genome and its replication and expression are beginning to be understood in considerable detail, but more questions remain with regard to mutations and their repair, and the segregation of the mtDNA in oogenesis and development. Much emphasis and a large effort have recently been devoted to understand the role of mitochondria in programmed cell death (apoptosis). The understanding of their central role in mitochondrial diseases is a major achievement of the past decade. Finally, various drugs have traditionally played a part in understanding biochemical mechanisms within mitochondria; the repertoire of drugs with novel and interesting targets is expanding.
Collapse
Affiliation(s)
- I E Scheffler
- Division of Biology, University of California San Diego, La Jolla, CA 92093-0322, USA.
| |
Collapse
|
1120
|
Adams KL, Rosenblueth M, Qiu YL, Palmer JD. Multiple losses and transfers to the nucleus of two mitochondrial succinate dehydrogenase genes during angiosperm evolution. Genetics 2001; 158:1289-300. [PMID: 11454775 PMCID: PMC1461739 DOI: 10.1093/genetics/158.3.1289] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Unlike in animals, the functional transfer of mitochondrial genes to the nucleus is an ongoing process in plants. All but one of the previously reported transfers in angiosperms involve ribosomal protein genes. Here we report frequent transfer of two respiratory genes, sdh3 and sdh4 (encoding subunits 3 and 4 of succinate dehydrogenase), and we also show that these genes are present and expressed in the mitochondria of diverse angiosperms. Southern hybridization surveys reveal that sdh3 and sdh4 have been lost from the mitochondrion about 40 and 19 times, respectively, among the 280 angiosperm genera examined. Transferred, functional copies of sdh3 and sdh4 were characterized from the nucleus in four and three angiosperm families, respectively. The mitochondrial targeting presequences of two sdh3 genes are derived from preexisting genes for anciently transferred mitochondrial proteins. On the basis of the unique presequences of the nuclear genes and the recent mitochondrial gene losses, we infer that each of the seven nuclear sdh3 and sdh4 genes was derived from a separate transfer to the nucleus. These results strengthen the hypothesis that angiosperms are experiencing a recent evolutionary surge of mitochondrial gene transfer to the nucleus and reveal that this surge includes certain respiratory genes in addition to ribosomal protein genes.
Collapse
Affiliation(s)
- K L Adams
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | |
Collapse
|
1121
|
Simpson AG, Patterson DJ. On core jakobids and excavate taxa: the ultrastructure of Jakoba incarcerata. J Eukaryot Microbiol 2001; 48:480-92. [PMID: 11456326 DOI: 10.1111/j.1550-7408.2001.tb00183.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cellular organisation of the 'excavate' flagellate Jakoba incarcerata Bernard, Simpson and Patterson 2000 is described. Cells have one nucleus and dictyosome. The putative mitochondria lack cristae. Two flagella (anterior and posterior) insert anterior to the feeding groove. The posterior flagellum bears a dorsal vane. An 'anterior' microtubular root arises against the anterior basal body. Two main microtubular roots, left and right, and a singlet 'root' arise around the posterior basal body and support the groove. Non-microtubular fibres termed 'A', 'B', 'I', and 'composite' associate with the right root. A multilaminar 'C' fibre associates with the left root. The cytoskeleton of J. incarcerata indicates a common ancestry with other excavate taxa (i.e. diplomonads, retortamonads, heteroloboseids, 'core jakobids', Malawimonas, Carpediemonas, and Trimastix). Overall, J. incarcerata is most similar to (other) core jakobids, namely Jakoba libera, Reclinomonas, and Histiona. We regard J. incarcerata as a core jakobid and identify the group by the synapomorphy 'vanes restricted to dorsal side of the posterior flagellum'. The anterior root and position of the B fibre (and presence of dense inclusions in the cartwheels and a conscpicuous singlet root-associated fibre) in J. incarcerata are novel for core jakobids and argue for close relationships with Trimastix and/or Heterolobosea. The C fibre is similar in substructure to the costal fibre of parabasalids and it is possible that the structures are homologous.
Collapse
Affiliation(s)
- A G Simpson
- Protist Research Laboratory, School of Biological Sciences, University of Sydney, New South Wales, Australia.
| | | |
Collapse
|
1122
|
Kashani-Poor N, Zwicker K, Kerscher S, Brandt U. A central functional role for the 49-kDa subunit within the catalytic core of mitochondrial complex I. J Biol Chem 2001; 276:24082-7. [PMID: 11342550 DOI: 10.1074/jbc.m102296200] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have analyzed a series of eleven mutations in the 49-kDa protein of mitochondrial complex I (NADH:ubiquinone oxidoreductase) from Yarrowia lipolytica to identify functionally important domains in this central subunit. The mutations were selected based on sequence homology with the large subunit of [NiFe] hydrogenases. None of the mutations affected assembly of complex I, all decreased or abolished ubiquinone reductase activity. Several mutants exhibited decreased sensitivities toward ubiquinone-analogous inhibitors. Unexpectedly, seven mutations affected the properties of iron-sulfur cluster N2, a prosthetic group not located in the 49-kDa subunit. In three of these mutants cluster N2 was not detectable by electron-paramagnetic resonance spectroscopy. The fact that the small subunit of hydrogenase is homologous to the PSST subunit of complex I proposed to host cluster N2 offers a straightforward explanation for the observed, unforeseen effects on this iron-sulfur cluster. We propose that the fold around the hydrogen reactive site of [NiFe] hydrogenase is conserved in the 49-kDa subunit of complex I and has become part of the inhibitor and ubiquinone binding region. We discuss that the fourth ligand of iron-sulfur cluster N2 missing in the PSST subunit may be provided by the 49-kDa subunit.
Collapse
Affiliation(s)
- N Kashani-Poor
- Universitätsklinikum Frankfurt, Institut für Biochemie I, D-60590 Frankfurt am Main, Federal Republic of Germany
| | | | | | | |
Collapse
|
1123
|
Suzuki T, Terasaki M, Takemoto-Hori C, Hanada T, Ueda T, Wada A, Watanabe K. Structural compensation for the deficit of rRNA with proteins in the mammalian mitochondrial ribosome. Systematic analysis of protein components of the large ribosomal subunit from mammalian mitochondria. J Biol Chem 2001; 276:21724-36. [PMID: 11279069 DOI: 10.1074/jbc.m100432200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian mitochondrial ribosome (mitoribosome) is a highly protein-rich particle in which almost half of the rRNA contained in the bacterial ribosome is replaced with proteins. It is known that mitochondrial translation factors can function on both mitochondrial and Escherichia coli ribosomes, indicating that protein components in the mitoribosome compensate the reduced rRNA chain to make a bacteria-type ribosome. To elucidate the molecular basis of this compensation, we analyzed bovine mitoribosomal large subunit proteins; 31 proteins were identified including 15 newly identified proteins with their cDNA sequences from human and mouse. The results showed that the proteins with binding sites on rRNA shortened or lost in the mitoribosome were enlarged when compared with the E. coli counterparts; this suggests the structural compensation of the rRNA deficit by the enlarged proteins in the mitoribosome.
Collapse
Affiliation(s)
- T Suzuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | | | | | | | | | |
Collapse
|
1124
|
Paternal inheritance of mitochondrial DNA in the sheep (Ovine aries). ACTA ACUST UNITED AC 2001; 44:321-6. [DOI: 10.1007/bf02879339] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2000] [Revised: 07/19/2000] [Indexed: 11/26/2022]
|
1125
|
Affiliation(s)
- L A Tully
- Biotechnology Division, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8311, Gaithersburg, MD 20899-8311, USA
| | | |
Collapse
|
1126
|
Abstract
Traditionally, evolutionary biologists have viewed mutations within individual genes as the major source of phenotypic variation leading to adaptation through natural selection, and ultimately generating diversity among species. Although such processes must contribute to the initial development of gene functions and their subsequent fine-tuning, changes in genome repertoire, occurring through gene acquisition and deletion, are the major events underlying the emergence and evolution of bacterial pathogens and symbionts. Furthermore, pathogens and symbionts depend on similar mechanisms for interacting with hosts and show parallel trends in genome evolution.
Collapse
Affiliation(s)
- H Ochman
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85718, USA.
| | | |
Collapse
|
1127
|
Haridas V, Higuchi M, Jayatilake GS, Bailey D, Mujoo K, Blake ME, Arntzen CJ, Gutterman JU. Avicins: triterpenoid saponins from Acacia victoriae (Bentham) induce apoptosis by mitochondrial perturbation. Proc Natl Acad Sci U S A 2001; 98:5821-6. [PMID: 11344312 PMCID: PMC33297 DOI: 10.1073/pnas.101619098] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2000] [Indexed: 11/18/2022] Open
Abstract
Anticancer agents target various subcellular components and trigger apoptosis in chemosensitive cells. We have recently reported the tumor cell growth inhibitory properties of a mixture of triterpenoid saponins obtained from an Australian desert tree (Leguminosae) Acacia victoriae (Bentham). Here we report the purification of this mixture into two biologically pure components called avicins that contain an acacic acid core with two acyclic monoterpene units connected by a quinovose sugar. We demonstrate that the mixture of triterpenoid saponins and avicins induce apoptosis in the Jurkat human T cell line by affecting the mitochondrial function. Avicin G induced cytochrome c release within 30-120 min in whole cells and within a minute in the cell-free system. Caspase inhibitors DEVD or zVAD-fmk had no effect on cytochrome c release, suggesting the direct action of avicin G on the mitochondria. Activation of caspase-3 and total cleavage of poly(ADP-ribose) polymerase (PARP) occurred between 2 and 6 h posttreatment with avicins by zVAD-fmk. Interestingly, in the treated cells no significant changes in the membrane potential preceded or accompanied cytochrome c release. A small decrease in the generation of reactive oxygen species (ROS) was measured. The study of these evolutionarily ancient compounds may represent an interesting paradigm for the application of chemical ecology and chemical biology to human health.
Collapse
Affiliation(s)
- V Haridas
- Department of Molecular Therapeutics, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
1128
|
Krepinsky K, Plaumann M, Martin W, Schnarrenberger C. Purification and cloning of chloroplast 6-phosphogluconate dehydrogenase from spinach. Cyanobacterial genes for chloroplast and cytosolic isoenzymes encoded in eukaryotic chromosomes. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:2678-86. [PMID: 11322889 DOI: 10.1046/j.1432-1327.2001.02154.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous attempts to purify chloroplast 6-phosphogluconate dehydrogenase (cp6PGDH), a key enzyme of the oxidative pentose phosphate pathway, have been unsuccessful due to rapid activity loss. An efficient purification protocol was developed and the enzyme from spinach leaves was purified 1000-fold to apparent homogeneity with a specific activity of 60 U.mg-1. The enzyme is a homodimer with subunits of 50 kDa. Antibodies raised against the purified cp6PGDH detected a 53-kDa protein from a crude extract, indicating alterations during purification. Purified cp6PGDH was microsequenced and the corresponding spinach cDNA was cloned using PCR techniques and degenerate primers. The cDNA for cytosolic 6PGDH from spinach was cloned for comparison. Phylogenetic analysis in the context of available homologues from eukaryotes and eubacteria revealed that animal and fungal cytosolic 6PGDH sequences are more similar to their homologues from gamma-proteobacteria, whereas plant 6PGDH is more similar to its cyanobacterial homologues. The ancestral gene for higher plant 6PGDH was acquired from the antecedent of plastids through endosymbiosis and gene transfer to the nucleus. A subsequent gene duplication gave rise to higher plant cytosolic 6PGDH, which assumed the function of its pre-existing cytosolic homologue through endosymbiotic gene replacement. The protein phylogeny of both 6PGDH and of the first enzyme of the oxidative pentose phosphate pathway, glucose-6-phosphate dehydrogenase, indicate a surprisingly close relationship between the plant and Trypanosoma brucei lineages, suggesting that T. brucei (a relative of Euglena gracilis) may be secondarily nonphotosynthetic.
Collapse
Affiliation(s)
- K Krepinsky
- Institute of Biology, Free University of Berlin, Germany; Institute of Botany III, University of Düsseldorf, Germany
| | | | | | | |
Collapse
|
1129
|
Rotte C, Stejskal F, Zhu G, Keithly JS, Martin W. Pyruvate : NADP+ oxidoreductase from the mitochondrion of Euglena gracilis and from the apicomplexan Cryptosporidium parvum: a biochemical relic linking pyruvate metabolism in mitochondriate and amitochondriate protists. Mol Biol Evol 2001; 18:710-20. [PMID: 11319255 DOI: 10.1093/oxfordjournals.molbev.a003853] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Most eukaryotes perform the oxidative decarboxylation of pyruvate in mitochondria using pyruvate dehydrogenase (PDH). Eukaryotes that lack mitochondria also lack PDH, using instead the O(2)-sensitive enzyme pyruvate : ferredoxin oxidoreductase (PFO), which is localized either in the cytosol or in hydrogenosomes. The facultatively anaerobic mitochondria of the photosynthetic protist Euglena gracilis constitute a hitherto unique exception in that these mitochondria oxidize pyruvate with the O(2)-sensitive enzyme pyruvate : NADP oxidoreductase (PNO). Cloning and analysis of Euglena PNO revealed that the cDNA encodes a mitochondrial transit peptide followed by an N-terminal PFO domain that is fused to a C-terminal NADPH-cytochrome P450 reductase (CPR) domain. Two independent 5.8-kb full-size cDNAs for Euglena mitochondrial PNO were isolated; the gene was expressed in cultures supplied with 2% CO(2) in air and with 2% CO(2) in N(2). The apicomplexan Cryptosporidium parvum was also shown to encode and express the same PFO-CPR fusion, except that, unlike E. gracilis, no mitochondrial transit peptide for C. parvum PNO was found. Recombination-derived remnants of PNO are conserved in the genomes of Saccharomyces cerevisiae and Schizosaccharomyces pombe as proteins involved in sulfite reduction. Notably, Trypanosoma brucei was found to encode homologs of both PFO and all four PDH subunits. Gene organization and phylogeny revealed that eukaryotic nuclear genes for mitochondrial, hydrogenosomal, and cytosolic PFO trace to a single eubacterial acquisition. These findings suggest a common ancestry of PFO in amitochondriate protists with Euglena mitochondrial PNO and Cryptosporidium PNO. They are also consistent with the view that eukaryotic PFO domains are biochemical relics inherited from a facultatively anaerobic, eubacterial ancestor of mitochondria and hydrogenosomes.
Collapse
Affiliation(s)
- C Rotte
- Institut für Botanik III, Universität Düsseldorf, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
1130
|
|
1131
|
Sankoff D, Bryant D, Deneault M, Lang BF, Burger G. Early eukaryote evolution based on mitochondrial gene order breakpoints. J Comput Biol 2001; 7:521-35. [PMID: 11108477 DOI: 10.1089/106652700750050925] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The comparison of the gene orders in a set of genomes can be used to infer their phylogenetic relationships and to reconstruct ancestral gene orders. For three genomes this is done by solving the "median problem for breakpoints"; this solution can then be incorporated into a routine for estimating optimal gene orders for all the ancestral genomes in a fixed phylogeny. For the difficult (and most prevalent) case where the genomes contain partially different sets of genes, we present a general heuristic for the median problem for induced breakpoints. A fixed-phylogeny optimization based on this is applied in a phylogenetic study of a set of completely sequenced protist mitochondrial genomes, confirming some of the recent sequence-based groupings which have been proposed and, conversely, confirming the usefulness of the breakpoint method as a phylogenetic tool even for small genomes.
Collapse
Affiliation(s)
- D Sankoff
- Centre de recherches mathématiques, Université de Montréal, Québec.
| | | | | | | | | |
Collapse
|
1132
|
Edgcomb VP, Roger AJ, Simpson AG, Kysela DT, Sogin ML. Evolutionary relationships among "jakobid" flagellates as indicated by alpha- and beta-tubulin phylogenies. Mol Biol Evol 2001; 18:514-22. [PMID: 11264402 DOI: 10.1093/oxfordjournals.molbev.a003830] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Jakobids are free-living, heterotrophic flagellates that might represent early-diverging mitochondrial protists. They share ultrastructural similarities with eukaryotes that occupy basal positions in molecular phylogenies, and their mitochondrial genome architecture is eubacterial-like, suggesting a close affinity with the ancestral alpha-proteobacterial symbiont that gave rise to mitochondria and hydrogenosomes. To elucidate relationships among jakobids and other early-diverging eukaryotic lineages, we characterized alpha- and beta-tubulin genes from four jakobids: Jakoba libera, Jakoba incarcerata, Reclinomonas americana (the "core jakobids"), and Malawimonas jakobiformis. These are the first reports of nuclear genes from these organisms. Phylogenies based on alpha-, beta-, and combined alpha- plus beta-tubulin protein data sets do not support the monophyly of the jakobids. While beta-tubulin and combined alpha- plus beta-tubulin phylogenies showed a sister group relationship between J. libera and R. americana, the two other jakobids, M. jakobiformis and J. incarcerata, had unclear affinities. In all three analyses, J. libera, R. americana, and M. jakobiformis emerged from within a well-supported large "plant-protist" clade that included plants, green algae, cryptophytes, stramenopiles, alveolates, Euglenozoa, Heterolobosea, and several other protist groups, but not animals, fungi, microsporidia, parabasalids, or diplomonads. A preferred branching order within the plant-protist clade was not identified, but there was a tendency for the J. libera-R. americana lineage to group with a clade made up of the heteroloboseid amoeboflagellates and euglenozoan protists. Jakoba incarcerata branched within the plant-protist clade in the beta- and the combined alpha- plus beta-tubulin phylogenies. In alpha- tubulin trees, J. incarcerata occupied an unresolved position, weakly grouping with the animal/fungal/microsporidian group or with amitochondriate parabasalid and diplomonad lineages, depending on the phylogenetic method employed. Tubulin gene phylogenies were in general agreement with mitochondrial gene phylogenies and ultrastructural data in indicating that the "jakobids" may be polyphyletic. Relationships with the putatively deep-branching amitochondriate diplomonads remain uncertain.
Collapse
Affiliation(s)
- V P Edgcomb
- Josephine Bay-Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
| | | | | | | | | |
Collapse
|
1133
|
Barroso G, Bois F, Labarère J. Duplication of a truncated paralog of the family B DNA polymerase gene Aa-polB in the Agrocybe aegerita mitochondrial genome. Appl Environ Microbiol 2001; 67:1739-43. [PMID: 11282628 PMCID: PMC92792 DOI: 10.1128/aem.67.4.1739-1743.2001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Agrocybe aegerita mitochondrial genome contains a truncated family B DNA polymerase gene (Aa-polB P1) whose nucleotide sequence is 86% identical to the previously described and potentially functional Aa-polB gene. A tRNA(Met) gene occurs at the 3' end of the Aa-polB P1 gene. The Aa-polB P1 gene could result from reverse transcription of an Aa-polB mRNA primed by a tRNA(Met) followed by the integration of the cDNA after recombination at the mitochondrial tRNA locus. Two naturally occurring alleles of Aa-polB P1 carry one or two copies of the disrupted sequence. In strains with two copies of Aa-polB P1, these copies are inverted relative to one another and separated by a short sequence carrying the tRNA(Met) gene. Both A. aegerita mitochondrial family B DNA polymerases were found to be related to other family B DNA polymerases (36 to 53% amino acid similarity), including the three enzymes of the archaebacterium Sulfolobus solfataricus. If mitochondria originated from a fusion between a Clostridium-like eubacterium and a Sulfolobus-like archaebacterium, then the A. aegerita family B DNA polymerase genes could be remnants of the archaebacterial genes.
Collapse
Affiliation(s)
- G Barroso
- Laboratoire de Génétique Moléculaire et d'Amélioration des Champignons Cultivés, Université Victor Segalen Bordeaux 2-INRA, I.B.V.M., CRA de Bordeaux, 33883 Villenave d'Ornon Cédex, France
| | | | | |
Collapse
|
1134
|
Degterev A, Lugovskoy A, Cardone M, Mulley B, Wagner G, Mitchison T, Yuan J. Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-xL. Nat Cell Biol 2001. [PMID: 11175750 DOI: 10.1038/35087106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To study the role of the BH3 domain in mediating pro-apoptotic and anti-apoptotic activities of Bcl-2 family members, we identified a series of novel small molecules (BH3Is) that inhibit the binding of the Bak BH3 peptide to Bcl-xL. NMR analyses revealed that BH3Is target the BH3-binding pocket of Bcl-xL. Inhibitors specifically block the BH3-domain-mediated heterodimerization between Bcl-2 family members in vitro and in vivo and induce apoptosis. Our results indicate that BH3-dependent heterodimerization is the key function of anti-apoptotic Bcl-2 family members and is required for the maintenance of cellular homeostasis.
Collapse
Affiliation(s)
- A Degterev
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
1135
|
Giegé P, Brennicke A. From gene to protein in higher plant mitochondria. COMPTES RENDUS DE L'ACADEMIE DES SCIENCES. SERIE III, SCIENCES DE LA VIE 2001; 324:209-17. [PMID: 11291307 DOI: 10.1016/s0764-4469(00)01293-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Higher plant mitochondria contain a genetic system with a genome, transcription and translation processes, which have to be logistically integrated with the two other genomes in the nucleus and the plastid. In plant mitochondria, after transcripts have been synthesised, at least in some cases by a phage-type RNA polymerase, they have to go through a complex processing apparatus, which depends on protein factors imported from the cytosol. Processing involves cis- and trans-splicing, internal RNA editing and maturation at the transcript termini, these steps often occurring in parallel. Transcript life is terminated by RNA degradation mechanisms, one of which involves polyadenylation. RNA metabolism seems to be a key element of the regulation of gene expression in higher plant mitochondria.
Collapse
Affiliation(s)
- P Giegé
- Department of Plant Sciences, Oxford University, South Parks Road, Oxford, OX1 3RB, UK.
| | | |
Collapse
|
1136
|
Affiliation(s)
- T G Wolfsberg
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
1137
|
Vogel H. Mitochondrial myopathies and the role of the pathologist in the molecular era. J Neuropathol Exp Neurol 2001; 60:217-27. [PMID: 11245207 DOI: 10.1093/jnen/60.3.217] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial encephalomyopathies are under increasing consideration in the differential diagnosis of diverse metabolic diseases from infancy to late adulthood. This is to be expected considering the vital importance of mitochondria to cellular respiration in all eukaryotes. the vulnerability of the mitochondrial genome to injury, and the expanding appreciation of the role of mitochondria as a common denominator in cell death in ischemia/anoxia, sepsis, and neurodegenerative diseases. Primary disease of the mitochondrial respiratory chain is estimated to occur with an incidence of between 6 and 16/100,000 individuals. Virtually all tissues have been shown to be involved in diverse mitochondriopathies, but none is more appropriate for diagnosis in most cases than skeletal muscle. The conventional histological and ultrastructural diagnosis of mitochondrial disease in muscle has been increasingly supplanted by the biochemical assessment of respiratory chain enzyme deficiencies and definitive genetic diagnosis. The use of such techniques has afforded a greater understanding for the relative lack of specificity of both light and electron microscopic observations. A review of the current situation by placing muscle pathology in the context of biochemical and genetic diagnosis serves as a paradigm for the role of the pathologist in the molecular era.
Collapse
Affiliation(s)
- H Vogel
- Department of Pathology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
1138
|
Barr H, Dix AJ, Kendall C, Stone N. Review article: the potential role for photodynamic therapy in the management of upper gastrointestinal disease. Aliment Pharmacol Ther 2001; 15:311-21. [PMID: 11207506 DOI: 10.1046/j.1365-2036.2001.00936.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Photodynamic therapy involves the activation of an exogenously administered, or an endogenously generated, photosensitizer with light to produce localized tissue destruction. It is an attractive, predominantly endoscopic technique for the palliation of advanced upper gastrointestinal cancer and the eradication of early neoplastic and pre-neoplastic lesions. The nature of the biological response allowing safe healing and the exploitation of tissue threshold effects mean that adjacent tissue damage can be minimized. This review used a database of 368 papers. The nature of the photosensitizer is critical to the depth of tissue damage and the risk of adjacent tissue damage and stricture formation. The generation of protoporphyrin IX following administration of 5-aminolaevulinic acid has proved useful for the treatment of high-grade dysplasia in Barrett's oesophagus. A double-blind randomized placebo controlled trial has confirmed that it is a safe and effective method for the ablation of low-grade dysplasia. The treatment of more advanced lesions requires exogenously administered photo-sensitizers. However, recent data indicate that the neoplastic potential remains in some patients and continued follow-up is necessary. Photodynamic therapy can be used to eradicate early neoplasia and palliate advanced cancer, but caution is required before a definitive cure can be claimed.
Collapse
Affiliation(s)
- H Barr
- Cranfield Postgraduate Medical School in Gloucestershire, Gloucestershire Royal Hospital, Gloucester, UK.
| | | | | | | |
Collapse
|
1139
|
Abstract
Earth is over 4,500 million years old. Massive bombardment of the planet took place for the first 500-700 million years, and the largest impacts would have been capable of sterilizing the planet. Probably until 4,000 million years ago or later, occasional impacts might have heated the ocean over 100 degrees C. Life on Earth dates from before about 3,800 million years ago, and is likely to have gone through one or more hot-ocean 'bottlenecks'. Only hyperthermophiles (organisms optimally living in water at 80-110 degrees C) would have survived. It is possible that early life diversified near hydrothermal vents, but hypotheses that life first occupied other pre-bottleneck habitats are tenable (including transfer from Mars on ejecta from impacts there). Early hyperthermophile life, probably near hydrothermal systems, may have been non-photosynthetic, and many housekeeping proteins and biochemical processes may have an original hydrothermal heritage. The development of anoxygenic and then oxygenic photosynthesis would have allowed life to escape the hydrothermal setting. By about 3,500 million years ago, most of the principal biochemical pathways that sustain the modern biosphere had evolved, and were global in scope.
Collapse
Affiliation(s)
- E G Nisbet
- Department of Geology, University of London, Egham, UK
| | | |
Collapse
|
1140
|
Abstract
Conflicting results often accompany phylogenetic analyses of RNA, DNA, or protein sequences across diverse species. Causes contributing to these conflicts relate to ambiguities in identifying homologous characters of alignments, sensitivity of tree-making methods to unequal evolutionary rates, biases in species sampling, unrecognized paralogy, functional differentiation, loss of phylogenetic informational content due to long branches or fast evolution, and difficulties with the assumptions and approximations used to infer phylogenetic relationships. Attempts to surmount these conflicts by averaging over many proteins are problematic due to inherent biases of selected families, lack of signal in others, and events of lateral transfer, fusion, and/or chimerism. The process of assessing reliability of the results using the bootstrap method is strewn with obstacles because of lack of independence and inhomogeneity in the molecular data. Problems inherent to the three major procedures for developing phylogenetic trees--parsimony, likelihood, distance--are reviewed. Special attention is given to the problem of inferring evolutionary distances from patterns of similarity among sequences. The difficulties encountered by methods of phylogenetic reconstructions based on the analysis of divergent sequence families make new methods based on the analysis of complete genomes reasonable alternatives. Several of these are considered, including the signature sequences of Gupta and associates, the study of genome profiles, and the genomic signature set forth by Karlin and colleagues.
Collapse
Affiliation(s)
- L Brocchieri
- Department of Mathematics, Stanford University, Stanford, California 94305-2125, USA
| |
Collapse
|
1141
|
|
1142
|
Abstract
To study the origin and evolution of biochemical pathways in microorganisms, we have developed methods and software for automatic, large-scale reconstructions of phylogenetic relationships. We define the complete set of phylogenetic trees derived from the proteome of an organism as the phylome and introduce the term phylogenetic connection as a concept that describes the relative relationships between taxa in a tree. A query system has been incorporated into the system so as to allow searches for defined categories of trees within the phylome. As a complement, we have developed the pyphy system for visualising the results of complex queries on phylogenetic connections, genomic locations and functional assignments in a graphical format. Our phylogenomics approach, which links phylogenetic information to the flow of biochemical pathways within and among microbial species, has been used to examine more than 8000 phylogenetic trees from seven microbial genomes. The results have revealed a rich web of phylogenetic connections. However, the separation of Bacteria and Archaea into two separate domains remains robust.
Collapse
Affiliation(s)
- T Sicheritz-Pontén
- Department of Molecular Evolution, Evolutionary Biology Center, Uppsala University, 752 36 Uppsala, Sweden
| | | |
Collapse
|
1143
|
Organization, Replication, Transposition, and Repair of DNA. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
1144
|
Abstract
Complete sequences of numerous mitochondrial, many prokaryotic, and several nuclear genomes are now available. These data confirm that the mitochondrial genome originated from a eubacterial (specifically alpha-proteobacterial) ancestor but raise questions about the evolutionary antecedents of the mitochondrial proteome.
Collapse
Affiliation(s)
- M W Gray
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada.
| | | | | |
Collapse
|
1145
|
|
1146
|
Hackstein JH, Akhmanova A, Voncken F, van Hoek A, van Alen T, Boxma B, Moon-van der Staay SY, van der Staay G, Leunissen J, Huynen M, Rosenberg J, Veenhuis M. Hydrogenosomes: convergent adaptations of mitochondria to anaerobic environments. ZOOLOGY 2001; 104:290-302. [PMID: 16351844 DOI: 10.1078/0944-2006-00035] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hydrogenosomes are membrane-bound organelles that compartmentalise the final steps of energy metabolism in a number of anaerobic eukaryotes. They produce hydrogen and ATP. Here we will review the data, which are relevant for the questions: how did the hydrogenosomes originate, and what was their ancestor? Notably, there is strong evidence that hydrogenosomes evolved several times as adaptations to anaerobic environments. Most likely, hydrogenosomes and mitochondria share a common ancestor, but an unequivocal proof for this hypothesis is difficult because hydrogenosomes lack an organelle genome - with one remarkable exception (Nyctotherus ovalis). In particular, the diversity of extant hydrogenosomes hampers a straightforward analysis of their origins. Nevertheless, it is conceivable to postulate that the common ancestor of mitochondria and hydrogenosomes was a facultative anaerobic organelle that participated in the early radiation of unicellular eukaryotes. Consequently, it is reasonable to assume that both, hydrogenosomes and mitochondria are evolutionary adaptations to anaerobic or aerobic environments, respectively.
Collapse
Affiliation(s)
- J H Hackstein
- Dept. Evolutionary Microbiology, Fac. Science, University of Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1147
|
Brega A, Narula J, Arbustini E. Functional, structural, and genetic mitochondrial abnormalities in myocardial diseases. J Nucl Cardiol 2001; 8:89-97. [PMID: 11182713 DOI: 10.1067/mnc.2001.112755] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myocardial tissue is highly dependent on energy supplied by normal mitochondrial function. Therefore defects of energy production or utilization affect the heart in both syndromic and isolated disorders. Knowledge of the peculiar structural, functional, and genetic characteristics of mitochondria provides the basis for identification and classification of mitochondrial defects as well as for establishment of a diagnostic workup useful for related cardiac disorders. This review is therefore dedicated to the characteristics of normal mitochondria and the pathologic alterations of these organelles in various cardiovascular diseases.
Collapse
Affiliation(s)
- A Brega
- Department of Biology and Genetics for Medical Sciences, University of Milan, Italy
| | | | | |
Collapse
|
1148
|
Saccone C, Gissi C, Lanave C, Larizza A, Pesole G, Reyes A. Evolution of the mitochondrial genetic system: an overview. Gene 2000; 261:153-9. [PMID: 11164046 DOI: 10.1016/s0378-1119(00)00484-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mitochondria, semi-autonomous organelles possessing their own genetic system, are commonly accepted to descend from free-living eubacteria, namely hydrogen-producing alpha-proteobacteria. The progressive loss of genes from the primitive eubacterium to the nucleus of the eukaryotic cell is strongly justified by the Muller rachet principle, which postulates that asexual genomes, like mitochondrial ones, accumulate deleterious and sublethal mutations faster than sexual genomes, like the nucleus. According to this principle, the mitochondrial genome would be doomed to death; instead, we observe that the mitochondrial genome has a variable size and structure in the different organisms, though it contains more or less the same set of genes. This is an example of genetic conservation versus structural diversity. From an evolutionary point of view the genetic system of organelles is clearly under strong selective pressure and for its survival it needs to utilize strategies to slow down or halt the ratchet. Anyway, the mitochondrial genome changes with time, and the rate of evolution is different for both diverse regions of the mtDNA and between lineages, as demonstrated in the case of mammalian mt genomes. We report here our data on the evolution of the mitochondrial DNA in mammals which demonstrate the suitability of mtDNA as a molecular tool for evolutionary analyses.
Collapse
Affiliation(s)
- C Saccone
- Centro di Studio sui Mitocondri e Metabolismo Energetico, CNR, via Amendola 165/A, 70126 Bari, Italy.
| | | | | | | | | | | |
Collapse
|
1149
|
Funk DJ, Helbling L, Wernegreen JJ, Moran NA. Intraspecific phylogenetic congruence among multiple symbiont genomes. Proc Biol Sci 2000; 267:2517-21. [PMID: 11197128 PMCID: PMC1690841 DOI: 10.1098/rspb.2000.1314] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Eukaryotes often form intimate endosymbioses with prokaryotic organisms. Cases in which these symbionts are transmitted cytoplasmically to host progeny create the potential for co-speciation or congruent evolution among the distinct genomes of these partners. If symbionts do not move horizontally between different eukaryotic hosts, strict phylogenetic congruence of their genomes is predicted and should extend to relationships within a single host species. Conversely, even rare 'host shifts' among closely related lineages should yield conflicting tree topologies at the intraspecific level. Here, we investigate the historical associations among four symbiotic genomes residing within an aphid host: the mitochondrial DNA of Uroleucon ambrosiae aphids, the bacterial chromosome of their Buchnera bacterial endosymbionts, and two plasmids associated with Buchnera. DNA sequence polymorphisms provided a significant phylogenetic signal and no homoplasy for each data set, yielding completely and significantly congruent phylogenies for these four genomes and no evidence of horizontal transmission. This study thus provides the first evidence for strictly vertical transmission and 'co-speciation' of symbiotic organisms at the intraspecific level, and represents the lowest phylogenetic level at which such coevolution has been demonstrated. These results may reflect the obligate nature of this intimate mutualism and indicate opportunities for adaptive coevolution among linked symbiont genomes.
Collapse
Affiliation(s)
- D J Funk
- Department of Ecology and Evolutionary Biology, and Center for Insect Science, University of Arizona, Tucson 85721, USA.
| | | | | | | |
Collapse
|
1150
|
Abstract
Mitochondria are essential organelles found in virtually all eukaryotic cells that play key roles in a variety of cellular processes. Mitochondria show a striking heterogeneity in their number, location, and shape in many different cell types. Although the dynamic nature of mitochondria has been known for decades, the molecules and mechanisms that mediate these processes are largely unknown. Recently, several laboratories have isolated and analyzed mutants in the yeast Saccharomyces cerevisiae defective in mitochondrial fusion and division, in the segregation of mitochondria to daughter cells, and in the establishment and maintenance of mitochondrial shape. These studies have identified several proteins that appear to mediate different aspects of mitochondrial morphogenesis. Although it is clear that many additional components have yet to be identified, some of the newly discovered proteins raise intriguing possibilities for how the processes of mitochondrial division, fusion, and segregation occur. Below we summarize our current understanding of the molecules known to be required for yeast mitochondrial dynamics.
Collapse
Affiliation(s)
- R E Jensen
- Department of Cell Biology and Anatomy, Biophysics 100, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|