1101
|
Bisht S, Brossart P, Feldmann G. Current Therapeutic Options for Pancreatic Ductal Adenocarcinoma. Oncol Res Treat 2018; 41:590-594. [PMID: 30286472 DOI: 10.1159/000493868] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer remains the fourth most common cause of cancer-related mortality and is a major health threat. The majority of cases are diagnosed at advanced disease stages, limiting the chances of long-term survival. Several new therapeutic regimens have been introduced into routine clinical practice in recent years and a plethora of novel approaches is currently undergoing preclinical and early clinical evaluation. This review discusses the current standards of care for systemic therapy of pancreatic cancer and gives a brief outlook on ongoing clinical trials.
Collapse
|
1102
|
Zhang Z, Wang Y, Li Q. Mechanisms underlying the effects of stress on tumorigenesis and metastasis (Review). Int J Oncol 2018; 53:2332-2342. [PMID: 30272293 DOI: 10.3892/ijo.2018.4570] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/18/2018] [Indexed: 11/06/2022] Open
Abstract
Stress is one of the fundamental survival mechanisms in nature. Although chronic or long-lasting stress can be detrimental to health, acute or short-term stress can have health benefits. The aim of the present review was to address the complexity and significance of stress in tumorigenesis. The review covers an evaluation of previously used and reported experimental animal models of stress, as well as the effects of stress on the neuroendocrine system, immune function, gut microbiota, and inflammation and multidrug resistance, all of which are closely associated with cancer occurrence, progression and treatment. The review concludes that understanding the efficacy of stress management (prevention and rehabilitation) is crucial to the development of comprehensive and individualized strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
- Zhaozhou Zhang
- Department of Medical Oncology and Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yan Wang
- Department of Medical Oncology and Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Qi Li
- Department of Medical Oncology and Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
1103
|
Chang CY, Yan X, Crnovcic I, Annaval T, Chang C, Nocek B, Rudolf JD, Yang D, Hindra, Babnigg G, Joachimiak A, Phillips GN, Shen B. Resistance to Enediyne Antitumor Antibiotics by Sequestration. Cell Chem Biol 2018; 25:1075-1085.e4. [PMID: 29937405 PMCID: PMC6208323 DOI: 10.1016/j.chembiol.2018.05.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/04/2018] [Accepted: 05/16/2018] [Indexed: 10/28/2022]
Abstract
The enediynes, microbial natural products with extraordinary cytotoxicities, have been translated into clinical drugs. Two self-resistance mechanisms are known in the enediyne producers-apoproteins for the nine-membered enediynes and self-sacrifice proteins for the ten-membered enediyne calicheamicin. Here we show that: (1) tnmS1, tnmS2, and tnmS3 encode tiancimycin (TNM) resistance in its producer Streptomyces sp. CB03234, (2) tnmS1, tnmS2, and tnmS3 homologs are found in all anthraquinone-fused enediyne producers, (3) TnmS1, TnmS2, and TnmS3 share a similar β barrel-like structure, bind TNMs with nanomolar KD values, and confer resistance by sequestration, and (4) TnmS1, TnmS2, and TnmS3 homologs are widespread in nature, including in the human microbiome. These findings unveil an unprecedented resistance mechanism for the enediynes. Mechanisms of self-resistance in producers serve as models to predict and combat future drug resistance in clinical settings. Enediyne-based chemotherapies should now consider the fact that the human microbiome harbors genes encoding enediyne resistance.
Collapse
Affiliation(s)
- Chin-Yuan Chang
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Xiaohui Yan
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Ivana Crnovcic
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Thibault Annaval
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Changsoo Chang
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA; Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Boguslaw Nocek
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA; Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Jeffrey D Rudolf
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Dong Yang
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Hindra
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Gyorgy Babnigg
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA; Center for Structural Genomics of Infectious Diseases, University of Chicago, Chicago, IL 60637, USA
| | - Andrzej Joachimiak
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA; Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA; Center for Structural Genomics of Infectious Diseases, University of Chicago, Chicago, IL 60637, USA
| | - George N Phillips
- BioSciences at Rice and Department of Chemistry, Rice University, Houston, TX 77251, USA
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA; Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
1104
|
von Frieling J, Fink C, Hamm J, Klischies K, Forster M, Bosch TCG, Roeder T, Rosenstiel P, Sommer F. Grow With the Challenge - Microbial Effects on Epithelial Proliferation, Carcinogenesis, and Cancer Therapy. Front Microbiol 2018; 9:2020. [PMID: 30294304 PMCID: PMC6159313 DOI: 10.3389/fmicb.2018.02020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/09/2018] [Indexed: 12/11/2022] Open
Abstract
The eukaryotic host is in close contact to myriads of resident and transient microbes, which influence the crucial physiological pathways. Emerging evidence points to their role of host-microbe interactions for controlling tissue homeostasis, cell fate decisions, and regenerative capacity in epithelial barrier organs including the skin, lung, and gut. In humans and mice, it has been shown that the malignant tumors of these organs harbor an altered microbiota. Mechanistic studies have shown that the altered metabolic properties and secreted factors contribute to epithelial carcinogenesis and tumor progression. Exciting recent work points toward a crucial influence of the associated microbial communities on the response to chemotherapy and immune-check point inhibitors during cancer treatment, which suggests that the modulation of the microbiota might be a powerful tool for personalized oncology. In this article, we provide an overview of how the bacterial signals and signatures may influence epithelial homeostasis across taxa from cnidarians to vertebrates and delineate mechanisms, which might be potential targets for therapy of human diseases by either harnessing barrier integrity (infection and inflammation) or restoring uncontrolled proliferation (cancer).
Collapse
Affiliation(s)
- Jakob von Frieling
- Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Christine Fink
- Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Jacob Hamm
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Kenneth Klischies
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Michael Forster
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Thomas C G Bosch
- Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Thomas Roeder
- Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Felix Sommer
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
1105
|
Tong WL, Callahan BM, Tu YN, Zaman S, Chobrutskiy BI, Blanck G. Immune receptor recombinations from breast cancer exome files, independently and in combination with specific HLA alleles, correlate with better survival rates. Breast Cancer Res Treat 2018; 173:167-177. [DOI: 10.1007/s10549-018-4961-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022]
|
1106
|
Prediction Methods of Herbal Compounds in Chinese Medicinal Herbs. Molecules 2018; 23:molecules23092303. [PMID: 30201875 PMCID: PMC6225236 DOI: 10.3390/molecules23092303] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022] Open
Abstract
Chinese herbal medicine has recently gained worldwide attention. The curative mechanism of Chinese herbal medicine is compared with that of western medicine at the molecular level. The treatment mechanism of most Chinese herbal medicines is still not clear. How do we integrate Chinese herbal medicine compounds with modern medicine? Chinese herbal medicine drug-like prediction method is particularly important. A growing number of Chinese herbal source compounds are now widely used as drug-like compound candidates. An important way for pharmaceutical companies to develop drugs is to discover potentially active compounds from related herbs in Chinese herbs. The methods for predicting the drug-like properties of Chinese herbal compounds include the virtual screening method, pharmacophore model method and machine learning method. In this paper, we focus on the prediction methods for the medicinal properties of Chinese herbal medicines. We analyze the advantages and disadvantages of the above three methods, and then introduce the specific steps of the virtual screening method. Finally, we present the prospect of the joint application of various methods.
Collapse
|
1107
|
Sokolenko AP, Imyanitov EN. Molecular Diagnostics in Clinical Oncology. Front Mol Biosci 2018; 5:76. [PMID: 30211169 PMCID: PMC6119963 DOI: 10.3389/fmolb.2018.00076] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022] Open
Abstract
There are multiple applications of molecular tests in clinical oncology. Mutation analysis is now routinely utilized for the diagnosis of hereditary cancer syndromes. Healthy carriers of cancer-predisposing mutations benefit from tight medical surveillance and various preventive interventions. Cancers caused by germ-line mutations often require significant modification of the treatment strategy. Personalized selection of cancer drugs based on the presence of actionable mutations has become an integral part of cancer therapy. Molecular tests underlie the administration of EGFR, BRAF, ALK, ROS1, PARP inhibitors as well as the use of some other cytotoxic and targeted drugs. Tumors almost always shed their fragments (single cells or their clusters, DNA, RNA, proteins) into various body fluids. So-called liquid biopsy, i.e., the analysis of circulating DNA or some other tumor-derived molecules, holds a great promise for non-invasive monitoring of cancer disease, analysis of drug-sensitizing mutations and early cancer detection. Some tumor- or tissue-specific mutations and expression markers can be efficiently utilized for the diagnosis of cancers of unknown primary origin (CUPs). Systematic cataloging of tumor molecular portraits is likely to uncover a multitude of novel medically relevant DNA- and RNA-based markers.
Collapse
Affiliation(s)
- Anna P Sokolenko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St. Petersburg, Russia.,Department of Medical Genetics, St. Petersburg Pediatric Medical University, St. Petersburg, Russia
| | - Evgeny N Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St. Petersburg, Russia.,Department of Medical Genetics, St. Petersburg Pediatric Medical University, St. Petersburg, Russia.,Department of Oncology, I.I. Mechnikov North-Western Medical University, St. Petersburg, Russia.,Department of Oncology, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
1108
|
Kell DB, Pretorius E. No effects without causes: the Iron Dysregulation and Dormant Microbes hypothesis for chronic, inflammatory diseases. Biol Rev Camb Philos Soc 2018; 93:1518-1557. [PMID: 29575574 PMCID: PMC6055827 DOI: 10.1111/brv.12407] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/12/2018] [Accepted: 02/15/2018] [Indexed: 12/11/2022]
Abstract
Since the successful conquest of many acute, communicable (infectious) diseases through the use of vaccines and antibiotics, the currently most prevalent diseases are chronic and progressive in nature, and are all accompanied by inflammation. These diseases include neurodegenerative (e.g. Alzheimer's, Parkinson's), vascular (e.g. atherosclerosis, pre-eclampsia, type 2 diabetes) and autoimmune (e.g. rheumatoid arthritis and multiple sclerosis) diseases that may appear to have little in common. In fact they all share significant features, in particular chronic inflammation and its attendant inflammatory cytokines. Such effects do not happen without underlying and initially 'external' causes, and it is of interest to seek these causes. Taking a systems approach, we argue that these causes include (i) stress-induced iron dysregulation, and (ii) its ability to awaken dormant, non-replicating microbes with which the host has become infected. Other external causes may be dietary. Such microbes are capable of shedding small, but functionally significant amounts of highly inflammagenic molecules such as lipopolysaccharide and lipoteichoic acid. Sequelae include significant coagulopathies, not least the recently discovered amyloidogenic clotting of blood, leading to cell death and the release of further inflammagens. The extensive evidence discussed here implies, as was found with ulcers, that almost all chronic, infectious diseases do in fact harbour a microbial component. What differs is simply the microbes and the anatomical location from and at which they exert damage. This analysis offers novel avenues for diagnosis and treatment.
Collapse
Affiliation(s)
- Douglas B. Kell
- School of ChemistryThe University of Manchester, 131 Princess StreetManchesterLancsM1 7DNU.K.
- The Manchester Institute of BiotechnologyThe University of Manchester, 131 Princess StreetManchesterLancsM1 7DNU.K.
- Department of Physiological SciencesStellenbosch University, Stellenbosch Private Bag X1Matieland7602South Africa
| | - Etheresia Pretorius
- Department of Physiological SciencesStellenbosch University, Stellenbosch Private Bag X1Matieland7602South Africa
| |
Collapse
|
1109
|
Assoun S, Benderra MA, Géraud A, Bayle A, Boilève A, Grazziotin-Soares D, Lotz JP. Congrès de l’association américaine de recherche contre le cancer — AACR 2018. ONCOLOGIE 2018. [DOI: 10.3166/onco-2018-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
1110
|
Thomas RM, Gharaibeh RZ, Gauthier J, Beveridge M, Pope JL, Guijarro MV, Yu Q, He Z, Ohland C, Newsome R, Trevino J, Hughes SJ, Reinhard M, Winglee K, Fodor AA, Zajac-Kaye M, Jobin C. Intestinal microbiota enhances pancreatic carcinogenesis in preclinical models. Carcinogenesis 2018; 39:1068-1078. [PMID: 29846515 PMCID: PMC6067127 DOI: 10.1093/carcin/bgy073] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 04/12/2018] [Accepted: 05/25/2018] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer death in the United States yet data are scant regarding host factors influencing pancreatic carcinogenesis. Increasing evidence support the role of the host microbiota in carcinogenesis but its role in PDAC is not well established. Herein, we report that antibiotic-mediated microbial depletion of KrasG12D/PTENlox/+ mice showed a decreased proportion of poorly differentiated tumors compared to microbiota-intact KrasG12D/PTENlox/+ mice. Subsequent 16S rRNA PCR showed that ~50% of KrasG12D/PTENlox/+ mice with PDAC harbored intrapancreatic bacteria. To determine if a similar observation in humans correlates with presence of PDAC, benign and malignant human pancreatic surgical specimens demonstrated a microbiota by 16S bacterial sequencing and culture confirmation. However, the microbial composition did not differentiate PDAC from non-PDAC tissue. Furthermore, murine pancreas did not naturally acquire a pancreatic microbiota, as germ-free mice transferred to specific pathogen-free housing failed to acquire intrapancreatic bacteria over time, which was not augmented by a murine model of colitis. Finally, antibiotic-mediated microbial depletion of Nod-SCID mice, compared to microbiota-intact, showed increased time to PDAC xenograft formation, smaller tumors, and attenuated growth. Interestingly, both xenograft cohorts were devoid of intratumoral bacteria by 16S rRNA PCR, suggesting that intrapancreatic/intratumoral microbiota is not the sole driver of PDAC acceleration. Xenografts from microbiota-intact mice demonstrated innate immune suppression by immunohistochemistry and differential regulation of oncogenic pathways as determined by RNA sequencing. Our work supports a long-distance role of the intestinal microbiota on PDAC progression and opens new research avenues regarding pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Ryan M Thomas
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Surgery, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
| | - Raad Z Gharaibeh
- Department of Medicine, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| | - Josee Gauthier
- Department of Medicine, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| | - Mark Beveridge
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - Jillian L Pope
- Department of Medicine, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| | - Maria V Guijarro
- Department of Anatomy and Cell Biology, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| | - Qin Yu
- Department of Medicine, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| | - Zhen He
- Department of Medicine, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| | - Christina Ohland
- Department of Medicine, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| | - Rachel Newsome
- Department of Medicine, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| | - Jose Trevino
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - Steven J Hughes
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - Mary Reinhard
- Laboratory of Comparative Pathology, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| | - Kathryn Winglee
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte College of Computing and Informatics, Charlotte, NC, USA
| | - Anthony A Fodor
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte College of Computing and Informatics, Charlotte, NC, USA
| | - Maria Zajac-Kaye
- Department of Anatomy and Cell Biology, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| | - Christian Jobin
- Department of Medicine, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
- Department of Anatomy and Cell Biology, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
- Department of Infectious Disease and Immunology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
1111
|
Philley JV, Hertweck KL, Kannan A, Brown-Elliott BA, Wallace RJ, Kurdowska A, Ndetan H, Singh KP, Miller EJ, Griffith DE, Dasgupta S. Sputum Detection of Predisposing Genetic Mutations in Women with Pulmonary Nontuberculous Mycobacterial Disease. Sci Rep 2018; 8:11336. [PMID: 30054559 PMCID: PMC6063893 DOI: 10.1038/s41598-018-29471-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/26/2018] [Indexed: 01/08/2023] Open
Abstract
Nontuberculous mycobacterial lung disease (NTM), including Mycobacterium avium complex (MAC), is a growing health problem in North America and worldwide. Little is known about the molecular alterations occurring in the tissue microenvironment during NTM pathogenesis. Utilizing next generation sequencing, we sequenced sputum and matched lymphocyte DNA in 15 MAC patients for a panel of 19 genes known to harbor cancer susceptibility associated mutations. Thirteen of 15 NTM subjects had a diagnosis of breast cancer (BCa) before or after NTM infection. Thirty three percent (4/12) of these NTM-BCa cases exhibited at least 3 somatic mutations in sputa compared to matched lymphocytes. Twenty four somatic mutations were detected with at least one mutation in ATM, ERBB2, BARD1, BRCA1, BRCA2, AR, TP53, PALB2, CASP8, BRIP1, NBN and TGFB1 genes. All four NTM-BCa patients harboring somatic mutations also exhibited 15 germ line BRCA1 and BRCA2 mutations. The two NTM subjects without BCa exhibited twenty somatic mutations spanning BRCA1, BRCA1, BARD1, BRIP1, CHEK2, ERBB2, TP53, ATM, PALB2, TGFB1 and 3 germ line mutations in BRCA1 and BRCA2 genes. A single copy loss of STK11 and AR gene was noted in NTM-BCa subjects. Periodic screening of sputa may aid to develop risk assessment biomarkers for neoplastic diseases in NTM patients.
Collapse
Affiliation(s)
- Julie V Philley
- Department of Medicine, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Kate L Hertweck
- Department of Biology, The University of Texas at Tyler, Tyler, Texas, USA
| | - Anbarasu Kannan
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Barbara A Brown-Elliott
- Department of The Mycobacteria/Nocardia Research Laboratory Department of Microbiology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Richard J Wallace
- Department of The Mycobacteria/Nocardia Research Laboratory Department of Microbiology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Anna Kurdowska
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Harrison Ndetan
- Department of Epidemiology and Biostatistics, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Karan P Singh
- Department of Epidemiology and Biostatistics, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Edmund J Miller
- Department of The Center for Heart and Lung Research, The Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - David E Griffith
- Department of Medicine, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Santanu Dasgupta
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA.
| |
Collapse
|
1112
|
Giessner C, Millet V, Mostert KJ, Gensollen T, Vu Manh TP, Garibal M, Dieme B, Attaf-Bouabdallah N, Chasson L, Brouilly N, Laprie C, Lesluyes T, Blay JY, Shintu L, Martin JC, Strauss E, Galland F, Naquet P. Vnn1 pantetheinase limits the Warburg effect and sarcoma growth by rescuing mitochondrial activity. Life Sci Alliance 2018; 1:e201800073. [PMID: 30456364 PMCID: PMC6238586 DOI: 10.26508/lsa.201800073] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/11/2022] Open
Abstract
Expression of the Vnn1 pantetheinase by sarcomas is tumor suppressive by limiting the use of aerobic glycolysis for growth and rescuing mitochondrial activity through CoA regeneration. Like other tumors, aggressive soft tissue sarcomas (STS) use glycolysis rather than mitochondrial oxidative phosphorylation (OXPHOS) for growth. Given the importance of the cofactor coenzyme A (CoA) in energy metabolism, we investigated the impact of Vnn1 pantetheinase—an enzyme that degrades pantetheine into pantothenate (vitamin B5, the CoA biosynthetic precursor) and cysyteamine—on tumor growth. Using two models, we show that Vnn1+ STS remain differentiated and grow slowly, and that in patients a detectable level of VNN1 expression in STS is associated with an improved prognosis. Increasing pantetheinase activity in aggressive tumors limits their growth. Using combined approaches, we demonstrate that Vnn1 permits restoration of CoA pools, thereby maintaining OXPHOS. The simultaneous production of cysteamine limits glycolysis and release of lactate, resulting in a partial inhibition of STS growth in vitro and in vivo. We propose that the Warburg effect observed in aggressive STS is reversed by induction of Vnn1 pantetheinase and the rewiring of cellular energy metabolism by its products.
Collapse
Affiliation(s)
- Caroline Giessner
- Aix Marseille Univ, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille Luminy, Marseille, France
| | - Virginie Millet
- Aix Marseille Univ, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille Luminy, Marseille, France
| | - Konrad J Mostert
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Thomas Gensollen
- Aix Marseille Univ, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille Luminy, Marseille, France
| | - Thien-Phong Vu Manh
- Aix Marseille Univ, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille Luminy, Marseille, France
| | - Marc Garibal
- Aix Marseille Univ, Institut National de la Santé et de la Recherche Médicale, Institut National de la Recherche Agronomique, C2VN, Marseille, France
| | - Binta Dieme
- Aix Marseille Univ, Institut National de la Santé et de la Recherche Médicale, Institut National de la Recherche Agronomique, C2VN, Marseille, France
| | - Noudjoud Attaf-Bouabdallah
- Aix Marseille Univ, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille Luminy, Marseille, France
| | - Lionel Chasson
- Aix Marseille Univ, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille Luminy, Marseille, France
| | - Nicolas Brouilly
- Aix Marseille Univ, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Biologie de Développement de Marseille, Marseille, France
| | | | - Tom Lesluyes
- Centre Lyon Bérard, Université Claude Bernard, Lyon 1, Lyon Recherche Innovation contre le Cancer, Lyon, France
| | - Jean Yves Blay
- Centre Lyon Bérard, Université Claude Bernard, Lyon 1, Lyon Recherche Innovation contre le Cancer, Lyon, France
| | - Laetitia Shintu
- Aix Marseille Université, Centre National de la Recherche Scientifique, Centrale Marseille, ISM2, Marseille, France
| | - Jean Charles Martin
- Aix Marseille Univ, Institut National de la Santé et de la Recherche Médicale, Institut National de la Recherche Agronomique, C2VN, Marseille, France
| | - Erick Strauss
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Franck Galland
- Aix Marseille Univ, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille Luminy, Marseille, France
| | - Philippe Naquet
- Aix Marseille Univ, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille Luminy, Marseille, France
| |
Collapse
|
1113
|
Ma Y, Zhu J, Chen S, Li T, Ma J, Guo S, Hu J, Yue T, Zhang J, Wang P, Wang X, Chen G, Liu Y. Activated gastric cancer-associated fibroblasts contribute to the malignant phenotype and 5-FU resistance via paracrine action in gastric cancer. Cancer Cell Int 2018; 18:104. [PMID: 30038550 PMCID: PMC6053778 DOI: 10.1186/s12935-018-0599-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/04/2018] [Indexed: 01/18/2023] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) play important roles in tumor progression. However, the behaviors of activated CAFs in gastric cancer remain to be determined. The aim of the present study was to investigate the correlations between activated gastric CAFs and the prognosis of patients with gastric cancer, and to determine the effects of activated CAFs on the malignant phenotype and 5-fluorouracil resistance in this cancer. Methods Ninety-five patients with primary gastric cancer were enrolled in this study. Activation states of gastric CAFs were evaluated by immunohistochemistry. A modified method for the primary culture of gastric CAFs was employed. Types of CAFs and activation states were identified by immunocytochemical and immunofluorescent staining. Cell co-culture and gastric CAF conditioned medium transfer models were established to investigate the paracrine effects of activated CAFs on the migration and invasion of gastric cell lines. The half maximal inhibitory concentration of 5-fluorouracil and levels of cell apoptosis were examined using cell viability assay and flow cytometry, respectively. Protein expression levels of associated molecules were measured by Western blotting. Results Kaplan–Meier survival curves showed that activated gastric CAFs identified via fibroblast activation protein were significantly related to poorer cumulative survival in gastric cancer patients. Five strains of CAFs were successfully cultured via the modified culture method, and three gastric CAFs strains were identified as activated gastric CAFs. The migration and invasion abilities of gastric cells were significantly enhanced in both the co-culture group and the conditioned medium group. The half maximal inhibitory concentration for 5-fluorouracil in BGC-823 cells was elevated after treatment with conditioned medium, and early apoptosis was inhibited. Additionally, an obvious elevation of epithelial–mesenchymal transition level was observed in the conditioned medium group. Conclusions Activated gastric CAFs correlate with a poor prognosis of cancer patients and may contribute to the malignant phenotype and the development of resistance to 5-fluorouracil via paracrine action in gastric cancer. Gastric CAFs with a specific activation state might be used as a tumor biomarker within the microenvironment for prognosis and as a new therapeutic target for chemoresistant gastric cancer. Electronic supplementary material The online version of this article (10.1186/s12935-018-0599-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yongchen Ma
- Department of General Surgery, Peking University First Hospital, Beijing, 100034 People's Republic of China
| | - Jing Zhu
- Department of General Surgery, Peking University First Hospital, Beijing, 100034 People's Republic of China
| | - Shanwen Chen
- Department of General Surgery, Peking University First Hospital, Beijing, 100034 People's Republic of China
| | - Tengyu Li
- Department of General Surgery, Peking University First Hospital, Beijing, 100034 People's Republic of China
| | - Ju Ma
- Department of General Surgery, Peking University First Hospital, Beijing, 100034 People's Republic of China
| | - Shihao Guo
- Department of General Surgery, Peking University First Hospital, Beijing, 100034 People's Republic of China
| | - Jianwen Hu
- Department of General Surgery, Peking University First Hospital, Beijing, 100034 People's Republic of China
| | - Taohua Yue
- Department of General Surgery, Peking University First Hospital, Beijing, 100034 People's Republic of China
| | - Junling Zhang
- Department of General Surgery, Peking University First Hospital, Beijing, 100034 People's Republic of China
| | - Pengyuan Wang
- Department of General Surgery, Peking University First Hospital, Beijing, 100034 People's Republic of China
| | - Xin Wang
- Department of General Surgery, Peking University First Hospital, Beijing, 100034 People's Republic of China
| | - Guowei Chen
- Department of General Surgery, Peking University First Hospital, Beijing, 100034 People's Republic of China
| | - Yucun Liu
- Department of General Surgery, Peking University First Hospital, Beijing, 100034 People's Republic of China
| |
Collapse
|
1114
|
van der Schee M, Pinheiro H, Gaude E. Breath biopsy for early detection and precision medicine in cancer. Ecancermedicalscience 2018; 12:ed84. [PMID: 30093919 PMCID: PMC6070367 DOI: 10.3332/ecancer.2018.ed84] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Indexed: 12/12/2022] Open
Abstract
Breath biopsy enables the non-invasive collection and analysis of volatile organic compounds (VOCs) in exhaled breath, providing valuable information about disease processes occurring in the body. Metabolic changes occur in cancer cells at the earliest stages of disease. We discuss progress in the use of breath biopsy for discovery of breath-based biomarkers for early detection of cancer, and potential applications for breath biopsy in enabling precision medicine in cancer.
Collapse
Affiliation(s)
| | - Hazel Pinheiro
- Owlstone Medical Ltd, 183 Science Park, Cambridge, CB4 0GJ, UK
| | - Edoardo Gaude
- Owlstone Medical Ltd, 183 Science Park, Cambridge, CB4 0GJ, UK
| |
Collapse
|
1115
|
Compositional differences in gastrointestinal microbiota in prostate cancer patients treated with androgen axis-targeted therapies. Prostate Cancer Prostatic Dis 2018; 21:539-548. [PMID: 29988102 PMCID: PMC6283851 DOI: 10.1038/s41391-018-0061-x] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND It is well known that the gastrointestinal (GI) microbiota can influence the metabolism, pharmacokinetics, and toxicity of cancer therapies. Conversely, the effect of cancer treatments on the composition of the GI microbiota is poorly understood. We hypothesized that oral androgen receptor axis-targeted therapies (ATT), including bicalutamide, enzalutamide, and abiraterone acetate, may be associated with compositional differences in the GI microbiota. METHODS We profiled the fecal microbiota in a cross-sectional study of 30 patients that included healthy male volunteers and men with different clinical states of prostate cancer (i.e., localized, biochemically recurrent, and metastatic disease) using 16S rDNA amplicon sequencing. Functional inference of identified taxa was performed using PICRUSt. RESULTS We report a significant difference in alpha diversity in GI microbiota among men with versus without a prostate cancer diagnosis. Further analysis identified significant compositional differences in the GI microbiota of men taking ATT, including a greater abundance of species previously linked to response to anti-PD-1 immunotherapy such as Akkermansia muciniphila and Ruminococcaceae spp. In functional analyses, we found an enriched representation of bacterial gene pathways involved in steroid biosynthesis and steroid hormone biosynthesis in the fecal microbiota of men taking oral ATT. CONCLUSIONS There are measurable differences in the GI microbiota of men receiving oral ATT. We speculate that oral hormonal therapies for prostate cancer may alter the GI microbiota, influence clinical responses to ATT, and/or potentially modulate the antitumor effects of future therapies including immunotherapy. Given our findings, larger, longitudinal studies are warranted.
Collapse
|
1116
|
Zhang H, Sun L. When human cells meet bacteria: precision medicine for cancers using the microbiota. Am J Cancer Res 2018; 8:1157-1175. [PMID: 30094091 PMCID: PMC6079160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 06/14/2018] [Indexed: 06/08/2023] Open
Abstract
The human microbiota interacts with the host immune system in multiple ways to influence the development of diseases, including cancers; however, a detailed understanding of their relationship is unavailable. Accumulating evidence has only revealed an association rather than a causal link between microbial alterations and carcinogenesis. The regulatory loops among the microbiome, human cells and the immune system are far more complicated and require further studies to be revealed. In this review, we discuss the impact of the microbiota on cancer initiation, development and progression in different types of human cells, mainly focusing on the clinical translation from microbiome research to an accurate diagnosis, subtype classification and precision medicine.
Collapse
Affiliation(s)
- Han Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeKunming 650031, Yunnan, China
| | - Litao Sun
- The Scripps Laboratories for tRNA Synthetase Research, The Scripps Research InstituteLa Jolla, CA 92037, USA
- Department of Molecular Medicine, The Skaggs Institute for Chemical Biology, The Scripps Research InstituteLa Jolla, CA 92037, USA
| |
Collapse
|
1117
|
Golemis EA, Scheet P, Beck TN, Scolnick EM, Hunter DJ, Hawk E, Hopkins N. Molecular mechanisms of the preventable causes of cancer in the United States. Genes Dev 2018; 32:868-902. [PMID: 29945886 PMCID: PMC6075032 DOI: 10.1101/gad.314849.118] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Annually, there are 1.6 million new cases of cancer and nearly 600,000 cancer deaths in the United States alone. The public health burden associated with these numbers has motivated enormous research efforts into understanding the root causes of cancer. These efforts have led to the recognition that between 40% and 45% of cancers are associated with preventable risk factors and, importantly, have identified specific molecular mechanisms by which these exposures modify human physiology to induce or promote cancer. The increasingly refined knowledge of these mechanisms, which we summarize here, emphasizes the need for greater efforts toward primary cancer prevention through mitigation of modifiable risk factors. It also suggests exploitable avenues for improved secondary prevention (which includes the development of therapeutics designed for cancer interception and enhanced techniques for noninvasive screening and early detection) based on detailed knowledge of early neoplastic pathobiology. Such efforts would complement the current emphasis on the development of therapeutic approaches to treat established cancers and are likely to result in far greater gains in reducing morbidity and mortality.
Collapse
Affiliation(s)
- Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Paul Scheet
- Department of Epidemiology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Tim N Beck
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Molecular and Cell Biology and Genetics Program, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA
| | - Eward M Scolnick
- Eli and Edythe L. Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, USA
| | - David J Hunter
- Nuffield Department of Population Health, University of Oxford, Medical Sciences Division, Oxford OX3 7LF, United Kingdom
| | - Ernest Hawk
- Division of Cancer Prevention and Population Sciences, University of Texas M.D. Anderson Cancer Center, Houston Texas 77030, USA
| | - Nancy Hopkins
- Koch Institute for Integrative Cancer Research, Biology Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
1118
|
Boyarskikh UA, Shadrina AS, Smetanina MA, Tsepilov YA, Oscorbin IP, Kozlov VV, Kel AE, Filipenko ML. Mycoplasma hyorhinis reduces sensitivity of human lung carcinoma cells to Nutlin-3 and promotes their malignant phenotype. J Cancer Res Clin Oncol 2018; 144:1289-1300. [PMID: 29737431 DOI: 10.1007/s00432-018-2658-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/02/2018] [Indexed: 02/08/2023]
Abstract
PURPOSE MDM2 inhibitors are promising anticancer agents that induce cell cycle arrest and tumor cells death via p53 reactivation. We examined the influence of Mycoplasma hyorhinis infection on sensitivity of human lung carcinoma cells NCI-H292 to MDM2 inhibitor Nutlin-3. In order to unveil possible mechanisms underlying the revealed effect, we investigated gene expression changes and signal transduction networks activated in NCI-H292 cells in response to mycoplasma infection. METHODS Sensitivity of NCI-Н292 cells to Nutlin-3 was estimated by resazurin-based cell viability assay. Genome-wide transcriptional profiles of NCI-H292 and NCI-Н292Myc.h cell lines were determined using Illumina Human HT-12 v3 Expression BeadChip. Search for key transcription factors and key node molecules was performed using the geneXplain platform. Ability for anchorage-independent growth was tested by soft agar colony formation assay. RESULTS NCI-Н292Myc.h cells were shown to be 1.5- and 5.2-fold more resistant to killing by Nutlin-3 at concentrations of 15 and 30 µM than uninfected NCI-Н292 cells (P < 0.05 and P < 0.001, respectively). Transcriptome analysis revealed differential expression of multiple genes involved in cancer progression and metastasis as well as epithelial-mesenchymal transition (EMT). Moreover, we have shown experimentally that NCI-Н292Myc.h cells were more capable of growing and dividing without binding to a substrate. The most likely mechanism explaining the observed changes was found to be TLR4- and IL-1b-mediated activation of NF-κB pathway. CONCLUSIONS Our results provide evidence that mycoplasma infection is an important factor modulating the effect of MDM2 inhibitors on cancer cells and is able to induce EMT-related changes.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Carcinoma, Mucoepidermoid/drug therapy
- Carcinoma, Mucoepidermoid/genetics
- Carcinoma, Mucoepidermoid/metabolism
- Carcinoma, Mucoepidermoid/microbiology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/microbiology
- Cell Line, Tumor
- Drug Resistance, Neoplasm
- Female
- Gene Expression/drug effects
- Humans
- Imidazoles/pharmacology
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/microbiology
- Male
- Middle Aged
- Mycoplasma Infections/metabolism
- Mycoplasma Infections/microbiology
- Mycoplasma Infections/physiopathology
- Mycoplasma hyorhinis/physiology
- Piperazines/pharmacology
- Signal Transduction
- Transcriptome
- Young Adult
Collapse
Affiliation(s)
- Uljana A Boyarskikh
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentjev Avenue, Novosibirsk, 630090, Russia
| | - Alexandra S Shadrina
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentjev Avenue, Novosibirsk, 630090, Russia.
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090, Russia.
| | - Mariya A Smetanina
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentjev Avenue, Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090, Russia
| | - Yakov A Tsepilov
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090, Russia
- Institute of Cytology and Genetics, 10 Lavrentjev Avenue, Novosibirsk, 630090, Russia
| | - Igor P Oscorbin
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentjev Avenue, Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090, Russia
| | - Vadim V Kozlov
- Novosibirsk Regional Clinical Oncological Center, 2 Plakhotnogo Street, Novosibirsk, 630108, Russia
| | - Alexander E Kel
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentjev Avenue, Novosibirsk, 630090, Russia
- Department of Research and Development, geneXplain GmbH, Am Exer 10b, 38302, Wolfenbüttel, Germany
| | - Maxim L Filipenko
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentjev Avenue, Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090, Russia
| |
Collapse
|
1119
|
Villéger R, Lopès A, Veziant J, Gagnière J, Barnich N, Billard E, Boucher D, Bonnet M. Microbial markers in colorectal cancer detection and/or prognosis. World J Gastroenterol 2018; 24:2327-2347. [PMID: 29904241 PMCID: PMC6000297 DOI: 10.3748/wjg.v24.i22.2327] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/03/2018] [Accepted: 05/18/2018] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer worldwide. CRC is still associated with a poor prognosis among patients with advanced disease. On the contrary, due to its slow progression from detectable precancerous lesions, the prognosis for patients with early stages of CRC is encouraging. While most robust methods are invasive and costly, actual patient-friendly screening methods for CRC suffer of lack of sensitivity and specificity. Therefore, the development of sensitive, non-invasive and cost-effective methods for CRC detection and prognosis are necessary for increasing the chances of a cure. Beyond its beneficial functions for the host, increasing evidence suggests that the intestinal microbiota is a key factor associated with carcinogenesis. Many clinical studies have reported a disruption in the gut microbiota balance and an alteration in the faecal metabolome of CRC patients, suggesting the potential use of a microbial-based test as a non-invasive diagnostic and/or prognostic tool for CRC screening. This review aims to discuss the microbial signatures associated with CRC known to date, including dysbiosis and faecal metabolome alterations, and the potential use of microbial variation markers for non-invasive early diagnosis and/or prognostic assessment of CRC and advanced adenomas. We will finally discuss the possible use of these markers as predicators for treatment response and their limitations.
Collapse
Affiliation(s)
- Romain Villéger
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, Clermont-Ferrand 63000, France
| | - Amélie Lopès
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, Clermont-Ferrand 63000, France
- Research Biologics, Sanofi R&D, Vitry-Sur-Seine 94400, France
| | - Julie Veziant
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, Clermont-Ferrand 63000, France
- Chirurgie digestive, Centre Hospitalier Universitaire, Clermont-Ferrand 63000, France
| | - Johan Gagnière
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, Clermont-Ferrand 63000, France
- Chirurgie digestive, Centre Hospitalier Universitaire, Clermont-Ferrand 63000, France
| | - Nicolas Barnich
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, Clermont-Ferrand 63000, France
- Université Clermont Auvergne, Institut Universitaire de Technologie de Clermont-Ferrand, Clermont-Ferrand 63000, France
| | - Elisabeth Billard
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, Clermont-Ferrand 63000, France
- Université Clermont Auvergne, Institut Universitaire de Technologie de Clermont-Ferrand, Clermont-Ferrand 63000, France
| | - Delphine Boucher
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, Clermont-Ferrand 63000, France
- Université Clermont Auvergne, Institut Universitaire de Technologie de Clermont-Ferrand, Clermont-Ferrand 63000, France
| | - Mathilde Bonnet
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, Clermont-Ferrand 63000, France
- Université Clermont Auvergne, Institut Universitaire de Technologie de Clermont-Ferrand, Clermont-Ferrand 63000, France
| |
Collapse
|
1120
|
Tilg H, Adolph TE, Gerner RR, Moschen AR. The Intestinal Microbiota in Colorectal Cancer. Cancer Cell 2018; 33:954-964. [PMID: 29657127 DOI: 10.1016/j.ccell.2018.03.004] [Citation(s) in RCA: 527] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/08/2018] [Accepted: 03/01/2018] [Indexed: 02/07/2023]
Abstract
Experimental evidence from the past years highlights a key role for the intestinal microbiota in inflammatory and malignant gastrointestinal diseases. Diet exhibits a strong impact on microbial composition and provides risk for developing colorectal carcinoma (CRC). Large metagenomic studies in human CRC associated microbiome signatures with the colorectal adenoma-carcinoma sequence, suggesting a fundamental role of the intestinal microbiota in the evolution of gastrointestinal malignancy. Basic science established a critical function for the intestinal microbiota in promoting tumorigenesis. Further studies are needed to decipher the mechanisms of tumor promotion and microbial co-evolution in CRC, which may be exploited therapeutically in the future.
Collapse
Affiliation(s)
- Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University Innsbruck, Innsbruck, Austria.
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University Innsbruck, Innsbruck, Austria
| | - Romana R Gerner
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University Innsbruck, Innsbruck, Austria; Christian Doppler Laboratory of Mucosal Immunology, Medical University Innsbruck, Innsbruck, Austria
| | - Alexander R Moschen
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University Innsbruck, Innsbruck, Austria; Christian Doppler Laboratory of Mucosal Immunology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
1121
|
Rolfes V, Idel C, Pries R, Plötze-Martin K, Habermann J, Gemoll T, Bohnet S, Latz E, Ribbat-Idel J, Franklin BS, Wollenberg B. PD-L1 is expressed on human platelets and is affected by immune checkpoint therapy. Oncotarget 2018; 9:27460-27470. [PMID: 29937998 PMCID: PMC6007942 DOI: 10.18632/oncotarget.25446] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/28/2018] [Indexed: 12/30/2022] Open
Abstract
Cancer immunotherapy has been revolutionised by drugs that enhance the ability of the immune system to detect and fight tumors. Immune checkpoint therapies that target the programmed death-1 receptor (PD-1), or its ligand (PD-L1) have shown unprecedented rates of durable clinical responses in patients with various cancer types. However, there is still a large fraction of patients that do not respond to checkpoint inhibitors, and the challenge remains to find cellular and molecular cues that could predict which patients would benefit from these therapies. Using a series of qualitative and quantitative methods we show here that PBMCs and platelets from smokers and patients with head and neck squamous cell carcinoma (HNSCC) or lung cancer express and up-regulate PD-L1 independently of tumor stage. Furthermore, treatment with Atezolizumab, a fully humanised monoclonal antibody against PD-L1, in 4 patients with lung cancer caused a decrease in PD-L1 expression in platelets, which was restored over 20 days. Altogether, our findings reveal the expression of the main therapeutic target in current checkpoint therapies in human platelets and highlight their potential as biomarkers to predict successful therapeutic outcomes.
Collapse
Affiliation(s)
- Verena Rolfes
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Christian Idel
- University Hospital Schleswig Holstein, Campus Lübeck, Clinic for Otorhinolaryngology – Head and Neck Surgery, Luebeck, Germany
| | - Ralph Pries
- University Hospital Schleswig Holstein, Campus Lübeck, Clinic for Otorhinolaryngology – Head and Neck Surgery, Luebeck, Germany
| | - Kirstin Plötze-Martin
- University Hospital Schleswig Holstein, Campus Lübeck, Clinic for Otorhinolaryngology – Head and Neck Surgery, Luebeck, Germany
| | - Jens Habermann
- University Hospital Schleswig Holstein, Campus Lübeck, Section for Translational Oncology and Biobanking, Clinic for Surgery, Luebeck, Germany
| | - Timo Gemoll
- University Hospital Schleswig Holstein, Campus Lübeck, Section for Translational Oncology and Biobanking, Clinic for Surgery, Luebeck, Germany
| | - Sabine Bohnet
- University Hospital Schleswig Holstein, Campus Lübeck, Clinic for Pulmonary Medicine, Luebeck, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Julika Ribbat-Idel
- Department of Pathology, University Medical Center Schleswig-Holstein, Luebeck, Germany
| | - Bernardo S. Franklin
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Barbara Wollenberg
- University Hospital Schleswig Holstein, Campus Lübeck, Clinic for Otorhinolaryngology – Head and Neck Surgery, Luebeck, Germany
| |
Collapse
|
1122
|
Ogino S, Nowak JA, Hamada T, Phipps AI, Peters U, Milner DA, Giovannucci EL, Nishihara R, Giannakis M, Garrett WS, Song M. Integrative analysis of exogenous, endogenous, tumour and immune factors for precision medicine. Gut 2018; 67:1168-1180. [PMID: 29437869 PMCID: PMC5943183 DOI: 10.1136/gutjnl-2017-315537] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 12/14/2022]
Abstract
Immunotherapy strategies targeting immune checkpoints such as the CTLA4 and CD274 (programmed cell death 1 ligand 1, PD-L1)/PDCD1 (programmed cell death 1, PD-1) T-cell coreceptor pathways are revolutionising oncology. The approval of pembrolizumab use for solid tumours with high-level microsatellite instability or mismatch repair deficiency by the US Food and Drug Administration highlights promise of precision immuno-oncology. However, despite evidence indicating influences of exogenous and endogenous factors such as diet, nutrients, alcohol, smoking, obesity, lifestyle, environmental exposures and microbiome on tumour-immune interactions, integrative analyses of those factors and immunity lag behind. Immune cell analyses in the tumour microenvironment have not adequately been integrated into large-scale studies. Addressing this gap, the transdisciplinary field of molecular pathological epidemiology (MPE) offers research frameworks to integrate tumour immunology into population health sciences, and link the exposures and germline genetics (eg, HLA genotypes) to tumour and immune characteristics. Multilevel research using bioinformatics, in vivo pathology and omics (genomics, epigenomics, transcriptomics, proteomics and metabolomics) technologies is possible with use of tissue, peripheral blood circulating cells, cell-free plasma, stool, sputum, urine and other body fluids. This immunology-MPE model can synergise with experimental immunology, microbiology and systems biology. GI neoplasms represent exemplary diseases for the immunology-MPE model, given rich microbiota and immune tissues of intestines, and the well-established carcinogenic role of intestinal inflammation. Proof-of-principle studies on colorectal cancer provided insights into immunomodulating effects of aspirin, vitamin D, inflammatory diets and omega-3 polyunsaturated fatty acids. The integrated immunology-MPE model can contribute to better understanding of environment-tumour-immune interactions, and effective immunoprevention and immunotherapy strategies for precision medicine.
Collapse
Affiliation(s)
- Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA,Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tsuyoshi Hamada
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA,Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA,Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Danny A Milner
- American Society for Clinical Pathology, Chicago, Illinois, USA
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Reiko Nishihara
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Marios Giannakis
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA,Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wendy S Garrett
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Mingyang Song
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Massachusetts, USA,Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
1123
|
Luke JJ, Pal SK. Further evidence to support judicious use of antibiotics in patients with cancer. Ann Oncol 2018; 29:1349-1351. [PMID: 29688263 PMCID: PMC6005023 DOI: 10.1093/annonc/mdy153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- J J Luke
- University of Chicago, Chicago, USA.
| | | |
Collapse
|
1124
|
Wilkinson EM, Ilhan ZE, Herbst-Kralovetz MM. Microbiota–drug interactions: Impact on metabolism and efficacy of therapeutics. Maturitas 2018; 112:53-63. [DOI: 10.1016/j.maturitas.2018.03.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/23/2018] [Accepted: 03/29/2018] [Indexed: 02/06/2023]
|
1125
|
Tiriac H, Belleau P, Engle DD, Plenker D, Deschênes A, Somerville TDD, Froeling FEM, Burkhart RA, Denroche RE, Jang GH, Miyabayashi K, Young CM, Patel H, Ma M, LaComb JF, Palmaira RLD, Javed AA, Huynh JC, Johnson M, Arora K, Robine N, Shah M, Sanghvi R, Goetz AB, Lowder CY, Martello L, Driehuis E, LeComte N, Askan G, Iacobuzio-Donahue CA, Clevers H, Wood LD, Hruban RH, Thompson E, Aguirre AJ, Wolpin BM, Sasson A, Kim J, Wu M, Bucobo JC, Allen P, Sejpal DV, Nealon W, Sullivan JD, Winter JM, Gimotty PA, Grem JL, DiMaio DJ, Buscaglia JM, Grandgenett PM, Brody JR, Hollingsworth MA, O'Kane GM, Notta F, Kim E, Crawford JM, Devoe C, Ocean A, Wolfgang CL, Yu KH, Li E, Vakoc CR, Hubert B, Fischer SE, Wilson JM, Moffitt R, Knox J, Krasnitz A, Gallinger S, Tuveson DA. Organoid Profiling Identifies Common Responders to Chemotherapy in Pancreatic Cancer. Cancer Discov 2018; 8:1112-1129. [PMID: 29853643 DOI: 10.1158/2159-8290.cd-18-0349] [Citation(s) in RCA: 707] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/03/2018] [Accepted: 05/25/2018] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer is the most lethal common solid malignancy. Systemic therapies are often ineffective, and predictive biomarkers to guide treatment are urgently needed. We generated a pancreatic cancer patient-derived organoid (PDO) library that recapitulates the mutational spectrum and transcriptional subtypes of primary pancreatic cancer. New driver oncogenes were nominated and transcriptomic analyses revealed unique clusters. PDOs exhibited heterogeneous responses to standard-of-care chemotherapeutics and investigational agents. In a case study manner, we found that PDO therapeutic profiles paralleled patient outcomes and that PDOs enabled longitudinal assessment of chemosensitivity and evaluation of synchronous metastases. We derived organoid-based gene expression signatures of chemosensitivity that predicted improved responses for many patients to chemotherapy in both the adjuvant and advanced disease settings. Finally, we nominated alternative treatment strategies for chemorefractory PDOs using targeted agent therapeutic profiling. We propose that combined molecular and therapeutic profiling of PDOs may predict clinical response and enable prospective therapeutic selection.Significance: New approaches to prioritize treatment strategies are urgently needed to improve survival and quality of life for patients with pancreatic cancer. Combined genomic, transcriptomic, and therapeutic profiling of PDOs can identify molecular and functional subtypes of pancreatic cancer, predict therapeutic responses, and facilitate precision medicine for patients with pancreatic cancer. Cancer Discov; 8(9); 1112-29. ©2018 AACR.See related commentary by Collisson, p. 1062This article is highlighted in the In This Issue feature, p. 1047.
Collapse
Affiliation(s)
- Hervé Tiriac
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Pascal Belleau
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | | | - Dennis Plenker
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | | | | | | | - Richard A Burkhart
- Johns Hopkins University, Division of Hepatobiliary and Pancreatic Surgery, Baltimore, Maryland
| | - Robert E Denroche
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Gun-Ho Jang
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | | | - C Megan Young
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.,Swiss Federal Institute of Technology Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Laboratory of Tumor Heterogeneity and Stemness in Cancer, Lausanne, Switzerland
| | - Hardik Patel
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Michelle Ma
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Joseph F LaComb
- Department of Medicine, Stony Brook University, Stony Brook, New York
| | | | - Ammar A Javed
- Johns Hopkins University, Division of Hepatobiliary and Pancreatic Surgery, Baltimore, Maryland
| | - Jasmine C Huynh
- University of California, Davis, Comprehensive Cancer Center, Division of Hematology and Oncology, Sacramento, California
| | | | | | | | | | | | - Austin B Goetz
- Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Cinthya Y Lowder
- Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Laura Martello
- SUNY Downstate Medical Center, Department of Medicine, New York, New York
| | - Else Driehuis
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, the Netherlands.,University Medical Center (UMC), Utrecht, the Netherlands
| | | | - Gokce Askan
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, the Netherlands.,University Medical Center (UMC), Utrecht, the Netherlands.,Princess Maxime Center (PMC), Utrecht, the Netherlands
| | - Laura D Wood
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Ralph H Hruban
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | | | - Andrew J Aguirre
- Dana-Farber Cancer Institute, Broad Institute, Boston, Massachusetts
| | - Brian M Wolpin
- Dana-Farber Cancer Institute, Broad Institute, Boston, Massachusetts
| | - Aaron Sasson
- Department of Surgery, Stony Brook University, Stony Brook, New York
| | - Joseph Kim
- Department of Surgery, Stony Brook University, Stony Brook, New York
| | - Maoxin Wu
- Department of Pathology, Stony Brook University, Stony Brook, New York
| | | | - Peter Allen
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Divyesh V Sejpal
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Division of Gastroenterology, Hempstead, New York
| | - William Nealon
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
| | - James D Sullivan
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
| | - Jordan M Winter
- Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Phyllis A Gimotty
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jean L Grem
- Department of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Dominick J DiMaio
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | | | - Paul M Grandgenett
- University of Nebraska Medical Center, Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffet Cancer Center, Omaha, Nebraska
| | - Jonathan R Brody
- Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Michael A Hollingsworth
- University of Nebraska Medical Center, Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffet Cancer Center, Omaha, Nebraska
| | - Grainne M O'Kane
- Wallace McCain Centre for Pancreatic Cancer, Department of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Faiyaz Notta
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Edward Kim
- University of California, Davis, Comprehensive Cancer Center, Division of Hematology and Oncology, Sacramento, California
| | - James M Crawford
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
| | - Craig Devoe
- Division of Medical Oncology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
| | | | - Christopher L Wolfgang
- Johns Hopkins University, Division of Hepatobiliary and Pancreatic Surgery, Baltimore, Maryland
| | - Kenneth H Yu
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ellen Li
- Department of Medicine, Stony Brook University, Stony Brook, New York
| | | | | | - Sandra E Fischer
- Department of Pathology, University Health Network, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Julie M Wilson
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Richard Moffitt
- Department of Surgery, Stony Brook University, Stony Brook, New York.,Department of Biomedical Informatics, Stony Brook University, Stony Brook, New York
| | - Jennifer Knox
- Wallace McCain Centre for Pancreatic Cancer, Department of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | - Steven Gallinger
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada. .,Wallace McCain Centre for Pancreatic Cancer, Department of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Hepatobiliary/Pancreatic Surgical Oncology Program, University Health Network, Toronto, Ontario, Canada
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
| |
Collapse
|
1126
|
Kang M, Kwok RTK, Wang J, Zhang H, Lam JWY, Li Y, Zhang P, Zou H, Gu X, Li F, Tang BZ. A multifunctional luminogen with aggregation-induced emission characteristics for selective imaging and photodynamic killing of both cancer cells and Gram-positive bacteria. J Mater Chem B 2018; 6:3894-3903. [PMID: 32254317 DOI: 10.1039/c8tb00572a] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The increasing impact of bacteria on cancer progression and treatments has been witnessed in recent years. Insufficient attention to cancer-related bacteria may lead to distant metastasis, poor therapeutic efficiency and low survival rates for cancers. Exploiting new approaches that enable selective imaging and effective killing of cancer cells and bacteria are thus of great value for the battle against cancers. Herein, we report an aggregation-induced emission (AIE) luminogen, namely TPPCN, with intense emission and efficient reactive oxygen species production for fluorescence imaging and killing cancer cells and Gram-positive bacteria. This work not only demonstrates the potential of AIE luminogens in comprehensive cancer treatments but also stimulates the enthusiasm of scientists to design more multifunctional AIE systems for both cancer and bacteria theranostics.
Collapse
Affiliation(s)
- Miaomiao Kang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1127
|
Porter CM, Shrestha E, Peiffer LB, Sfanos KS. The microbiome in prostate inflammation and prostate cancer. Prostate Cancer Prostatic Dis 2018; 21:345-354. [PMID: 29795140 DOI: 10.1038/s41391-018-0041-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 01/26/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND The human microbiome may influence prostate cancer initiation and/or progression through both direct and indirect interactions. To date, the majority of studies have focused on direct interactions including the influence of prostate infections on prostate cancer risk and, more recently, on the composition of the urinary microbiome in relation to prostate cancer. Less well understood are indirect interactions of the microbiome with prostate cancer, such as the influence of the gastrointestinal or oral microbiota on pro- or anti-carcinogenic xenobiotic metabolism, and treatment response. METHODS We review the literature to date on direct and indirect interactions of the microbiome with prostate inflammation and prostate cancer. RESULTS Emerging studies indicate that the microbiome can influence prostate inflammation in relation to benign prostate conditions such as prostatitis/chronic pelvic pain syndrome and benign prostatic hyperplasia, as well as in prostate cancer. We provide evidence that the human microbiome present at multiple anatomic sites (urinary tract, gastrointestinal tract, oral cavity, etc.) may play an important role in prostate health and disease. CONCLUSIONS In health, the microbiome encourages homeostasis and helps educate the immune system. In dysbiosis, a systemic inflammatory state may be induced, predisposing remote anatomical sites to disease, including cancer. The microbiome's ability to affect systemic hormone levels may also be important, particularly in a disease such as prostate cancer that is dually affected by estrogen and androgen levels. Due to the complexity of the potential interconnectedness between prostate cancer and the microbiome, it is vital to further explore and understand the relationships that are involved.
Collapse
Affiliation(s)
- Corey M Porter
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eva Shrestha
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lauren B Peiffer
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Comparative and Molecular Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Karen S Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA. .,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
1128
|
Panebianco C, Andriulli A, Pazienza V. Pharmacomicrobiomics: exploiting the drug-microbiota interactions in anticancer therapies. MICROBIOME 2018; 6:92. [PMID: 29789015 PMCID: PMC5964925 DOI: 10.1186/s40168-018-0483-7] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/14/2018] [Indexed: 05/18/2023]
Abstract
Cancer is a major health burden worldwide, and despite continuous advances in medical therapies, resistance to standard drugs and adverse effects still represent an important cause of therapeutic failure. There is a growing evidence that gut bacteria can affect the response to chemo- and immunotherapeutic drugs by modulating either efficacy or toxicity. Moreover, intratumor bacteria have been shown to modulate chemotherapy response. At the same time, anticancer treatments themselves significantly affect the microbiota composition, thus disrupting homeostasis and exacerbating discomfort to the patient. Here, we review the existing knowledge concerning the role of the microbiota in mediating chemo- and immunotherapy efficacy and toxicity and the ability of these therapeutic options to trigger dysbiotic condition contributing to the severity of side effects. In addition, we discuss the use of probiotics, prebiotics, synbiotics, postbiotics, and antibiotics as emerging strategies for manipulating the microbiota in order to improve therapeutic outcome or at least ensure patients a better quality of life all along of anticancer treatments.
Collapse
Affiliation(s)
- Concetta Panebianco
- Division of Gastroenterology, IRCCS "Casa Sollievo della Sofferenza" Hospital, Viale dei Cappuccini, 1, 71013, San Giovanni Rotondo, FG, Italy
| | - Angelo Andriulli
- Division of Gastroenterology, IRCCS "Casa Sollievo della Sofferenza" Hospital, Viale dei Cappuccini, 1, 71013, San Giovanni Rotondo, FG, Italy
| | - Valerio Pazienza
- Division of Gastroenterology, IRCCS "Casa Sollievo della Sofferenza" Hospital, Viale dei Cappuccini, 1, 71013, San Giovanni Rotondo, FG, Italy.
| |
Collapse
|
1129
|
Wang Y, Fang T, Huang L, Wang H, Zhang L, Wang Z, Cui Y. Neutrophils infiltrating pancreatic ductal adenocarcinoma indicate higher malignancy and worse prognosis. Biochem Biophys Res Commun 2018; 501:313-319. [PMID: 29738769 DOI: 10.1016/j.bbrc.2018.05.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 05/04/2018] [Indexed: 02/07/2023]
Abstract
CD177 is considered to represent neutrophils. We analyzed mRNA expression level of CD177 and clinical follow-up survey of PDAC to estimate overall survival (OS) from Gene Expression Omnibus (GEO) dataset (GSE21501, containing samples from 102 PDAC patients) by R2 platform (http://r2.amc.nl). We also analyzed correlated genes of CD177 by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis to predict the potential relationship between neutrophils and prognosis of PDAC. We then performed hematoxylin and eosin (H&E) staining and immunohistochemical staining of surgical specimens to verify infiltration of neutrophils in PDAC tissues. After analyzing mRNA expression data and clinical follow-up survey provided in the GEO dataset (GSE21501, containing samples from 102 PDAC patients) and clinicopathological data of 23 PDAC patients, we demonstrated that CD177 was correlated with poor prognosis. The univariate Kaplan-Meier survival analysis revealed that OS was inversely associated with increased expression of CD177 (P = 0.012). Expression of phosphodiesterase (PDE)4D was positively related to CD177 in gene correlation analysis (R = 0.413, P < 0.001) by R2 platform. H&E staining and immunohistochemistry of CD177 in 23 PDAC surgical samples showed accumulation of neutrophils in the stroma and blood vessels around the cancer cells. In addition, immunohistochemical staining showed that CD177 was highly expressed in the stroma and blood vessels around tumor tissues of PDAC, which was similar to H&E staining. Expression of CD177 can be used to represent infiltration of neutrophils, which may have potential prognostic value in PDAC.
Collapse
Affiliation(s)
- Yufu Wang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, Heilongjiang Province, China
| | - Tianyi Fang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, Heilongjiang Province, China
| | - Lining Huang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, Heilongjiang Province, China
| | - Hao Wang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, Heilongjiang Province, China
| | - Lei Zhang
- Department of Pathology, Harbin Medical University, Harbin, 150000, Heilongjiang Province, China
| | - Zhidong Wang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, Heilongjiang Province, China.
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, Heilongjiang Province, China.
| |
Collapse
|
1130
|
Andrews MC, Reuben A, Gopalakrishnan V, Wargo JA. Concepts Collide: Genomic, Immune, and Microbial Influences on the Tumor Microenvironment and Response to Cancer Therapy. Front Immunol 2018; 9:946. [PMID: 29780391 PMCID: PMC5945998 DOI: 10.3389/fimmu.2018.00946] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/16/2018] [Indexed: 12/30/2022] Open
Abstract
Cancer research has seen unprecedented advances over the past several years, with tremendous insights gained into mechanisms of response and resistance to cancer therapy. Central to this has been our understanding of crosstalk between the tumor and the microenvironment, with the recognition that complex interactions exist between tumor cells, stromal cells, overall host immunity, and the environment surrounding the host. This is perhaps best exemplified in cancer immunotherapy, where numerous studies across cancer types have illuminated our understanding of the genomic and immune factors that shape responses to therapy. In addition to their individual contributions, it is now clear that there is a complex interplay between genomic/epigenomic alterations and tumor immune responses that impact cellular plasticity and therapeutic responses. In addition to this, it is also now apparent that significant heterogeneity exists within tumors-both at the level of genomic mutations as well as tumor immune responses-thus contributing to heterogeneous clinical responses. Beyond the tumor microenvironment, overall host immunity plays a major role in mediating clinical responses. The gut microbiome plays a central role, with recent evidence revealing that the gut microbiome influences the overall immune set-point, through diverse effects on local and systemic inflammatory processes. Indeed, quantifiable differences in the gut microbiome have been associated with disease and treatment outcomes in patients and pre-clinical models, though precise mechanisms of microbiome-immune interactions are yet to be elucidated. Complexities are discussed herein, with a discussion of each of these variables as they relate to treatment response.
Collapse
Affiliation(s)
- Miles C Andrews
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia.,School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Alexandre Reuben
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Vancheswaran Gopalakrishnan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
1131
|
Zitvogel L, Ma Y, Raoult D, Kroemer G, Gajewski TF. The microbiome in cancer immunotherapy: Diagnostic tools and therapeutic strategies. Science 2018; 359:1366-1370. [PMID: 29567708 DOI: 10.1126/science.aar6918] [Citation(s) in RCA: 496] [Impact Index Per Article: 70.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The fine line between human health and disease can be driven by the interplay between host and microbial factors. This "metagenome" regulates cancer initiation, progression, and response to therapies. Besides the capacity of distinct microbial species to modulate the pharmacodynamics of chemotherapeutic drugs, symbiosis between epithelial barriers and their microbial ecosystems has a major impact on the local and distant immune system, markedly influencing clinical outcome in cancer patients. Efficacy of cancer immunotherapy with immune checkpoint antibodies can be diminished with administration of antibiotics, and superior efficacy is observed with the presence of specific gut microbes. Future strategies of precision medicine will likely rely on novel diagnostic and therapeutic tools with which to identify and correct defects in the microbiome that compromise therapeutic efficacy.
Collapse
Affiliation(s)
- Laurence Zitvogel
- Gustave Roussy Cancer Campus (GRCC), Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France. .,Institut National de la Santé et de la Recherche Medicale (INSERM) U1015, Villejuif, France.,Université Paris-Sud, Université Paris-Saclay, Gustave Roussy, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Yuting Ma
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005 Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, Jiangsu 215123, China
| | - Didier Raoult
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Aix Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095, Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Université Paris Descartes, Sorbonne Paris Cité, Université Pierre et Marie Curie, Paris, France.,Metabolomics and Cell Biology Platforms, GRCC, Villejuif, France.,Equipe 11 Labellisée-Ligue Nationale Contre le Cancer, UMRS 1138, Paris, France
| | - Thomas F Gajewski
- Department of Pathology, Department of Medicine, and the Ben May Department of Cancer, University of Chicago, Chicago, IL 60615, USA.
| |
Collapse
|
1132
|
Dual functionality nanobioconjugates: a new tool for intracellular bacterial targeting in cancer cells? Ther Deliv 2018; 9:317-320. [PMID: 29681234 DOI: 10.4155/tde-2018-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
1133
|
Abstract
The advent of industrial revolution caused a large inflow of synthetic chemicals for medical, agricultural, industrial and other purposes in the world. In general, these chemicals were subjected to toxicological risk assessment for human health and ecology before release for public use. But today we are witnessing a negative impact of some of these chemicals on human health and environment indicating an underestimation of toxic effects by current risk assessment protocol. Recent studies established gut microbiota as one of the key player in intercession of toxicity of drugs and synthetic chemicals. Hence, the need of the hour is to include the assessment for microbiota specifically gut microbiota in human toxicological risk assessment protocol. Herewith we are proposing a framework for assessment of gut microbiota upon exposure to drugs or chemicals.
Collapse
Affiliation(s)
- Ganesan Velmurugan
- Thematic Unit of Excellence in Water Research, Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India,CONTACT Ganesan Velmurugan Thematic Unit of Excellence in Water Research, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
1134
|
Disruptions in gut microbial-host co-metabolism and the development of metabolic disorders. Clin Sci (Lond) 2018; 132:791-811. [PMID: 29661926 DOI: 10.1042/cs20171328] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/20/2018] [Accepted: 02/23/2018] [Indexed: 12/14/2022]
Abstract
The microbial-mammalian metabolic axis has become recognized as an important component governing the overall homeostatic balance of the mammalian host. Disruption of the state of homeostasis among the gut microbiota has been shown to be causally linked to the development of host metabolic diseases including obesity, cardiovascular, diabetes, and fatty liver disease. This disruption is often referred to as gut dysbiosis. Gut dysbiosis leads to altered metabolic products derived from the microbiota and these in turn, typically shift the homeostatic metabolic balance of the host towards a low-grade chronic inflammation, a hallmark of metabolic syndrome. The primary objective of this review is to examine and discuss some very current research that has been done to study the effect of bacterial metabolites on host metabolism, sometimes referred to as microbiota-host co-metabolism. The metabolic conditions reviewed here include obesity, a known risk factor for all of the other metabolic conditions, as well as, cardiovascular disease, diabetes and nonalcoholic fatty liver disease. Only by further understanding the cause and result of gut dysbiosis will an adequate solution be found for metabolic disease, a viewpoint shared by many.
Collapse
|
1135
|
Pushalkar S, Hundeyin M, Daley D, Zambirinis CP, Kurz E, Mishra A, Mohan N, Aykut B, Usyk M, Torres LE, Werba G, Zhang K, Guo Y, Li Q, Akkad N, Lall S, Wadowski B, Gutierrez J, Kochen Rossi JA, Herzog JW, Diskin B, Torres-Hernandez A, Leinwand J, Wang W, Taunk PS, Savadkar S, Janal M, Saxena A, Li X, Cohen D, Sartor RB, Saxena D, Miller G. The Pancreatic Cancer Microbiome Promotes Oncogenesis by Induction of Innate and Adaptive Immune Suppression. Cancer Discov 2018; 8:403-416. [PMID: 29567829 PMCID: PMC6225783 DOI: 10.1158/2159-8290.cd-17-1134] [Citation(s) in RCA: 920] [Impact Index Per Article: 131.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/03/2018] [Accepted: 02/07/2018] [Indexed: 12/17/2022]
Abstract
We found that the cancerous pancreas harbors a markedly more abundant microbiome compared with normal pancreas in both mice and humans, and select bacteria are differentially increased in the tumorous pancreas compared with gut. Ablation of the microbiome protects against preinvasive and invasive pancreatic ductal adenocarcinoma (PDA), whereas transfer of bacteria from PDA-bearing hosts, but not controls, reverses tumor protection. Bacterial ablation was associated with immunogenic reprogramming of the PDA tumor microenvironment, including a reduction in myeloid-derived suppressor cells and an increase in M1 macrophage differentiation, promoting TH1 differentiation of CD4+ T cells and CD8+ T-cell activation. Bacterial ablation also enabled efficacy for checkpoint-targeted immunotherapy by upregulating PD-1 expression. Mechanistically, the PDA microbiome generated a tolerogenic immune program by differentially activating select Toll-like receptors in monocytic cells. These data suggest that endogenous microbiota promote the crippling immune-suppression characteristic of PDA and that the microbiome has potential as a therapeutic target in the modulation of disease progression.Significance: We found that a distinct and abundant microbiome drives suppressive monocytic cellular differentiation in pancreatic cancer via selective Toll-like receptor ligation leading to T-cell anergy. Targeting the microbiome protects against oncogenesis, reverses intratumoral immune tolerance, and enables efficacy for checkpoint-based immunotherapy. These data have implications for understanding immune suppression in pancreatic cancer and its reversal in the clinic. Cancer Discov; 8(4); 403-16. ©2018 AACR.See related commentary by Riquelme et al., p. 386This article is highlighted in the In This Issue feature, p. 371.
Collapse
Affiliation(s)
- Smruti Pushalkar
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York
| | - Mautin Hundeyin
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Donnele Daley
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Constantinos P Zambirinis
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Emma Kurz
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Ankita Mishra
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Navyatha Mohan
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Berk Aykut
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Mykhaylo Usyk
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York
| | - Luisana E Torres
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Gregor Werba
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Kevin Zhang
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York
| | - Yuqi Guo
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York
| | - Qianhao Li
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York
| | - Neha Akkad
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Sarah Lall
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Benjamin Wadowski
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Johana Gutierrez
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Juan Andres Kochen Rossi
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Jeremy W Herzog
- National Gnotobiotic Rodent Research Center, University of North Carolina, Chapel Hill, North Carolina
| | - Brian Diskin
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Alejandro Torres-Hernandez
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Josh Leinwand
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Wei Wang
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Pardeep S Taunk
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Shivraj Savadkar
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Malvin Janal
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York
| | - Anjana Saxena
- Department of Epidemiology and Health Promotion, NYU College of Dentistry, New York, New York
| | - Xin Li
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York
| | - Deirdre Cohen
- Department of Biology, Brooklyn College and the Graduate Center (CUNY), Brooklyn, New York, New York
| | - R Balfour Sartor
- National Gnotobiotic Rodent Research Center, University of North Carolina, Chapel Hill, North Carolina
- Department of Medicine, New York University School of Medicine, New York, New York
| | - Deepak Saxena
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York.
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - George Miller
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York.
- Department of Medicine, Microbiology, and Immunology, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
1136
|
The Complex Interplay between Chronic Inflammation, the Microbiome, and Cancer: Understanding Disease Progression and What We Can Do to Prevent It. Cancers (Basel) 2018; 10:cancers10030083. [PMID: 29558443 PMCID: PMC5876658 DOI: 10.3390/cancers10030083] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer is a multifaceted condition, in which a senescent cell begins dividing in an irregular manner due to various factors such as DNA damage, growth factors and inflammation. Inflammation is not typically discussed as carcinogenic; however, a significant percentage of cancers arise from chronic microbial infections and damage brought on by chronic inflammation. A hallmark cancer-inducing microbe is Helicobacter pylori and its causation of peptic ulcers and potentially gastric cancer. This review discusses the recent developments in understanding microbes in health and disease and their potential role in the progression of cancer. To date, microbes can be linked to almost every cancer, including colon, pancreatic, gastric, and even prostate. We discuss the known mechanisms by which these microbes can induce cancer growth and development and how inflammatory cells may contribute to cancer progression. We also discuss new treatments that target the chronic inflammatory conditions and their associated cancers, and the impact microbes have on treatment success. Finally, we examine common dietary misconceptions in relation to microbes and cancer and how to avoid getting caught up in the misinterpretation and over inflation of the results.
Collapse
|
1137
|
Goodman B, Gardner H. The microbiome and cancer. J Pathol 2018; 244:667-676. [PMID: 29377130 DOI: 10.1002/path.5047] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/11/2018] [Accepted: 01/17/2018] [Indexed: 12/12/2022]
Abstract
Humans coexist with a vast bacterial, fungal and viral microbiome with which we have coevolved for millions of years. Several long recognized epidemiological associations between particular bacteria and cancer are now understood at the molecular level. At the same time, the arrival of next-generation sequencing technology has permitted a thorough exploration of microbiomes such as that of the human gut, enabling observation of taxonomic and metabolomic relationships between the microbiome and cancer. These studies have revealed causal mechanisms for both microbes within tumours and microbes in other host niches separated from tumours, mediated through direct and immunological mechanisms. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
|
1138
|
Nakagawa H, Fujita M. Whole genome sequencing analysis for cancer genomics and precision medicine. Cancer Sci 2018; 109:513-522. [PMID: 29345757 PMCID: PMC5834793 DOI: 10.1111/cas.13505] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/05/2018] [Accepted: 01/11/2018] [Indexed: 12/12/2022] Open
Abstract
Explosive advances in next-generation sequencer (NGS) and computational analyses have enabled exploration of somatic protein-altered mutations in most cancer types, with coding mutation data intensively accumulated. However, there is limited information on somatic mutations in non-coding regions, including introns, regulatory elements and non-coding RNA. Structural variants and pathogen in cancer genomes remain widely unexplored. Whole genome sequencing (WGS) approaches can be used to comprehensively explore all types of genomic alterations in cancer and help us to better understand the whole landscape of driver mutations and mutational signatures in cancer genomes and elucidate the functional or clinical implications of these unexplored genomic regions and mutational signatures. This review describes recently developed technical approaches for cancer WGS and the future direction of cancer WGS, and discusses its utility and limitations as an analysis platform and for mutation interpretation for cancer genomics and cancer precision medicine. Taking into account the diversity of cancer genomes and phenotypes, interpretation of abundant mutation information from WGS, especially non-coding and structure variants, requires the analysis of large-scale WGS data integrated with RNA-Seq, epigenomics, immuno-genomic and clinic-pathological information.
Collapse
Affiliation(s)
- Hidewaki Nakagawa
- Laboratory for Genome Sequencing AnalysisRIKEN Center for Integrative Medical SciencesTokyoJapan
| | - Masashi Fujita
- Laboratory for Genome Sequencing AnalysisRIKEN Center for Integrative Medical SciencesTokyoJapan
| |
Collapse
|
1139
|
Gressel J. Microbiome facilitated pest resistance: potential problems and uses. PEST MANAGEMENT SCIENCE 2018; 74:511-515. [PMID: 29072801 DOI: 10.1002/ps.4777] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/19/2017] [Accepted: 10/22/2017] [Indexed: 05/25/2023]
Abstract
Microbiome organisms can degrade environmental xenobiotics including pesticides, conferring resistance to most types of pests. Some cases of pesticide resistance in insects, nematodes and weeds are now documented to be due to microbiome detoxification, and is a demonstrated possibility with rodents. Some cases of metabolic resistance may have been misattributed to pest metabolism, and not to organisms in the microbiome, because few researchers use axenic pests in studying pesticide metabolism. Instances of microbiomes evolving pesticide resistance contributing to resistance of their hosts may become more common due the erratic nature of climate change, as microbiome populations typically increase and evolve faster in stressful conditions. Conversely, microbiome organisms can be engineered to provide crops and beneficial insects with needed resistance to herbicides and insecticides, respectively, but there has not been sufficient efficacy to achieve commercial products useful at the field level, even with genetically engineered microbiome organisms. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jonathan Gressel
- Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
1140
|
Recovery of Immunoglobulin VJ Recombinations from Pancreatic Cancer Exome Files Strongly Correlates with Reduced Survival. CANCER MICROENVIRONMENT 2018; 11:51-59. [PMID: 29404962 DOI: 10.1007/s12307-018-0205-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/04/2018] [Indexed: 01/05/2023]
Abstract
We assessed pancreatic cancer, lymphocyte infiltrates with a computational genomics approach. We took advantage of tumor-specimen exome files available from the cancer genome atlas to mine T- and B-cell immune receptor recombinations, using highly efficient, scripted algorithms established in several previous reports. Surprisingly, the results indicated that pancreatic cancer exomes represent one of the highest level yields for immune receptor recombinations, significantly higher than two comparison cancers used in this study, head and neck and bladder cancer. In particular, pancreatic cancer exomes have very large numbers of immunoglobulin light chain recombinations, both with regard to number of samples characterized by recovery of such recombinations and with regard to numbers of recombination reads per sample. These results were consistent with B-cell biomarkers, which emphasized the Th2 nature of the pancreatic lymphocyte infiltrate. The tumor specimen exomes with B-cell immune receptor recombination reads represented a dramatically poor outcome, a result not detected with either the head and neck or bladder cancer datasets. The results presented here support the potential value of immunotherapies designed to engineer a Th2 to Th1 shift in treating certain forms of pancreatic cancer.
Collapse
|
1141
|
Popovici R. Das Mikrobiom von Vagina bis Tuben und seine Relation zu uterinen Erkrankungen. GYNAKOLOGISCHE ENDOKRINOLOGIE 2018. [DOI: 10.1007/s10304-017-0171-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
1142
|
|
1143
|
Geller LT, Straussman R. Intratumoral bacteria may elicit chemoresistance by metabolizing anticancer agents. Mol Cell Oncol 2017; 5:e1405139. [PMID: 29404397 DOI: 10.1080/23723556.2017.1405139] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022]
Abstract
We recently reported that bacteria can be found within pancreatic ductal adenocarcinoma (PDAC) tumors. Some of these bacteria can metabolize and thereby inactivate the nucleoside analog gemcitabine. We demonstrated that the long isoform of the bacterial enzyme cytidine deaminase (CDD) mediates the metabolism of gemcitabine. The clinical effect of overcoming this potential mechanism of drug resistance has yet to be studied.
Collapse
Affiliation(s)
- Leore T Geller
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ravid Straussman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
1144
|
Miller WB. Biological information systems: Evolution as cognition-based information management. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 134:1-26. [PMID: 29175233 DOI: 10.1016/j.pbiomolbio.2017.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 01/08/2023]
Abstract
An alternative biological synthesis is presented that conceptualizes evolutionary biology as an epiphenomenon of integrated self-referential information management. Since all biological information has inherent ambiguity, the systematic assessment of information is required by living organisms to maintain self-identity and homeostatic equipoise in confrontation with environmental challenges. Through their self-referential attachment to information space, cells are the cornerstone of biological action. That individualized assessment of information space permits self-referential, self-organizing niche construction. That deployment of information and its subsequent selection enacted the dominant stable unicellular informational architectures whose biological expressions are the prokaryotic, archaeal, and eukaryotic unicellular forms. Multicellularity represents the collective appraisal of equivocal environmental information through a shared information space. This concerted action can be viewed as systematized information management to improve information quality for the maintenance of preferred homeostatic boundaries among the varied participants. When reiterated in successive scales, this same collaborative exchange of information yields macroscopic organisms as obligatory multicellular holobionts. Cognition-Based Evolution (CBE) upholds that assessment of information precedes biological action, and the deployment of information through integrative self-referential niche construction and natural cellular engineering antecedes selection. Therefore, evolutionary biology can be framed as a complex reciprocating interactome that consists of the assessment, communication, deployment and management of information by self-referential organisms at multiple scales in continuous confrontation with environmental stresses.
Collapse
|
1145
|
Pancreatic Cancer: Molecular Characterization, Clonal Evolution and Cancer Stem Cells. Biomedicines 2017; 5:biomedicines5040065. [PMID: 29156578 PMCID: PMC5744089 DOI: 10.3390/biomedicines5040065] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/05/2017] [Accepted: 11/08/2017] [Indexed: 12/19/2022] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is the fourth most common cause of cancer-related death and is the most lethal of common malignancies with a five-year survival rate of <10%. PDAC arises from different types of non-invasive precursor lesions: intraductal papillary mucinous neoplasms, mucinous cystic neoplasms and pancreatic intraepithelial neoplasia. The genetic landscape of PDAC is characterized by the presence of four frequently-mutated genes: KRAS, CDKN2A, TP53 and SMAD4. The development of mouse models of PDAC has greatly contributed to the understanding of the molecular and cellular mechanisms through which driver genes contribute to pancreatic cancer development. Particularly, oncogenic KRAS-driven genetically-engineered mouse models that phenotypically and genetically recapitulate human pancreatic cancer have clarified the mechanisms through which various mutated genes act in neoplasia induction and progression and have led to identifying the possible cellular origin of these neoplasias. Patient-derived xenografts are increasingly used for preclinical studies and for the development of personalized medicine strategies. The studies of the purification and characterization of pancreatic cancer stem cells have suggested that a minority cell population is responsible for initiation and maintenance of pancreatic adenocarcinomas. The study of these cells could contribute to the identification and clinical development of more efficacious drug treatments.
Collapse
|
1146
|
Thomas H. Pancreatic cancer: Intra-tumour bacteria promote gemcitabine resistance in pancreatic adenocarcinoma. Nat Rev Gastroenterol Hepatol 2017; 14:632. [PMID: 29018273 DOI: 10.1038/nrgastro.2017.142] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
1147
|
|