1151
|
Lossaint G, Larroque M, Ribeyre C, Bec N, Larroque C, Décaillet C, Gari K, Constantinou A. FANCD2 binds MCM proteins and controls replisome function upon activation of s phase checkpoint signaling. Mol Cell 2013; 51:678-90. [PMID: 23993743 DOI: 10.1016/j.molcel.2013.07.023] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 06/20/2013] [Accepted: 07/25/2013] [Indexed: 10/26/2022]
Abstract
Proteins disabled in Fanconi anemia (FA) are necessary for the maintenance of genome stability during cell proliferation. Upon replication stress signaling by ATR, the FA core complex monoubiquitinates FANCD2 and FANCI in order to activate DNA repair. Here, we identified FANCD2 and FANCI in a proteomic screen of replisome-associated factors bound to nascent DNA in response to replication arrest. We found that FANCD2 can interact directly with minichromosome maintenance (MCM) proteins. ATR signaling promoted the transient association of endogenous FANCD2 with the MCM2-MCM7 replicative helicase independently of FANCD2 monoubiquitination. FANCD2 was necessary for human primary cells to restrain DNA synthesis in the presence of a reduced pool of nucleotides and prevented the accumulation of single-stranded DNA, the induction of p21, and the entry of cells into senescence. These data reveal that FANCD2 is an effector of ATR signaling implicated in a general replisome surveillance mechanism that is necessary for sustaining cell proliferation and attenuating carcinogenesis.
Collapse
Affiliation(s)
- Gérald Lossaint
- Institute of Human Genetics, UPR 1142, CNRS, 141, rue de la Cardonille, 34396 Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
1152
|
Mohan P, Castellsague J, Jiang J, Allen K, Chen H, Nemirovsky O, Spyra M, Hu K, Kluwe L, Pujana MA, Villanueva A, Mautner VF, Keats JJ, Dunn SE, Lazaro C, Maxwell CA. Genomic imbalance of HMMR/RHAMM regulates the sensitivity and response of malignant peripheral nerve sheath tumour cells to aurora kinase inhibition. Oncotarget 2013; 4:80-93. [PMID: 23328114 PMCID: PMC3702209 DOI: 10.18632/oncotarget.793] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Malignant peripheral nerve sheath tumours (MPNST) are rare, hereditary cancers associated with neurofibromatosis type I. MPNSTs lack effective treatment options as they often resist chemotherapies and have high rates of disease recurrence. Aurora kinase A (AURKA) is an emerging target in cancer and an aurora kinase inhibitor (AKI), termed MLN8237, shows promise against MPNST cell lines in vitro and in vivo. Here, we test MLN8237 against two primary human MPNST grown in vivo as xenotransplants and find that treatment results in tumour cells exiting the cell cycle and undergoing endoreduplication, which cumulates in stabilized disease. Targeted therapies can often fail in the clinic due to insufficient knowledge about factors that determine tumour susceptibilities, so we turned to three MPNST cell-lines to further study and modulate the cellular responses to AKI. We find that the sensitivity of cell-lines with amplification of AURKA depends upon the activity of the kinase, which correlates with the expression of the regulatory gene products TPX2 and HMMR/RHAMM. Silencing of HMMR/RHAMM, but not TPX2, augments AURKA activity and sensitizes MPNST cells to AKI. Furthermore, we find that AURKA activity is critical to the propagation and self-renewal of sphere-enriched MPNST cancer stem-like cells. AKI treatment significantly reduces the formation of spheroids, attenuates the self-renewal of spheroid forming cells, and promotes their differentiation. Moreover, silencing of HMMR/RHAMM is sufficient to endow MPNST cells with an ability to form and maintain sphere culture. Collectively, our data indicate that AURKA is a rationale therapeutic target for MPNST and tumour cell responses to AKI, which include differentiation, are modulated by the abundance of HMMR/RHAMM.
Collapse
Affiliation(s)
- Pooja Mohan
- Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1153
|
Georgakopoulou EA, Tsimaratou K, Evangelou K, Fernandez Marcos PJ, Zoumpourlis V, Trougakos IP, Kletsas D, Bartek J, Serrano M, Gorgoulis VG. Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues. Aging (Albany NY) 2013; 5:37-50. [PMID: 23449538 PMCID: PMC3616230 DOI: 10.18632/aging.100527] [Citation(s) in RCA: 265] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
There is shortage of extensive clinicopathologic studies of cellular senescence because the most reliable senescence biomarker, the detection of Senescence-Associated-beta-galactosidase activity (SA-β-gal), is inapplicable in archival material and requires snap-frozen tissues. We validated the histochemical Sudan-Black-B (SBB) specific stain of lipofuscin, an aggregate of oxidized proteins, lipids and metals, known to accumulate in aged tissues, as an additional reliable approach to detect senescent cells independently of sample preparation. We analyzed cellular systems in which senescence was triggered by replicative exhaustion or stressful stimuli, conditional knock-in mice producing precancerous lesions exhibiting senescence, and human preneoplastic lesions known to contain senescent cells. In the above settings we demonstrated co-localization of lipofuscin and SA-β-gal in senescent cells in vitro and in vivo (cryo-preserved tissue), strongly supporting the candidacy of lipofuscin for a biomarker of cellular senescence. Furthermore, cryo-preserved tissues positive for SA-β-gal were formalin-fixed, paraffin-embedded, and stained with SBB. The corresponding SA-β-gal positive tissue areas stained specifically for lipofuscin by SBB, whereas tissues negative for SA-β-gal were lipofuscin negative, validating the sensitivity and specificity of the SBB staining to visualize senescent cells in archival material. The latter unique property of SBB could be exploited in research on widely available retrospective tissue material.
Collapse
Affiliation(s)
- E A Georgakopoulou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1154
|
Yi G, He Z, Zhou X, Xian L, Yuan T, Jia X, Hong J, He L, Liu J. Low concentration of metformin induces a p53-dependent senescence in hepatoma cells via activation of the AMPK pathway. Int J Oncol 2013; 43:1503-10. [PMID: 23982736 DOI: 10.3892/ijo.2013.2077] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 08/02/2013] [Indexed: 11/06/2022] Open
Abstract
The induction of senescence for cancer treatment has provoked considerable interest recently. Metformin, a first-line drug for diabetes mellitus type 2, appears to be associated with a lower risk and improved outcomes in hepatocellular carcinoma (HCC). The mechanism involved in function of metformin in HCC is poorly understood. We show that low doses of metformin induced hepatoma cell senescence characterized by accumulation of senescence-associated β-galactosidase activity (SA-β-gal) and the senescence marker Dec1, whereas the higher doses initiated apoptotic cell death. Metformin-induced senescence was accompanied by enhanced phosphorylation levels of AMP-activated protein kinase (AMPK) and its downstream target acetyl-CoA carboxylase (ACC). The expression of acetylated p53 at Lys382 (Ac-p53) and p21 was also increased, while phosphorylation of p53 at Ser15 (p-p53), p53, p16 and pRB was rarely altered after metformin treatment. Moreover, inhibition of AMPK decreased p-AMPK, p-ACC, Ac-p53 and p21 expression, diminished SA-β-gal staining and restored hepatoma cell proliferation. In addition, p53 siRNA transfection attenuated metformin-induced SA-β-gal staining. Intriguingly, co-expression of SIRT1 and p53 dramatically reduced the levels of Ac-p53, however, low doses of metformin treatment partially reversed the effect of SIRT1 on p53 acetylation and elevated SA-β-gal activity. These observations indicate that activation of the AMPK pathway promotes senescence in hepatoma cells exposed to low concentrations of metformin in a p53-dependent manner. Further, low doses of metformin may have the potential to be used as an adjuvant to HCC therapy.
Collapse
Affiliation(s)
- Gao Yi
- Department of Intensive Care Unit, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou 510095, Guangdong, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
1155
|
Ding DC, Chou HL, Hung WT, Liu HW, Chu TY. Human adipose-derived stem cells cultured in keratinocyte serum free medium: Donor's age does not affect the proliferation and differentiation capacities. J Biomed Sci 2013; 20:59. [PMID: 23945033 PMCID: PMC3766706 DOI: 10.1186/1423-0127-20-59] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/05/2013] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Although donor age-related effects of characteristics of mesenchymal stem cells (MSC), such as a decrease in the proliferation and differentiation capacity and an increase of senescence and apoptosis, are evident, such effects are generally less prominent in adipose-derived stem cells (ASC). Using a hormone and growth factor rich medium (KFSM), this study cultured ASC from abdominal subcutaneous fat of 27 adult females in three age groups: 30-39 y, 40-49 y and 50-60 y, and investigated the growth and differentiation characteristics. RESULTS The derived ASC had an immunophenotype similar to that of bone marrow derived MSC (BMSC). They could be stably expanded with an average population doubling time of 21.5 ± 2.3 h. Other than a higher pre-adipogenic commitment and a lower adipogenic differentiation capability in ASC derived from the old age group, other characteristics including proliferation rate, doubling time, telomere length, as well as the osteogenic and chondrogenic differentiation capacity were the same regardless of the donor's age. CONCLUSIONS The study demonstrates a promising proliferation and differentiation capabilities of ASC regardless of the donor's age. The compromised adipogenic potential in the older donors could be a benefit for their application in regeneration therapy.
Collapse
Affiliation(s)
- Dah-Ching Ding
- Department of Obstetrics and Gynecology, Buddhist Tzu Chi General Hospital; Tzu Chi University, Hualien, Taiwan.
| | | | | | | | | |
Collapse
|
1156
|
Robinson TJW, Pai M, Liu JC, Vizeacoumar F, Sun T, Egan SE, Datti A, Huang J, Zacksenhaus E. High-throughput screen identifies disulfiram as a potential therapeutic for triple-negative breast cancer cells: interaction with IQ motif-containing factors. Cell Cycle 2013; 12:3013-24. [PMID: 23974104 PMCID: PMC3875676 DOI: 10.4161/cc.26063] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Triple-negative breast cancer (TNBC) represents an aggressive subtype, for which radiation and chemotherapy are the only options. Here we describe the identification of disulfiram, an FDA-approved drug used to treat alcoholism, as well as the related compound thiram, as the most potent growth inhibitors following high-throughput screens of 3185 compounds against multiple TNBC cell lines. The average IC50 for disulfiram was ~300 nM. Drug affinity responsive target stability (DARTS) analysis identified IQ motif-containing factors IQGAP1 and MYH9 as direct binding targets of disulfiram. Indeed, knockdown of these factors reduced, though did not completely abolish, cell growth. Combination treatment with 4 different drugs commonly used to treat TNBC revealed that disulfiram synergizes most effectively with doxorubicin to inhibit cell growth of TNBC cells. Disulfiram and doxorubicin cooperated to induce cell death as well as cellular senescence, and targeted the ESA+/CD24-/low/CD44+ cancer stem cell population. Our results suggest that disulfiram may be repurposed to treat TNBC in combination with doxorubicin.
Collapse
Affiliation(s)
- Tyler J W Robinson
- Department of Laboratory Medicine and Pathobiology; University of Toronto; Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
1157
|
Anti-tumor activity of obinutuzumab and rituximab in a follicular lymphoma 3D model. Blood Cancer J 2013; 3:e131. [PMID: 23933705 PMCID: PMC3763386 DOI: 10.1038/bcj.2013.32] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/03/2013] [Accepted: 07/15/2013] [Indexed: 11/23/2022] Open
Abstract
Follicular lymphomas (FLs) account for 35–40% of all adult lymphomas. Treatment typically involves chemotherapy combined with the anti-CD20 monoclonal antibody (MAb) rituximab (RTX). The development of the type II anti-CD20 MAb obinutuzumab (GA101) aims to further improve treatment. Here, using FL cells we show that RTX and GA101 display a similar activity on RL cells cultured in 2D. However, 2D culture cannot mimic tumor spatial organization and conventional 2D models may not reflect the effects of antibodies as they occur in vivo. Thus, we created a non-Hodgkin's lymphoma (NHL) 3D culture system, termed multicellular aggregates of lymphoma cells (MALC), and used it to compare RTX and GA101 activity. Our results show that both antibodies display greater activity towards FL cells in 3D culture compared with 2D culture. Moreover, we observed that in the 3D model GA101 was more effective than RTX both in inhibiting MALC growth through induction of (lysosomal) cell death and senescence and in inhibiting intracellular signaling pathways, such as mammalian target of rapamycin, Akt, PLCgamma (Phospholipase C gamma) and Syk. Altogether, our study demonstrates that spatial organization strongly influences the response to antibody treatment, supporting the use of 3D models for the testing of therapeutic agents in NHL.
Collapse
|
1158
|
Abstract
Human cells do not indefinitely proliferate. Upon external and/or intrinsic cues, cells might die or enter a stable cell cycle arrest called senescence. Several cellular mechanisms, such as telomere shortening and abnormal expression of mitogenic oncogenes, have been shown to cause senescence. Senescence is not restricted to normal cells; cancer cells have also been reported to senesce. Chemotherapeutical drugs have been shown to induce senescence in cancer cells. However, it remains controversial whether senescence prevents or promotes tumorigenesis. As it might eventually be patient-specific, a rapid and sensitive method to assess senescence in cancer cell will soon be required. To this end, the standard β-galactosidase assay, the currently used method, presents major drawbacks: it is time consuming and not sensitive. We propose here a flow cytometry-based assay to study senescence on live cells. This assay offers the advantage of being rapid, sensitive, and can be coupled to the immunolabeling of various cellular markers.
Collapse
Affiliation(s)
- Julie Cahu
- MILPAT (EA 4652), Université de Caen Basse-Normandie.
| | | |
Collapse
|
1159
|
Carracedo J, Buendía P, Merino A, Soriano S, Esquivias E, Martín-Malo A, Aljama P, Ramírez R. Cellular senescence determines endothelial cell damage induced by uremia. Exp Gerontol 2013; 48:766-73. [DOI: 10.1016/j.exger.2013.04.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/16/2013] [Accepted: 04/18/2013] [Indexed: 11/16/2022]
|
1160
|
Xu X, Hueckstaedt LK, Ren J. Deficiency of insulin-like growth factor 1 attenuates aging-induced changes in hepatic function: role of autophagy. J Hepatol 2013; 59:308-17. [PMID: 23583271 DOI: 10.1016/j.jhep.2013.03.037] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/26/2013] [Accepted: 03/28/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Circulating insulin-like growth factor-1 (IGF-1) plays a pivotal role in mediating the aging process. This study was designed to evaluate the effect of liver IGF-1 deficiency (LID) on aging-induced changes in hepatic function and underlying mechanisms, with a focus on autophagy. METHODS Plasma and liver samples were obtained from young (3-mo) and aged (24-mo) wild type (WT) and LID mice. Levels of AST, ALT, triglyceride, hepatic lipofuscin, steatosis, fibrosis, and nuclear morphology were analyzed. Western blot was employed to evaluate autophagy. Human HepG2 cells were treated with free fatty acid (FFA) to mimic hepatic aging in the absence or presence of IGF-1 siRNA. SA-β-gal activity was detected using flow cytometry and a fluorescence microplate reader. GFP-LC3 was used to assess autophagy activity in HepG2 cells. RESULTS Median survival was longer in LID mice compared with WT mice. Aging was associated with elevated levels of triglyceride, AST and ALT, lipofuscin accumulation, steatosis, fibrosis and nuclear injury, which were significantly attenuated by liver IGF-1 deficiency. Levels of autophagy were suppressed in senescent livers, the effect was reversed in the liver of IGF-1 deficient mice. In HepG2 cells, FFA induced the accumulation of β-gal, which was dramatically suppressed by IGF-1 knockdown. Importantly, inhibiting autophagy using 3-methyladenine mitigated IGF-1 knockdown-induced preservation of autophagic vacuole formation and inhibition of β-gal accumulation in the presence of FFA in HepG2 cells. CONCLUSIONS Our data revealed that IGF-1 deficiency ameliorated aging-induced hepatic injury, possibly through preventing a concomitant diminution in autophagy. These data provide new insight into the role of IGF-1 and autophagy in the management of aging-induced hepatic injury.
Collapse
Affiliation(s)
- Xihui Xu
- Center for Cardiovascular Research and Alternative Medicine, School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | | | | |
Collapse
|
1161
|
Zhang Y, Gao Y, Zhao L, Han L, Lu Y, Hou P, Shi X, Liu X, Tian B, Wang X, Huang B, Lu J. Mitogen-activated protein kinase p38 and retinoblastoma protein signalling is required for DNA damage-mediated formation of senescence-associated heterochromatic foci in tumour cells. FEBS J 2013; 280:4625-39. [PMID: 23859194 DOI: 10.1111/febs.12435] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/18/2013] [Accepted: 07/09/2013] [Indexed: 12/12/2022]
Abstract
DNA-damaging agents are able to induce irreversible cell growth arrest and senescence in some types of tumour cells, thus contributing to the static feature of cancer. However, senescent tumour cells may re-enter the cell cycle, leading to tumour relapse. Understanding the mechanisms that control the viability of senescent cells may be critical for tumour suppression. Primary human fibroblasts undergoing oncogene-induced or replicative senescence are known to form senescence-associated heterochromatin foci (SAHF), which contribute to the stability of the senescent state. However, it is unclear whether SAHF formation is universal in tumour cells. We report that the DNA-damaging agents doxorubicin and 7-ethyl-10-hydroxycamptothecin were able to induce the formation of SAHF in some tumour cell types, and this induction was accompanied by activation of the retinoblastoma protein pathway. By contrast, tumour cells in which the retinoblastoma protein pathway could not be activated by doxorubicin or 7-ethyl-10-hydroxycamptothecin failed to form SAHF. In parallel, tumour cells with deficient retinoblastoma protein were also unable to form SAHF. In addition, we show that the mitogen-activated protein kinase p38 pathway was involved in tumour cell SAHF formation in response to doxorubicin and 7-ethyl-10-hydroxycamptothecin. Furthermore, HMG box transcription factor 1 (HBP1), a downstream target of the mitogen-activated protein kinase p38-mediated senescence pathway, was required for SAHF formation. Taken together, the results of the present study highlight the roles of the mitogen-activated protein kinase p38/retinoblastoma protein pathway in tumour cell SAHF formation in response to DNA-damaging agents, and provide new insights into the mechanisms of DNA damage-mediated tumour suppression.
Collapse
Affiliation(s)
- Yu Zhang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1162
|
Lei Y, Stamer WD, Wu J, Sun X. Oxidative stress impact on barrier function of porcine angular aqueous plexus cell monolayers. Invest Ophthalmol Vis Sci 2013; 54:4827-35. [PMID: 23761078 DOI: 10.1167/iovs.12-11435] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Our goal was to investigate the effect of chronic oxidative stress on angular aqueous plexus (AAP, functional equivalent to human Schlemm's canal) endothelial cells from porcine eyes. METHODS AAP cells were differentially isolated from porcine outflow tissues using puromycin selection. Confluent cultures of porcine AAP cells were grown for 2 weeks in physiological (5% O2) or hyperoxic conditions (40% O2) to model elevated oxidative stress associated with ageing. Cell growth rate, size, transendothelial electrical resistance (TEER), and hydraulic conductivity (HC) were measured. The expression of senescence-associated β-galactosidase and DNA damage marker 8-hydroxy-2'-deoxyguanosine (8-OHdG) was monitored, and the levels of cytoskeletal and cell-cell adhesion proteins such as F-actin, phospho-myosin light chain (phosphor-MLC), occludin, claudin-5, ZO-1, β-catenin, and VE-cadherin were measured by immunofluorescence staining and Western blot analysis. RESULTS Data showed that chronic hyperoxia inhibited cell growth rate from day 3 onward, the cell size increased by 18.2%±5.1%, and cells stained positive for β-galactosidase and 8-OHdG. Hyperoxia resulted in a significant 30% increase in TEER compared with the control group (P<0.05, n=6). When perfused in the basal-to-apical direction at 4 mm Hg, HC of AAP cells was 1.97±0.12 and 1.54±0.13 μL/mm Hg/min/cm2 in control and hyperoxia groups, respectively (P<0.05, n=6). Stressed cells expressed a significantly greater abundance of F-actin, phospho-MLC, occludin, claudin-5, β-catenin, and VE-cadherin compared to the control group by both immunofluorescence and Western blot analyses. CONCLUSIONS Chronic exposure of AAP cells to oxidative stress decreased cell monolayer permeability and up-regulated cytoskeletal and cell-cell adhesion protein expression; suggesting that, with age and increased oxidative stress, resistance at the level of Schlemm's canal increases.
Collapse
Affiliation(s)
- Yuan Lei
- Research Centre, Eye and ENT Hospital of Fudan University, Shanghai, China
| | | | | | | |
Collapse
|
1163
|
Hidalgo I, Herrera-Merchan A, Ligos JM, Carramolino L, Nuñez J, Martinez F, Dominguez O, Torres M, Gonzalez S. Ezh1 is required for hematopoietic stem cell maintenance and prevents senescence-like cell cycle arrest. Cell Stem Cell 2013; 11:649-62. [PMID: 23122289 DOI: 10.1016/j.stem.2012.08.001] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 06/08/2012] [Accepted: 08/04/2012] [Indexed: 01/07/2023]
Abstract
Polycomb group (PcG) proteins are key epigenetic regulators of hematopietic stem cell (HSC) fate. The PcG members Ezh2 and Ezh1 are important determinants of embryonic stem cell identity, and the transcript levels of these histone methyltransferases are inversely correlated during development. However, the role of Ezh1 in somatic stem cells is largely unknown. Here we show that Ezh1 maintains repopulating HSCs in a slow-cycling, undifferentiated state, protecting them from senescence. Ezh1 ablation induces significant loss of adult HSCs, with concomitant impairment of their self-renewal capacity due to a potent senescence response. Epigenomic and gene expression changes induced by Ezh1 deletion in senesced HSCs demonstrated that Ezh1-mediated PRC2 activity catalyzes monomethylation and dimethylation of H3K27. Deletion of Cdkn2a on the Ezh1 null background rescued HSC proliferation and survival. Our results suggest that Ezh1 is an important histone methyltransferase for HSC maintenance.
Collapse
Affiliation(s)
- Isabel Hidalgo
- Stem Cell Aging Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
1164
|
Abstract
Mitochondrial biogenesis is an orchestrated process that presides to the regulation of the organelles homeostasis within a cell. We show that γ-rays, at doses commonly used in the radiation therapy for cancer treatment, induce an increase in mitochondrial mass and function, in response to a genotoxic stress that pushes cells into senescence, in the presence of a functional p53. Although the main effector of the response to γ-rays is the p53-p21 axis, we demonstrated that mitochondrial biogenesis is only indirectly regulated by p53, whose activation triggers a murine double minute 2 (MDM2)-mediated hypoxia-inducible factor 1α (HIF1α) degradation, leading to the release of peroxisome-proliferator activated receptor gamma co-activator 1β inhibition by HIF1α, thus promoting mitochondrial biogenesis. Mimicking hypoxia by HIF1α stabilization, in fact, blunts the mitochondrial response to γ-rays as well as the induction of p21-mediated cell senescence, indicating prevalence of the hypoxic over the genotoxic response. Finally, we also show in vivo that post-radiotherapy mitochondrial DNA copy number increase well correlates with lack of HIF1α increase in the tissue, concluding this may be a useful molecular tool to infer the trigger of a hypoxic response during radiotherapy, which may lead to failure of activation of cell senescence.
Collapse
|
1165
|
Evaluation of anti-oxidant and anti-cancer properties of Dendropanax morbifera Léveille. Food Chem 2013; 141:1947-55. [PMID: 23870914 DOI: 10.1016/j.foodchem.2013.05.021] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/05/2013] [Accepted: 05/09/2013] [Indexed: 12/15/2022]
Abstract
Dendropanax morbifera Léveille, an endemic species in Korea, is best known as a tree that produces a resinous sap. Although D. morbifera is used in folk medicine, its biological activities are poorly understood. In this study, the methanolic extracts of D. morbifera branches, debarked stems, bark, and two different stages of leaves were evaluated for anti-oxidant activity and anti-cancer potential. The debarked stem extract exhibited strong 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity and reducing power compared with other samples. In addition, the cytotoxic activities of these extracts were investigated in human tumour cell lines. The results suggested that the extracts of debarked stems, green leaves, and yellow leaves were the potent source of anti-cancer compounds, particularly in Huh-7 cells. Furthermore, treatment with the extracts of debarked stems, green leaves, and yellow leaves caused an increase of apoptotic or senescent cells in Huh-7 cells. Twenty-four hour treatment with debarked stems extract resulted in the strong induction of p53 and p16, whereas both leaf extracts inhibited the activation of ERK. The debarked stems and green leaf extracts reduced Akt levels in Huh-7 cells, indicating that D. morbifera extracts caused the activation of p16 and p53 pathways. This, together with the inhibition of Akt or ERK signalling, resulted in suppression of Huh-7 cell proliferation. These results suggest that methanolic leaf and debarked stems extracts are a source of anti-oxidant and anti-cancer compounds, and could be developed as a botanical drug.
Collapse
|
1166
|
Penfield JD, Anderson M, Lutzke L, Wang KK. The role of cellular senescence in the gastrointestinal mucosa. Gut Liver 2013; 7:270-7. [PMID: 23710306 PMCID: PMC3661957 DOI: 10.5009/gnl.2013.7.3.270] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/06/2013] [Accepted: 01/07/2013] [Indexed: 12/21/2022] Open
Abstract
Cellular senescence is a biologically irreversible state of cell-growth arrest that occurs following either a replicative or an oncogenic stimulus. This phenomenon occurs as a response to the presence of premalignant cells and appears to be an important anticancer mechanism that keeps these transformed cells at bay. Many exogenous and endogenous triggers for senescence have been recognized to act via genomic or epigenomic pathways. The most common stimulus for senescence is progressive loss of telomeric DNA, which results in the loss of chromosomal stability and eventual unregulated growth and malignancy. Senescence is activated through an interaction between the p16 and p53 tumor-suppressor genes. Senescent cells can be identified in vitro because they express senescence-associated β-galactosidase, a marker of increased lysosomal activity. Cellular senescence plays an integral role in the prevention and development of both benign and malignant gastrointestinal diseases. The senescence cascade and the cell-cycle checkpoints that dictate the progression and maintenance of senescence are important in all types of gastrointestinal cancers, including pancreatic, liver, gastric, colon, and esophageal cancers. Understanding the pathogenic mechanisms involved in cellular senescence is important for the development of agents targeted toward the treatment of gastrointestinal tumors.
Collapse
Affiliation(s)
- Joshua D Penfield
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | | | | |
Collapse
|
1167
|
Essential role for Cdk2 inhibitory phosphorylation during replication stress revealed by a human Cdk2 knockin mutation. Proc Natl Acad Sci U S A 2013; 110:8954-9. [PMID: 23671119 DOI: 10.1073/pnas.1302927110] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cyclin-dependent kinases (Cdks) coordinate cell division, and their activities are tightly controlled. Phosphorylation of threonine 14 (T14) and tyrosine 15 (Y15) inhibits Cdks and regulates their activities in numerous physiologic contexts. Although the roles of Cdk1 inhibitory phosphorylation during mitosis are well described, studies of Cdk2 inhibitory phosphorylation during S phrase have largely been indirect. To specifically study the functions of Cdk2 inhibitory phosphorylation, we used gene targeting to make an endogenous Cdk2 knockin allele in human cells, termed Cdk2AF, which prevents Cdk2 T14 and Y15 phosphorylation. Cdk2AF caused premature S-phase entry, rapid cyclin E degradation, abnormal DNA replication, and genome instability. Cdk2AF cells also exhibited strikingly abnormal responses to replication stress, accumulated irreparable DNA damage, and permanently exited the cell cycle after transient exposure to S-phase inhibitors. Our results reveal the specific and essential roles of Cdk2 inhibitory phosphorylation in the successful execution of the replication stress checkpoint response and in maintaining genome integrity.
Collapse
|
1168
|
Alessio N, Bohn W, Rauchberger V, Rizzolio F, Cipollaro M, Rosemann M, Irmler M, Beckers J, Giordano A, Galderisi U. Silencing of RB1 but not of RB2/P130 induces cellular senescence and impairs the differentiation potential of human mesenchymal stem cells. Cell Mol Life Sci 2013; 70:1637-1651. [PMID: 23370776 PMCID: PMC11113310 DOI: 10.1007/s00018-012-1224-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 11/24/2012] [Accepted: 11/26/2012] [Indexed: 12/22/2022]
Abstract
Stem cell senescence is considered deleterious because it may impair tissue renewal and function. On the other hand, senescence may arrest the uncontrolled growth of transformed stem cells and protect organisms from cancer. This double function of senescence is strictly linked to the activity of genes that the control cell cycle such as the retinoblastoma proteins RB1, RB2/P130, and P107. We took advantage of the RNA interference technique to analyze the role of these proteins in the biology of mesenchymal stem cells (MSC). Cells lacking RB1 were prone to DNA damage. They showed elevated levels of p53 and p21(cip1) and increased regulation of RB2/P130 and P107 expression. These cells gradually adopted a senescent phenotype with impairment of self-renewal properties. No significant modification of cell growth was observed as it occurs in other cell types or systems. In cells with silenced RB2/P130, we detected a reduction of DNA damage along with a higher proliferation rate, an increase in clonogenic ability, and the diminution of apoptosis and senescence. Cells with silenced RB2/P130 were cultivated for extended periods of time without adopting a transformed phenotype. Of note, acute lowering of P107 did not induce relevant changes in the in vitro behavior of MSC. We also analyzed cell commitment and the osteo-chondro-adipogenic differentiation process of clones derived by MSC cultures. In all clones obtained from cells with silenced retinoblastoma genes, we observed a reduction in the ability to differentiate compared with the control clones. In summary, our data show evidence that the silencing of the expression of RB1 or RB2/P130 is not compensated by other gene family members, and this profoundly affects MSC functions.
Collapse
Affiliation(s)
- Nicola Alessio
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Naples, Italy
| | - Wolfgang Bohn
- Department of Tumorvirology, Heinrich-Pette-Institute, Leibniz-Institute for Experimental Virology, Hamburg, Germany
| | - Verena Rauchberger
- Department of Tumorvirology, Heinrich-Pette-Institute, Leibniz-Institute for Experimental Virology, Hamburg, Germany
| | - Flavio Rizzolio
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, 1900 North 12th Street, Philadelphia, PA 19107-6799 USA
| | - Marilena Cipollaro
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Naples, Italy
| | - Michael Rosemann
- Helmholtz Zentrum, National Research Center for Environment and Health, GmbH, Institute of Radiation Biology, Munich, Germany
| | - Martin Irmler
- Helmholtz Zentrum, National Research Center for Environment and Health, GmbH, Institute of Experimental Genetics, Munich, Germany
| | - Johannes Beckers
- Helmholtz Zentrum, National Research Center for Environment and Health, GmbH, Institute of Experimental Genetics, Munich, Germany
- WZW, Center of Life and Food Science Weihenstephan, Chair of Experimental Genetics, Technische Universität München, Freising-Weihenstephan, Germany
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, 1900 North 12th Street, Philadelphia, PA 19107-6799 USA
- Human Health Foundation, Spoleto, Italy
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Naples, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, 1900 North 12th Street, Philadelphia, PA 19107-6799 USA
- Human Health Foundation, Spoleto, Italy
| |
Collapse
|
1169
|
Aird KM, Zhang G, Li H, Tu Z, Bitler BG, Garipov A, Wu H, Wei Z, Wagner SN, Herlyn M, Zhang R. Suppression of nucleotide metabolism underlies the establishment and maintenance of oncogene-induced senescence. Cell Rep 2013; 3:1252-65. [PMID: 23562156 DOI: 10.1016/j.celrep.2013.03.004] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/28/2013] [Accepted: 03/01/2013] [Indexed: 12/11/2022] Open
Abstract
Oncogene-induced senescence is characterized by a stable cell growth arrest, thus providing a tumor suppression mechanism. However, the underlying mechanisms for this phenomenon remain unknown. Here, we show that a decrease in deoxyribonucleotide triphosphate (dNTP) levels underlies oncogene-induced stable senescence-associated cell growth arrest. The decrease in dNTP levels is caused by oncogene-induced repression of ribonucleotide reductase subunit M2 (RRM2), a rate-limiting protein in dNTP synthesis. This precedes the senescence-associated cell-cycle exit and coincides with the DNA damage response. Consistently, RRM2 downregulation is both necessary and sufficient for senescence. Strikingly, suppression of nucleotide metabolism by RRM2 repression is also necessary for maintenance of the stable senescence-associated cell growth arrest. Furthermore, RRM2 repression correlates with senescence status in benign nevi and melanoma, and its knockdown drives senescence of melanoma cells. These data reveal the molecular basis whereby the stable growth arrest of oncogene-induced senescence is established and maintained through suppression of nucleotide metabolism.
Collapse
Affiliation(s)
- Katherine M Aird
- Gene Expression and Regulation Program, The Wistar Institute Cancer Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1170
|
Al Dhaheri Y, Attoub S, Arafat K, AbuQamar S, Eid A, Al Faresi N, Iratni R. Salinomycin induces apoptosis and senescence in breast cancer: Upregulation of p21, downregulation of survivin and histone H3 and H4 hyperacetylation. Biochim Biophys Acta Gen Subj 2013; 1830:3121-35. [DOI: 10.1016/j.bbagen.2013.01.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 01/07/2013] [Accepted: 01/13/2013] [Indexed: 01/22/2023]
|
1171
|
Matricellular protein CCN1 promotes regression of liver fibrosis through induction of cellular senescence in hepatic myofibroblasts. Mol Cell Biol 2013; 33:2078-90. [PMID: 23508104 DOI: 10.1128/mcb.00049-13] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Liver fibrosis occurs as a wound-healing response to chronic hepatic injuries irrespective of the underlying etiology and may progress to life-threatening cirrhosis. Here we show that CCN1, a matricellular protein of the CCN (CYR61/CTGF/NOV) family, is accumulated in hepatocytes of human cirrhotic livers. CCN1 is not required for liver development or regeneration, since these processes are normal in mice with hepatocyte-specific Ccn1 deletion. However, Ccn1 expression is upregulated upon liver injuries and functions to inhibit liver fibrogenesis induced by either carbon tetrachloride intoxication or bile duct ligation and promote fibrosis regression. CCN1 acts by triggering cellular senescence in activated hepatic stellate cells and portal fibroblasts by engaging integrin α6β1 to induce reactive oxygen species accumulation through the RAC1-NADPH oxidase 1 enzyme complex, whereupon the senescent cells express an antifibrosis genetic program. Mice with hepatocyte-specific Ccn1 deletion suffer exacerbated fibrosis with a concomitant deficit in cellular senescence, whereas overexpression of hepatic Ccn1 reduces liver fibrosis with enhanced senescence. Furthermore, tail vein delivery of purified CCN1 protein accelerates fibrosis regression in mice with established fibrosis. These findings reveal a novel integrin-dependent mechanism of fibrosis resolution in chronic liver injury and identify the CCN1 signaling pathway as a potential target for therapeutic intervention.
Collapse
|
1172
|
Le Saux CJ, Davy P, Brampton C, Ahuja SS, Fauce S, Shivshankar P, Nguyen H, Ramaseshan M, Tressler R, Pirot Z, Harley CB, Allsopp R. A novel telomerase activator suppresses lung damage in a murine model of idiopathic pulmonary fibrosis. PLoS One 2013; 8:e58423. [PMID: 23516479 PMCID: PMC3597721 DOI: 10.1371/journal.pone.0058423] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 02/06/2013] [Indexed: 11/24/2022] Open
Abstract
The emergence of diseases associated with telomere dysfunction, including AIDS, aplastic anemia and pulmonary fibrosis, has bolstered interest in telomerase activators. We report identification of a new small molecule activator, GRN510, with activity ex vivo and in vivo. Using a novel mouse model, we tested the potential of GRN510 to limit fibrosis induced by bleomycin in mTERT heterozygous mice. Treatment with GRN510 at 10 mg/kg/day activated telomerase 2–4 fold both in hematopoietic progenitors ex vivo and in bone marrow and lung tissue in vivo, respectively. Telomerase activation was countered by co-treatment with Imetelstat (GRN163L), a potent telomerase inhibitor. In this model of bleomycin-induced fibrosis, treatment with GRN510 suppressed the development of fibrosis and accumulation of senescent cells in the lung via a mechanism dependent upon telomerase activation. Treatment of small airway epithelial cells (SAEC) or lung fibroblasts ex vivo with GRN510 revealed telomerase activating and replicative lifespan promoting effects only in the SAEC, suggesting that the mechanism accounting for the protective effects of GRN510 against induced lung fibrosis involves specific types of lung cells. Together, these results support the use of small molecule activators of telomerase in therapies to treat idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Claude Jourdan Le Saux
- University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Philip Davy
- John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Christopher Brampton
- John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Seema S. Ahuja
- University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Steven Fauce
- Geron Corporation, Menlo Park, California, United States of America
- Beckman Coulter, Inc., Brea, California, United States of America
| | - Pooja Shivshankar
- University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Hieu Nguyen
- John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
| | | | - Robert Tressler
- Geron Corporation, Menlo Park, California, United States of America
- Cellerant, Redwood City, California, United States of America
| | - Zhu Pirot
- Geron Corporation, Menlo Park, California, United States of America
| | - Calvin B. Harley
- Geron Corporation, Menlo Park, California, United States of America
| | - Richard Allsopp
- John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
- * E-mail:
| |
Collapse
|
1173
|
Modulation of Cell Cycle Profile by Chlorella vulgaris Prevents Replicative Senescence of Human Diploid Fibroblasts. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:780504. [PMID: 23573154 PMCID: PMC3610352 DOI: 10.1155/2013/780504] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/28/2013] [Accepted: 01/28/2013] [Indexed: 11/21/2022]
Abstract
In this study, the effects of Chlorella vulgaris (CV) on replicative senescence of human diploid fibroblasts (HDFs) were investigated. Hot water extract of CV was used to treat HDFs at passages 6, 15, and 30 which represent young, presenescence, and senescence ages, respectively. The level of DNA damage was determined by comet assay while apoptosis and cell cycle profile were determined using FACSCalibur flow cytometer. Our results showed direct correlation between increased levels of damaged DNA and apoptosis with senescence in untreated HDFs (P < 0.05). Cell cycle profile showed increased population of untreated senescent cells that enter G0/G1 phase while the cell population in S phase decreased significantly (P < 0.05). Treatment with CV however caused a significant reduction in the level of damaged DNA and apoptosis in all age groups of HDFs (P < 0.05). Cell cycle analysis showed that treatment with CV increased significantly the percentage of senescent HDFs in S phase and G2/M phases but decreased the population of cells in G0/G1 phase (P < 0.05). In conclusion, hot water extract of Chlorella vulgaris effectively decreased the biomarkers of ageing, indicating its potential as an antiageing compound.
Collapse
|
1174
|
Flesken-Nikitin A, Hwang CI, Cheng CY, Michurina TV, Enikolopov G, Nikitin AY. Ovarian surface epithelium at the junction area contains a cancer-prone stem cell niche. Nature 2013; 495:241-5. [PMID: 23467088 PMCID: PMC3982379 DOI: 10.1038/nature11979] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 02/01/2013] [Indexed: 12/18/2022]
Abstract
Epithelial ovarian cancer (EOC) is the fifth leading cause of cancer deaths among women in the United States, but its pathogenesis is poorly understood. Some epithelial cancers are known to occur in transitional zones between two types of epithelium, whereas others have been shown to originate in epithelial tissue stem cells. The stem cell niche of the ovarian surface epithelium (OSE), which is ruptured and regenerates during ovulation, has not yet been defined unequivocally. Here we identify the hilum region of the mouse ovary, the transitional (or junction) area between the OSE, mesothelium and tubal (oviductal) epithelium, as a previously unrecognized stem cell niche of the OSE. We find that cells of the hilum OSE are cycling slowly and express stem and/or progenitor cell markers ALDH1, LGR5, LEF1, CD133 and CK6B. These cells display long-term stem cell properties ex vivo and in vivo, as shown by our serial sphere generation and long-term lineage-tracing assays. Importantly, the hilum cells show increased transformation potential after inactivation of tumour suppressor genes Trp53 and Rb1, whose pathways are altered frequently in the most aggressive and common type of human EOC, high-grade serous adenocarcinoma. Our study supports experimentally the idea that susceptibility of transitional zones to malignant transformation may be explained by the presence of stem cell niches in those areas. Identification of a stem cell niche for the OSE may have important implications for understanding EOC pathogenesis.
Collapse
Affiliation(s)
- Andrea Flesken-Nikitin
- Department of Biomedical Sciences and Cornell Stem Cell Program, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
1175
|
Reemann P, Kangur T, Pook M, Paalo M, Nurmis L, Kink I, Porosaar O, Kingo K, Vasar E, Kõks S, Jaks V, Järvekülg M. Fibroblast growth on micro- and nanopatterned surfaces prepared by a novel sol-gel phase separation method. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:783-792. [PMID: 23239263 DOI: 10.1007/s10856-012-4829-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 11/30/2012] [Indexed: 06/01/2023]
Abstract
Physical characteristics of the growth substrate including nano- and microstructure play crucial role in determining the behaviour of the cells in a given biological context. To test the effect of varying the supporting surface structure on cell growth we applied a novel sol-gel phase separation-based method to prepare micro- and nanopatterned surfaces with round surface structure features. Variation in the size of structural elements was achieved by solvent variation and adjustment of sol concentration. Growth characteristics and morphology of primary human dermal fibroblasts were found to be significantly modulated by the microstructure of the substrate. The increase in the size of the structural elements, lead to increased inhibition of cell growth, altered morphology (increased cytoplasmic volume), enlarged cell shape, decrease in the number of filopodia) and enhancement of cell senescence. These effects are likely mediated by the decreased contact between the cell membrane and the growth substrate. However, in the case of large surface structural elements other factors like changes in the 3D topology of the cell's cytoplasm might also play a role.
Collapse
Affiliation(s)
- Paula Reemann
- Department of Physiology, University of Tartu, Tartu, Estonia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1176
|
Fan DNY, Tsang FHC, Tam AHK, Au SLK, Wong CCL, Wei L, Lee JMF, He X, Ng IOL, Wong CM. Histone lysine methyltransferase, suppressor of variegation 3-9 homolog 1, promotes hepatocellular carcinoma progression and is negatively regulated by microRNA-125b. Hepatology 2013; 57:637-47. [PMID: 22991213 DOI: 10.1002/hep.26083] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 09/06/2012] [Indexed: 12/21/2022]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC) is a major liver malignancy. We previously demonstrated that deregulation of epigenetic regulators is a common event in human HCC. Suppressor of variegation 3-9 homolog 1 (SUV39H1), the prototype of histone methyltransferase, is the major enzyme responsible for histone H3 lysine 9 trimethylation, which, essentially, is involved in heterochromatin formation, chromosome segregation, and mitotic progression. However, the implication of SUV39H1 in hepatocarcinogenesis remains elusive. In this study, we found that SUV39H1 was frequently up-regulated in human HCCs and was significantly associated with increased Ki67 expression (P < 0.001) and the presence of venous invasion (P = 0.017). To investigate the role of SUV39H1 in HCC development, both gain- and loss-of-function models were established. SUV39H1 overexpression remarkably enhanced HCC cell clonogenicity, whereas knockdown of SUV39H1 substantially suppressed HCC cell proliferation and induced cell senescence. In addition, ectopic expression of SUV39H1 increased the migratory ability of HCC cells, whereas a reduced migration rate was observed in SUV39H1 knockdown cells. The significance of SUV39H1 in HCC was further demonstrated in a nude mice model; SUV39H1 knockdown drastically inhibited in vivo tumorigenicity and abolished pulmonary metastasis of HCC cells. We also identified microRNA-125b (miR-125b) as a post-transcriptional regulator of SUV39H1. Ectopic expression of miR-125b inhibited SUV39H1 3'-untranslated-region-coupled luciferase activity and suppressed endogenous SUV39H1 expression at both messenger RNA and protein levels. We have previously reported frequent down-regulation of miR-125b in HCC. Interestingly, miR-125b level was found to be inversely correlated with SUV39H1 expression (P = 0.001) in clinical specimens. Our observations suggested that miR-125b down-regulation may account for the aberrant SUV39H1 level in HCC. CONCLUSION Our study demonstrated that SUV39H1 up-regulation contributed to HCC development and metastasis. The tumor-suppressive miR-125b served as a negative regulator of SUV39H1.
Collapse
Affiliation(s)
- Dorothy Ngo-Yin Fan
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1177
|
Knizhnik AV, Roos WP, Nikolova T, Quiros S, Tomaszowski KH, Christmann M, Kaina B. Survival and death strategies in glioma cells: autophagy, senescence and apoptosis triggered by a single type of temozolomide-induced DNA damage. PLoS One 2013; 8:e55665. [PMID: 23383259 PMCID: PMC3559438 DOI: 10.1371/journal.pone.0055665] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 12/29/2012] [Indexed: 01/30/2023] Open
Abstract
Apoptosis, autophagy, necrosis and cellular senescence are key responses of cells that were exposed to genotoxicants. The types of DNA damage triggering these responses and their interrelationship are largely unknown. Here we studied these responses in glioma cells treated with the methylating agent temozolomide (TMZ), which is a first-line chemotherapeutic for this malignancy. We show that upon TMZ treatment cells undergo autophagy, senescence and apoptosis in a specific time-dependent manner. Necrosis was only marginally induced. All these effects were completely abrogated in isogenic glioma cells expressing O(6)-methylguanine-DNA methyltransferase (MGMT), indicating that a single type of DNA lesion, O(6)-methylguanine (O(6)MeG), is able to trigger all these responses. Studies with mismatch repair mutants and MSH6, Rad51 and ATM knockdowns revealed that autophagy induced by O(6)MeG requires mismatch repair and ATM, and is counteracted by homologous recombination. We further show that autophagy, which precedes apoptosis, is a survival mechanism as its inhibition greatly ameliorated the level of apoptosis following TMZ at therapeutically relevant doses (<100 µM). Cellular senescence increases with post-exposure time and, similar to autophagy, precedes apoptosis. If autophagy was abrogated, TMZ-induced senescence was reduced. Therefore, we propose that autophagy triggered by O(6)MeG adducts is a survival mechanism that stimulates cells to undergo senescence rather than apoptosis. Overall, the data revealed that a specific DNA adduct, O(6)MeG, has the capability of triggering autophagy, senescence and apoptosis and that the decision between survival and death is determined by the balance of players involved. The data also suggests that inhibition of autophagy may ameliorate the therapeutic outcome of TMZ-based cancer therapy.
Collapse
Affiliation(s)
- Anna V. Knizhnik
- Department of Toxicology, Medical University Center, Mainz, Germany
| | - Wynand P. Roos
- Department of Toxicology, Medical University Center, Mainz, Germany
| | - Teodora Nikolova
- Department of Toxicology, Medical University Center, Mainz, Germany
| | - Steve Quiros
- Department of Toxicology, Medical University Center, Mainz, Germany
| | | | | | - Bernd Kaina
- Department of Toxicology, Medical University Center, Mainz, Germany
- * E-mail:
| |
Collapse
|
1178
|
Jong HL, Mustafa MR, Vanhoutte PM, AbuBakar S, Wong PF. MicroRNA 299-3p modulates replicative senescence in endothelial cells. Physiol Genomics 2013; 45:256-67. [PMID: 23362143 DOI: 10.1152/physiolgenomics.00071.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
MicroRNAs (miRNAs) regulate various cellular processes. While several genes associated with replicative senescence have been described in endothelial cells, miRNAs that regulate these genes remain largely unknown. The present study was designed to identify miRNAs associated with replicative senescence and their target genes in human umbilical vein endothelial cells (HUVECs). An integrated miRNA and gene profiling approach revealed that hsa-miR-299-3p is upregulated in senescent HUVECs compared with the young cells, and one of its target genes could be IGF1. IGF1 was upregulated in senescent compared with young HUVECs, and knockdown of hsa-miR-299-3p dose-dependently increased the mRNA expression of IGF1, more significantly observed in the presenescent cells (passage 19) compared with the senescent cells (passage 25). Knockdown of hsa-miR-299-3p also resulted in significant reduction in the percentage of cells positively stained for senescence-associated β-galactosidase and increases in cell viability measured by MTT assay but marginal increases in cell proliferation and cell migration capacity measured by real-time growth kinetics analysis. Moreover, knockdown of hsa-miR-299-3p also increased proliferation of cells treated with H2O2 to induce senescence. These findings suggest that hsa-miR-299-3p may delay or protect against replicative senescence by improving the metabolic activity of the senesced cells but does not stimulate growth of the remaining cells in senescent cultures. Hence, these findings provide an early insight into the role of hsa-miR-299-3p in the modulation of replicative senescence in HUVECs.
Collapse
Affiliation(s)
- Hui-Lan Jong
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | | | | | | |
Collapse
|
1179
|
Schellenberg A, Hemeda H, Wagner W. Tracking of replicative senescence in mesenchymal stem cells by colony-forming unit frequency. Methods Mol Biol 2013; 976:143-154. [PMID: 23400440 DOI: 10.1007/978-1-62703-317-6_11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Long-term culture of mesenchymal stem cells (MSC) has major impact on cellular characteristics and differentiation potential. Numerous clinical trials raise high hopes in regenerative medicine and this necessitates reliable quality control of the cellular products-also with regard to replicative senescence. The maximum number of population doublings before entering the senescent state depends on the cell type, tissue of origin, culture medium as well as cell culture methods. Therefore, it would be valuable to predict the remaining proliferative potential in the course of culture expansion. Here, we describe a refined fibroblastic colony forming unit (CFU-f) assay which can be performed at any passage during culture expansion with simple cell culture techniques. This method is based on limiting dilutions in the 96-well format to determine the proportion of highly proliferative and clonogenic cells. The number of CFU-f declines rapidly during culture expansion. Especially at higher passages the CFU-f frequency correlates very well with the remaining cumulative population doublings. This approach can be used as quality measure to estimate the remaining proliferative potential of MSC in culture.
Collapse
Affiliation(s)
- Anne Schellenberg
- Stem Cell Biology and Cellular Engineering, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | | | | |
Collapse
|
1180
|
Abstract
Sirtuins are a family of proteins with NAD(+)-dependent deacetylase or mono-ADP-ribosyltransferase activity. SIRT1, the mammalian ortholog most closely related to Sir2 (the first gene of this family discovered in yeast), exhibits anti-senescence activity in a wide range of mammalian cells. Here, we describe the use of an ex vivo senescence model to study SIRT1 function in primary endothelial cells isolated from the porcine aorta. The methods can be applied to the investigation of the role of SIRT1 in the development of endothelial senescence and atherosclerosis.
Collapse
Affiliation(s)
- Bo Bai
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
1181
|
Koch CM, Wagner W. Epigenetic biomarker to determine replicative senescence of cultured cells. Methods Mol Biol 2013; 1048:309-21. [PMID: 23929112 DOI: 10.1007/978-1-62703-556-9_20] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Somatic cells change continuously during culture expansion-long-term culture evokes increasing cell size, declining differentiation potential, and ultimate cell cycle arrest upon senescence. These changes are of particular relevance for cellular therapy which necessitates standardized products and reliable quality control. Recently, replicative senescence has been shown to be associated with highly reproducible epigenetic modifications. Here, we describe a simple method to track the state of senescence in mesenchymal stromal cells (MSCs) or fibroblasts by monitoring continuous DNA methylation (DNAm) changes at specific sites in the genome. Six CpG sites have been identified which reveal either linear hypermethylation or hypomethylation with respect to the number of cumulative population doublings (cPDs). Conversely, the DNAm level at these CpG sites can be analyzed-for example, by pyrosequencing of bisulfite-converted DNA-and then used for linear regression models to predict cPDs. Our method provides an epigenetic biomarker to determine the state of senescence in cell preparations.
Collapse
Affiliation(s)
- Carmen M Koch
- Stem Cell Biology and Cellular Engineering, Helmholtz-Institute for Biomedical Engineering; RWTH Aachen University Medical School, Aachen, Germany
| | | |
Collapse
|
1182
|
Tang Q, Chen Q, Lai X, Liu S, Chen Y, Zheng Z, Xie Q, Maldonado M, Cai Z, Qin S, Ho G, Ma L. Malignant transformation potentials of human umbilical cord mesenchymal stem cells both spontaneously and via 3-methycholanthrene induction. PLoS One 2013; 8:e81844. [PMID: 24339974 PMCID: PMC3858282 DOI: 10.1371/journal.pone.0081844] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/17/2013] [Indexed: 02/07/2023] Open
Abstract
Human umbilical cord mesenchymal stem cells (HUMSCs) are highly proliferative and can be induced to differentiate into advanced derivatives of all three germ layers. Thus, HUMSCs are considered to be a promising source for cell-targeted therapies and tissue engineering. However there are reports on spontaneous transformation of mesenchymal stem cells (MSCs) derived from human bone marrows. The capacity for HUMSCs to undergo malignant transform spontaneously or via induction by chemical carcinogens is presently unknown. Therefore, we isolated HUMSCs from 10 donors and assessed their transformation potential either spontaneously or by treating them with 3-methycholanthrene (3-MCA), a DNA-damaging carcinogen. The malignant transformation of HUMSCs in vitro was evaluated by morphological changes, proliferation rates, ability to enter cell senescence, the telomerase activity, chromosomal abnormality, and the ability to form tumors in vivo. Our studies showed that HUMSCs from all 10 donors ultimately entered senescence and did not undergo spontaneous malignant transformation. However, HUMSCs from two of the 10 donors treated with 3-MCA displayed an increased proliferation rate, failed to enter senescence, and exhibited an altered cell morphology. When these cells (tHUMSCs) were injected into immunodeficient mice, they gave rise to sarcoma-like or poorly differentiated tumors. Moreover, in contrast to HUMSCs, tHUMSCs showed a positive expression of human telomerase reverse transcriptase (hTERT) and did not exhibit a shortening of the relative telomere length during the long-term culture in vitro. Our studies demonstrate that HUMSCs are not susceptible to spontaneous malignant transformation. However, the malignant transformation could be induced by chemical carcinogen 3-MCA.
Collapse
Affiliation(s)
- Qiuling Tang
- Transforming Medical Center, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Qiurong Chen
- Transforming Medical Center, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Research Center of Reproductive Medicine, Shantou University Medical College, Shantou, Guangdong, China
| | - Xiulan Lai
- Transforming Medical Center, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Sizheng Liu
- Transforming Medical Center, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yezeng Chen
- Transforming Medical Center, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zexin Zheng
- Transforming Medical Center, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Qingdong Xie
- Research Center of Reproductive Medicine, Shantou University Medical College, Shantou, Guangdong, China
| | - Martin Maldonado
- Transforming Medical Center, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Research Center of Reproductive Medicine, Shantou University Medical College, Shantou, Guangdong, China
| | - Zhiwei Cai
- Transforming Medical Center, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Shan Qin
- Transforming Medical Center, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Guyu Ho
- Transforming Medical Center, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Molecular Pathology Laboratory, Shantou University Medical College, Shantou, Guangdong, China
- * E-mail: (GH); (LM)
| | - Lian Ma
- Transforming Medical Center, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- * E-mail: (GH); (LM)
| |
Collapse
|
1183
|
Abstract
Studies in primary and tumor cells suggest that MYC plays an important role in regulating cellular senescence, thereby impacting on tumor development. Here we describe different common methods to measure senescence in cell cultures and in tissues. These include measurement of senescence-associated β-galactosidase activity (SA-β-gal), senescence-associated heterochromatin foci (SAHFs), proliferative arrest, morphological changes, and expression and activity of proteins involved in the senescence process, such as p53 and Rb pathway proteins and secretory proteins. It is important to note that there is no unique marker that unambiguously defines a senescent state, and it is therefore necessary to combine measurements of several different markers that together determine whether cells are senescent or not. Measurement of senescence is an important aspect of studies of MYC biology and will improve our understanding of MYC function and regulation both in preclinical and clinical settings. This may form the basis for new concepts of pro-senescence therapy to combat MYC in cancer.
Collapse
Affiliation(s)
- Vedrana Tabor
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
1184
|
Bassaneze V, Miyakawa AA, Krieger JE. Chemiluminescent detection of senescence-associated β galactosidase. Methods Mol Biol 2013; 965:157-63. [PMID: 23296656 DOI: 10.1007/978-1-62703-239-1_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Identifying molecules that serve as markers for cell aging is a goal that has been pursued by several groups. Senescence-associated β galactosidase (SA-βgal) staining is broadly used and very easily detected. β-gal is a lysosomal enzyme strongly correlated to the progression of cell senescence. Here, we describe a simple, fast, and quantitative protocol to quantify SA-βgal activity in cell lysate extracts by a chemiluminescent method using galacton as substrate.
Collapse
Affiliation(s)
- Vinicius Bassaneze
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | | | | |
Collapse
|
1185
|
Shlush LI, Selig S. Digital image analysis of cells stained with the senescence-associated β-galactosidase assay. Methods Mol Biol 2013; 1048:11-18. [PMID: 23929094 DOI: 10.1007/978-1-62703-556-9_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Cellular senescence plays important roles in the aging process of complex organisms, in response to stress and in tumor suppression. Several markers can be used to identify senescent cells, of which the most widely used is the senescence-associated β-galactosidase (SABG) activity. Here we describe a procedure for digital image analysis of cells stained by the SABG staining technique at pH 6 or at pH 4. This analysis is highly reproducible and sensitive to subtle differences in staining intensities resulting from diverse cellular senescence pathways in culture.
Collapse
Affiliation(s)
- Liran I Shlush
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Toronto, Canada
| | | |
Collapse
|
1186
|
Methods for assessing effects of Wnt/β-catenin signaling in senescence of mesenchymal stem cells. Methods Mol Biol 2013; 976:111-30. [PMID: 23400438 DOI: 10.1007/978-1-62703-317-6_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells (MSCs) represent a main population of stem cells and can differentiate into multiple cell lineages. Recently, MSC transplantation has been applied to repair the malfunctioned tissues. However, increasing evidences show that some MSCs expanded in vitro and in the aged individuals become senescent. Capacity of senescent MSCs in repairing the tissues may decrease significantly. Interestingly, preventing MSC senescence is a powerful potential strategy to delay aging of individuals and promote application of cell therapy for treating aging-related diseases. Therefore, it is necessary to explore mechanisms of MSC senescence in detail. Methods to assess MSC senescence in vitro include induction of senescence, detection of senescent changes and investigation of the molecules involved in senescence. Here we describe the methods to detect MSC senescence induced with old serum and investigate effects of Wnt/β-catenin signaling on MSC senescence.
Collapse
|
1187
|
Cahu J, Bustany S, Sola B. Senescence-associated secretory phenotype favors the emergence of cancer stem-like cells. Cell Death Dis 2012; 3:e446. [PMID: 23254289 PMCID: PMC3542619 DOI: 10.1038/cddis.2012.183] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The molecular mechanisms underlying cancer resistance remain elusive. One possible explanation is that cancer stem cells (CSCs) elude drug treatment, emerge and reproduce a tumor. Using multiple myeloma as a paradigm, we showed that cancer stem-like cells (CSLCs) appear after genotoxic stress because of their intrinsic properties. However, these properties do not drive the emergence of the CSLCs. Following genotoxic stress, remaining DNA damages lead to a senescence-associated secretory phenotype (SASP). Senescent cells, which are the non-CSLCs, secrete chemokines contributing to the emergence, maintenance and migration of CSLCs. Downregulation of checkpoint protein 2, a key player of SASP, significantly reduced the emergence of CSLCs. Our results unravel a novel molecular mechanism by which SASP might promote malignancy, underlining the dual role of senescence in tumorigenesis. This mechanism, based on mutual cooperation among tumor cells, illustrates how cancer may relapse; its targeting could represent new therapeutic opportunities.
Collapse
Affiliation(s)
- J Cahu
- MILPAT (EA 4652), Faculté de Médecine, Université de Caen Basse-Normandie, CHU Côte de Nacre, Caen, France.
| | | | | |
Collapse
|
1188
|
Cardus A, Uryga AK, Walters G, Erusalimsky JD. SIRT6 protects human endothelial cells from DNA damage, telomere dysfunction, and senescence. Cardiovasc Res 2012. [PMID: 23201774 PMCID: PMC3567786 DOI: 10.1093/cvr/cvs352] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS Although endothelial cell senescence is known to play an important role in the development of cardiovascular pathologies, mechanisms that attenuate this process have not been extensively investigated. The aim of this study was to investigate whether SIRT6, a member of the sirtuin family of NAD(+)-dependent protein deacetylases/ADP-ribosyltransferases, protects endothelial cells from premature senescence and dysfunction, and if so which is its mode of action. METHODS AND RESULTS mRNA expression analysis demonstrated comparable levels of SIRT1 and SIRT6 transcripts in endothelial cells derived from different vascular beds and significantly higher levels of SIRT6 in these cells relative to those in haematopoietic progenitor cells. SIRT6 depletion by RNA interference in human umbilical vein endothelial cells (HUVEC) and aortic endothelial cells reduced cell proliferation, increased the fraction of senescence-associated-β-galactosidase-positive cells, and diminished the ability of the cells to form tubule networks on Matrigel. Further examination of SIRT6-depleted HUVEC demonstrated higher intercellular-adhesion molecule-1 (ICAM-1) and plasminogen-activator inhibitor-1 mRNA, lower levels of endothelial nitric oxide synthase mRNA and protein, higher ICAM-1 surface expression, and up-regulation of p21. Fluorescence microscopy of SIRT6-depleted HUVEC stained with anti-phospho-histone H2A.X and anti-telomere-repeat-binding-factor-1 antibodies showed evidence of increased nuclear DNA damage and the formation of telomere dysfunction-induced foci. CONCLUSION This work demonstrates that the presence of SIRT6 in endothelial cells confers protection from telomere and genomic DNA damage, thus preventing a decrease in replicative capacity and the onset of premature senescence. These findings suggest that SIRT6 may be important to maintain endothelial homeostatic functions and delay vascular ageing.
Collapse
Affiliation(s)
- Anna Cardus
- School of Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, UK
| | | | | | | |
Collapse
|
1189
|
Goehe RW, Di X, Sharma K, Bristol ML, Henderson SC, Valerie K, Rodier F, Davalos AR, Gewirtz DA. The autophagy-senescence connection in chemotherapy: must tumor cells (self) eat before they sleep? J Pharmacol Exp Ther 2012; 343:763-78. [PMID: 22927544 PMCID: PMC3500537 DOI: 10.1124/jpet.112.197590] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 08/24/2012] [Indexed: 12/22/2022] Open
Abstract
Exposure of MCF-7 breast tumor cells or HCT-116 colon carcinoma cells to clinically relevant concentrations of doxorubicin (Adriamycin; Farmitalia Research Laboratories, Milan, Italy) or camptothecin results in both autophagy and senescence. To determine whether autophagy is required for chemotherapy-induced senescence, reactive oxygen generation induced by Adriamycin was suppressed by N-acetyl cysteine and glutathione, and the induction of ataxia telangiectasia mutated, p53, and p21 was modulated pharmacologically and/or genetically. In all cases, autophagy and senescence were collaterally suppressed. The close association between autophagy and senescence indicated by these experiments reflects their collateral regulation via common signaling pathways. The potential relationship between autophagy and senescence was further examined through pharmacologic inhibition of autophagy with chloroquine and 3-methyl-adenine and genetic ablation of the autophagy-related genes ATG5 and ATG7. However, inhibition of autophagy by pharmacological and genetic approaches could not entirely abrogate the senescence response, which was only reduced and/or delayed. Taken together, our findings suggest that autophagy and senescence tend to occur in parallel, and furthermore that autophagy accelerates the development of the senescent phenotype. However, these responses are not inexorably linked or interdependent, as senescence can occur when autophagy is abrogated.
Collapse
Affiliation(s)
- Rachel W Goehe
- Departments of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1190
|
Cellular senescence induced by CD158d reprograms natural killer cells to promote vascular remodeling. Proc Natl Acad Sci U S A 2012. [PMID: 23184984 DOI: 10.1073/pnas.1208248109] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Natural killer (NK) cells, which have an essential role in immune defense, also contribute to reproductive success. NK cells are abundant at the maternal-fetal interface, where soluble HLA-G is produced by fetal trophoblast cells during early pregnancy. Soluble HLA-G induces a proinflammatory response in primary, resting NK cells on endocytosis into early endosomes where its receptor, CD158d, resides. CD158d initiates signaling through DNA-PKcs, Akt, and NF-κB for a proinflammatory and proangiogenic response. The physiological relevance of this endosomal signaling pathway, and how activation of CD158d through soluble ligands regulates NK cell fate and function is unknown. We show here that CD158d agonists trigger a DNA damage response signaling pathway involving cyclin-dependent kinase inhibitor p21 expression and heterochromatin protein HP1-γ phosphorylation. Sustained activation through CD158d induced morphological changes in NK cell shape and size, and survival in the absence of cell-cycle entry, all hallmarks of senescence, and a transcriptional signature of a senescence-associated secretory phenotype (SASP). SASP is a program that can be induced by oncogenes or DNA damage, and promotes growth arrest and tissue repair. The secretome of CD158d-stimulated senescent NK cells promoted vascular remodeling and angiogenesis as assessed by functional readouts of vascular permeability and endothelial cell tube formation. Retrospective analysis of the decidual NK cell transcriptome revealed a strong senescence signature. We propose that a positive function of senescence in healthy tissue is to favor reproduction through the sustained activation of NK cells to remodel maternal vasculature in early pregnancy.
Collapse
|
1191
|
Hodjat M, Haller H, Dumler I, Kiyan Y. Urokinase receptor mediates doxorubicin-induced vascular smooth muscle cell senescence via proteasomal degradation of TRF2. J Vasc Res 2012; 50:109-23. [PMID: 23172421 DOI: 10.1159/000343000] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 08/23/2012] [Indexed: 11/19/2022] Open
Abstract
The anthracycline doxorubicin is a widely used effective anti-cancer drug. However, its application and dosage are severely limited due to its cardiotoxicity. The exact mechanisms of doxorubicin-induced cardiotoxic side effects remain poorly understood. Even less is known about the impact of doxorubicin treatment on vascular damage. We found that low doses of doxorubicin induced a senescent response in human primary vascular smooth muscle cells (VSMC). We observed that expression of urokinase receptor (uPAR) was upregulated in response to doxorubicin. Furthermore, the level of uPAR expression played a decisive role in developing doxorubicin-induced senescence. uPAR silencing in human VSMC by means of RNA interference as well as uPAR knockout in mouse VSMC resulted in abrogation of doxorubicin-induced cellular senescence. On the contrary, uPAR overexpression promoted VSMC senescence. We further found that proteasomal degradation of telomeric repeat binding factor 2 (TRF2) mediates doxorubicin-induced VSMC senescence. Our results demonstrate that uPAR controls the ubiquitin-proteasome system in VSMC and regulates doxorubicin-induced TRF2 ubiquitination and proteasomal degradation via this mechanism. Therefore, VSMC senescence induced by low doses of doxorubicin may contribute to vascular damage upon doxorubicin treatment. uPAR-mediated TRF2 ubiquitination and proteasomal degradation are further identified as a molecular mechanism underlying this process.
Collapse
Affiliation(s)
- Mahshid Hodjat
- Nephrology Department, Hannover Medical School, Hannover, Germany
| | | | | | | |
Collapse
|
1192
|
Koch CM, Reck K, Shao K, Lin Q, Joussen S, Ziegler P, Walenda G, Drescher W, Opalka B, May T, Brümmendorf T, Zenke M, Saric T, Wagner W. Pluripotent stem cells escape from senescence-associated DNA methylation changes. Genome Res 2012; 23:248-59. [PMID: 23080539 PMCID: PMC3561866 DOI: 10.1101/gr.141945.112] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pluripotent stem cells evade replicative senescence, whereas other primary cells lose their proliferation and differentiation potential after a limited number of cell divisions, and this is accompanied by specific senescence-associated DNA methylation (SA-DNAm) changes. Here, we investigate SA-DNAm changes in mesenchymal stromal cells (MSC) upon long-term culture, irradiation-induced senescence, immortalization, and reprogramming into induced pluripotent stem cells (iPSC) using high-density HumanMethylation450 BeadChips. SA-DNAm changes are highly reproducible and they are enriched in intergenic and nonpromoter regions of developmental genes. Furthermore, SA-hypomethylation in particular appears to be associated with H3K9me3, H3K27me3, and Polycomb-group 2 target genes. We demonstrate that ionizing irradiation, although associated with a senescence phenotype, does not affect SA-DNAm. Furthermore, overexpression of the catalytic subunit of the human telomerase (TERT) or conditional immortalization with a doxycycline-inducible system (TERT and SV40-TAg) result in telomere extension, but do not prevent SA-DNAm. In contrast, we demonstrate that reprogramming into iPSC prevents almost the entire set of SA-DNAm changes. Our results indicate that long-term culture is associated with an epigenetically controlled process that stalls cells in a particular functional state, whereas irradiation-induced senescence and immortalization are not causally related to this process. Absence of SA-DNAm in pluripotent cells may play a central role for their escape from cellular senescence.
Collapse
Affiliation(s)
- Carmen M Koch
- Helmholtz Institute for Biomedical Engineering, RWTH Medical School, 52074 Aachen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1193
|
Klein S, Klösel J, Schierwagen R, Körner C, Granzow M, Huss S, Mazar IGR, Weber S, van den Ven PFM, Pieper-Fürst U, Fürst DO, Nattermann J, Lammert F, Sauerbruch T, Trebicka J. Atorvastatin inhibits proliferation and apoptosis, but induces senescence in hepatic myofibroblasts and thereby attenuates hepatic fibrosis in rats. J Transl Med 2012; 92:1440-50. [PMID: 22890553 DOI: 10.1038/labinvest.2012.106] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Hepatic myofibroblasts (MFB) show increased proliferation, migration and collagen production, which are crucial for hepatic fibrogenesis. Atorvastatin treatment inhibits proliferation, apoptosis and cytokine production of MFB in bile duct-ligated (BDL) rats in vivo. Here, we have further investigated the underlying mechanisms. Primary rat hepatic stellate cells (HSC) were isolated and culture-activated to hepatic MFB. Following 3 days of incubation with atorvastatin (10(-4), 10(-5) and 10(-6) M), transcription levels of profibrotic cytokines (transforming growth factor-β1, connective tissue growth factor and TIMP1) and procollagen Ia were analyzed by real time PCR. Proliferation was investigated by 5'-bromo-2'-deoxyuridine assays. α-Smooth muscle actin protein expression was examined by western blotting. Fluorescence-activated cell sorting analysis of Annexin V and propidium iodide were used to measure apoptosis. Furthermore, p21 western blotting and β-galactosidase staining were investigated in MFB as senescence markers. Subsequently, hepatic expression of desmin and senescence markers were analyzed in the livers of rats receiving atorvastatin (15 mg/kg*d) for 1 week starting 3 and 5 weeks after BDL. Atorvastatin inhibited the activation of HSC to MFB and decreased cytokine and collagen production in MFB in vitro. In addition, proliferation, cytokine and collagen production of MFB were reduced by atorvastatin. Atorvastatin initiated apoptosis at 10(-4) M and attenuated it at 10(-5) M. Atorvastatin induced p21 protein expression and β-galactosidase staining of MFB in vitro and in vivo. Atorvastatin elicits similiar effects on MFB as previously seen in vivo: it decreases MFB turnover and fibrogenesis. We suggest that a further mechanism explaining these effects is senescence of cells.
Collapse
Affiliation(s)
- Sabine Klein
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1194
|
Nagykery N, Terwilliger EF, Geula C. In vivo AAV-mediated expression of calbindin-D₂₈k in rat basal forebrain cholinergic neurons. J Neurosci Methods 2012; 212:106-13. [PMID: 23022696 DOI: 10.1016/j.jneumeth.2012.09.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 09/12/2012] [Accepted: 09/20/2012] [Indexed: 11/26/2022]
Abstract
The cholinergic neurons of the basal forebrain (BFCNs) in human and non-human primates are rich in the calcium binding protein calbindin-D(28k) (CB). We have shown a selective loss of CB from BFCNs in the course of normal aging, which appears to predispose these neurons to tangle formation and degeneration in Alzheimer's disease. Our previous preliminary investigation demonstrated that rodent BFCNs are devoid of CB. Here we confirm that rat choline acetyltransferase-rich BFCNs are devoid of CB immunoreactivity. We then describe a method for adeno-associated viral vector (AAV) induced expression of CB in rat BFCNs in vivo. We constructed AAV vectors bearing the CB gene under the control of the CMV promoter, or neuron-specific enolase (NSE) promoter, to bias expression in neurons. Both vectors resulted in CB expression in mouse neuronal cultures, and in rat brain following injections. AAV-NSE-CB resulted in more robust expression in neurons. Injections of 10 μl of AAV-NSE-CB in the BFCNs component located within the internal segment of globus pallidus and internal capsule resulted in expression of CB in 84% of BFCNs. Expression was optimum at 14 days. Injections of AAV-NSE-LacZ resulted in robust β-galactosidase expression, but no CB immunoreactivity. Our results show that use of NSE promoter leads to high expression of genes in neurons and that the BFCNs can be targeted for expression of genes that are differentially expressed in the rodent and primate brains. These findings have important implications for gene replacement therapy in human BFCNs.
Collapse
Affiliation(s)
- Nicholas Nagykery
- Laboratory for Cognitive and Molecular Morphometry, Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Feinberg School of Medicine, 320 East Superior Street, Chicago, IL 60611, United States.
| | | | | |
Collapse
|
1195
|
Smith BA, Smith BD. Biomarkers and molecular probes for cell death imaging and targeted therapeutics. Bioconjug Chem 2012; 23:1989-2006. [PMID: 22989049 DOI: 10.1021/bc3003309] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cell death is a critically important biological process. Disruption of homeostasis, either by excessive or deficient cell death, is a hallmark of many pathological conditions. Recent research advances have greatly increased our molecular understanding of cell death and its role in a range of diseases and therapeutic treatments. Central to these ongoing research and clinical efforts is the need for imaging technologies that can locate and identify cell death in a wide array of in vitro and in vivo biomedical samples with varied spatiotemporal requirements. This review article summarizes community efforts over the past five years to identify useful biomarkers for dead and dying cells, and to develop molecular probes that target these biomarkers for optical, radionuclear, or magnetic resonance imaging. Apoptosis biomarkers are classified as either intracellular (caspase enzymes, mitochondrial membrane potential, cytosolic proteins) or extracellular (plasma membrane phospholipids, membrane potential, surface exposed histones). Necrosis, autophagy, and senescence biomarkers are described, as well as unexplored cell death biomarkers. The article discusses possible chemotherapeutic and theranostic strategies, and concludes with a summary of current challenges and expected eventual rewards of clinical cell death imaging.
Collapse
Affiliation(s)
- Bryan A Smith
- Department of Chemistry and Biochemistry, Notre Dame Integrated Imaging Facility, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | | |
Collapse
|
1196
|
Iglesias-Bartolome R, Patel V, Cotrim A, Leelahavanichkul K, Molinolo AA, Mitchell JB, Gutkind JS. mTOR inhibition prevents epithelial stem cell senescence and protects from radiation-induced mucositis. Cell Stem Cell 2012; 11:401-14. [PMID: 22958932 PMCID: PMC3477550 DOI: 10.1016/j.stem.2012.06.007] [Citation(s) in RCA: 238] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 04/10/2012] [Accepted: 06/07/2012] [Indexed: 12/27/2022]
Abstract
The integrity of the epidermis and mucosal epithelia is highly dependent on resident self-renewing stem cells, which makes them vulnerable to physical and chemical insults compromising the repopulating capacity of the epithelial stem cell compartment. This is frequently the case in cancer patients receiving radiation or chemotherapy, many of whom develop mucositis, a debilitating condition involving painful and deep mucosal ulcerations. Here, we show that inhibiting the mammalian target of rapamycin (mTOR) with rapamycin increases the clonogenic capacity of primary human oral keratinocytes and their resident self-renewing cells by preventing stem cell senescence. This protective effect of rapamycin is mediated by the increase in expression of mitochondrial superoxide dismutase (MnSOD), and the consequent inhibition of ROS formation and oxidative stress. mTOR inhibition also protects from the loss of proliferative basal epithelial stem cells upon ionizing radiation in vivo, thereby preserving the integrity of the oral mucosa and protecting from radiation-induced mucositis.
Collapse
Affiliation(s)
- Ramiro Iglesias-Bartolome
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20852, USA
| | - Vyomesh Patel
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20852, USA
| | - Ana Cotrim
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Kantima Leelahavanichkul
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20852, USA
| | - Alfredo A. Molinolo
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20852, USA
| | - James B. Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - J. Silvio Gutkind
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20852, USA
| |
Collapse
|
1197
|
Melanogenesis stimulation in B16-F10 melanoma cells induces cell cycle alterations, increased ROS levels and a differential expression of proteins as revealed by proteomic analysis. Exp Cell Res 2012; 318:1913-25. [DOI: 10.1016/j.yexcr.2012.05.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 04/26/2012] [Accepted: 05/16/2012] [Indexed: 12/29/2022]
|
1198
|
Li J, Pei M. Cell Senescence: A Challenge in Cartilage Engineering and Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2012; 18:270-87. [PMID: 22273114 DOI: 10.1089/ten.teb.2011.0583] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jingting Li
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, West Virginia
- Division of Exercise Physiology, West Virginia University, Morgantown, West Virginia
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, West Virginia
- Division of Exercise Physiology, West Virginia University, Morgantown, West Virginia
- Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia
| |
Collapse
|
1199
|
Xu Q, Ma P, Hu C, Chen L, Xue L, Wang Z, Liu M, Zhu H, Xu N, Lu N. Overexpression of the DEC1 protein induces senescence in vitro and is related to better survival in esophageal squamous cell carcinoma. PLoS One 2012; 7:e41862. [PMID: 22844531 PMCID: PMC3402465 DOI: 10.1371/journal.pone.0041862] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 06/26/2012] [Indexed: 11/23/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a leading cause of cancer-related death in China and has limited effective therapeutic options except for early surgery, since the underlying molecular mechanism driving its precursor lesions towards invasive ESCC is not fully understood. Cellular senescence is the state of the permanent growth arrest of a cell, and is considered as the initial barrier of tumor development. Human differentiated embryo chondrocyte expressed gene 1 (Dec1) is an important transcription factor that related to senescence. In this study, DEC1 immunohistochemical analysis was performed on tissue microarray blocks constructed from ESCC combined with adjacent precursor tissues of 241 patients. Compared with normal epithelia, DEC1 expression was significantly increased in intraepithelial neoplasia and DEC1 expression was significantly decreased in ESCC in comparison with intraepithelial neoplasia. In vitro, DEC1 overexpression induced cellular senescence, and it inhibited cell growth and colony formation in ESCC cell line EC9706. Fresh esophagectomy tissue sections from five ESCC patients were detected by immunohistochemistry of DEC1 and senescence-associated β-galactosidase (SA-β-Gal) activity, and strongly positive expression of DEC1 was correlated to more senescent cells in these fresh tissue sections. Kaplan – Meier method analysis of the 241 patients revealed that DEC1 expression levels were significantly correlated with the survival of ESCC patients after surgery. The expression levels of DEC1 were also correlated with age, tumor embolus, depth of invasion of ESCC, lymph metastasis status and pTNMs. These results suggest that DEC1 overexpression in precursor lesions of ESCC is a protective mechanism by inducing cellular senescence in ESCC initiation, and DEC1 may be a potential prognostic marker of ESCC.
Collapse
Affiliation(s)
- Qing Xu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peiqing Ma
- Department of Pathology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenfei Hu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lechuang Chen
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liyan Xue
- Department of Pathology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zaozao Wang
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Liu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongxia Zhu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail: (NX); (NL)
| | - Ning Lu
- Department of Pathology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail: (NX); (NL)
| |
Collapse
|
1200
|
Tilstra JS, Robinson AR, Wang J, Gregg SQ, Clauson CL, Reay DP, Nasto LA, St Croix CM, Usas A, Vo N, Huard J, Clemens PR, Stolz DB, Guttridge DC, Watkins SC, Garinis GA, Wang Y, Niedernhofer LJ, Robbins PD. NF-κB inhibition delays DNA damage-induced senescence and aging in mice. J Clin Invest 2012; 122:2601-2612. [PMID: 22706308 PMCID: PMC3386805 DOI: 10.1172/jci45785] [Citation(s) in RCA: 357] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 05/10/2012] [Indexed: 12/21/2022] Open
Abstract
The accumulation of cellular damage, including DNA damage, is thought to contribute to aging-related degenerative changes, but how damage drives aging is unknown. XFE progeroid syndrome is a disease of accelerated aging caused by a defect in DNA repair. NF-κB, a transcription factor activated by cellular damage and stress, has increased activity with aging and aging-related chronic diseases. To determine whether NF-κB drives aging in response to the accumulation of spontaneous, endogenous DNA damage, we measured the activation of NF-κB in WT and progeroid model mice. As both WT and progeroid mice aged, NF-κB was activated stochastically in a variety of cell types. Genetic depletion of one allele of the p65 subunit of NF-κB or treatment with a pharmacological inhibitor of the NF-κB-activating kinase, IKK, delayed the age-related symptoms and pathologies of progeroid mice. Additionally, inhibition of NF-κB reduced oxidative DNA damage and stress and delayed cellular senescence. These results indicate that the mechanism by which DNA damage drives aging is due in part to NF-κB activation. IKK/NF-κB inhibitors are sufficient to attenuate this damage and could provide clinical benefit for degenerative changes associated with accelerated aging disorders and normal aging.
Collapse
Affiliation(s)
- Jeremy S. Tilstra
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA.
University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA.
Department of Chemistry, University of California, Riverside, California, USA.
Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Neurology, University of Pittsburgh School of Medicine and Neurology Service, Department of Veterans Affairs Medical Center, Pittsburgh, Pennsylvania, USA.
Department of Orthopaedic Surgery and
Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, USA.
Institute of Molecular Biology and Biotechnology-FORTH, Heraklion, Greece
| | - Andria R. Robinson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA.
University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA.
Department of Chemistry, University of California, Riverside, California, USA.
Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Neurology, University of Pittsburgh School of Medicine and Neurology Service, Department of Veterans Affairs Medical Center, Pittsburgh, Pennsylvania, USA.
Department of Orthopaedic Surgery and
Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, USA.
Institute of Molecular Biology and Biotechnology-FORTH, Heraklion, Greece
| | - Jin Wang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA.
University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA.
Department of Chemistry, University of California, Riverside, California, USA.
Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Neurology, University of Pittsburgh School of Medicine and Neurology Service, Department of Veterans Affairs Medical Center, Pittsburgh, Pennsylvania, USA.
Department of Orthopaedic Surgery and
Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, USA.
Institute of Molecular Biology and Biotechnology-FORTH, Heraklion, Greece
| | - Siobhán Q. Gregg
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA.
University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA.
Department of Chemistry, University of California, Riverside, California, USA.
Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Neurology, University of Pittsburgh School of Medicine and Neurology Service, Department of Veterans Affairs Medical Center, Pittsburgh, Pennsylvania, USA.
Department of Orthopaedic Surgery and
Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, USA.
Institute of Molecular Biology and Biotechnology-FORTH, Heraklion, Greece
| | - Cheryl L. Clauson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA.
University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA.
Department of Chemistry, University of California, Riverside, California, USA.
Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Neurology, University of Pittsburgh School of Medicine and Neurology Service, Department of Veterans Affairs Medical Center, Pittsburgh, Pennsylvania, USA.
Department of Orthopaedic Surgery and
Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, USA.
Institute of Molecular Biology and Biotechnology-FORTH, Heraklion, Greece
| | - Daniel P. Reay
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA.
University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA.
Department of Chemistry, University of California, Riverside, California, USA.
Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Neurology, University of Pittsburgh School of Medicine and Neurology Service, Department of Veterans Affairs Medical Center, Pittsburgh, Pennsylvania, USA.
Department of Orthopaedic Surgery and
Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, USA.
Institute of Molecular Biology and Biotechnology-FORTH, Heraklion, Greece
| | - Luigi A. Nasto
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA.
University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA.
Department of Chemistry, University of California, Riverside, California, USA.
Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Neurology, University of Pittsburgh School of Medicine and Neurology Service, Department of Veterans Affairs Medical Center, Pittsburgh, Pennsylvania, USA.
Department of Orthopaedic Surgery and
Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, USA.
Institute of Molecular Biology and Biotechnology-FORTH, Heraklion, Greece
| | - Claudette M. St Croix
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA.
University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA.
Department of Chemistry, University of California, Riverside, California, USA.
Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Neurology, University of Pittsburgh School of Medicine and Neurology Service, Department of Veterans Affairs Medical Center, Pittsburgh, Pennsylvania, USA.
Department of Orthopaedic Surgery and
Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, USA.
Institute of Molecular Biology and Biotechnology-FORTH, Heraklion, Greece
| | - Arvydas Usas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA.
University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA.
Department of Chemistry, University of California, Riverside, California, USA.
Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Neurology, University of Pittsburgh School of Medicine and Neurology Service, Department of Veterans Affairs Medical Center, Pittsburgh, Pennsylvania, USA.
Department of Orthopaedic Surgery and
Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, USA.
Institute of Molecular Biology and Biotechnology-FORTH, Heraklion, Greece
| | - Nam Vo
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA.
University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA.
Department of Chemistry, University of California, Riverside, California, USA.
Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Neurology, University of Pittsburgh School of Medicine and Neurology Service, Department of Veterans Affairs Medical Center, Pittsburgh, Pennsylvania, USA.
Department of Orthopaedic Surgery and
Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, USA.
Institute of Molecular Biology and Biotechnology-FORTH, Heraklion, Greece
| | - Johnny Huard
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA.
University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA.
Department of Chemistry, University of California, Riverside, California, USA.
Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Neurology, University of Pittsburgh School of Medicine and Neurology Service, Department of Veterans Affairs Medical Center, Pittsburgh, Pennsylvania, USA.
Department of Orthopaedic Surgery and
Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, USA.
Institute of Molecular Biology and Biotechnology-FORTH, Heraklion, Greece
| | - Paula R. Clemens
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA.
University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA.
Department of Chemistry, University of California, Riverside, California, USA.
Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Neurology, University of Pittsburgh School of Medicine and Neurology Service, Department of Veterans Affairs Medical Center, Pittsburgh, Pennsylvania, USA.
Department of Orthopaedic Surgery and
Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, USA.
Institute of Molecular Biology and Biotechnology-FORTH, Heraklion, Greece
| | - Donna B. Stolz
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA.
University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA.
Department of Chemistry, University of California, Riverside, California, USA.
Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Neurology, University of Pittsburgh School of Medicine and Neurology Service, Department of Veterans Affairs Medical Center, Pittsburgh, Pennsylvania, USA.
Department of Orthopaedic Surgery and
Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, USA.
Institute of Molecular Biology and Biotechnology-FORTH, Heraklion, Greece
| | - Denis C. Guttridge
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA.
University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA.
Department of Chemistry, University of California, Riverside, California, USA.
Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Neurology, University of Pittsburgh School of Medicine and Neurology Service, Department of Veterans Affairs Medical Center, Pittsburgh, Pennsylvania, USA.
Department of Orthopaedic Surgery and
Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, USA.
Institute of Molecular Biology and Biotechnology-FORTH, Heraklion, Greece
| | - Simon C. Watkins
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA.
University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA.
Department of Chemistry, University of California, Riverside, California, USA.
Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Neurology, University of Pittsburgh School of Medicine and Neurology Service, Department of Veterans Affairs Medical Center, Pittsburgh, Pennsylvania, USA.
Department of Orthopaedic Surgery and
Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, USA.
Institute of Molecular Biology and Biotechnology-FORTH, Heraklion, Greece
| | - George A. Garinis
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA.
University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA.
Department of Chemistry, University of California, Riverside, California, USA.
Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Neurology, University of Pittsburgh School of Medicine and Neurology Service, Department of Veterans Affairs Medical Center, Pittsburgh, Pennsylvania, USA.
Department of Orthopaedic Surgery and
Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, USA.
Institute of Molecular Biology and Biotechnology-FORTH, Heraklion, Greece
| | - Yinsheng Wang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA.
University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA.
Department of Chemistry, University of California, Riverside, California, USA.
Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Neurology, University of Pittsburgh School of Medicine and Neurology Service, Department of Veterans Affairs Medical Center, Pittsburgh, Pennsylvania, USA.
Department of Orthopaedic Surgery and
Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, USA.
Institute of Molecular Biology and Biotechnology-FORTH, Heraklion, Greece
| | - Laura J. Niedernhofer
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA.
University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA.
Department of Chemistry, University of California, Riverside, California, USA.
Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Neurology, University of Pittsburgh School of Medicine and Neurology Service, Department of Veterans Affairs Medical Center, Pittsburgh, Pennsylvania, USA.
Department of Orthopaedic Surgery and
Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, USA.
Institute of Molecular Biology and Biotechnology-FORTH, Heraklion, Greece
| | - Paul D. Robbins
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA.
University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA.
Department of Chemistry, University of California, Riverside, California, USA.
Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Neurology, University of Pittsburgh School of Medicine and Neurology Service, Department of Veterans Affairs Medical Center, Pittsburgh, Pennsylvania, USA.
Department of Orthopaedic Surgery and
Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, USA.
Institute of Molecular Biology and Biotechnology-FORTH, Heraklion, Greece
| |
Collapse
|