1151
|
Kawahira H, Ma NH, Tzanakakis ES, McMahon AP, Chuang PT, Hebrok M. Combined activities of hedgehog signaling inhibitors regulate pancreas development. Development 2003; 130:4871-9. [PMID: 12917290 DOI: 10.1242/dev.00653] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hedgehog signaling is known to regulate tissue morphogenesis and cell differentiation in a dose-dependent manner. Loss of Indian hedgehog (Ihh) results in reduction in pancreas size, indicating a requirement for hedgehog signaling during pancreas development. By contrast, ectopic expression of sonic hedgehog (Shh) inhibits pancreatic marker expression and results in transformation of pancreatic mesenchyme into duodenal mesoderm. These observations suggest that hedgehog signaling activity has to be regulated tightly to ensure proper pancreas development. We have analyzed the function of two hedgehog inhibitors, Hhip and patched 1 (Ptch), during pancreas formation. Our results indicated that loss of Hhip results in increased hedgehog signaling within the pancreas anlage. Pancreas morphogenesis, islet formation and endocrine cell proliferation is impaired in Hhip mutant embryos. Additional loss of one Ptch allele in Hhip-/-Ptch+/- embryos further impairs pancreatic growth and endodermal cell differentiation. These results demonstrate combined requirements for Hhip and Ptch during pancreas development and point to a dose-dependent response to hedgehog signaling within pancreatic tissue. Reduction of Fgf10 expression in Hhip homozygous mutants suggests that at least some of the observed phenotypes result from hedgehog-mediated inhibition of Fgf signaling at early stages.
Collapse
Affiliation(s)
- Hiroshi Kawahira
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
1152
|
Niemann C, Unden AB, Lyle S, Zouboulis CC, Toftgård R, Watt FM. Indian hedgehog and beta-catenin signaling: role in the sebaceous lineage of normal and neoplastic mammalian epidermis. Proc Natl Acad Sci U S A 2003; 100 Suppl 1:11873-80. [PMID: 12917489 PMCID: PMC304101 DOI: 10.1073/pnas.1834202100] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In mammalian epidermis, the level of beta-catenin signaling regulates lineage selection by stem cell progeny. High levels of beta-catenin stimulate formation of hair follicles, whereas low levels favor differentiation into interfollicular epidermis and sebocytes. In transgenic mouse epidermis, overexpression of beta-catenin leads to formation of hair follicle tumors, whereas overexpression of N-terminally truncated Lef1, which blocks beta-catenin signaling, results in spontaneous sebaceous tumors. Accompanying overexpression of beta-catenin is up-regulation of Sonic hedgehog (SHH) and its receptor, Patched (PTCH/Ptch). In DeltaNLef1 tumors Ptch mRNA is up-regulated in the absence of SHH. We now show that PTCH is up-regulated in both human and mouse sebaceous tumors and is accompanied by overexpression of Indian hedgehog (IHH). In normal sebaceous glands IHH is expressed in differentiated sebocytes and the transcription factor GLI1 is activated in sebocyte progenitors, suggesting a paracrine signaling mechanism. PTCH1 and IHH are up-regulated during human sebocyte differentiation in vitro and inhibition of hedgehog signaling inhibits growth and stimulates differentiation. Overexpression of DeltaNLef1 up-regulates IHH and stimulates proliferation of undifferentiated sebocytes. We present a model of the interactions between beta-catenin and hedgehog signaling in the epidermis in which SHH promotes proliferation of progenitors of the hair lineages whereas IHH stimulates proliferation of sebocyte precursors.
Collapse
Affiliation(s)
- C Niemann
- Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
| | | | | | | | | | | |
Collapse
|
1153
|
Berman DM, Karhadkar SS, Maitra A, Montes De Oca R, Gerstenblith MR, Briggs K, Parker AR, Shimada Y, Eshleman JR, Watkins DN, Beachy PA. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature 2003; 425:846-51. [PMID: 14520411 DOI: 10.1038/nature01972] [Citation(s) in RCA: 961] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2003] [Accepted: 07/25/2003] [Indexed: 12/12/2022]
Abstract
Activation of the Hedgehog (Hh) signalling pathway by sporadic mutations or in familial conditions such as Gorlin's syndrome is associated with tumorigenesis in skin, the cerebellum and skeletal muscle. Here we show that a wide range of digestive tract tumours, including most of those originating in the oesophagus, stomach, biliary tract and pancreas, but not in the colon, display increased Hh pathway activity, which is suppressible by cyclopamine, a Hh pathway antagonist. Cyclopamine also suppresses cell growth in vitro and causes durable regression of xenograft tumours in vivo. Unlike in Gorlin's syndrome tumours, pathway activity and cell growth in these digestive tract tumours are driven by endogenous expression of Hh ligands, as indicated by the presence of Sonic hedgehog and Indian hedgehog transcripts, by the pathway- and growth-inhibitory activity of a Hh-neutralizing antibody, and by the dramatic growth-stimulatory activity of exogenously added Hh ligand. Our results identify a group of common lethal malignancies in which Hh pathway activity, essential for tumour growth, is activated not by mutation but by ligand expression.
Collapse
Affiliation(s)
- David M Berman
- Department of Molecular Biology and Genetics and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1154
|
Abstract
In the Drosophila wing, Hedgehog is made by cells of the posterior compartment and acts as a morphogen to pattern cells of the anterior compartment. High Hedgehog levels instruct L3/4 intervein fate, whereas lower levels instruct L3 vein fate. Transcriptional responses to Hedgehog are mediated by the balance between repressor and activator forms of Cubitus interruptus, CiR and CiA. Hedgehog regulates this balance through its receptor, Patched, which acts through Smoothened and thence a regulatory complex that includes Fused, Costal, Suppressor of Fused and Cubitus interruptus. It is not known how the Hedgehog signal is relayed from Smoothened to the regulatory complex nor how responses to different levels of Hedgehog are implemented. We have used chimeric and deleted forms of Smoothened to explore the signaling functions of Smoothened. A Frizzled/Smoothened chimera containing the Smo cytoplasmic tail (FFS) can induce the full spectrum of Hedgehog responses but is regulated by Wingless rather than Hedgehog. Smoothened whose cytoplasmic tail is replaced with that of Frizzled (SSF) mimics fused mutants, interfering with high Hedgehog responses but with no effect on low Hedgehog responses. The cytoplasmic tail of Smoothened with no transmembrane or extracellular domains (SmoC) interferes with high Hedgehog responses and allows endogenous Smoothened to constitutively initiate low responses. SmoC mimics costal mutants. Genetic interactions suggest that SSF interferes with high signaling by titrating out Smoothened, whereas SmoC drives constitutive low signaling by titrating out Costal. These data suggest that low and high signaling (1) are qualitatively different, (2) are mediated by distinct configurations of the regulatory complex and (3) are initiated by distinct activities of Smoothened. We present a model where low signaling is initiated when a Costal inhibitory site on the Smoothened cytoplasmic tail shifts the regulatory complex to its low state. High signaling is initiated when cooperating Smoothened cytoplasmic tails activate Costal and Fused, driving the regulatory complex to its high state. Thus, two activities of Smoothened translate different levels of Hedgehog into distinct intracellular responses.
Collapse
Affiliation(s)
- Joan E Hooper
- Department of Cell and Structural Biology and Program in Cell and Developmental Biology, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262, USA.
| |
Collapse
|
1155
|
Wolff C, Roy S, Ingham PW. Multiple muscle cell identities induced by distinct levels and timing of hedgehog activity in the zebrafish embryo. Curr Biol 2003; 13:1169-81. [PMID: 12867027 DOI: 10.1016/s0960-9822(03)00461-5] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND In the zebrafish embryo, the differentiation of distinct muscle fiber types has been shown to require the activity of members of the Hedgehog (Hh) family of secreted proteins. Evidence from other systems suggests that Hh behaves as a morphogen, inducing cell fates in a concentration-dependent manner. Exactly how Hh signaling contributes to the generation of the correct pattern of cells within the zebrafish myotome, however, has remained obscure. RESULTS Here, we distinguish four distinct myotomal cell identities in the zebrafish embryo on the basis of their position, morphology, and gene expression patterns. Using morpholino oligonucleotides (MOs) to diminish the activities of the Hh pathway components Patched (Ptc), Fused (Fu), and Suppressor of Fused (Su(fu)), and the teratogen cyclopamine to inhibit the Hh transducer Smoothened (Smo), we show that the appropriate differentiation of each cell type depends upon the levels and range of Hh signaling within the myotome. In addition, by transiently modulating Hh activity by using cyclopamine and a heat-inducible transgene, we demonstrate that the competence of myotomal cells to respond to Hh changes with time. Finally, we show that the Gli1 and Gli2 transcription factors mediate most of the response of myotomal cells to Hh. CONCLUSIONS Hh signaling acts in a dosage-dependent manner to specify cell fate in the zebrafish myotome. Allocation of the correct number of cells to a specific fate depends upon the range of Hh activity. The timing of exposure to Hh determines the response of cells to the signal.
Collapse
Affiliation(s)
- Christian Wolff
- MRC Intercellular Signalling Group, Centre for Developmental Genetics, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | | | | |
Collapse
|
1156
|
Bak M, Hansen C, Tommerup N, Larsen LA. The Hedgehog signaling pathway--implications for drug targets in cancer and neurodegenerative disorders. Pharmacogenomics 2003; 4:411-29. [PMID: 12831321 DOI: 10.1517/phgs.4.4.411.22751] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Hedgehog (Hh) pathway is a highly conserved signaling cascade involved in many developmental processes. Among others, these include patterning of the ventral neural tube and establishment of left-right asymmetry of the embryo. Additionally, the pathway regulates the development of numerous tissues and cell types. Mutations in elements of the pathway are associated with congenital diseases and defects, and ectopic Hh signaling activity is implicated in the development of a number of neoplasms. While little is known of Hh signaling function in the adult organism, a role of the pathway in maintenance of adult organs and cell types, including several neuronal subtypes in the central nervous system, is beginning to emerge. Elements of the Hh pathway are therefore potential drug targets for the treatment of cancers and degenerative diseases like Parkinson's disease, and the recent isolation of synthetic molecules capable of modulating the activity of the Hh cascade through a direct interaction with elements of the pathway is promising.
Collapse
Affiliation(s)
- Mads Bak
- Wilhelm Johannsen Centre for Functional Genome Research, Department of Medical Genetics, IMBG, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
1157
|
Affiliation(s)
- Iswar K Hariharan
- Massachusetts General Hospital Cancer Center, Charlestown, Mass., and Harvard Medical School, Boston, USA
| | | |
Collapse
|
1158
|
Zhu AJ, Zheng L, Suyama K, Scott MP. Altered localization of Drosophila Smoothened protein activates Hedgehog signal transduction. Genes Dev 2003; 17:1240-52. [PMID: 12730121 PMCID: PMC196058 DOI: 10.1101/gad.1080803] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Hedgehog (Hh) signaling is critical for many developmental events and must be restrained to prevent cancer. A transmembrane protein, Smoothened (Smo), is necessary to transcriptionally activate Hh target genes. Smo activity is blocked by the Hh transmembrane receptor Patched (Ptc). The reception of a Hh signal overcomes Ptc inhibition of Smo, activating transcription of target genes. Using Drosophila salivary gland cells in vivo and in vitro as a new assay for Hh signal transduction, we investigated the regulation of Hh-triggered Smo stabilization and relocalization. Hh causes Smo to move from internal membranes to the cell surface. Relocalization is protein synthesis-independent and occurs within 30 min of Hh treatment. Ptc and the kinesin-related protein Costal2 (Cos2) cause internalization of Smo, a process that is dependent on both actin and microtubules. Disruption of endocytosis by dominant negative dynamin or Rab5 prevents Smo internalization. Fly versions of Smo mutants associated with human tumors are constitutively present at the cell surface. Forced localization of Smo at the plasma membrane activates Hh target gene transcription. Conversely, trapping of activated Smo mutants in the ER prevents Hh target gene activation. Control of Smo localization appears to be a crucial step in Hh signaling in Drosophila.
Collapse
Affiliation(s)
- Alan Jian Zhu
- Departments of Developmental Biology and Genetics, Howard Hughes Medical Institute, Beckman Center B300, Stanford University School of Medicine, Stanford, California 94305-5329, USA
| | | | | | | |
Collapse
|
1159
|
Williams JA, Guicherit OM, Zaharian BI, Xu Y, Chai L, Wichterle H, Kon C, Gatchalian C, Porter JA, Rubin LL, Wang FY. Identification of a small molecule inhibitor of the hedgehog signaling pathway: effects on basal cell carcinoma-like lesions. Proc Natl Acad Sci U S A 2003; 100:4616-21. [PMID: 12679522 PMCID: PMC153604 DOI: 10.1073/pnas.0732813100] [Citation(s) in RCA: 233] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The link between basal cell carcinoma (BCC) and aberrant activation of the Hedgehog (Hh) signaling pathway has been well established in humans and in mouse models. Here we report the development of assays, including two novel in vitro BCC models, which allowed us to screen for Hh inhibitors and test their validity as potential treatments for BCC. We identified a novel small molecule Hh inhibitor (CUR61414) that can block elevated Hh signaling activity resulting from oncogenic mutations in Patched-1. Moreover, CUR61414 can suppress proliferation and induce apoptosis of basaloid nests in the BCC model systems, whereas having no effect on normal skin cells. These findings directly demonstrate that the use of Hh inhibitors could be a valid therapeutic approach for treating BCC.
Collapse
|
1160
|
Charron F, Stein E, Jeong J, McMahon AP, Tessier-Lavigne M. The morphogen sonic hedgehog is an axonal chemoattractant that collaborates with netrin-1 in midline axon guidance. Cell 2003; 113:11-23. [PMID: 12679031 DOI: 10.1016/s0092-8674(03)00199-5] [Citation(s) in RCA: 517] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Developing axons are guided to their targets by attractive and repulsive guidance cues. In the embryonic spinal cord, the floor plate chemoattractant Netrin-1 is required to guide commissural neuron axons to the midline. However, genetic evidence suggests that other chemoattractant(s) are also involved. We show that the morphogen Sonic hedgehog (Shh) can mimic the additional chemoattractant activity of the floor plate in vitro and can act directly as a chemoattractant on isolated axons. Cyclopamine-mediated inhibition of the Shh signaling mediator Smoothened (Smo) or conditional inactivation of Smo in commissural neurons indicate that Smo activity is important for the additional chemoattractant activity of the floor plate in vitro and for the normal projection of commissural axons to the floor plate in vivo. These results provide evidence that Shh, acting via Smo, is a midline-derived chemoattractant for commissural axons and show that a morphogen can also act as an axonal chemoattractant.
Collapse
Affiliation(s)
- Frédéric Charron
- Department of Biological Sciences, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
1161
|
Perron M, Boy S, Amato MA, Viczian A, Koebernick K, Pieler T, Harris WA. A novel function for Hedgehog signalling in retinal pigment epithelium differentiation. Development 2003; 130:1565-77. [PMID: 12620982 DOI: 10.1242/dev.00391] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sonic hedgehog is involved in eye field separation along the proximodistal axis. We show that Hh signalling continues to be important in defining aspects of the proximodistal axis as the optic vesicle and optic cup mature. We show that two other Hedgehog proteins, Banded hedgehog and Cephalic hedgehog, related to the mouse Indian hedgehog and Desert hedgehog, respectively, are strongly expressed in the central retinal pigment epithelium but excluded from the peripheral pigment epithelium surrounding the ciliary marginal zone. By contrast, downstream components of the Hedgehog signalling pathway, Gli2, Gli3 and X-Smoothened, are expressed in this narrow peripheral epithelium. We show that this zone contains cells that are in the proliferative state. This equivalent region in the adult mammalian eye, the pigmented ciliary epithelium, has been identified as a zone in which retinal stem cells reside. These data, combined with double labelling and the use of other retinal pigment epithelium markers, show that the retinal pigment epithelium of tadpole embryos has a molecularly distinct peripheral to central axis. In addition, Gli2, Gli3 and X-Smoothened are also expressed in the neural retina, in the most peripheral region of the ciliary marginal zone, where retinal stem cells are found in Xenopus, suggesting that they are good markers for retinal stem cells. To test the role of the Hedgehog pathway at different stages of retinogenesis, we activated the pathway by injecting a dominant-negative form of PKA or blocking it by treating embryos with cyclopamine. Embryos injected or treated at early stages display clear proximodistal defects in the retina. Interestingly, the main phenotype of embryos treated with cyclopamine at late stages is a severe defect in RPE differentiation. This study thus provides new insights into the role of Hedgehog signalling in the formation of the proximodistal axis of the eye and the differentiation of retinal pigment epithelium.
Collapse
Affiliation(s)
- Muriel Perron
- Laboratoire d'Embryologie Moléculaire, Bat. 445 Université Paris XI, 91405 Orsay, France.
| | | | | | | | | | | | | |
Collapse
|
1162
|
Cooper MK, Wassif CA, Krakowiak PA, Taipale J, Gong R, Kelley RI, Porter FD, Beachy PA. A defective response to Hedgehog signaling in disorders of cholesterol biosynthesis. Nat Genet 2003; 33:508-13. [PMID: 12652302 DOI: 10.1038/ng1134] [Citation(s) in RCA: 302] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2002] [Accepted: 02/28/2003] [Indexed: 11/08/2022]
Abstract
Smith-Lemli-Opitz syndrome (SLOS), desmosterolosis and lathosterolosis are human syndromes caused by defects in the final stages of cholesterol biosynthesis. Many of the developmental malformations in these syndromes occur in tissues and structures whose embryonic patterning depends on signaling by the Hedgehog (Hh) family of secreted proteins. Here we report that response to the Hh signal is compromised in mutant cells from mouse models of SLOS and lathosterolosis and in normal cells pharmacologically depleted of sterols. We show that decreasing levels of cellular sterols correlate with diminishing responsiveness to the Hh signal. This diminished response occurs at sterol levels sufficient for normal autoprocessing of Hh protein, which requires cholesterol as cofactor and covalent adduct. We further find that sterol depletion affects the activity of Smoothened (Smo), an essential component of the Hh signal transduction apparatus.
Collapse
Affiliation(s)
- Michael K Cooper
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
1163
|
Watkins DN, Berman DM, Burkholder SG, Wang B, Beachy PA, Baylin SB. Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature 2003; 422:313-7. [PMID: 12629553 DOI: 10.1038/nature01493] [Citation(s) in RCA: 801] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2002] [Accepted: 02/12/2003] [Indexed: 11/09/2022]
Abstract
Embryonic signalling pathways regulate progenitor cell fates in mammalian epithelial development and cancer. Prompted by the requirement for sonic hedgehog (Shh) signalling in lung development, we investigated a role for this pathway in regeneration and carcinogenesis of airway epithelium. Here we demonstrate extensive activation of the hedgehog (Hh) pathway within the airway epithelium during repair of acute airway injury. This mode of Hh signalling is characterized by the elaboration and reception of the Shh signal within the epithelial compartment, and immediately precedes neuroendocrine differentiation. We reveal a similar pattern of Hh signalling in airway development during normal differentiation of pulmonary neuroendocrine precursor cells, and in a subset of small-cell lung cancer (SCLC), a highly aggressive and frequently lethal human tumour with primitive neuroendocrine features. These tumours maintain their malignant phenotype in vitro and in vivo through ligand-dependent Hh pathway activation. We propose that some types of SCLC might recapitulate a critical, Hh-regulated event in airway epithelial differentiation. This requirement for Hh pathway activation identifies a common lethal malignancy that may respond to pharmacological blockade of the Hh signalling pathway.
Collapse
Affiliation(s)
- D Neil Watkins
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA.
| | | | | | | | | | | |
Collapse
|
1164
|
Ellison DW, Clifford SC, Gajjar A, Gilbertson RJ. What's new in neuro-oncology? Recent advances in medulloblastoma. Eur J Paediatr Neurol 2003; 7:53-66. [PMID: 12697428 DOI: 10.1016/s1090-3798(03)00014-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- David W Ellison
- The Northern Institute for Cancer Research, University of Newcastle upon Tyne, The Medical School, Newcastle upon Tyne, UK.
| | | | | | | |
Collapse
|
1165
|
Abstract
Small-molecule antagonists of Hedgehog-pathway signaling, such as cyclopamine, have been known for some time. Now, small-molecule agonists of the Hedgehog pathway have also been identified. The finding that both antagonists and agonists target the protein Smoothened supports the emerging hypothesis that Smoothened may be regulated by endogenous small molecules.
Collapse
Affiliation(s)
- Randall W King
- Institute of Chemistry and Cell Biology, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
1166
|
Frank-Kamenetsky M, Zhang XM, Bottega S, Guicherit O, Wichterle H, Dudek H, Bumcrot D, Wang FY, Jones S, Shulok J, Rubin LL, Porter JA. Small-molecule modulators of Hedgehog signaling: identification and characterization of Smoothened agonists and antagonists. J Biol 2002; 1:10. [PMID: 12437772 PMCID: PMC137065 DOI: 10.1186/1475-4924-1-10] [Citation(s) in RCA: 381] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2002] [Revised: 09/18/2002] [Accepted: 10/11/2002] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The Hedgehog (Hh) signaling pathway is vital to animal development as it mediates the differentiation of multiple cell types during embryogenesis. In adults, Hh signaling can be activated to facilitate tissue maintenance and repair. Moreover, stimulation of the Hh pathway has shown therapeutic efficacy in models of neuropathy. The underlying mechanisms of Hh signal transduction remain obscure, however: little is known about the communication between the pathway suppressor Patched (Ptc), a multipass transmembrane protein that directly binds Hh, and the pathway activator Smoothened (Smo), a protein that is related to G-protein-coupled receptors and is capable of constitutive activation in the absence of Ptc. RESULTS We have identified and characterized a synthetic non-peptidyl small molecule, Hh-Ag, that acts as an agonist of the Hh pathway. This Hh agonist promotes cell-type-specific proliferation and concentration-dependent differentiation in vitro, while in utero it rescues aspects of the Hh-signaling defect in Sonic hedgehog-null, but not Smo-null, mouse embryos. Biochemical studies with Hh-Ag, the Hh-signaling antagonist cyclopamine, and a novel Hh-signaling inhibitor Cur61414, reveal that the action of all these compounds is independent of Hh-protein ligand and of the Hh receptor Ptc, as each binds directly to Smo. CONCLUSIONS Smo can have its activity modulated directly by synthetic small molecules. These studies raise the possibility that Hh signaling may be regulated by endogenous small molecules in vivo and provide potent compounds with which to test the therapeutic value of activating the Hh-signaling pathway in the treatment of traumatic and chronic degenerative conditions.
Collapse
MESH Headings
- Animals
- Antibodies/chemistry
- Antibodies/pharmacology
- Antigen-Antibody Complex/chemistry
- Antigen-Antibody Complex/pharmacology
- Antigen-Antibody Complex/physiology
- Binding, Competitive
- Cell Differentiation/drug effects
- Cell Line
- Cell Membrane/metabolism
- Cell Proliferation/drug effects
- Cells, Cultured
- Central Nervous System/drug effects
- Central Nervous System/metabolism
- Cerebellum/cytology
- Chick Embryo
- Embryo, Mammalian/chemistry
- Embryo, Mammalian/drug effects
- Embryo, Mammalian/metabolism
- Female
- Hedgehog Proteins
- Intracellular Signaling Peptides and Proteins
- Membrane Proteins/physiology
- Mice
- Mice, Inbred C3H
- Molecular Structure
- Neurons/chemistry
- Neurons/drug effects
- Neurons/metabolism
- Organ Culture Techniques
- Patched Receptors
- Patched-1 Receptor
- Peptides
- Pregnancy
- Rats
- Receptors, Cell Surface
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/physiology
- Signal Transduction/drug effects
- Smoothened Receptor
- Structure-Activity Relationship
- Trans-Activators/immunology
- Trans-Activators/metabolism
- Trans-Activators/pharmacology
- Trans-Activators/physiology
Collapse
Affiliation(s)
| | | | - Steve Bottega
- Curis, Inc., 61 Moulton Street, Cambridge, MA 02138, USA
| | | | - Hynek Wichterle
- Columbia University, College of Physicians and Surgeons, 701 West 168 Street, New York, NY 10032, USA
| | - Henryk Dudek
- Curis, Inc., 61 Moulton Street, Cambridge, MA 02138, USA
| | - David Bumcrot
- Curis, Inc., 61 Moulton Street, Cambridge, MA 02138, USA
| | - Frank Y Wang
- Curis, Inc., 61 Moulton Street, Cambridge, MA 02138, USA
| | - Simon Jones
- Curis, Inc., 61 Moulton Street, Cambridge, MA 02138, USA
| | - Janine Shulok
- Curis, Inc., 61 Moulton Street, Cambridge, MA 02138, USA
| | - Lee L Rubin
- Curis, Inc., 61 Moulton Street, Cambridge, MA 02138, USA
| | | |
Collapse
|