1151
|
Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity. Proc Natl Acad Sci U S A 2017; 114:E761-E770. [PMID: 28096382 DOI: 10.1073/pnas.1620433114] [Citation(s) in RCA: 307] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although immunotherapy by PD-1 blockade has dramatically improved the survival rate of cancer patients, further improvement in efficacy is required to reduce the fraction of less sensitive patients. In mouse models of PD-1 blockade therapy, we found that tumor-reactive cytotoxic T lymphocytes (CTLs) in draining lymph nodes (DLNs) carry increased mitochondrial mass and more reactive oxygen species (ROS). We show that ROS generation by ROS precursors or indirectly by mitochondrial uncouplers synergized the tumoricidal activity of PD-1 blockade by expansion of effector/memory CTLs in DLNs and within the tumor. These CTLs carry not only the activation of mechanistic target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) but also an increment of their downstream transcription factors such as PPAR-gamma coactivator 1α (PGC-1α) and T-bet. Furthermore, direct activators of mTOR, AMPK, or PGC-1α also synergized the PD-1 blockade therapy whereas none of above-mentioned chemicals alone had any effects on tumor growth. These findings will pave a way to developing novel combinatorial therapies with PD-1 blockade.
Collapse
|
1152
|
Miyamoto N, Mochizuki S, Fujii S, Yoshida K, Sakurai K. Adjuvant Activity Enhanced by Cross-Linked CpG-Oligonucleotides in β-Glucan Nanogel and Its Antitumor Effect. Bioconjug Chem 2017; 28:565-573. [PMID: 27951636 DOI: 10.1021/acs.bioconjchem.6b00675] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cancer vaccine has the ability to directly eradicate tumor cells by creating and activating cytotoxic T lymphocytes (CTLs). To achieve efficient CTL activity and to induce Th1 responses, it is essential to administer an appropriate adjuvant as well as an antigen. CpG-ODN is known as a ligand of Toll-like receptor 9 (TLR9) and strongly induces Th1 responses. In our previous study, we developed a CpG-ODN delivery system by use of the formation of complexes between ODN and a β-glucan SPG, denoted as CpG/SPG, and demonstrated that CpG/SPG induces high Th1 responses. In this study, we created a nanogel made from CpG/SPG complexes through DNA-DNA hybridization (cross-linked (CL)-CpG). Immunization with CL-CpG induced much stronger antigen-specific Th1 responses in combination with the antigenic protein ovalbumin (OVA) than that with CpG/SPG. Mice preimmunized with CL-CpG and OVA exhibited a long delay in tumor growth and an improved survival rate after tumor inoculation. These immune inductions can be attributed to the improvement of cellular uptake by the combination of increased size and the cluster effect of the β-glucan recognition site in the nanogel structure. In other words, the particle nature of CL-CpG, instead of the semiflexible rod conformation of CpG/SPG, enhanced the efficacy of a cancer vaccine. The present results indicate that CL-CpG can be used as a potent vaccine adjuvant for the treatment of cancers and infectious diseases.
Collapse
Affiliation(s)
- Noriko Miyamoto
- The University of Kitakyushu , Department of Chemistry and Biochemistry, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, Japan 808-0135
| | - Shinichi Mochizuki
- The University of Kitakyushu , Department of Chemistry and Biochemistry, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, Japan 808-0135
| | - Shota Fujii
- The University of Kitakyushu , Department of Chemistry and Biochemistry, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, Japan 808-0135
| | - Kenta Yoshida
- The University of Kitakyushu , Department of Chemistry and Biochemistry, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, Japan 808-0135
| | - Kazuo Sakurai
- The University of Kitakyushu , Department of Chemistry and Biochemistry, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, Japan 808-0135
| |
Collapse
|
1153
|
30 Years of NF-κB: A Blossoming of Relevance to Human Pathobiology. Cell 2017; 168:37-57. [PMID: 28086098 DOI: 10.1016/j.cell.2016.12.012] [Citation(s) in RCA: 1459] [Impact Index Per Article: 182.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/08/2016] [Accepted: 12/08/2016] [Indexed: 12/15/2022]
Abstract
NF-κB was discovered 30 years ago as a rapidly inducible transcription factor. Since that time, it has been found to have a broad role in gene induction in diverse cellular responses, particularly throughout the immune system. Here, we summarize elaborate regulatory pathways involving this transcription factor and use recent discoveries in human genetic diseases to place specific proteins within their relevant medical and biological contexts.
Collapse
|
1154
|
Rakhmilevich AL, Felder M, Lever L, Slowinski J, Rasmussen K, Hoefges A, Van De Voort TJ, Loibner H, Korman AJ, Gillies SD, Sondel PM. Effective Combination of Innate and Adaptive Immunotherapeutic Approaches in a Mouse Melanoma Model. THE JOURNAL OF IMMUNOLOGY 2017; 198:1575-1584. [PMID: 28062694 DOI: 10.4049/jimmunol.1601255] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/02/2016] [Indexed: 01/06/2023]
Abstract
Most cancer immunotherapies include activation of either innate or adaptive immune responses. We hypothesized that the combined activation of both innate and adaptive immunity will result in better antitumor efficacy. We have previously shown the synergy of an agonistic anti-CD40 mAb (anti-CD40) and CpG-oligodeoxynucleotides in activating macrophages to induce tumor cell killing in mice. Separately, we have shown that a direct intratumoral injection of immunocytokine (IC), an anti-GD2 Ab linked to IL-2, can activate T and NK cells resulting in antitumor effects. We hypothesized that activation of macrophages with anti-CD40/CpG, and NK cells with IC, would cause innate tumor destruction, leading to increased presentation of tumor Ags and adaptive T cell activation; the latter could be further augmented by anti-CTLA-4 Ab to achieve tumor eradication and immunological memory. Using the mouse GD2+ B78 melanoma model, we show that anti-CD40/CpG treatment led to upregulation of T cell activation markers in draining lymph nodes. Anti-CD40/CpG + IC/anti-CTLA-4 synergistically induced regression of advanced s.c. tumors, resulting in cure of some mice and development of immunological memory against B78 and wild type B16 tumors. Although the antitumor effect of anti-CD40/CpG did not require T cells, the antitumor effect of IC/anti-CTLA-4 was dependent on T cells. The combined treatment with anti-CD40/CpG + IC/anti-CTLA-4 reduced T regulatory cells in the tumors and was effective against distant solid tumors and lung metastases. We suggest that a combination of anti-CD40/CpG and IC/anti-CTLA-4 should be developed for clinical testing as a potentially effective novel immunotherapy strategy.
Collapse
Affiliation(s)
- Alexander L Rakhmilevich
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705; .,Paul P. Carbone Comprehensive Cancer Center, Madison, WI 53705
| | - Mildred Felder
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53705
| | - Lauren Lever
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705
| | - Jacob Slowinski
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705
| | - Kayla Rasmussen
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705
| | - Anna Hoefges
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705
| | | | | | - Alan J Korman
- Bristol-Myers Squibb Company, Redwood City, CA 94063
| | | | - Paul M Sondel
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705.,Paul P. Carbone Comprehensive Cancer Center, Madison, WI 53705.,Department of Pediatrics, University of Wisconsin, Madison, WI 53705
| |
Collapse
|
1155
|
Sistare FD, Mattes WB, LeCluyse EL. The Promise of New Technologies to Reduce, Refine, or Replace Animal Use while Reducing Risks of Drug Induced Liver Injury in Pharmaceutical Development. ILAR J 2017; 57:186-211. [DOI: 10.1093/ilar/ilw025] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 07/25/2016] [Accepted: 09/13/2016] [Indexed: 12/19/2022] Open
|
1156
|
Affiliation(s)
- Rong-Fu Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
- Institute of Biosciences and Technology, College of Medicine, Texas A & M University, Houston, Texas 77030, USA
| |
Collapse
|
1157
|
Hsu DC, Ananworanich J. Immune Interventions to Eliminate the HIV Reservoir. Curr Top Microbiol Immunol 2017; 417:181-210. [PMID: 29071472 DOI: 10.1007/82_2017_70] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inducing HIV remission is a monumental challenge. A potential strategy is the "kick and kill" approach where latently infected cells are first activated to express viral proteins and then eliminated through cytopathic effects of HIV or immune-mediated killing. However, pre-existing immune responses to HIV cannot eradicate HIV infection due to the presence of escape variants, inadequate magnitude, and breadth of responses as well as immune exhaustion. The two major approaches to boost immune-mediated elimination of infected cells include enhancing cytotoxic T lymphocyte mediated killing and harnessing antibodies to eliminate HIV. Specific strategies include increasing the magnitude and breadth of T cell responses through therapeutic vaccinations, reversing the effects of T cell exhaustion using immune checkpoint inhibition, employing bispecific T cell targeting immunomodulatory proteins or dual-affinity re-targeting molecules to direct cytotoxic T lymphocytes to virus-expressing cells and broadly neutralizing antibody infusions. Methods to steer immune responses to tissue sites where latently infected cells are located need to be further explored. Ultimately, strategies to induce HIV remission must be tolerable, safe, and scalable in order to make a global impact.
Collapse
Affiliation(s)
- Denise C Hsu
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.,Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Jintanat Ananworanich
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA. .,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA. .,US Military HIV Research Program (MHRP), 6720-A Rockledge Drive, Suite 400, Bethesda, MD, 20817, USA.
| |
Collapse
|
1158
|
王 维, 王 丹, 秦 国, 陈 新, 张 毅. Immune-checkpoint blockade in colorectal cancer: Current research and future perspectives. Shijie Huaren Xiaohua Zazhi 2017; 25:1714. [DOI: 10.11569/wcjd.v25.i19.1714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
1159
|
Cruz CRY, Bollard CM. Adoptive Immunotherapy For Leukemia With Ex vivo Expanded T Cells. Curr Drug Targets 2017; 18:271-280. [PMID: 26648070 PMCID: PMC5016253 DOI: 10.2174/1389450117666160209143529] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/31/2015] [Accepted: 06/16/2016] [Indexed: 11/22/2022]
Abstract
The development of novel T cell therapies to target leukemia has facilitated the translation of this approach for hematologic malignancies. Different methods of manufacturing leukemia-specific T cells have evolved, along with additional measures to increase the safety of this therapy. This is an overview of expanded T cell therapeutics with a focus on how the manufacturing strategies have been refined, and where the research is heading.
Collapse
Affiliation(s)
- Conrad Russell Y. Cruz
- Program for Cell Enhancement and Technologies for Immunotherapy (CETI), Children’s National Health System, USA
| | - Catherine M. Bollard
- Program for Cell Enhancement and Technologies for Immunotherapy (CETI), Children’s National Health System, USA
| |
Collapse
|
1160
|
Abstract
Co-inhibitory receptors play a key role in regulating T cell responses and maintaining immune homeostasis. Their inhibitory function prevents autoimmune responses but also restricts the ability of T cells to mount effective immune responses against tumors or persistent pathogens. T cells express a module of co-inhibitory receptors, which display great diversity in expression, structure, and function. Here, we focus on the co-inhibitory receptors Tim-3, Lag-3, and TIGIT and how they regulate T cell function, maintenance of self-tolerance, their role in regulating ongoing T cell responses at peripheral tissues, and their synergistic effects in regulating autoimmunity and antitumor responses.
Collapse
Affiliation(s)
- Nicole Joller
- Institute for Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Vijay K Kuchroo
- Harvard Medical School and Brigham & Women's Hospital, Evergrande Center for Immunologic Diseases, Boston, MA, USA.
| |
Collapse
|
1161
|
Porta C, Toscani I, Czarnecka AM, Szczylik CA. Immuno-oncology for renal cell carcinoma treatment: future perspectives for combinations and sequences with molecularly targeted agents. Expert Opin Biol Ther 2016; 17:151-162. [PMID: 27960591 DOI: 10.1080/14712598.2017.1271869] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION From a theoretical viewpoint, combining molecularly targeted agents endowed with antiangiogenic properties with immunotherapy makes sense in treatment of metastatic renal cell carcinoma (RCC); this neoplasm is highly angiogenesis-dependent, as well as potentially immunogenic. Areas covered: The authors performed a literature search looking for clinical trials aimed at evaluating efficacy and tolerability of combinations (or sequences) of molecularly targeted agents and different immunotherapeutic approaches in metastatic RCC. Expert opinion: Combinations of molecularly targeted agents with old immunotherapeutics (i.e., cytokines) seem to add little to the presently available treatment standards (mainly monotherapy with targeted agents). Newer combinations with immune checkpoint inhibitors are promising but cumulative toxicity is an important issue, although highly dependent on the different companion drugs. Combinations with vaccines are ongoing, but first available data are not encouraging. A more thorough comprehension of the complex effects of these combinations on the immune system is mandatory to develop less empiric treatments.
Collapse
Affiliation(s)
- Camillo Porta
- a Medical Oncology , I.R.C.C.S. San Matteo University Hospital Foundation , Pavia , Italy.,b Italian Group of Onco-Nephrology/Gruppo Italiano di Onco-Nefrologia (G.I.O.N.) , Pavia , Italy
| | - Ilaria Toscani
- a Medical Oncology , I.R.C.C.S. San Matteo University Hospital Foundation , Pavia , Italy
| | - Anna M Czarnecka
- c Department of Oncology , Military Institute of Medicine , Warsaw , Poland
| | - Cezary A Szczylik
- c Department of Oncology , Military Institute of Medicine , Warsaw , Poland
| |
Collapse
|
1162
|
Duan X, Chan C, Guo N, Han W, Weichselbaum RR, Lin W. Photodynamic Therapy Mediated by Nontoxic Core-Shell Nanoparticles Synergizes with Immune Checkpoint Blockade To Elicit Antitumor Immunity and Antimetastatic Effect on Breast Cancer. J Am Chem Soc 2016; 138:16686-16695. [PMID: 27976881 PMCID: PMC5667903 DOI: 10.1021/jacs.6b09538] [Citation(s) in RCA: 349] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An effective, nontoxic, tumor-specific immunotherapy is the ultimate goal in the battle against cancer, especially the metastatic disease. Checkpoint blockade-based immunotherapies have been shown to be extraordinarily effective but benefit only the minority of patients whose tumors have been pre-infiltrated by T cells. Here, we show that Zn-pyrophosphate (ZnP) nanoparticles loaded with the photosensitizer pyrolipid (ZnP@pyro) can kill tumor cells upon irradiation with light directly by inducing apoptosis and/or necrosis and indirectly by disrupting tumor vasculature and increasing tumor immunogenicity. Furthermore, immunogenic ZnP@pyro photodynamic therapy (PDT) treatment sensitizes tumors to checkpoint inhibition mediated by a PD-L1 antibody, not only eradicating the primary 4T1 breast tumor but also significantly preventing metastasis to the lung. The abscopal effects on both 4T1 and TUBO bilateral syngeneic mouse models further demonstrate that ZnP@pyro PDT treatment combined with anti-PD-L1 results in the eradication of light-irradiated primary tumors and the complete inhibition of untreated distant tumors by generating a systemic tumor-specific cytotoxic T cell response. These findings indicate that nanoparticle-mediated PDT can potentiate the systemic efficacy of checkpoint blockade immunotherapies by activating the innate and adaptive immune systems in tumor microenvironment.
Collapse
Affiliation(s)
- Xiaopin Duan
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Christina Chan
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Nining Guo
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
- Department of Radiation and Cellular Oncology and The Ludwig Center for Metastasis Research, The University of Chicago, 5758 South Maryland Avenue, Chicago, Illinois 60637, United States
| | - Wenbo Han
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Ralph R. Weichselbaum
- Department of Radiation and Cellular Oncology and The Ludwig Center for Metastasis Research, The University of Chicago, 5758 South Maryland Avenue, Chicago, Illinois 60637, United States
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
1163
|
Huguet F, Tavitian S. Emerging biological therapies to treat acute lymphoblastic leukemia. Expert Opin Emerg Drugs 2016; 22:107-121. [DOI: 10.1080/14728214.2016.1257606] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
1164
|
Xia Q, Geng F, Zhang FF, Liu CL, Xu P, Lu ZZ, Xie Y, Sun B, Wu H, Yu B, Kong W, Yu XH, Zhang HH. Cyclophosphamide enhances anti-tumor effects of a fibroblast activation protein α-based DNA vaccine in tumor-bearing mice with murine breast carcinoma. Immunopharmacol Immunotoxicol 2016; 39:37-44. [PMID: 28004985 DOI: 10.1080/08923973.2016.1269337] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Cyclophosphamide (CY) is a DNA alkylating agent, which is widely used with other chemotherapy drugs in the treatment of various types of cancer. It can be used not only as a chemotherapeutic but also as an immunomodulatory agent to inhibit IL-10 expression and T regulatory cells (Tregs). Fibroblast activation protein α (FAPα) is expressed in cancer-associated fibroblasts in the tumor microenvironment. Immunotherapy based on FAPα, as a tumor stromal antigen, typically induces specific immune response targeting the tumor microenvironment. This study evaluated the efficacy of a previously unreported CY combination strategy to enhance the limited anti-tumor effect of a DNA vaccine targeting FAPα. The results suggested CY administration could promote the percentage of splenic CD8+ T cells and decrease the proportion of CD4 + CD25 + Foxp3+ Tregs in spleen. In tumor tissues, levels of immunosuppressive cytokines including IL-10 and CXCL-12 were also reduced. Meanwhile, the CY combination did not impair the FAPα-specific immunity induced by the DNA vaccine and further reduced tumor stromal factors. Most importantly, FAP-vaccinated mice also treated with CY chemotherapy showed a marked suppression of tumor growth (inhibition ratio =80%) and a prolongation of survival time. Thus, the combination of FAPα immunotherapy and chemotherapy with CY offers new insights into improving cancer therapies.
Collapse
Affiliation(s)
- Qiu Xia
- a National Engineering Laboratory for AIDS Vaccine, School of Life Science , Jilin University , Changchun , P. R. China
| | - Fei Geng
- a National Engineering Laboratory for AIDS Vaccine, School of Life Science , Jilin University , Changchun , P. R. China
| | - Fang-Fang Zhang
- a National Engineering Laboratory for AIDS Vaccine, School of Life Science , Jilin University , Changchun , P. R. China
| | - Chen-Lu Liu
- a National Engineering Laboratory for AIDS Vaccine, School of Life Science , Jilin University , Changchun , P. R. China
| | - Ping Xu
- a National Engineering Laboratory for AIDS Vaccine, School of Life Science , Jilin University , Changchun , P. R. China
| | - Zhen-Zhen Lu
- a National Engineering Laboratory for AIDS Vaccine, School of Life Science , Jilin University , Changchun , P. R. China
| | - Yu Xie
- a National Engineering Laboratory for AIDS Vaccine, School of Life Science , Jilin University , Changchun , P. R. China
| | - Bo Sun
- a National Engineering Laboratory for AIDS Vaccine, School of Life Science , Jilin University , Changchun , P. R. China
| | - Hui Wu
- a National Engineering Laboratory for AIDS Vaccine, School of Life Science , Jilin University , Changchun , P. R. China
| | - Bin Yu
- a National Engineering Laboratory for AIDS Vaccine, School of Life Science , Jilin University , Changchun , P. R. China
| | - Wei Kong
- a National Engineering Laboratory for AIDS Vaccine, School of Life Science , Jilin University , Changchun , P. R. China
| | - Xiang-Hui Yu
- a National Engineering Laboratory for AIDS Vaccine, School of Life Science , Jilin University , Changchun , P. R. China
| | - Hai-Hong Zhang
- a National Engineering Laboratory for AIDS Vaccine, School of Life Science , Jilin University , Changchun , P. R. China
| |
Collapse
|
1165
|
Pichler R, Gruenbacher G, Culig Z, Brunner A, Fuchs D, Fritz J, Gander H, Rahm A, Thurnher M. Intratumoral Th2 predisposition combines with an increased Th1 functional phenotype in clinical response to intravesical BCG in bladder cancer. Cancer Immunol Immunother 2016; 66:427-440. [PMID: 28005163 PMCID: PMC5359386 DOI: 10.1007/s00262-016-1945-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/11/2016] [Indexed: 12/11/2022]
Abstract
Th1-type immunity is considered to be required for efficient response to BCG in bladder cancer, although Th2 predisposition of BCG responders has recently been reported. The aim was to evaluate the relationship of Th1 and Th2 components in 23 patients undergoing BCG treatment. Peripheral blood, serum and urine samples were prospectively collected at baseline, during and after BCG. Th1 (neopterin, tryptophan, kynurenine, kynurenine-to-tryptophan ratio (KTR), IL-12, IFN-γ, soluble TNF-R75 and IL-2Rα) and Th2 (IL-4, IL-10) biomarkers as well as CD4 expression in T helper (Th), effector and regulatory T cells were determined. Local immune cell subsets were measured on formalin-fixed, paraffin-embedded cancer tissue by immunohistochemistry to examine expression of transcription factors that control Th1 (T-bet) and Th2-type (GATA3) immunity. We confirmed a Th2 predisposition with a mean GATA3/T-bet ratio of 5.51. BCG responders showed significantly higher levels of urinary (p = 0.003) and serum neopterin (p = 0.012), kynurenine (p = 0.015), KTR (p = 0.005), IFN-γ (p = 0.005) and IL-12 (p = 0.003) during therapy, whereas levels of IL-10 decreased significantly (p < 0.001) compared to non-responders. GATA3/T-bet ratio correlated positively with serum neopterin (p = 0.008), IFN-γ (p = 0.013) and KTR (p = 0.018) after the first BCG instillation. We observed a significant increase in CD4 expression in the Th cell population (p < 0.05), with only a modest tendency toward higher frequency in responders compared to non-responders (p = 0.303). The combined assessment of GATA3/T-bet ratio, neopterin and KTR may be a useful biomarker in predicting BCG response. Th2-promoting factors such as GATA3 may trigger Th1-type immune responses and thus contribute to the BCG success.
Collapse
Affiliation(s)
- Renate Pichler
- Department of Urology, Research Group of Urologic Oncology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| | - Georg Gruenbacher
- Department of Urology, Research Group of Urologic Oncology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.,Immunotherapy Research Unit, Medical University of Innsbruck, Innsbruck, Austria
| | - Zoran Culig
- Department of Urology, Research Group of Urologic Oncology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.,Division of Experimental Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Andrea Brunner
- Division of General Pathology, Department of Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Josef Fritz
- Department of Medical Statistics, Informatics and Health Economics, Medical University of Innsbruck, Innsbruck, Austria
| | - Hubert Gander
- Department of Urology, Research Group of Urologic Oncology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.,Immunotherapy Research Unit, Medical University of Innsbruck, Innsbruck, Austria
| | - Andrea Rahm
- Department of Urology, Research Group of Urologic Oncology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.,Immunotherapy Research Unit, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Thurnher
- Department of Urology, Research Group of Urologic Oncology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.,Immunotherapy Research Unit, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
1166
|
Li X, Huang H, Guan Y, Gong Y, He CY, Yi X, Qi M, Chen ZY. Whole-exome sequencing predicted cancer epitope trees of 23 early cervical cancers in Chinese women. Cancer Med 2016; 6:207-219. [PMID: 27998038 PMCID: PMC5269563 DOI: 10.1002/cam4.953] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 12/18/2022] Open
Abstract
Emerging evidence suggest that the heterogeneity of cancer limits the efficacy of immunotherapy. To search for optimal therapeutic targets for enhancing the efficacy, we used whole‐exome sequencing data of 23 early cervical tumors from Chinese women to investigate the hierarchical structure of the somatic mutations and the neo‐epitopes. The putative neo‐epitopes were predicted based on the mutant peptides’ strong binding with major histocompatibility complex class I molecules. We found that each tumor carried an average of 117 mutations and 61 putative neo‐epitopes. Each patient displayed a unique phylogenetic tree in which almost all subclones harbored neo‐epitopes, highlighting the importance of individual neo‐epitope tree in determination of immunotherapeutic targets. The alterations in FBXW7 and PIK3CA, or other members of the significantly altered ubiquitin‐mediated proteolysis and extracellular matrix receptor interaction related pathways, were proposed as the earliest changes triggering the malignant progression. The neo‐epitopes involved in these pathways, and located at the top of the hierarchy tree, might become the optimal candidates for therapeutic targets, possessing the potential to mediate T‐cell killing of the descendant cells. These findings expanded our understanding in early stage of cervical carcinogenesis and offered an important approach to assist optimizing the immunotherapeutic target selection.
Collapse
Affiliation(s)
- Xia Li
- The Laboratory for Gene and Cell Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Research Center for Biomedical Information Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | | - Yuhua Gong
- Geneplus-Beijing, Beijing, 102206, China
| | - Cheng-Yi He
- The Laboratory for Gene and Cell Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xin Yi
- Geneplus-Beijing, Beijing, 102206, China
| | - Ming Qi
- BGI-Shenzhen, Shenzhen, China.,School of Basic Medical Sciences, Center for Genetic and Genomic Medicine, Zhejiang University Medical School 1st Affiliated Hospital James Watson Institute of Genome Sciences, Hangzhou, Zhejiang, China.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
| | - Zhi-Ying Chen
- The Laboratory for Gene and Cell Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
1167
|
Tang K, Zhang J, Liang J. Distance-Guided Forward and Backward Chain-Growth Monte Carlo Method for Conformational Sampling and Structural Prediction of Antibody CDR-H3 Loops. J Chem Theory Comput 2016; 13:380-388. [PMID: 27996262 DOI: 10.1021/acs.jctc.6b00845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antibodies recognize antigens through the complementary determining regions (CDR) formed by six-loop hypervariable regions crucial for the diversity of antigen specificities. Among the six CDR loops, the H3 loop is the most challenging to predict because of its much higher variation in sequence length and identity, resulting in much larger and complex structural space, compared to the other five loops. We developed a novel method based on a chain-growth sequential Monte Carlo method, called distance-guided sequential chain-growth Monte Carlo for H3 loops (DiSGro-H3). The new method samples protein chains in both forward and backward directions. It can efficiently generate low energy, near-native H3 loop structures using the conformation types predicted from the sequences of H3 loops. DiSGro-H3 performs significantly better than another ab initio method, RosettaAntibody, in both sampling and prediction, while taking less computational time. It performs comparably to template-based methods. As an ab initio method, DiSGro-H3 offers satisfactory accuracy while being able to predict any H3 loops without templates.
Collapse
Affiliation(s)
- Ke Tang
- Department of Bioengineering, University of Illinois at Chicago , Chicago, Illinois 60607, United States
| | - Jinfeng Zhang
- Department of Statistics, Florida State University , Tallahassee, Florida 32306, United States
| | - Jie Liang
- Department of Bioengineering, University of Illinois at Chicago , Chicago, Illinois 60607, United States
| |
Collapse
|
1168
|
Mellman I, Hubbard-Lucey VM, Tontonoz MJ, Kalos MD, Chen DS, Allison JP, Drake CG, Levitsky H, Lonberg N, van der Burg SH, Fearon DT, Wherry EJ, Lowy I, Vonderheide RH, Hwu P. De-Risking Immunotherapy: Report of a Consensus Workshop of the Cancer Immunotherapy Consortium of the Cancer Research Institute. Cancer Immunol Res 2016; 4:279-88. [PMID: 27036972 DOI: 10.1158/2326-6066.cir-16-0045] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With the recent FDA approvals of pembrolizumab and nivolumab, and a host of additional immunomodulatory agents entering clinical development each year, the field of cancer immunotherapy is changing rapidly. Strategies that can assist researchers in choosing the most promising drugs and drug combinations to move forward through clinical development are badly needed in order to reduce the likelihood of late-stage clinical trial failures. On October 5, 2014, the Cancer Immunotherapy Consortium of the Cancer Research Institute, a collaborative think tank composed of stakeholders from academia, industry, regulatory agencies, and patient interest groups, met to discuss strategies for de-risking immunotherapy development, with a focus on integrating preclinical and clinical studies, and conducting smarter early-phase trials, particularly for combination therapies. Several recommendations were made, including making better use of clinical data to inform preclinical research, obtaining adequate tissues for biomarker studies, and choosing appropriate clinical trial endpoints to identify promising drug candidates and combinations in nonrandomized early-phase trials.
Collapse
Affiliation(s)
| | | | | | | | | | - James P Allison
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Hy Levitsky
- Roche Innovation Center, Zurich, Switzerland
| | | | | | | | - E John Wherry
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Israel Lowy
- Regeneron Pharmaceuticals, Tarrytown, New York
| | - Robert H Vonderheide
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Patrick Hwu
- The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
1169
|
Goto K, Annan DA, Morita T, Li W, Muroyama R, Matsubara Y, Ito S, Nakagawa R, Tanoue Y, Jinushi M, Kato N. Novel chemoimmunotherapeutic strategy for hepatocellular carcinoma based on a genome-wide association study. Sci Rep 2016; 6:38407. [PMID: 27910927 PMCID: PMC5133582 DOI: 10.1038/srep38407] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/09/2016] [Indexed: 12/11/2022] Open
Abstract
Pharmacotherapeutic options are limited for hepatocellular carcinoma (HCC). Recently, we identified the anti-tumor ligand MHC class I polypeptide-related sequence A (MICA) gene as a susceptibility gene for hepatitis C virus-induced HCC in a genome-wide association study (GWAS). To prove the concept of HCC immunotherapy based on the results of a GWAS, in the present study, we searched for drugs that could restore MICA expression. A screen of the FDA-approved drug library identified the anti-cancer agent vorinostat as the strongest hit, suggesting histone deacetylase inhibitors (HDACis) as potent candidates. Indeed, the HDACi-induced expression of MICA specific to HCC cells enhanced natural killer (NK) cell-mediated cytotoxicity in co-culture, which was further reinforced by treatment with an inhibitor of MICA sheddase. Similarly augmented anti-tumor activity of NK cells via NK group 2D was observed in vivo. Metabolomics analysis revealed HDACi-mediated alterations in energy supply and stresses for MICA induction and HCC inhibition, providing a mechanism for the chemoimmunotherapeutic actions. These data are indicative of promising strategies for selective HCC innate immunotherapy.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Cell Line, Tumor
- Coculture Techniques
- Combined Modality Therapy
- Cytotoxicity, Immunologic/drug effects
- Gene Expression Regulation, Neoplastic
- Genome-Wide Association Study
- Hep G2 Cells
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/immunology
- Histone Deacetylase Inhibitors/pharmacology
- Humans
- Hydroxamic Acids/pharmacology
- Immunotherapy/methods
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Metabolome/drug effects
- Metabolome/genetics
- Metabolome/immunology
- Mice
- Mice, Nude
- Neoplasm Proteins/genetics
- Neoplasm Proteins/immunology
- Peptide Hydrolases/pharmacology
- Small Molecule Libraries/pharmacology
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/pathology
- Vorinostat
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Kaku Goto
- The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Japan Society for the Promotion of Science, Tokyo 102-8472, Japan
| | - Dorcas A. Annan
- Institute for Genetic Medicine, Hokkaido University, Hokkaido 060-0815, Japan
| | - Tomoko Morita
- Institute for Genetic Medicine, Hokkaido University, Hokkaido 060-0815, Japan
| | - Wenwen Li
- The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Ryosuke Muroyama
- The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yasuo Matsubara
- The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Sayaka Ito
- The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Ryo Nakagawa
- The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yasushi Tanoue
- The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Masahisa Jinushi
- Institute for Advanced Medical Research, Keio University Graduate School of Medicine, Tokyo 160-8582, Japan
| | - Naoya Kato
- The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
1170
|
Wang Z, Yin N, Zhang Z, Zhang Y, Zhang G, Chen W. Upregulation of T-cell Immunoglobulin and Mucin-Domain Containing-3 (Tim-3) in Monocytes/Macrophages Associates with Gastric Cancer Progression. Immunol Invest 2016; 46:134-148. [PMID: 27911104 DOI: 10.1080/08820139.2016.1229790] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
T-cell immunoglobulin and mucin-domain containing-3 (Tim-3) is an important immune regulatory molecule in cancer immune system. However, expression and function of Tim-3 in monocytes/macrophages in cancer progression mainly remain unclear. In this study, we analyzed Tim-3 levels in peripheral blood mononuclear cells (PBMCs) from 62 gastric cancer patients and 45 healthy controls using flow cytometry and then associated Tim-3 levels with clinical pathological data from patients. We found Tim-3 level was significantly upregulated in monocytes from gastric cancer patients compared with those from healthy controls, and that upregulated Tim-3 levels associated with depth of tumor invasion and tumor lymph node metastasis and advanced clinical stages of gastric cancer patients. Furthermore, tumor-bearing mouse experiments revealed that Tim-3 level on monocytes/macrophages associated with xenograft formation and growth. In addition, culture of monocytes from healthy controls with gastric cancer cell-conditioned medium upregulated Tim-3 expression, but IL-10, TNF-α, IFN-γ, or GM-CSF treatment or T-bet, Eomes, and T-bet/Eomes double gene knockout did not affect Tim-3 levels in blood monocytes/macrophages from human or mouse, respectively. Gal-9/Tim-3 signal was able to significantly stimulate monocyte to secrete IL-6, IL-8, and IL-10, but not IL-1β, IL-12p70, or TNF-α in presence of LPS. In conclusion, our study demonstrated that Tim-3 expressed by monocyte/macrophages might be an important mechanism in gastric cancer progression.
Collapse
Affiliation(s)
- Zhenxin Wang
- a Department of Gastroenterology , The First Affiliated Hospital of Soochow University , Suzhou , China.,b Department of Medical Oncology , The First Affiliated Hospital of Soochow University , Suzhou , China
| | - Ni Yin
- b Department of Medical Oncology , The First Affiliated Hospital of Soochow University , Suzhou , China
| | - Zixiang Zhang
- c Department of General Surgery , The First Affiliated Hospital of Soochow University , Suzhou , China
| | - Yi Zhang
- c Department of General Surgery , The First Affiliated Hospital of Soochow University , Suzhou , China
| | - Guangbo Zhang
- d Clinical Immunology of Jiangsu Province , The First Affiliated Hospital of Soochow University , Suzhou , China
| | - Weichang Chen
- a Department of Gastroenterology , The First Affiliated Hospital of Soochow University , Suzhou , China.,d Clinical Immunology of Jiangsu Province , The First Affiliated Hospital of Soochow University , Suzhou , China
| |
Collapse
|
1171
|
Kohanski RA, Deeks SG, Gravekamp C, Halter JB, High K, Hurria A, Fuldner R, Green P, Huebner R, Macchiarini F, Sierra F. Reverse geroscience: how does exposure to early diseases accelerate the age-related decline in health? Ann N Y Acad Sci 2016; 1386:30-44. [PMID: 27907230 DOI: 10.1111/nyas.13297] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 10/21/2016] [Indexed: 02/07/2023]
Abstract
Aging is the major risk factor for both the development of chronic diseases and loss of functional capacity. Geroscience provides links among the biology of aging, the biology of disease, and the physiology of frailty, three fields where enormous progress has been made in the last few decades. While, previously, the focus was on the role of aging in susceptibility to disease and disability, the other side of this relationship, which is the contribution of disease to aging, has been less explored at the molecular/cellular level. Indeed, the role of childhood or early adulthood exposure to chronic disease and/or treatment on accelerating aging phenotypes is well known in epidemiology, but the biological basis is poorly understood. A recent summit co-organized by the National Institutes of Health GeroScience Interest Group and the New York Academy of Sciences explored these relationships, using three chronic diseases as examples: cancer, HIV/AIDS, and diabetes. The epidemiological literature clearly indicates that early exposure to any of these diseases and/or their treatments results in an acceleration of the appearance of aging phenotypes, including loss of functional capacity and accelerated appearance of clinical symptoms of aging-related diseases not obviously related to the earlier event. The discussions at the summit focused on the molecular and cellular relationships between each of these diseases and the recently defined molecular and cellular pillars of aging. Two major conclusions from the meeting include the desire to refine an operational definition of aging and to concomitantly develop biomarkers of aging, in order to move from chronological to physiological age. The discussion also opened a dialogue on the possibility of improving late-life outcomes in patients affected by chronic disease by including age-delaying modalities along with the standard care for the disease in question.
Collapse
Affiliation(s)
- Ronald A Kohanski
- Division of Aging Biology, National Institute on Aging, NIH, Bethesda, Maryland
| | - Steven G Deeks
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Claudia Gravekamp
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Jeffrey B Halter
- Geriatrics Center and Institute of Gerontology, University of Michigan, Ann Arbor, Michigan
| | - Kevin High
- Department of Internal Medicine, Section on Infectious Diseases, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Arti Hurria
- City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, California
| | - Rebecca Fuldner
- Division of Aging Biology, National Institute on Aging, NIH, Bethesda, Maryland
| | - Paige Green
- Biobehavioral and Psychologic Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Robin Huebner
- Division of AIDS, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | | | - Felipe Sierra
- Division of Aging Biology, National Institute on Aging, NIH, Bethesda, Maryland
| |
Collapse
|
1172
|
Rekoske BT, McNeel DG. Immunotherapy for prostate cancer: False promises or true hope? Cancer 2016; 122:3598-3607. [PMID: 27649312 PMCID: PMC5115970 DOI: 10.1002/cncr.30250] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 01/05/2023]
Abstract
Prostate cancer is the most commonly diagnosed cancer, and the second leading cause of cancer-related death for men in the United States. Despite the approval of several new agents for advanced disease, each of these has prolonged survival by only a few months. Consequently, new therapies are sorely needed. For other cancer types, immunotherapy has demonstrated dramatic and durable treatment responses, causing many to hope that immunotherapies might provide an ideal treatment approach for patients with advanced prostate cancer. However, apart from sipuleucel-T, prostate cancer has been conspicuously absent from the list of malignancies for which immunotherapies have received recent approval from the US Food and Drug Administration. This has left some wondering whether immunotherapy will "work" for this disease. In this review, the authors describe current developments in immunotherapy, including approaches to engage tumor-targeting T cells, disrupt immune regulation, and alter the immunosuppressive tumor microenvironment. The authors then describe the recent application of these approaches to the treatment of prostate cancer. Given the Food and Drug Administration approval of 1 agent, and the finding that several others are in advanced stages of clinical testing, the authors believe that immunotherapies offer real hope to improve patient outcomes for men with prostate cancer, especially as investigators begin to explore rational combinations of immunotherapies and combine these therapies with other conventional therapies. Cancer 2016;122:3598-607. © 2016 American Cancer Society.
Collapse
Affiliation(s)
- Brian T. Rekoske
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705
| | - Douglas G. McNeel
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|
1173
|
Min L. Immune-related endocrine disorders in novel Immune checkpoint inhibition therapy. Genes Dis 2016; 3:252-256. [PMID: 29623291 PMCID: PMC5881952 DOI: 10.1016/j.gendis.2016.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/12/2016] [Indexed: 12/23/2022] Open
Abstract
Immune checkpoint inhibition against advance malignancies was named breakthrough discovery by the science magazine in 2013. In numerous clinical studies, monoclonal antibodies against the immune checkpoints, CTLA4, PD1 and PD1 ligand PDL1 have shown promising tumor response in different type of metastatic malignancies. The adverse events are autoimmune-related. The endocrine disorders, hypothysitis and thyroiditis are among the most common side effects associated with immune checkpoint inhibition treatment. Hypophysitis, a very rare endocrine disorder occurs in about one tenth of the patients receiving anti-CTLA4 treatment. Thyroiditis, on the other hand, is more commonly seen in patients receiving anti-PD1 treatment. In addition, both thyroiditis and hypophysitis are common in patients receiving combination treatment with anti-CTLA4 and anti-PD1 treatment. The time to onset of hypophysitis and thyroiditis is short. Most of the endocrine disorders occur within 12 weeks after initiation of the immune checkpoint inhibition therapy. Hypohysitis can manifest as total anterior pituitary hormone deficiency or isolated pituitary hormone deficiency. Diabetes insipidus is rare. TSH and gonadotropin deficiencies may be reversible but ACTH deficiency appears permanent. Thyroiditis can present as hypothyroidism or thyrotoxicosis followed by hypothyroidism. Hypothyroidism appears irreversible. Early identifying the onset of hypophysitis and thyroiditis and proper management of these endocrine disorders will improve the quality of the life and the outcome of this novel immunotherapy.
Collapse
|
1174
|
Li D, Sun F, Bourajjaj M, Chen Y, Pieters EH, Chen J, van den Dikkenberg JB, Lou B, Camps MGM, Ossendorp F, Hennink WE, Vermonden T, van Nostrum CF. Strong in vivo antitumor responses induced by an antigen immobilized in nanogels via reducible bonds. NANOSCALE 2016; 8:19592-19604. [PMID: 27748778 DOI: 10.1039/c6nr05583d] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cancer vaccines are at present mostly based on tumor associated protein antigens but fail to elicit strong cell-mediated immunity in their free form. For protein-based vaccines, the main challenges to overcome are the delivery of sufficient proteins into the cytosol of dendritic cells (DCs) and processing by, and presentation through, the MHC class I pathway. Recently, we developed a cationic dextran nanogel in which a model antigen (ovalbumin, OVA) is reversibly conjugated via disulfide bonds to the nanogel network to enable redox-sensitive intracellular release. In the present study, it is demonstrated that these nanogels, with the bound OVA, were efficiently internalized by DCs and were capable of maturating them. On the other hand, when the antigen was just physically entrapped in the nanogels, OVA was prematurely released before the particles were taken up by cells. When combined with an adjuvant (polyinosinic-polycytidylic acid, poly(I:C)), nanogels with conjugated OVA induced a strong protective and curative effect against melanoma in vivo. In a prophylactic vaccination setting, 90% of the mice vaccinated with nanogels with conjugated OVA + poly(I:C) did not develop a tumor. Moreover, in a therapeutic model, 40% of the mice showed clearance of established tumors and survived for the duration of the experiment (80 days) while the remaining mice showed substantial delay in tumor progression. In conclusion, our results demonstrate that conjugation of antigens to nanogels via reducible covalent bonds for intracellular delivery is a promising strategy to induce effective antigen-specific immune responses against cancer.
Collapse
Affiliation(s)
- Dandan Li
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Feilong Sun
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Meriem Bourajjaj
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Yinan Chen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Ebel H Pieters
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Jian Chen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Joep B van den Dikkenberg
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Bo Lou
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Marcel G M Camps
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden 2333ZA, The Netherlands
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden 2333ZA, The Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Tina Vermonden
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Cornelus F van Nostrum
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| |
Collapse
|
1175
|
The intragraft microenvironment as a central determinant of chronic rejection or local immunoregulation/tolerance. Curr Opin Organ Transplant 2016; 22:55-63. [PMID: 27898465 DOI: 10.1097/mot.0000000000000373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW Chronic rejection is associated with persistent mononuclear cell recruitment, endothelial activation and proliferation, local tissue hypoxia and related biology that enhance effector immune responses. In contrast, the tumor microenvironment elicits signals/factors that inhibit effector T cell responses and rather promote immunoregulation locally within the tissue itself. The identification of immunoregulatory check points and/or secreted factors that are deficient within allografts is of great importance in the understanding and prevention of chronic rejection. RECENT FINDINGS The relative deficiency of immunomodulatory molecules (cell surface and secreted) on microvascular endothelial cells within the intragraft microenvironment, is of functional importance in shaping the phenotype of rejection. These regulatory molecules include coinhibitory and/or intracellular regulatory signals/factors that enhance local activation of T regulatory cells. For example, semaphorins may interact with endothelial cells and CD4 T cells to promote local tolerance. Additionally, metabolites and electrolytes within the allograft microenvironment may regulate local effector and regulatory cell responses. SUMMARY Multiple factors within allografts shape the microenvironment either towards local immunoregulation or proinflammation. Promoting the expression of intragraft cell surface or secreted molecules that support immunoregulation will be critical for long-term graft survival and/or alloimmune tolerance.
Collapse
|
1176
|
Tan S, Zhang CWH, Gao GF. Seeing is believing: anti-PD-1/PD-L1 monoclonal antibodies in action for checkpoint blockade tumor immunotherapy. Signal Transduct Target Ther 2016; 1:16029. [PMID: 29263905 PMCID: PMC5661648 DOI: 10.1038/sigtrans.2016.29] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/11/2016] [Accepted: 11/16/2016] [Indexed: 11/17/2022] Open
Abstract
Structural immunology, focusing on structures of host immune related molecules, enables the immunologists to see what the molecules look like, and more importantly, how they work together. Antibody-based PD-1/PD-L1 blockade therapy has achieved brilliant successes in clinical applications. The recent breakthrough of the complex structures of checkpoint blockade antibodies with their counterparts, pembrolizumab with PD-1 and avelumab with PD-L1, have made it clear how these monoclonal antibodies compete the binding of PD-1/PD-L1 and function to blockade the receptor-ligand interaction. Herein, we summarize the structural findings of these two reports and look into the future for how this information would facilitate the development of more efficient PD-1/PD-L1 targeting antibodies, small molecule drugs, and other protein or non-protein inhibitors.
Collapse
Affiliation(s)
- Shuguang Tan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
1177
|
Prieto I, Montemuiño S, Luna J, de Torres MV, Amaya E. The role of immunonutritional support in cancer treatment: Current evidence. Clin Nutr 2016; 36:1457-1464. [PMID: 27931879 DOI: 10.1016/j.clnu.2016.11.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/12/2016] [Accepted: 11/14/2016] [Indexed: 01/01/2023]
Abstract
The significant role of the immune system in cancer treatment has given rise to an emerging field of study within oncology, and one that is attracting increasing attention from researchers. Immunotherapy has demonstrated that the immune system is crucial in the fight against cancer. This challenge has led researchers to analyze whether the immune influencing capacity of immunonutrition may aid in improving immune status, modulate the acquired immune response, decrease the treatment toxicity and improve patient outcomes. Immunonutrition, new developed formulas has been demonstrated to improve outcome in surgical patients. This improvement is related to the modulation of the inflammatory response in the peri-operative period. The aim of this review is to analyze current evidence on the benefit of immunonutrition in patients undergoing pro-inflammatory processes in cancer, such as receiving chemotherapy or radiation treatment. With this aim, authors have analyzed the problem studying different aspects: the role of the immune system in cancer treatment, current evidence regarding immunonutrition in perioperative period, current evidence regarding immunonutrition in cancer patients and the relation between immunity and radiotherapy. The conclusions of this review confirm that immunonutrition formulas could modulate inflammatory and immune response in cancer patients. This effect decreases acute toxicity, although the pathways and the measure of this immune response are unclear. Immunonutrition is an emerging field in oncology, and further research is needed.
Collapse
Affiliation(s)
- Isabel Prieto
- Radiation Oncology Department, Fundacion Jimenez Diaz, Oncohealth Institute, Avda. Reyes Católicos 2, 28040 Madrid, Spain.
| | - Sara Montemuiño
- Radiation Oncology Department, Hospital Universitario de Fuenlabrada, Calle Camino del Molino, 2, 28942 Fuenlabrada, Madrid, Spain.
| | - Javier Luna
- Radiation Oncology Department, Fundacion Jimenez Diaz, Oncohealth Institute, Avda. Reyes Católicos 2, 28040 Madrid, Spain.
| | - Maria Victoria de Torres
- Radiation Oncology Department, Hospital Universitario de Fuenlabrada, Calle Camino del Molino, 2, 28942 Fuenlabrada, Madrid, Spain.
| | - Enrique Amaya
- Radiation Oncology Department, Hospital Universitario Rey Juan Carlos I, C/ Gladiolo, s/n, 28933 Móstoles, Madrid, Spain.
| |
Collapse
|
1178
|
Qi S, Li H, Lu L, Qi Z, Liu L, Chen L, Shen G, Fu L, Luo Q, Zhang Z. Long-term intravital imaging of the multicolor-coded tumor microenvironment during combination immunotherapy. eLife 2016; 5. [PMID: 27855783 PMCID: PMC5173323 DOI: 10.7554/elife.14756] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 10/17/2016] [Indexed: 12/22/2022] Open
Abstract
The combined-immunotherapy of adoptive cell therapy (ACT) and cyclophosphamide (CTX) is one of the most efficient treatments for melanoma patients. However, no synergistic effects of CTX and ACT on the spatio-temporal dynamics of immunocytes in vivo have been described. Here, we visualized key cell events in immunotherapy-elicited immunoreactions in a multicolor-coded tumor microenvironment, and then established an optimal strategy of metronomic combined-immunotherapy to enhance anti-tumor efficacy. Intravital imaging data indicated that regulatory T cells formed an 'immunosuppressive ring' around a solid tumor. The CTX-ACT combined-treatment elicited synergistic immunoreactions in tumor areas, which included relieving the immune suppression, triggering the transient activation of endogenous tumor-infiltrating immunocytes, increasing the accumulation of adoptive cytotoxic T lymphocytes, and accelerating the infiltration of dendritic cells. These insights into the spatio-temporal dynamics of immunocytes are beneficial for optimizing immunotherapy and provide new approaches for elucidating the mechanisms underlying the involvement of immunocytes in cancer immunotherapy. DOI:http://dx.doi.org/10.7554/eLife.14756.001 Melanoma is a form of skin cancer that is particularly difficult to treat. A new approach that has shown a lot of promise in treating many different cancers, including melanoma, is called “immunotherapy”. This technique harnesses the immune system – the body’s natural defences that help to protect against infections and disease – to combat cancer. One powerful type of immunotherapy involves injecting patients with cells called lymphocytes, which form part of the immune system. This is known as adoptive cell therapy and can activate the immune system to fight cancer, helping to shrink tumors. This treatment can be made even more powerful by combining it with a drug called cyclophosphamide and this combination, known as CTX-ACT, is currently one of the most efficient treatments for melanoma. Yet, little information is available to indicate why this treatment is so effective. Using mice implanted with melanoma cells, Qi, Li et al. sought to understand how CTX-ACT treatment works, with the goal of optimising it to increase its success. The results showed that a protective barrier of immune cells that suppresses the anti-tumor immune response – called an “immunosuppressive ring” – surrounds untreated tumors. CTX-ACT treatment can breakdown these rings, helping to reactivate the anti-tumor immune reaction in the tumors. This allows both the injected and mouse’s own immune cells to move into the tumor and destroy cancer cells. Qi, Li et al. used their findings to optimise treatment and succeeded in controlling tumor growth in the mice for several weeks. These new insights could be used to improve current immunotherapies, and offer new approaches for investigating the involvement of immune cells in the treatment of a wide range of different cancers. DOI:http://dx.doi.org/10.7554/eLife.14756.002
Collapse
Affiliation(s)
- Shuhong Qi
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Lisen Lu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Zhongyang Qi
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Chen
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China.,Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guanxin Shen
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Fu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihong Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
1179
|
McNeel DG. TCR diversity - a universal cancer immunotherapy biomarker? J Immunother Cancer 2016; 4:69. [PMID: 27879971 PMCID: PMC5109785 DOI: 10.1186/s40425-016-0175-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/11/2016] [Indexed: 11/10/2022] Open
Abstract
Sipuleucel-T was approved as a treatment for men with advanced metastatic, castration-resistant prostate cancer on the basis of improved survival in randomized clinical trials. A major challenge for this therapy, as well as other newer cancer immunotherapy agents, has been to identify markers that can identify patients who benefit from these therapies. In a recent manuscript by Sheikh and colleagues, the investigators evaluated changes in T cell clonality in the peripheral blood and tumors of patients treated with sipuleucel-T using next generation sequencing of T cell receptor Vß CDR3 sequences. Their findings are discussed in the context of this trial and other cancer immunotherapies.
Collapse
Affiliation(s)
- Douglas G McNeel
- University of Wisconsin Carbone Cancer Center, 7007 Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Madison, WI 53705 USA
| |
Collapse
|
1180
|
Tan MP, Dolton GM, Gerry AB, Brewer JE, Bennett AD, Pumphrey NJ, Jakobsen BK, Sewell AK. Human leucocyte antigen class I-redirected anti-tumour CD4 + T cells require a higher T cell receptor binding affinity for optimal activity than CD8 + T cells. Clin Exp Immunol 2016; 187:124-137. [PMID: 27324616 PMCID: PMC5167017 DOI: 10.1111/cei.12828] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2016] [Indexed: 12/12/2022] Open
Abstract
CD4+ T helper cells are a valuable component of the immune response towards cancer. Unfortunately, natural tumour‐specific CD4+ T cells occur in low frequency, express relatively low‐affinity T cell receptors (TCRs) and show poor reactivity towards cognate antigen. In addition, the lack of human leucocyte antigen (HLA) class II expression on most cancers dictates that these cells are often unable to respond to tumour cells directly. These deficiencies can be overcome by transducing primary CD4+ T cells with tumour‐specific HLA class I‐restricted TCRs prior to adoptive transfer. The lack of help from the co‐receptor CD8 glycoprotein in CD4+ cells might result in these cells requiring a different optimal TCR binding affinity. Here we compared primary CD4+ and CD8+ T cells expressing wild‐type and a range of affinity‐enhanced TCRs specific for the HLA A*0201‐restricted NY‐ESO‐1‐ and gp100 tumour antigens. Our major findings are: (i) redirected primary CD4+ T cells expressing TCRs of sufficiently high affinity exhibit a wide range of effector functions, including cytotoxicity, in response to cognate peptide; and (ii) optimal TCR binding affinity is higher in CD4+ T cells than CD8+ T cells. These results indicate that the CD4+ T cell component of current adoptive therapies using TCRs optimized for CD8+ T cells is below par and that there is room for substantial improvement.
Collapse
Affiliation(s)
- M P Tan
- Cardiff University School of Medicine, Cardiff, UK
| | - G M Dolton
- Cardiff University School of Medicine, Cardiff, UK
| | | | | | | | | | | | - A K Sewell
- Cardiff University School of Medicine, Cardiff, UK
| |
Collapse
|
1181
|
Khoja L, Kibiro M, Metser U, Gedye C, Hogg D, Butler MO, Atenafu EG, Joshua AM. Patterns of response to anti-PD-1 treatment: an exploratory comparison of four radiological response criteria and associations with overall survival in metastatic melanoma patients. Br J Cancer 2016; 115:1186-1192. [PMID: 27701388 PMCID: PMC5104887 DOI: 10.1038/bjc.2016.308] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Radiological assessment of response to checkpoint inhibitors remains imperfect. We evaluated individual lesion and inter-patient response by response evaluation (RECIST) 1.1, immune-related response criteria (irRC), CHOI and modified CHOI (mCHOI) and correlated response with overall survival (OS). METHODS Thirty-seven patients with 567 measurable lesions treated with pembrolizumab in the Keynote 001 trial were studied. Association of response with OS was determined. RESULTS Response varied according to site; lung lesions had the highest rate of complete response (69 out of 163 (42%) vs other sites 71 out of 404 (18%), P<0.0001). Delayed response post first scan was seen in 2 out of 37 (5%) deemed progressive (PD) by RECIST and 2 out of 14 (14%) deemed PD by irRC. Modified CHOI criteria showed response of 38% (14 out of 37). Change in tumour size and density on first follow-up assessment was associated with OS with each 1000 mm2 increase in tumour size from baseline increasing the hazard of dying by 25.9% (HR=1.259, (95% CI=1.116-1.420), P=0.0002). Similarly, each 20HU increase in density increased the HR by 15% (HR=1.15, (95% CI 1.045-1.260), P=0.004). Response defined by any criteria had superior OS (CHOI P=0.0084; mCHOI P=0.0183; irRC P<0.0001 and RECIST P=0.0003). CONCLUSIONS Response by any criterion was prognostic. Novel patterns of response and changes on treatment in tumour density suggest complex anti-tumour responses to immunotherapy.
Collapse
Affiliation(s)
- Leila Khoja
- Department of Medical Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Clinical Discovery Unit, Early Clinical Development, AstraZeneca plc, DaVinci Building, Melbourn Science Park, Melbourn, Hertfordshire, UK
| | - Minnie Kibiro
- Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada
| | - Ur Metser
- Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada
| | - Craig Gedye
- Department of Medical Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - David Hogg
- Department of Medical Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Marcus O Butler
- Department of Medical Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Eshetu G Atenafu
- Department of Biostatistics, University Health Network, Toronto, Ontario, Canada
| | - Anthony M Joshua
- Department of Medical Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| |
Collapse
|
1182
|
Therapeutic potential of CAR-T cell-derived exosomes: a cell-free modality for targeted cancer therapy. Oncotarget 2016; 6:44179-90. [PMID: 26496034 PMCID: PMC4792550 DOI: 10.18632/oncotarget.6175] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/06/2015] [Indexed: 02/07/2023] Open
Abstract
Chimeric antigen receptor (CAR)-based T-cell adoptive immunotherapy is a distinctively promising therapy for cancer. The engineering of CARs into T cells provides T cells with tumor-targeting capabilities and intensifies their cytotoxic activity through stimulated cell expansion and enhanced cytokine production. As a novel and potent therapeutic modality, there exists some uncontrollable processes which are the potential sources of adverse events. As an extension of this impactful modality, CAR-T cell-derived exosomes may substitute CAR-T cells to act as ultimate attackers, thereby overcoming some limitations. Exosomes retain most characteristics of parent cells and play an essential role in intercellular communications via transmitting their cargo to recipient cells. The application of CAR-T cell-derived exosomes will make this cell-based therapy more clinically controllable as it also provides a cell-free platform to diversify anticancer mediators, which responds effectively to the complexity and volatility of cancer. It is believed that the appropriate application of both cellular and exosomal platforms will make this effective treatment more practicable.
Collapse
|
1183
|
Okondo MC, Johnson DC, Sridharan R, Go EB, Chui AJ, Wang MS, Poplawski SE, Wu W, Liu Y, Lai JH, Sanford DG, Arciprete MO, Golub TR, Bachovchin WW, Bachovchin DA. DPP8 and DPP9 inhibition induces pro-caspase-1-dependent monocyte and macrophage pyroptosis. Nat Chem Biol 2016; 13:46-53. [PMID: 27820798 DOI: 10.1038/nchembio.2229] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/30/2016] [Indexed: 12/12/2022]
Abstract
Val-boroPro (Talabostat, PT-100), a nonselective inhibitor of post-proline cleaving serine proteases, stimulates mammalian immune systems through an unknown mechanism of action. Despite this lack of mechanistic understanding, Val-boroPro has attracted substantial interest as a potential anticancer agent, reaching phase 3 trials in humans. Here we show that Val-boroPro stimulates the immune system by triggering a proinflammatory form of cell death in monocytes and macrophages known as pyroptosis. We demonstrate that the inhibition of two serine proteases, DPP8 and DPP9, activates the pro-protein form of caspase-1 independent of the inflammasome adaptor ASC. Activated pro-caspase-1 does not efficiently process itself or IL-1β but does cleave and activate gasdermin D to induce pyroptosis. Mice lacking caspase-1 do not show immune stimulation after treatment with Val-boroPro. Our data identify what is to our knowledge the first small molecule that induces pyroptosis and reveals a new checkpoint that controls the activation of the innate immune system.
Collapse
Affiliation(s)
- Marian C Okondo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Darren C Johnson
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ramya Sridharan
- Graduate Program in Pharmacology, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Eun Bin Go
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ashley J Chui
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Mitchell S Wang
- Graduate Program in Pharmacology, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Sarah E Poplawski
- Department of Developmental, Chemical &Molecular Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | - Wengen Wu
- Department of Developmental, Chemical &Molecular Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | - Yuxin Liu
- Department of Developmental, Chemical &Molecular Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | - Jack H Lai
- Department of Developmental, Chemical &Molecular Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | - David G Sanford
- Department of Developmental, Chemical &Molecular Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | - Michael O Arciprete
- Department of Developmental, Chemical &Molecular Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | - Todd R Golub
- The Eli and Edythe L. Broad Institute, Cambridge, Massachusetts, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - William W Bachovchin
- Department of Developmental, Chemical &Molecular Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, USA.,Arisaph Pharmaceuticals, Boston, Massachusetts, USA
| | - Daniel A Bachovchin
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Graduate Program in Pharmacology, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| |
Collapse
|
1184
|
Liu Y, Liu H, Liu H, He P, Li J, Liu X, Chen L, Wang M, Xi J, Wang H, Zhang H, Zhu Y, Zhu W, Ning J, Guo C, Sun C, Zhang M. Dendritic cell-activated cytokine-induced killer cell-mediated immunotherapy is safe and effective for cancer patients >65 years old. Oncol Lett 2016; 12:5205-5210. [PMID: 28105230 DOI: 10.3892/ol.2016.5337] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/25/2016] [Indexed: 01/17/2023] Open
Abstract
Individuals >65 years old account for a large proportion of cancer patients, and usually have poor prognoses due to relative weaker physiological function and lower drug tolerance. To characterize the efficacy and safety of dendritic cell (DC)-activated cytokine-induced killer cell (CIK)-mediated treatment, and develop an adoptive immunotherapy for cancer patients >65 years old, a retrospective study was performed in 58 cancer sufferers who received 1-4 cycles of DC-activated CIK (DC-CIK) treatment and evaluated the response (tumor remission rate) and toxicity (side effects to the treatment). The present results showed that DCs and CIKs could be expanded rapidly in vitro, and following co-culture with DCs, the population of cluster of differentiation (CD) 3+, CD3+CD4+, CD3+CD8+ and CD3+CD56+ CIKs was significantly increased compared to CIKs without DC activation (P=0.044). In addition, DC-CIK infusion produced marked clinical outcomes, resulting in an objective remission rate, overall clinical benefit rate and Karnofsky performance status of 44.83, 75.86 and 87.28±5.46%, respectively, which was significantly improved compared with prior to treatment (P<0.05). Additionally, subsequent to two cycles of this immunotherapy, several tumor marker expression levels declined, returning to the normal range. The proportion of CD3+CD4+ (P=0.017) and CD3+CD8+ (P=0.023) lymphocytes, and the population of CD4/CD8 cells (P=0.024) were also increased. In conclusion, the present study suggests that the immunotherapy mediated by DC-CIK is safe and effective for cancer patients aged >65 years.
Collapse
Affiliation(s)
- Yanfeng Liu
- Department of Hematology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China; Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Haibo Liu
- Department of Hematology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China; Biological Immune Therapy Center, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Hausheng Liu
- Department of Hematology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China; Biological Immune Therapy Center, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Pengcheng He
- Department of Hematology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China; Biological Immune Therapy Center, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jing Li
- Department of Hematology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China; Biological Immune Therapy Center, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xin Liu
- Department of Hematology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China; Biological Immune Therapy Center, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Limei Chen
- Department of Hematology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China; Biological Immune Therapy Center, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Mengchang Wang
- Department of Hematology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China; Biological Immune Therapy Center, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jiejing Xi
- Department of Hematology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China; Biological Immune Therapy Center, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Huaiyu Wang
- Department of Hematology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China; Biological Immune Therapy Center, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Haitao Zhang
- Department of Hematology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China; Biological Immune Therapy Center, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ying Zhu
- Biological Immune Therapy Center, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wei Zhu
- Biological Immune Therapy Center, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jing Ning
- Biological Immune Therapy Center, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Caili Guo
- Biological Immune Therapy Center, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Chunhong Sun
- Biological Immune Therapy Center, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Mei Zhang
- Department of Hematology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China; Biological Immune Therapy Center, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
1185
|
Saber H, Gudi R, Manning M, Wearne E, Leighton JK. An FDA oncology analysis of immune activating products and first-in-human dose selection. Regul Toxicol Pharmacol 2016; 81:448-456. [DOI: 10.1016/j.yrtph.2016.10.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/11/2016] [Indexed: 11/29/2022]
|
1186
|
Thomas ED, Meza-Perez S, Bevis KS, Randall TD, Gillespie GY, Langford C, Alvarez RD. IL-12 Expressing oncolytic herpes simplex virus promotes anti-tumor activity and immunologic control of metastatic ovarian cancer in mice. J Ovarian Res 2016; 9:70. [PMID: 27784340 PMCID: PMC5082415 DOI: 10.1186/s13048-016-0282-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/17/2016] [Indexed: 11/30/2022] Open
Abstract
Background Despite advances in surgical aggressiveness and conventional chemotherapy, ovarian cancer remains the most lethal cause of gynecologic cancer mortality; consequently there is a need for new therapeutic agents and innovative treatment paradigms for the treatment of ovarian cancer. Several studies have demonstrated that ovarian cancer is an immunogenic disease and immunotherapy represents a promising and novel approach that has not been completely evaluated in ovarian cancer. Our objective was to evaluate the anti-tumor activity of an oncolytic herpes simplex virus “armed” with murine interleukin-12 and its ability to elicit tumor-specific immune responses. We evaluated the ability of interleukin−12-expressing and control oncolytic herpes simplex virus to kill murine and human ovarian cancer cell lines in vitro. We also administered interleukin−12-expressing oncolytic herpes simplex virus to the peritoneal cavity of mice that had developed spontaneous, metastatic ovarian cancer and determined overall survival and tumor burden at 95 days. We used flow cytometry to quantify the tumor antigen-specific CD8+ T cell response in the omentum and peritoneal cavity. Results All ovarian cancer cell lines demonstrated susceptibility to oncolytic herpes simplex virus in vitro. Compared to controls, mice treated with interleukin−12-expressing oncolytic herpes simplex virus demonstrated a more robust tumor antigen-specific CD8+ T-cell immune response in the omentum (471.6 cells vs 33.1 cells; p = 0.02) and peritoneal cavity (962.3 cells vs 179.5 cells; p = 0.05). Compared to controls, mice treated with interleukin−12-expressing oncolytic herpes simplex virus were more likely to control ovarian cancer metastases (81.2 % vs 18.2 %; p = 0.008) and had a significantly longer overall survival (p = 0.02). Finally, five of 6 mice treated with interleukin−12-expressing oHSV had no evidence of metastatic tumor when euthanized at 6 months, compared to two of 4 mice treated with sterile phosphate buffer solution. Conclusion Our pilot study demonstrates that an interleukin−12-expressing oncolytic herpes simplex virus effectively kills both murine and human ovarian cancer cell lines and promotes tumor antigen-specific CD8+ T-cell responses in the peritoneal cavity and omentum, leading to reduced peritoneal metastasis and improved survival in a mouse model.
Collapse
Affiliation(s)
- Eric D Thomas
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Alabama at Birmingham, 1700 6th Avenue South, Room 10250, Birmingham, AL, 35233, USA.
| | - Selene Meza-Perez
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, USA
| | - Kerri S Bevis
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Alabama at Birmingham, 1700 6th Avenue South, Room 10250, Birmingham, AL, 35233, USA
| | - Troy D Randall
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, USA
| | - G Yancey Gillespie
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, USA
| | - Catherine Langford
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, USA
| | - Ronald D Alvarez
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Alabama at Birmingham, 1700 6th Avenue South, Room 10250, Birmingham, AL, 35233, USA
| |
Collapse
|
1187
|
Immunotherapy for Lung Malignancies: From Gene Sequencing to Novel Therapies. Chest 2016; 151:891-897. [PMID: 27769776 DOI: 10.1016/j.chest.2016.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 09/30/2016] [Accepted: 10/07/2016] [Indexed: 01/22/2023] Open
Abstract
Harnessing the immune system to fight cancer is an exciting advancement in lung cancer therapy. Antitumor immunity can be augmented by checkpoint blockade therapy, which removes the inhibition/brakes imposed on the immune system by the tumor. Checkpoint blockade therapy with anti-programmed cell death protein 1 (anti-PD-1)/anti-programmed death ligand 1 (anti-PDL-1) antibodies causes tumor regression in about 25% of patients with lung cancer. In another approach, the immune system is forced or accelerated to attack the tumor through augmentation of the antitumor response against mutations carried by each lung tumor. This latter approach has become feasible since the advent of next-generation sequencing technology, which allows identification of the specific mutations that each individual lung tumor bears. Indeed lung cancers are now known to have high mutation rates, making them logical targets for mutation-directed immune therapies. We review how sequencing of lung cancer mutations leads to better understanding of how the immune system recognizes tumors, providing improved opportunities to track antitumor immunity and ultimately leading to the development of personalized vaccine strategies aimed at unleashing the host immune system to attack mutations in the tumor.
Collapse
|
1188
|
Korbelik M, Banáth J, Zhang W. Mreg Activity in Tumor Response to Photodynamic Therapy and Photodynamic Therapy-Generated Cancer Vaccines. Cancers (Basel) 2016; 8:cancers8100094. [PMID: 27754452 PMCID: PMC5082384 DOI: 10.3390/cancers8100094] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 01/20/2023] Open
Abstract
Myeloid regulatory cells (Mregs) are, together with regulatory T cells (Tregs), a dominant effector population responsible for restriction of the duration and strength of antitumor immune response. Photodynamic therapy (PDT) and cancer vaccines generated by PDT are modalities whose effectiveness in tumor destruction is closely dependent on the associated antitumor immune response. The present study investigated whether the immunodepletion of granulocytic Mregs in host mice by anti-GR1 antibody would improve the response of tumors to PDT or PDT vaccines in these animals. Anti-GR1 administration immediately after Temoporfin-PDT of mouse SCCVII tumors abrogated curative effect of PDT. The opposite effect, increasing PDT-mediated tumor cure-rates was attained by delaying anti-GR1 treatment to 1 h post PDT. With PDT vaccines, multiple anti-GR1 administrations (days 0, 4, and 8 post vaccination) improved the therapy response with SCCVII tumors. The results with PDT suggest that neutrophils (boosting antitumor effect of this therapy) that are engaged immediately after photodynamic light treatment are within one hour replaced with a different myeloid population, presumably Mregs that hampers the therapy-mediated antitumor effect. Anti-GR1 antibody, when used with optimal timing, can improve the efficacy of both PDT of tumors in situ and PDT-generated cancer vaccines.
Collapse
Affiliation(s)
- Mladen Korbelik
- British Columbia Cancer Agency, Vancouver, BC V5Z 4E6, Canada.
| | - Judith Banáth
- British Columbia Cancer Agency, Vancouver, BC V5Z 4E6, Canada.
| | - Wei Zhang
- British Columbia Cancer Agency, Vancouver, BC V5Z 4E6, Canada.
| |
Collapse
|
1189
|
Caron E, Kowalewski DJ, Chiek Koh C, Sturm T, Schuster H, Aebersold R. Analysis of Major Histocompatibility Complex (MHC) Immunopeptidomes Using Mass Spectrometry. Mol Cell Proteomics 2016; 14:3105-17. [PMID: 26628741 DOI: 10.1074/mcp.o115.052431] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The myriad of peptides presented at the cell surface by class I and class II major histocompatibility complex (MHC) molecules are referred to as the immunopeptidome and are of great importance for basic and translational science. For basic science, the immunopeptidome is a critical component for understanding the immune system; for translational science, exact knowledge of the immunopeptidome can directly fuel and guide the development of next-generation vaccines and immunotherapies against autoimmunity, infectious diseases, and cancers. In this mini-review, we summarize established isolation techniques as well as emerging mass spectrometry-based platforms (i.e. SWATH-MS) to identify and quantify MHC-associated peptides. We also highlight selected biological applications and discuss important current technical limitations that need to be solved to accelerate the development of this field.
Collapse
Affiliation(s)
- Etienne Caron
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland;
| | - Daniel J Kowalewski
- §Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Ching Chiek Koh
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Theo Sturm
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Heiko Schuster
- §Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Ruedi Aebersold
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland; ¶Faculty of Science, University of Zurich, Zurich, Switzerland
| |
Collapse
|
1190
|
He G, Zheng C, Huo H, Zhang H, Zhu Z, Li J, Zhang H. TACE combined with dendritic cells and cytokine-induced killer cells in the treatment of hepatocellular carcinoma: A meta-analysis. Int Immunopharmacol 2016; 40:436-442. [PMID: 27716591 DOI: 10.1016/j.intimp.2016.09.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 09/14/2016] [Accepted: 09/17/2016] [Indexed: 02/07/2023]
Abstract
Patients with hepatocellular carcinoma (HCC), a fatal cancer, have benefited significantly from TACE (transcatheter arterial chemoembolization) and immunotherapy treatments. Immunotherapy that includes dendritic cells and cytokine-induced killer cells (DC-CIK) in combination with TACE has been extensively applied in cases of HCC. Few decisive conclusions about these combined effects on the outcomes of HCC patients have been reached. Therefore, the present meta-analysis was performed to compare the efficacy of the combined usage of DC-CIK with TACE with a TACE therapy alone on the outcomes of HCC patients. Participants were enrolled in eight eligible trials. The efficiency and safety of TACE followed by DC-CIK immunotherapy (experimental group) and of TACE alone (control group) were compared. The meta-analysis results demonstrated that TACE plus DC-CIK immunotherapy is possibly superior to TACE alone in promoting a better overall response, for half-year, 1-year, and 2-year overall survival (OS), median overall survival (OS) and progression-free survival rates (PFS) in HCC patients. Further studies should be performed to confirm the effect of the combined therapy.
Collapse
Affiliation(s)
- Guangzhi He
- Department of Ultrasound, Shenzhen Guangming New District People's Hospital, 339# Songbai road, Gongming Street, Shenzhen 518106, China
| | - Chenhong Zheng
- No. 2 Clinic, Logistic Support Department, Central Military Commission, People's Republic of China, Beijing 100071, China
| | - Huiping Huo
- Department of Ultrasound, Shenzhen Guangming New District People's Hospital, 339# Songbai road, Gongming Street, Shenzhen 518106, China
| | - Huiming Zhang
- No. 2 Clinic, Logistic Support Department, Central Military Commission, People's Republic of China, Beijing 100071, China
| | - Zhiquan Zhu
- No. 2 Clinic, Logistic Support Department, Central Military Commission, People's Republic of China, Beijing 100071, China
| | - Junlai Li
- Department of Ultrasound, South Building, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China
| | - Hongpeng Zhang
- Department of Vascular and Endovascular Surgery, Chinese PLA General Hospital, Beijing, 100853, PR China.
| |
Collapse
|
1191
|
Morales-Barrera R, Suárez C, de Castro AM, Racca F, Valverde C, Maldonado X, Bastaros JM, Morote J, Carles J. Targeting fibroblast growth factor receptors and immune checkpoint inhibitors for the treatment of advanced bladder cancer: New direction and New Hope. Cancer Treat Rev 2016; 50:208-216. [PMID: 27743530 DOI: 10.1016/j.ctrv.2016.09.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 09/17/2016] [Accepted: 09/22/2016] [Indexed: 02/09/2023]
Abstract
Bladder cancer is one of the leading causes of death in Europe and the United States. About 25% of patients with bladder cancer have advanced disease (muscle-invasive or metastatic disease) at presentation and are candidates for systemic chemotherapy. In the setting of metastatic disease, use of cisplatin-based regimens improves survival. However, despite initial high response rates, the responses are typically not durable leading to recurrence and death in the vast majority of these patients with median overall survival of 15months and a 5-year survival rate of ⩽10%. Furthermore, unfit patients for cisplatin have no standard of care for first line therapy in advance disease Most second-line chemotherapeutic agents tested have been disappointing. Newer targeted drugs and immunotherapies are being studied in the metastatic setting, their usefulness in the neoadjuvant and adjuvant settings is also an intriguing area of ongoing research. Thus, new treatment strategies are clearly needed. The comprehensive evaluation of multiple molecular pathways characterized by The Cancer Genome Atlas project has shed light on potential therapeutic targets for bladder urothelial carcinomas. We have focused especially on emerging therapies in locally advanced and metastatic urothelial carcinoma with an emphasis on immune checkpoints inhibitors and FGFR targeted therapies, which have shown great promise in early clinical studies.
Collapse
Affiliation(s)
- Rafael Morales-Barrera
- Vall d'Hebron Institute of Oncology, Vall d' Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Suárez
- Vall d'Hebron Institute of Oncology, Vall d' Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana Martínez de Castro
- Vall d'Hebron Institute of Oncology, Vall d' Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Fabricio Racca
- Vall d'Hebron Institute of Oncology, Vall d' Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Claudia Valverde
- Vall d'Hebron Institute of Oncology, Vall d' Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Maldonado
- Department of Radiation Oncology, Vall d' Hebron University Hospital, Barcelona, Spain
| | | | - Juan Morote
- Department of Urology, Vall d' Hebron University Hospital, Barcelona, Spain
| | - Joan Carles
- Vall d'Hebron Institute of Oncology, Vall d' Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
1192
|
An In Vitro Model That Predicts the Therapeutic Efficacy of Immunomodulatory Antibodies. J Immunother 2016; 39:298-305. [DOI: 10.1097/cji.0000000000000135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
1193
|
Sun J, Song Y, Lu M, Lin X, Liu Y, Zhou S, Su Y, Deng Y. Evaluation of the antitumor effect of dexamethasone palmitate and doxorubicin co-loaded liposomes modified with a sialic acid–octadecylamine conjugate. Eur J Pharm Sci 2016; 93:177-83. [DOI: 10.1016/j.ejps.2016.08.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 08/06/2016] [Accepted: 08/13/2016] [Indexed: 02/07/2023]
|
1194
|
Alatrash G, Daver N, Mittendorf EA. Targeting Immune Checkpoints in Hematologic Malignancies. Pharmacol Rev 2016; 68:1014-1025. [PMID: 27664133 PMCID: PMC11060433 DOI: 10.1124/pr.116.012682] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The use of antibodies that target immune checkpoint molecules on the surface of T-lymphocytes and/or tumor cells has revolutionized our approach to cancer therapy. Cytotoxic-T-lymphocyte antigen (CTLA-4) and programmed cell death protein 1 (PD-1) are the two most commonly targeted immune checkpoint molecules. Although the role of antibodies that target CTLA-4 and PD-1 has been established in solid tumor malignancies and Food and Drug Administration approved for melanoma and non-small cell lung cancer, there remains a desperate need to incorporate immune checkpoint inhibition in hematologic malignancies. Unlike solid tumors, a number of considerations must be addressed to appropriately employ immune checkpoint inhibition in hematologic malignancies. For example, hematologic malignancies frequently obliterate the bone marrow and lymph nodes, which are critical immune organs that must be restored for appropriate response to immune checkpoint inhibition. On the other hand, hematologic malignancies are the quintessential immune responsive tumor type, as proven by the success of allogeneic stem cell transplantation (allo-SCT) in hematologic malignancies. Also, sharing an immune cell lineage, malignant hematologic cells often express immune checkpoint molecules that are absent in solid tumor cells, thereby offering direct targets for immune checkpoint inhibition. A number of clinical trials have demonstrated the potential for immune checkpoint inhibition in hematologic malignancies before and after allo-SCT. The ongoing clinical studies and complimentary immune correlatives are providing a growing body of knowledge regarding the role of immune checkpoint inhibition in hematologic malignancies, which will likely become part of the standard of care for hematologic malignancies.
Collapse
Affiliation(s)
- Gheath Alatrash
- Departments of Stem Cell Transplantation and Cellular Therapy (G.A., E.A.M.), Leukemia (N.D.), and Breast Surgical (E.A.M.) Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naval Daver
- Departments of Stem Cell Transplantation and Cellular Therapy (G.A., E.A.M.), Leukemia (N.D.), and Breast Surgical (E.A.M.) Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elizabeth A Mittendorf
- Departments of Stem Cell Transplantation and Cellular Therapy (G.A., E.A.M.), Leukemia (N.D.), and Breast Surgical (E.A.M.) Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
1195
|
Yang J, Kopeček J. Design of smart HPMA copolymer-based nanomedicines. J Control Release 2016; 240:9-23. [DOI: 10.1016/j.jconrel.2015.10.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/29/2015] [Accepted: 10/01/2015] [Indexed: 01/13/2023]
|
1196
|
Mick R, Chen TT. Statistical Challenges in the Design of Late-Stage Cancer Immunotherapy Studies. Cancer Immunol Res 2016; 3:1292-8. [PMID: 26644449 DOI: 10.1158/2326-6066.cir-15-0260] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The past several years have witnessed a revival of interest in cancer immunology and immunotherapy owing to striking immunologic and clinical responses to immune-directed anticancer therapies and leading to the selection of "Cancer Immunotherapy" as the 2013 Breakthrough of the Year by Science. But statistical challenges exist at all phases of clinical development. In phase III trials of immunotherapies, survival curves have been shown to demonstrate delayed clinical effects, as well as long-term survival. These unique survival kinetics could lead to loss of statistical power and prolongation of study duration. Statistical assumptions that form the foundations for conventional statistical inference in the design and analysis of phase III trials, such as exponential survival and proportional hazards, require careful considerations. In this article, we describe how the unique characteristics of patient response to cancer immunotherapies will impact our strategies on statistical design and analysis in late-stage drug development.
Collapse
Affiliation(s)
- Rosemarie Mick
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tai-Tsang Chen
- Department of Global Biometric Sciences, Bristol-Myers Squibb, Princeton, New Jersey. Department of Biostatistics, Columbia University, New York, New York.
| |
Collapse
|
1197
|
Li J, Xing Y, Zhou Z, Yao W, Cao R, Li T, Xu M, Wu J. Microbial HSP70 peptide epitope 407–426 as adjuvant in tumor-derived autophagosome vaccine therapy of mouse lung cancer. Tumour Biol 2016; 37:15097-15105. [DOI: 10.1007/s13277-016-5309-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/05/2016] [Indexed: 11/25/2022] Open
|
1198
|
Kager L, Tamamyan G, Bielack S. Novel insights and therapeutic interventions for pediatric osteosarcoma. Future Oncol 2016; 13:357-368. [PMID: 27651036 DOI: 10.2217/fon-2016-0261] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
High-grade osteosarcomas are the most common primary malignant tumors of bone. With complete surgical resection and multi-agent chemotherapy up to 70% of patients with high-grade osteosarcomas and localized extremity tumors can become long-term survivors. The prognosis, however, is poor for patients with nonresectable, primary metastatic or relapsed disease. Outcome is essentially unchanged for three decades. Herein, we describe selected novel insights into the genomics, biology and immunology of the disease and discuss selected strategies, which hold promise to overcome the current stagnation in the therapeutic success in childhood osteosarcoma.
Collapse
Affiliation(s)
- Leo Kager
- Department of Pediatrics, St Anna Children's Hospital, Medical University Vienna, Vienna, Austria.,Children's Cancer Research Institute, Vienna, Austria
| | - Gevorg Tamamyan
- Department of Oncology, Yerevan State Medical University, Yerevan, Armenia.,Clinic of Chemotherapy, Muratsan Hospital Complex of Yerevan State Medical University, Yerevan, Armenia
| | - Stefan Bielack
- Klinikum Stuttgart, Olgahospital, Pediatrics 5 - Oncology, Hematology, Immunology, Stuttgart, Germany
| |
Collapse
|
1199
|
Transfer from research/academia to clinical/regulated. Bioanalysis 2016; 8:2169-76. [PMID: 27628669 DOI: 10.4155/bio-2016-4994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We focus here on how the interface in academia has adapted in their approach to assessing the PDs of biological agents to better understand mechanisms at an early stage. This understanding enables drugs to be modified early and to be reassessed before progressing to late stage trials. We discuss how these efforts are now being bolstered by a network of consortia involving industry, academia and regulatory bodies, to bring together resources, knowledge and a harmonization in bioanalytical techniques. We highlight how the regulatory guidance still lags behind the rapid advancement in biologicals and associated analytical techniques, especially in immunotherapies and immunological bioassays. Despite this, new collaborative groups are working together to deliver robust and accurate results essential for identifying the most promising drugs to progress from early phase academic research to late phase industry based trials. We show how the relationship between academia and not-for-profit organizations with large pharma and emerging biotech companies has shifted toward a more collaborative effort in bringing new therapies to the forefront.
Collapse
|
1200
|
Lu K, He C, Guo N, Chan C, Ni K, Weichselbaum RR, Lin W. Chlorin-Based Nanoscale Metal-Organic Framework Systemically Rejects Colorectal Cancers via Synergistic Photodynamic Therapy and Checkpoint Blockade Immunotherapy. J Am Chem Soc 2016; 138:12502-10. [PMID: 27575718 DOI: 10.1021/jacs.6b06663] [Citation(s) in RCA: 365] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photodynamic therapy (PDT) can destroy local tumors and minimize normal tissue damage, but is ineffective at eliminating metastases. Checkpoint blockade immunotherapy has enjoyed recent success in the clinic, but only elicits limited rates of systemic antitumor response for most cancers due to insufficient activation of the host immune system. Here we describe a treatment strategy that combines PDT by a new chlorin-based nanoscale metal-organic framework (nMOF), TBC-Hf, and a small-molecule immunotherapy agent that inhibits indoleamine 2,3-dioxygenase (IDO), encapsulated in the nMOF channels to induce systemic antitumor immunity. The synergistic combination therapy achieved effective local and distant tumor rejection in colorectal cancer models. We detected increased T cell infiltration in the tumor microenvironment after activation of the immune system with the combination of IDO inhibition by the small-molecule immunotherapy agent and immunogenic cell death induced by PDT. We also elucidated the underlying immunological mechanisms and revealed compensatory roles of neutrophils and B cells in presenting tumor-associated antigens to T cells in this combination therapy. We believe that nMOF-enabled PDT has the potential to significantly enhance checkpoint blockade cancer immunotherapy, affording clinical benefits for the treatment of many difficult-to-treat cancers.
Collapse
Affiliation(s)
- Kuangda Lu
- Department of Chemistry, The University of Chicago , 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Chunbai He
- Department of Chemistry, The University of Chicago , 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Nining Guo
- Department of Chemistry, The University of Chicago , 929 East 57th Street, Chicago, Illinois 60637, United States.,Department of Radiation and Cellular Oncology and The Ludwig Center for Metastasis Research, The University of Chicago , Chicago, Illinois 60637, United States
| | - Christina Chan
- Department of Chemistry, The University of Chicago , 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Kaiyuan Ni
- Department of Chemistry, The University of Chicago , 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and The Ludwig Center for Metastasis Research, The University of Chicago , Chicago, Illinois 60637, United States
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago , 929 East 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|