1201
|
Yu HR, Chen RF, Hong KC, Bong CN, Lee WI, Kuo HC, Yang KD. IL-12-independent Th1 polarization in human mononuclear cells infected with varicella-zoster virus. Eur J Immunol 2005; 35:3664-72. [PMID: 16285008 DOI: 10.1002/eji.200526258] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
T helper type 1 (Th1) cells perform a critical role in fighting intracellular organisms, and interleukin-12 (IL-12) is known to promote a Thl response. This study was conducted to identify whether an IL-12-independent Th1 reaction is induced by the varicella-zoster virus (VZV) in human beings. It was found that different intracellular microorganisms could induce IFNgamma but not IL-12 production. Induction of IFNgamma production by VZV was associated with IFNalpha production and phosphorylation of both the signal transducer and activator of transcription-1 (STAT-1) and STAT-4 in lymphocytes. In contrast, Bacillus Calmette-Guerin (BCG) induced IL-12 production in association with STAT-4 but not STAT-1 activation. Anti-IFNalpha but not anti-IL-12 antibodies blocked the VZV-induced Th1 polarization. A patient with an IL-12 receptor beta1 chain deficiency showed a normal VZV- but not a normal BCG-induced Th1 reaction, further supporting the concept of an IFNalpha-mediated, IL-12-independent Th1 reaction in response to certain intracellular infections. Identification of the early Th1 polarization induced by IFNalpha versus IL-12 in response to specific viruses may enable the development of better therapeutic strategies tailored to different infections.
Collapse
Affiliation(s)
- Hong-Ren Yu
- Department of Pediatric Allergy, Immunology and Rheumatology, Chang Gung Children's Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
1202
|
Samuel MA, Diamond MS. Alpha/beta interferon protects against lethal West Nile virus infection by restricting cellular tropism and enhancing neuronal survival. J Virol 2005; 79:13350-61. [PMID: 16227257 PMCID: PMC1262587 DOI: 10.1128/jvi.79.21.13350-13361.2005] [Citation(s) in RCA: 332] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
West Nile virus (WNV) is a mosquito-borne flavivirus that is neurotropic in humans, birds, and other animals. While adaptive immunity plays an important role in preventing WNV spread to the central nervous system (CNS), little is known about how alpha/beta interferon (IFN-alpha/beta) protects against peripheral and CNS infection. In this study, we examine the virulence and tropism of WNV in IFN-alpha/beta receptor-deficient (IFN- alpha/betaR-/-) mice and primary neuronal cultures. IFN-alpha/betaR-/- mice were acutely susceptible to WNV infection through subcutaneous inoculation, with 100% mortality and a mean time to death (MTD) of 4.6 +/- 0.7 and 3.8+/- 0.5 days after infection with 10(0) and 10(2) PFU, respectively. In contrast, congenic wild-type 129Sv/Ev mice infected with 10(2) PFU showed 62% mortality and a MTD of 11.9 +/- 1.9 days. IFN-alpha/betaR-/- mice developed high viral loads by day 3 after infection in nearly all tissues assayed, including many that were not infected in wild-type mice. IFN-alpha/betaR-/- mice also demonstrated altered cellular tropism, with increased infection in macrophages, B cells, and T cells in the spleen. Additionally, treatment of primary wild-type neurons in vitro with IFN-beta either before or after infection increased neuronal survival independent of its effect on WNV replication. Collectively, our data suggest that IFN-alpha/beta controls WNV infection by restricting tropism and viral burden and by preventing death of infected neurons.
Collapse
Affiliation(s)
- Melanie A Samuel
- Department of Molecular Microbiology, Washington University School of Medicine, Campus Box 8051, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | |
Collapse
|
1203
|
Windisch MP, Frese M, Kaul A, Trippler M, Lohmann V, Bartenschlager R. Dissecting the interferon-induced inhibition of hepatitis C virus replication by using a novel host cell line. J Virol 2005; 79:13778-93. [PMID: 16227297 PMCID: PMC1262607 DOI: 10.1128/jvi.79.21.13778-13793.2005] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Hepatitis C virus (HCV), a member of the family Flaviviridae, is a major cause of chronic liver disease. Patients are currently treated with alpha interferon (IFN-alpha) that is given alone or in combination with ribavirin. Unfortunately, this treatment is ineffective in eliminating the virus in a large proportion of individuals. IFN-induced antiviral activities have been intensively studied in the HCV replicon system. It was found that both IFN-alpha and IFN-gamma inhibit HCV replicons, but the underlying mechanisms have not yet been identified. Of note is that nearly all of these studies were performed with the human hepatoma cell line Huh-7. Here, we report that genotypes 1b and 2a replicons also replicate in the human hepatoblastoma cell line HuH6. Similar to what has been described for Huh-7 cells, we observed that efficient HCV replication in HuH6 cells depends on the presence of cell culture-adaptive mutations and the permissiveness of the host cell. However, three major differences exist: in HuH6 cells, viral replication is (i) independent from ongoing cell proliferation, (ii) less sensitive to certain antiviral compounds, and (iii) highly resistant to IFN-gamma. The latter is not due to a general defect in IFN signaling, as IFN-gamma induces the nuclear translocation of signal transducer and activator of transcription 1 (STAT1), the enhanced transcription of several IFN-regulated genes, and the inhibition of unrelated viruses such as influenza A virus and Semliki Forest virus. Taken together, the results establish HuH6 replicon cells as a valuable tool for IFN studies and for the evaluation of antiviral compounds.
Collapse
Affiliation(s)
- Marc P Windisch
- Department of Molecular Virology, Hygiene Institute, University of Heidelberg, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
1204
|
Yang K, Puel A, Zhang S, Eidenschenk C, Ku CL, Casrouge A, Picard C, von Bernuth H, Senechal B, Plancoulaine S, Al-Hajjar S, Al-Ghonaium A, Maródi L, Davidson D, Speert D, Roifman C, Garty BZ, Ozinsky A, Barrat FJ, Coffman RL, Miller RL, Li X, Lebon P, Rodriguez-Gallego C, Chapel H, Geissmann F, Jouanguy E, Casanova JL. Human TLR-7-, -8-, and -9-mediated induction of IFN-alpha/beta and -lambda Is IRAK-4 dependent and redundant for protective immunity to viruses. Immunity 2005; 23:465-78. [PMID: 16286015 PMCID: PMC7111074 DOI: 10.1016/j.immuni.2005.09.016] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 09/16/2005] [Accepted: 09/22/2005] [Indexed: 12/11/2022]
Abstract
Five TLRs are thought to play an important role in antiviral immunity, sensing viral products and inducing IFN-alpha/beta and -lambda. Surprisingly, patients with a defect of IRAK-4, a critical kinase downstream from TLRs, are resistant to common viruses. We show here that IFN-alpha/beta and -lambda induction via TLR-7, TLR-8, and TLR-9 was abolished in IRAK-4-deficient blood cells. In contrast, IFN-alpha/beta and -lambda were induced normally by TLR-3 and TLR-4 agonists. Moreover, IFN-beta and -lambda were normally induced by TLR-3 agonists and viruses in IRAK-4-deficient fibroblasts. We further show that IFN-alpha/beta and -lambda production in response to 9 of 11 viruses tested was normal or weakly affected in IRAK-4-deficient blood cells. Thus, IRAK-4-deficient patients may control viral infections by TLR-3- and TLR-4-dependent and/or TLR-independent production of IFNs. The TLR-7-, TLR-8-, and TLR-9-dependent induction of IFN-alpha/beta and -lambda is strictly IRAK-4 dependent and paradoxically redundant for protective immunity to most viruses in humans.
Collapse
Affiliation(s)
- Kun Yang
- Laboratory of Human Genetics of Infectious Diseases, University of Paris René Descartes INSERM U550, Necker Medical School, 75015 Paris, France
- French-Chinese Laboratory of Genetics and Life Sciences, Rui Jin Hospital, Medical School of Shanghai Jiao Tong University, 200025 Shanghai, China
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, University of Paris René Descartes INSERM U550, Necker Medical School, 75015 Paris, France
| | - Shenying Zhang
- Laboratory of Human Genetics of Infectious Diseases, University of Paris René Descartes INSERM U550, Necker Medical School, 75015 Paris, France
- French-Chinese Laboratory of Genetics and Life Sciences, Rui Jin Hospital, Medical School of Shanghai Jiao Tong University, 200025 Shanghai, China
| | - Céline Eidenschenk
- Laboratory of Human Genetics of Infectious Diseases, University of Paris René Descartes INSERM U550, Necker Medical School, 75015 Paris, France
| | - Cheng-Lung Ku
- Laboratory of Human Genetics of Infectious Diseases, University of Paris René Descartes INSERM U550, Necker Medical School, 75015 Paris, France
| | - Armanda Casrouge
- Laboratory of Human Genetics of Infectious Diseases, University of Paris René Descartes INSERM U550, Necker Medical School, 75015 Paris, France
| | - Capucine Picard
- Laboratory of Human Genetics of Infectious Diseases, University of Paris René Descartes INSERM U550, Necker Medical School, 75015 Paris, France
- Pediatric Immunology-Hematology, Necker Enfants Malades Hospital, 75015 Paris, France
| | - Horst von Bernuth
- Laboratory of Human Genetics of Infectious Diseases, University of Paris René Descartes INSERM U550, Necker Medical School, 75015 Paris, France
| | - Brigitte Senechal
- Laboratory of Mononuclear Cell Biology, INSERM Avenir, IFR Necker, Necker Hospital, 75015 Paris, France
| | - Sabine Plancoulaine
- Laboratory of Human Genetics of Infectious Diseases, University of Paris René Descartes INSERM U550, Necker Medical School, 75015 Paris, France
| | - Sami Al-Hajjar
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Kingdom of Saudi Arabia
| | - Abdulaziz Al-Ghonaium
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Kingdom of Saudi Arabia
| | - László Maródi
- Department of Infectiology and Pediatric Immunology, Medical and Health Science Center, University of Debrecen, H-4012 Debrecen, Hungary
| | - Donald Davidson
- Division of Infectious and Immunological Diseases, British Columbia Research Institute for Child and Family Health, Vancouver, British Columbia V5Z 4H4, Canada
| | - David Speert
- Division of Infectious and Immunological Diseases, British Columbia Research Institute for Child and Family Health, Vancouver, British Columbia V5Z 4H4, Canada
| | - Chaim Roifman
- Divison of Immunology/Allergy, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | - Ben-Zion Garty
- Department of Pediatrics, Schneider Children's Medical Center of Israel, 49202 Petah Tiqva, Israel
| | - Adrian Ozinsky
- Institute for Systems Biology, Seattle, Washington 98103
| | | | | | | | - Xiaoxia Li
- Department of Immunology, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Pierre Lebon
- Department of Virology, Saint Vincent de Paul Hospital, University of Paris René Descartes, 75015 Paris, France
| | - Carlos Rodriguez-Gallego
- Department of Immunology, Gran Canaria Dr Negrin Hospital, 35020 Las Palmas de Gran Canaria, Spain
| | - Helen Chapel
- Department of Immunology, Oxford Radcliffe Hospital, John Radcliffe Campus, Headington, Oxford OX3 9DU, United Kingdom
| | - Frédéric Geissmann
- Laboratory of Mononuclear Cell Biology, INSERM Avenir, IFR Necker, Necker Hospital, 75015 Paris, France
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, University of Paris René Descartes INSERM U550, Necker Medical School, 75015 Paris, France
- French-Chinese Laboratory of Genetics and Life Sciences, Rui Jin Hospital, Medical School of Shanghai Jiao Tong University, 200025 Shanghai, China
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, University of Paris René Descartes INSERM U550, Necker Medical School, 75015 Paris, France
- French-Chinese Laboratory of Genetics and Life Sciences, Rui Jin Hospital, Medical School of Shanghai Jiao Tong University, 200025 Shanghai, China
- Pediatric Immunology-Hematology, Necker Enfants Malades Hospital, 75015 Paris, France
| |
Collapse
|
1205
|
Yanai H, Mizutani T, Inuzuka T, Honda K, Takaoka A, Taniguchi T. IRF family transcription factors in type I interferon induction. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.ics.2005.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
1206
|
Borden EC. Review: Milstein Award lecture: interferons and cancer: where from here? J Interferon Cytokine Res 2005; 25:511-27. [PMID: 16181052 DOI: 10.1089/jir.2005.25.511] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Interferons (IFNs) remain the most broadly active cytokines for cancer treatment, yet ones for which the full potential is not reached. IFNs have impacted positively on both quality and quantity of life for hundreds of thousands of cancer patients with chronic leukemia, lymphoma, bladder carcinoma, melanoma, and renal carcinoma. The role of the IFN system in malignant pathogenesis continues to enhance understanding of how the IFN system may be modulated for therapeutic advantage. Reaching the full potential of IFNs as therapeutics for cancer will also result from additional understanding of the genes underlying apoptosis induction, angiogenesis inhibition, and influence on immunologic function. Food and Drug Administration (FDA) approval of IFNs occurred less than 20 years ago; after 40 years, third-generation products of early cytotoxics, such as 5- fluorouracil (5FU), are beginning to reach clinical approval. Thus, substantial potential exists for additional application of IFNs and IFN inducers as anticancer therapeutics, particularly when one considers that their pleiotropic cellular and molecular effects have yet to be fully defined.
Collapse
Affiliation(s)
- Ernest C Borden
- Center for Cancer Drug Discovery & Development, Lerner Research Institute, Taussig Cancer Center/R40, Cleveland, OH 44195, USA.
| |
Collapse
|
1207
|
Honda K, Yanai H, Takaoka A, Taniguchi T. Regulation of the type I IFN induction: a current view. Int Immunol 2005; 17:1367-78. [PMID: 16214811 DOI: 10.1093/intimm/dxh318] [Citation(s) in RCA: 262] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The type I IFN-alpha/beta gene family was identified about a quarter of a century ago as a prototype of many cytokine gene families, which led to the subsequent burst of studies on molecular mechanisms underlying cytokine gene expression and signaling. Although originally discovered for their activity to confer an antiviral state on cells, more evidence has recently been emerging regarding IFN-alpha/beta actions on cell growth, differentiation and many immunoregulatory activities, which are of even greater fundamental biological significance. Indeed, much attention has recently been focused on the induction and function of the IFN-alpha/beta system regulated by Toll-like receptors (TLRs), which are critical for linking the innate and adaptive immunities. The understanding of the regulatory mechanisms of IFN-alpha/beta gene induction by TLRs and viruses is an emerging theme, for which much new insight has been gained over the past few years.
Collapse
Affiliation(s)
- Kenya Honda
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
1208
|
Abstract
Interferon (IFN)-Zeta/limitin has been considered as a novel type I IFN by the Nomenclature Committee of the International Society for Interferon and Cytokine Research. IFN-Zeta/limitin shows some sequence homology with IFN-alpha and IFN-beta, has a globular structure with five alpha-helices and four loops, and recognizes IFN-alpha/beta receptor. Although IFN-zeta/limitin displays antiviral, immunomodulatory, and antitumor effects, it has much less lympho-myelosuppressive activities than IFN-alpha. Treatment of cells with type I IFNs induces and/or activates a number of molecules, which regulate cell cycle and apoptosis. It is noteworthy that IFN-zeta/limitin activates the Tyk2-Daxx and Tyk2-Crk pathways weaker than IFN-alpha. Because experiments using antisense oligonucleotides have revealed their essential role in type I IFN-related suppression of lympho-hematopoiesis, little ability of IFN-zeta/limitin to activate the Tyk2-dependent signaling pathway may explain its uniquely narrow range of biological activities. Further analysis of structure-function relationship of type I IFNs will establish an engineered cytokine with useful features of IFN-zeta/limitin.
Collapse
Affiliation(s)
- Kenji Oritani
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.
| | | |
Collapse
|
1209
|
Decker T, Müller M, Stockinger S. The Yin and Yang of type I interferon activity in bacterial infection. Nat Rev Immunol 2005; 5:675-87. [PMID: 16110316 DOI: 10.1038/nri1684] [Citation(s) in RCA: 359] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Interferons (IFNs) are cytokines that are important for immune responses, particularly to intracellular pathogens. They are divided into two structurally and functionally distinct types that interact with different cell-surface receptors. Classically, type I IFNs are potent antiviral immunoregulators, whereas the type II IFN enhances antibacterial immunity. However, as outlined here, type I IFNs are also produced in response to infection with other pathogens, and an increasing body of work shows that type I IFNs have an important role in the host response to bacterial infection. Strikingly, their activity can be either favourable or detrimental, and can influence various immune effector mechanisms.
Collapse
Affiliation(s)
- Thomas Decker
- Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, Department of Microbiology and Immunobiology, University of Vienna, Vienna, Austria.
| | | | | |
Collapse
|
1210
|
Ellermann-Eriksen S. Macrophages and cytokines in the early defence against herpes simplex virus. Virol J 2005; 2:59. [PMID: 16076403 PMCID: PMC1215526 DOI: 10.1186/1743-422x-2-59] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 08/03/2005] [Indexed: 11/12/2022] Open
Abstract
Herpes simplex virus (HSV) type 1 and 2 are old viruses, with a history of evolution shared with humans. Thus, it is generally well-adapted viruses, infecting many of us without doing much harm, and with the capacity to hide in our neurons for life. In rare situations, however, the primary infection becomes generalized or involves the brain. Normally, the primary HSV infection is asymptomatic, and a crucial element in the early restriction of virus replication and thus avoidance of symptoms from the infection is the concerted action of different arms of the innate immune response. An early and light struggle inhibiting some HSV replication will spare the host from the real war against huge amounts of virus later in infection. As far as such a war will jeopardize the life of the host, it will be in both interests, including the virus, to settle the conflict amicably. Some important weapons of the unspecific defence and the early strikes and beginning battle during the first days of a HSV infection are discussed in this review. Generally, macrophages are orchestrating a multitude of anti-herpetic actions during the first hours of the attack. In a first wave of responses, cytokines, primarily type I interferons (IFN) and tumour necrosis factor are produced and exert a direct antiviral effect and activate the macrophages themselves. In the next wave, interleukin (IL)-12 together with the above and other cytokines induce production of IFN-gamma in mainly NK cells. Many positive feed-back mechanisms and synergistic interactions intensify these systems and give rise to heavy antiviral weapons such as reactive oxygen species and nitric oxide. This results in the generation of an alliance against the viral enemy. However, these heavy weapons have to be controlled to avoid too much harm to the host. By IL-4 and others, these reactions are hampered, but they are still allowed in foci of HSV replication, thus focusing the activity to only relevant sites. So, no hero does it alone. Rather, an alliance of cytokines, macrophages and other cells seems to play a central role. Implications of this for future treatment modalities are shortly considered.
Collapse
Affiliation(s)
- Svend Ellermann-Eriksen
- Department of Clinical Microbiology, Aarhus University Hospital, Skejby Sygehus, Brendstrupgaardsvej 100, DK-8200 Aarhus N., Denmark.
| |
Collapse
|
1211
|
Bartlett NW, Buttigieg K, Kotenko SV, Smith GL. Murine interferon lambdas (type III interferons) exhibit potent antiviral activity in vivo in a poxvirus infection model. J Gen Virol 2005; 86:1589-1596. [PMID: 15914836 DOI: 10.1099/vir.0.80904-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human interferon lambdas (IFN-lambdas) (type III IFNs) exhibit antiviral activity in vitro by binding to a receptor complex distinct from that used by type I and type II IFNs, and subsequent signalling through the Janus kinase signal transducers and activators of transcription (STAT) pathway. However, evidence for a function of type III IFNs during virus infection in vivo is lacking. Here, the expression of murine IFN-lambdas by recombinant vaccinia virus (VACV) is described and these proteins are shown to have potent antiviral activity in vivo. VACV expressing murine IFN-lambda2 (vIFN-lambda2) and IFN-lambda3 (vIFN-lambda3) showed normal growth in tissue culture and expressed N-glycosylated IFN-lambda in infected cell extracts and culture supernatants. The role that murine IFN-lambdas play during virus infection was assessed in two different mouse models. vIFN-lambda2 and vIFN-lambda3 were avirulent for mice infected intranasally and induced no signs of illness or weight loss, in contrast to control viruses. Attenuation of vIFN-lambda2 was associated with increases in lymphocytes in bronchial alveolar lavages and CD4+ T cells in total-lung lymphocyte preparations. In addition, vIFN-lambda2 was cleared more rapidly from infected lungs and, in contrast to control viruses, did not disseminate to the brain. Expression of IFN-lambda2 also attenuated VACV in an intradermal-infection model, characterized by a delay in lesion onset and reduced lesion size. Thus, by characterizing murine IFN-lambdas within a mouse infection model, the potent antiviral and immunostimulatory activity of IFN-lambdas in response to poxvirus infection has been demonstrated.
Collapse
Affiliation(s)
- Nathan W Bartlett
- Department of Virology, Faculty of Medicine, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Karen Buttigieg
- Department of Virology, Faculty of Medicine, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Sergei V Kotenko
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, Newark, USA
| | - Geoffrey L Smith
- Department of Virology, Faculty of Medicine, Imperial College London, Norfolk Place, London W2 1PG, UK
| |
Collapse
|
1212
|
Lamken P, Gavutis M, Peters I, Van der Heyden J, Uzé G, Piehler J. Functional Cartography of the Ectodomain of the Type I Interferon Receptor Subunit ifnar1. J Mol Biol 2005; 350:476-88. [PMID: 15946680 DOI: 10.1016/j.jmb.2005.05.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2005] [Revised: 04/29/2005] [Accepted: 05/04/2005] [Indexed: 11/21/2022]
Abstract
Ligand-induced cross-linking of the type I interferon (IFN) receptor subunits ifnar1 and ifnar2 induces a pleiotrophic cellular response. Several studies have suggested differential signal activation by flexible recruitment of the accessory receptor subunit ifnar1. We have characterized the roles of the four Ig-like sub-domains (SDs) of the extracellular domain of ifnar1 (ifnar1-EC) for ligand recognition and receptor assembling. Various sub-fragments of ifnar1-EC were expressed in insect cells and purified to homogeneity. Solid phase binding assays with the ligands IFN(alpha)2 and IFN(beta) revealed that all three N-terminal SDs were required and sufficient for ligand binding, and that IFN(alpha)2 and IFN(beta) compete for this binding site. Cellular binding assays with different fragments, however, highlighted the key role of the membrane-proximal SD for the formation of an in situ IFN-receptor complex. Even substitution with the corresponding SD from homologous cytokine receptors did not restore high-affinity ligand binding. Receptor assembling analysis on supported lipid bilayers in vitro revealed that the membrane-proximal SD controls appropriate orientation of the receptor on the membrane, which is required for efficient association of ifnar1 into the ternary complex.
Collapse
Affiliation(s)
- Peter Lamken
- Institute of Biochemistry, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
1213
|
Plouffe DA, Hanington PC, Walsh JG, Wilson EC, Belosevic M. Comparison of select innate immune mechanisms of fish and mammals. Xenotransplantation 2005; 12:266-77. [PMID: 15943775 DOI: 10.1111/j.1399-3089.2005.00227.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The study of innate immunity has become increasingly popular since the discovery of homologs of many of the innate immune system components and pathways in lower organisms including invertebrates. As fish occupy a key position in the evolution of the innate and adaptive immune responses, there has been a great deal of interest regarding similarities and differences between their defense mechanisms and those of higher vertebrates. This review focuses on describing select mechanisms of the innate immune responses of fish and the implications for evolution of immunity in higher vertebrates.
Collapse
Affiliation(s)
- Debbie A Plouffe
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
1214
|
Abstract
Interferons are cytokines that have antiviral, antiproliferative and immunomodulatory effects. Because of these important properties, in the past two decades, major research efforts have been undertaken to understand the signalling mechanisms through which these cytokines induce their effects. Since the original discovery of the classical JAK (Janus activated kinase)-STAT (signal transducer and activator of transcription) pathway of signalling, it has become clear that the coordination and cooperation of multiple distinct signalling cascades - including the mitogen-activated protein kinase p38 cascade and the phosphatidylinositol 3-kinase cascade - are required for the generation of responses to interferons. It is anticipated that an increased understanding of the contributions of these recently identified pathways will advance our current thinking about how interferons work.
Collapse
Affiliation(s)
- Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, 710 North Fairbanks Court, Olson 8250, Chicago, Illinois 60611, USA.
| |
Collapse
|
1215
|
Chandrasekar B, Mummidi S, Valente AJ, Patel DN, Bailey SR, Freeman GL, Hatano M, Tokuhisa T, Jensen LE. The pro-atherogenic cytokine interleukin-18 induces CXCL16 expression in rat aortic smooth muscle cells via MyD88, interleukin-1 receptor-associated kinase, tumor necrosis factor receptor-associated factor 6, c-Src, phosphatidylinositol 3-kinase, Akt, c-Jun N-terminal kinase, and activator protein-1 signaling. J Biol Chem 2005; 280:26263-77. [PMID: 15890643 DOI: 10.1074/jbc.m502586200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We recently demonstrated that the chemokine CXCL16 is expressed in aortic smooth muscle cells (ASMC) and induces ASMC adhesion and proliferation (Chandrasekar, B., Bysani, S., and Mummidi, S. (2004) J. Biol. Chem. 279, 3188-3196). Here we reort that interleukin (IL)-18 positively regulates CXCL16 transcription in rat ASMC. We characterized the cis-regulatory region of CXCL16 and identified a functional activator protein-1 (AP-1) binding motif. Deletion or mutation of this site attenuated IL-18-mediated CXCL16 promoter activity. Gel shift, supershift, and chromatin immunoprecipitation assays confirmed AP-1-dependent CXCL16 expression. CXCL16 promoter-reporter activity was increased by constitutively active c-Fos and c-Jun and decreased by dominant negative or antisense c-Fos and c-Jun. Src kinase inhibitors PP1 and PP2, phosphatidylinositol 3-kinase (PI3K) inhibitors wortmannin and LY294002, Akt inhibitor, the c-Jun N-terminal kinase (JNK) inhibitor SP600125, antisense JNK and dominant negative MyD88, interleukin-1 receptor-associated kinase (IRAK)-1, IRAK4, and phosphatidylinositol 3-kinase expression all attenuated IL-18-mediated AP-1 binding and reporter activity, CXCL16 promoter-reporter activity, and CXCL16 expression. Thus IL-18 induced CXCL16 expression via a MyD88 --> IRAK1-IRAK4-TRAF6 (tumor necrosis factor receptor-associated factor 6) --> c-Src--> PI3K --> Akt --> JNK --> AP-1 pathway. Importantly, IL-18 stimulated ASMC proliferation in a CXCL16-dependent manner. These data provide for the first time a mechanism of IL-18-mediated CXCL16 gene transcription and CXCL16-dependent ASMC proliferation and suggest a role for IL-18-CXCL16 cross-talk in atherogenesis and restenosis following angioplasty.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Amino Acid Motifs
- Animals
- Antigens, Differentiation/metabolism
- Antigens, Differentiation/physiology
- Aorta/metabolism
- Apoptosis
- Base Sequence
- CSK Tyrosine-Protein Kinase
- Cell Adhesion
- Cell Proliferation
- Chemokines, CXC/biosynthesis
- Chemokines, CXC/metabolism
- Dactinomycin/pharmacology
- Dose-Response Relationship, Drug
- Enhancer Elements, Genetic
- Enzyme Inhibitors/pharmacology
- Gene Expression Regulation
- Genes, Dominant
- Interleukin-1 Receptor-Associated Kinases
- Interleukin-18/metabolism
- Interleukin-18/physiology
- JNK Mitogen-Activated Protein Kinases/metabolism
- JNK Mitogen-Activated Protein Kinases/physiology
- Membrane Proteins/biosynthesis
- Membrane Proteins/metabolism
- Mitogen-Activated Protein Kinase 8/metabolism
- Models, Genetic
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Myeloid Differentiation Factor 88
- Myocytes, Smooth Muscle/metabolism
- Oligonucleotides, Antisense/chemistry
- Oligonucleotides, Antisense/pharmacology
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphatidylinositol 3-Kinases/physiology
- Phosphoinositide-3 Kinase Inhibitors
- Protein Kinases/metabolism
- Protein Kinases/physiology
- Protein Serine-Threonine Kinases/metabolism
- Protein Serine-Threonine Kinases/physiology
- Protein-Tyrosine Kinases/metabolism
- Protein-Tyrosine Kinases/physiology
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins/physiology
- Proto-Oncogene Proteins c-akt
- Proto-Oncogene Proteins c-fos/metabolism
- RNA, Small Interfering/metabolism
- Rats
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/physiology
- TNF Receptor-Associated Factor 6/metabolism
- TNF Receptor-Associated Factor 6/physiology
- Time Factors
- Transcription Factor AP-1/metabolism
- Transcription Factor AP-1/physiology
- src-Family Kinases
Collapse
Affiliation(s)
- Bysani Chandrasekar
- Department of Medicine, Medicine/Cardiology, The University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
1216
|
Krause CD, Pestka S. Evolution of the Class 2 cytokines and receptors, and discovery of new friends and relatives. Pharmacol Ther 2005; 106:299-346. [PMID: 15922016 DOI: 10.1016/j.pharmthera.2004.12.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 12/13/2004] [Accepted: 12/16/2004] [Indexed: 02/08/2023]
Abstract
The sequencing of a wide variety of genomes and their transcripts has allowed researchers to determine how proteins or protein families evolved and how strongly during evolution a protein has been conserved. In this report, we analyze the evolution of the Class 2 ligands and their cognate receptors by analyzing Class 2 ligand and receptor chain gene sequences from a variety of DNA sequence databases. Both the Class 2 cytokines and receptor chains appear to have developed during the evolution of the chordate phyla: distant homologues of type I interferon (IFN) receptors are the only Class 2 cytokine receptors identified in the Ciona genomes, while a wide variety of Class 2 ligands and receptor chains are encoded in the currently available genomes of bony vertebrates (teleost fish, amphibians, reptiles, birds, mammals). Phylogenetic trees of ligands and ligand-binding receptor chains demonstrate that proteins involved in conferring antiviral activity diverged before those involved in adaptive immunity. Genes encoding IFNs and IFN receptors duplicated multiple times during chordate evolution, suggesting that duplication of genes encoding IFN activity conveyed an evolutionary advantage. Altogether, these data support a model whereby the original Class 2 cytokines and receptors evolved and duplicated during the evolution of the chordate innate immune response system; new receptor and ligand duplications evolved into signaling molecules to fulfill communication requirements of a highly specialized and differentiated vertebrate immune system. In addition, the genomic analysis led to the discovery of some new members of this family.
Collapse
Affiliation(s)
- Christopher D Krause
- Department of Molecular Genetics, Microbiology and Immunology, Robert Wood Johnson Medical School-University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854, USA.
| | | |
Collapse
|