1301
|
Molza AE, Férey N, Czjzek M, Le Rumeur E, Hubert JF, Tek A, Laurent B, Baaden M, Delalande O. Innovative interactive flexible docking method for multi-scale reconstruction elucidates dystrophin molecular assembly. Faraday Discuss 2014; 169:45-62. [PMID: 25340652 DOI: 10.1039/c3fd00134b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
At present, our molecular knowledge of dystrophin, the protein encoded by the DMD gene and mutated in myopathy patients, remains limited. To get around the absence of its atomic structure, we have developed an innovative interactive docking method based on the BioSpring software in combination with Small-angle X-ray Scattering (SAXS) data. BioSpring allows interactive handling of biological macromolecules thanks to an augmented Elastic Network Model (aENM) that combines the spring network with non-bonded terms between atoms or pseudo-atoms. This approach can be used for building molecular assemblies even on a desktop or a laptop computer thanks to code optimizations including parallel computing and GPU programming. By combining atomistic and coarse-grained models, the approach significantly simplifies the set-up of multi-scale scenarios. BioSpring is remarkably efficient for the preparation of numeric simulations or for the design of biomolecular models integrating qualitative experimental data restraints. The combination of this program and SAXS allowed us to propose the first high-resolution models of the filamentous central domain of dystrophin, covering repeats 11 to 17. Low-resolution interactive docking experiments driven by a potential grid enabled us to propose how dystrophin may associate with F-actin and nNOS. This information provides an insight into medically relevant discoveries to come.
Collapse
Affiliation(s)
- A-E Molza
- Institut de Génétique et Développement de Rennes, CNRS, UMR6290, Univ. Rennes 1, Campus Santé, 2 av du Pr Léon Bernard, 35043 Rennes Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
1302
|
Grinter R, Josts I, Zeth K, Roszak AW, McCaughey LC, Cogdell RJ, Milner JJ, Kelly SM, Byron O, Walker D. Structure of the atypical bacteriocin pectocin M2 implies a novel mechanism of protein uptake. Mol Microbiol 2014; 93:234-46. [PMID: 24865810 PMCID: PMC4671253 DOI: 10.1111/mmi.12655] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2014] [Indexed: 01/08/2023]
Abstract
The colicin-like bacteriocins are potent protein antibiotics that have evolved to efficiently cross the outer membrane of Gram-negative bacteria by parasitizing nutrient uptake systems. We have structurally characterized the colicin M-like bacteriocin, pectocin M2, which is active against strains of Pectobacterium spp. This unusual bacteriocin lacks the intrinsically unstructured translocation domain that usually mediates translocation of these bacteriocins across the outer membrane, containing only a single globular ferredoxin domain connected to its cytotoxic domain by a flexible α-helix, which allows it to adopt two distinct conformations in solution. The ferredoxin domain of pectocin M2 is homologous to plant ferredoxins and allows pectocin M2 to parasitize a system utilized by Pectobacterium to obtain iron during infection of plants. Furthermore, we identify a novel ferredoxin-containing bacteriocin pectocin P, which possesses a cytotoxic domain homologous to lysozyme, illustrating that the ferredoxin domain acts as a generic delivery module for cytotoxic domains in Pectobacterium.
Collapse
Affiliation(s)
- Rhys Grinter
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1303
|
King JV, Liang WG, Scherpelz KP, Schilling AB, Meredith SC, Tang WJ. Molecular basis of substrate recognition and degradation by human presequence protease. Structure 2014; 22:996-1007. [PMID: 24931469 DOI: 10.1016/j.str.2014.05.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 04/12/2014] [Accepted: 05/01/2014] [Indexed: 01/17/2023]
Abstract
Human presequence protease (hPreP) is an M16 metalloprotease localized in mitochondria. There, hPreP facilitates proteostasis by utilizing an ∼13,300-Å(3) catalytic chamber to degrade a diverse array of potentially toxic peptides, including mitochondrial presequences and β-amyloid (Aβ), the latter of which contributes to Alzheimer disease pathogenesis. Here, we report crystal structures for hPreP alone and in complex with Aβ, which show that hPreP uses size exclusion and charge complementation for substrate recognition. These structures also reveal hPreP-specific features that permit a diverse array of peptides, with distinct distributions of charged and hydrophobic residues, to be specifically captured, cleaved, and have their amyloidogenic features destroyed. SAXS analysis demonstrates that hPreP in solution exists in dynamic equilibrium between closed and open states, with the former being preferred. Furthermore, Aβ binding induces the closed state and hPreP dimerization. Together, these data reveal the molecular basis for flexible yet specific substrate recognition and degradation by hPreP.
Collapse
Affiliation(s)
- John V King
- Ben May Department for Cancer Research, The University of Chicago, 929 E. 57(th) Street, Chicago, IL 60637, USA
| | - Wenguang G Liang
- Ben May Department for Cancer Research, The University of Chicago, 929 E. 57(th) Street, Chicago, IL 60637, USA
| | - Kathryn P Scherpelz
- Department of Biochemistry and Molecular Biophysics, The University of Chicago, Chicago, IL 60637, USA
| | - Alexander B Schilling
- Mass Spectrometry, Metabolomics, and Proteomics Facility, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Stephen C Meredith
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Wei-Jen Tang
- Ben May Department for Cancer Research, The University of Chicago, 929 E. 57(th) Street, Chicago, IL 60637, USA.
| |
Collapse
|
1304
|
Kim JH, Bothe JR, Frederick R, Holder JC, Markley JL. Role of IscX in iron-sulfur cluster biogenesis in Escherichia coli. J Am Chem Soc 2014; 136:7933-42. [PMID: 24810328 PMCID: PMC4063190 DOI: 10.1021/ja501260h] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Indexed: 01/09/2023]
Abstract
The Escherichia coli isc operon encodes key proteins involved in the biosynthesis of iron-sulfur (Fe-S) clusters. Whereas extensive studies of most ISC proteins have revealed their functional properties, the role of IscX (also dubbed YfhJ), a small acidic protein encoded by the last gene in the operon, has remained in question. Previous studies showed that IscX binds iron ions and interacts with the cysteine desulfurase (IscS) and the scaffold protein for cluster assembly (IscU), and it has been proposed that IscX functions either as an iron supplier or a regulator of Fe-S cluster biogenesis. We have used a combination of NMR spectroscopy, small-angle X-ray scattering (SAXS), chemical cross-linking, and enzymatic assays to enlarge our understanding of the interactions of IscX with iron ions, IscU, and IscS. We used chemical shift perturbation to identify the binding interfaces of IscX and IscU in their complex. NMR studies showed that Fe(2+) from added ferrous ammonium sulfate binds IscX much more avidly than does Fe(3+) from added ferric ammonium citrate and that Fe(2+) strengthens the interaction between IscX and IscU. We found that the addition of IscX to the IscU-IscS binary complex led to the formation of a ternary complex with reduced cysteine desulfurase activity, and we determined a low-resolution model for that complex from a combination of NMR and SAXS data. We postulate that the inhibition of cysteine desulfurase activity by IscX serves to reduce unproductive conversion of cysteine to alanine. By incorporating these new findings with results from prior studies, we propose a detailed mechanism for Fe-S cluster assembly in which IscX serves both as a donor of Fe(2+) and as a regulator of cysteine desulfurase activity.
Collapse
Affiliation(s)
- Jin Hae Kim
- Mitochondrial
Protein Partnership, Center for Eukaryotic Structural
Genomics and Department of Biochemistry, University
of Wisconsin, 433 Babcock
Drive, Madison, Wisconsin 53706, United States
| | - Jameson R. Bothe
- Mitochondrial
Protein Partnership, Center for Eukaryotic Structural
Genomics and Department of Biochemistry, University
of Wisconsin, 433 Babcock
Drive, Madison, Wisconsin 53706, United States
| | - Ronnie
O. Frederick
- Mitochondrial
Protein Partnership, Center for Eukaryotic Structural
Genomics and Department of Biochemistry, University
of Wisconsin, 433 Babcock
Drive, Madison, Wisconsin 53706, United States
| | - Johneisa C. Holder
- Mitochondrial
Protein Partnership, Center for Eukaryotic Structural
Genomics and Department of Biochemistry, University
of Wisconsin, 433 Babcock
Drive, Madison, Wisconsin 53706, United States
| | - John L. Markley
- Mitochondrial
Protein Partnership, Center for Eukaryotic Structural
Genomics and Department of Biochemistry, University
of Wisconsin, 433 Babcock
Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
1305
|
Moharana K, Zabeau L, Peelman F, Ringler P, Stahlberg H, Tavernier J, Savvides S. Structural and Mechanistic Paradigm of Leptin Receptor Activation Revealed by Complexes with Wild-Type and Antagonist Leptins. Structure 2014; 22:866-77. [DOI: 10.1016/j.str.2014.04.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 04/17/2014] [Accepted: 04/24/2014] [Indexed: 12/18/2022]
|
1306
|
Spinozzi F, Ferrero C, Ortore MG, De Maria Antolinos A, Mariani P. GENFIT: software for the analysis of small-angle X-ray and neutron scattering data of macro-molecules in solution. J Appl Crystallogr 2014; 47:1132-1139. [PMID: 24904247 PMCID: PMC4038801 DOI: 10.1107/s1600576714005147] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 03/06/2014] [Indexed: 12/25/2022] Open
Abstract
Many research topics in the fields of condensed matter and the life sciences are based on small-angle X-ray and neutron scattering techniques. With the current rapid progress in source brilliance and detector technology, high data fluxes of ever-increasing quality are produced. In order to exploit such a huge quantity of data and richness of information, wider and more sophisticated approaches to data analysis are needed. Presented here is GENFIT, a new software tool able to fit small-angle scattering data of randomly oriented macromolecular or nanosized systems according to a wide list of models, including form and structure factors. Batches of curves can be analysed simultaneously in terms of common fitting parameters or by expressing the model parameters via physical or phenomenological link functions. The models can also be combined, enabling the user to describe complex heterogeneous systems.
Collapse
Affiliation(s)
- Francesco Spinozzi
- Department DiSVA, Marche Polytechnic University and CNISM, Via Brecce Bianche, I-60131 Ancona, Italy
| | | | - Maria Grazia Ortore
- Department DiSVA, Marche Polytechnic University and CNISM, Via Brecce Bianche, I-60131 Ancona, Italy
| | | | - Paolo Mariani
- Department DiSVA, Marche Polytechnic University and CNISM, Via Brecce Bianche, I-60131 Ancona, Italy
| |
Collapse
|
1307
|
Edwards AL, Matsui T, Weiss TM, Khosla C. Architectures of whole-module and bimodular proteins from the 6-deoxyerythronolide B synthase. J Mol Biol 2014; 426:2229-45. [PMID: 24704088 PMCID: PMC4284093 DOI: 10.1016/j.jmb.2014.03.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/24/2014] [Accepted: 03/27/2014] [Indexed: 10/25/2022]
Abstract
The 6-deoxyerythronolide B synthase (DEBS) is a prototypical assembly line polyketide synthase produced by the actinomycete Saccharopolyspora erythraea that synthesizes the macrocyclic core of the antibiotic erythromycin 6-deoxyerythronolide B. The megasynthase is a 2-MDa trimeric complex composed of three unique homodimers assembled from the gene products DEBS1, DEBS2, and DEBS3, which are housed within the erythromycin biosynthetic gene cluster. Each homodimer contains two clusters of catalytically independent enzymatic domains, each referred to as a module, which catalyzes one round of polyketide chain extension and modification. Modules are named sequentially to indicate the order in which they are utilized during synthesis of 6-deoxyerythronolide B. We report small-angle X-ray scattering (SAXS) analyses of a whole module and a bimodule from DEBS, as well as a set of domains for which high-resolution structures are available. In all cases, the solution state was probed under previously established conditions ensuring that each protein is catalytically active. SAXS data are consistent with atomic-resolution structures of DEBS fragments. Therefore, we used the available high-resolution structures of DEBS domains to model the architectures of the larger protein assemblies using rigid-body refinement. Our data support a model in which the third module of DEBS forms a disc-shaped structure capable of caging the acyl carrier protein domain proximal to each active site. The molecular envelope of DEBS3 is a thin elongated ellipsoid, and the results of rigid-body modeling suggest that modules 5 and 6 stack collinearly along the 2-fold axis of symmetry.
Collapse
Affiliation(s)
- Andrea L Edwards
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, 14 2575 Sand Hill Road, MS69, Menlo Park, CA 94025, USA
| | - Thomas M Weiss
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, 14 2575 Sand Hill Road, MS69, Menlo Park, CA 94025, USA
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
1308
|
Khan AG, Whidby J, Miller MT, Scarborough H, Zatorski AV, Cygan A, Price AA, Yost SA, Bohannon CD, Jacob J, Grakoui A, Marcotrigiano J. Structure of the core ectodomain of the hepatitis C virus envelope glycoprotein 2. Nature 2014; 509:381-4. [PMID: 24553139 PMCID: PMC4126800 DOI: 10.1038/nature13117] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/31/2014] [Indexed: 12/16/2022]
Abstract
Hepatitis C virus (HCV) is a significant public health concern with approximately 160 million people infected worldwide. HCV infection often results in chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. No vaccine is available and current therapies are effective against some, but not all, genotypes. HCV is an enveloped virus with two surface glycoproteins (E1 and E2). E2 binds to the host cell through interactions with scavenger receptor class B type I (SR-BI) and CD81, and serves as a target for neutralizing antibodies. Little is known about the molecular mechanism that mediates cell entry and membrane fusion, although E2 is predicted to be a class II viral fusion protein. Here we describe the structure of the E2 core domain in complex with an antigen-binding fragment (Fab) at 2.4 Å resolution. The E2 core has a compact, globular domain structure, consisting mostly of β-strands and random coil with two small α-helices. The strands are arranged in two, perpendicular sheets (A and B), which are held together by an extensive hydrophobic core and disulphide bonds. Sheet A has an IgG-like fold that is commonly found in viral and cellular proteins, whereas sheet B represents a novel fold. Solution-based studies demonstrate that the full-length E2 ectodomain has a similar globular architecture and does not undergo significant conformational or oligomeric rearrangements on exposure to low pH. Thus, the IgG-like fold is the only feature that E2 shares with class II membrane fusion proteins. These results provide unprecedented insights into HCV entry and will assist in developing an HCV vaccine and new inhibitors.
Collapse
Affiliation(s)
- Abdul Ghafoor Khan
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, 679 Hoes Lane West, Piscataway, New Jersey 08854, USA
| | - Jillian Whidby
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, 679 Hoes Lane West, Piscataway, New Jersey 08854, USA
| | - Matthew T Miller
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, 679 Hoes Lane West, Piscataway, New Jersey 08854, USA
| | - Hannah Scarborough
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, Georgia 30322, USA
| | - Alexandra V Zatorski
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, 679 Hoes Lane West, Piscataway, New Jersey 08854, USA
| | - Alicja Cygan
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, 679 Hoes Lane West, Piscataway, New Jersey 08854, USA
| | - Aryn A Price
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, Georgia 30322, USA
| | - Samantha A Yost
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, 679 Hoes Lane West, Piscataway, New Jersey 08854, USA
| | - Caitlin D Bohannon
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, Georgia 30322, USA
| | - Joshy Jacob
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, Georgia 30322, USA
| | - Arash Grakoui
- 1] Division of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, Georgia 30322, USA [2] Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, Georgia 30322, USA
| | - Joseph Marcotrigiano
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, 679 Hoes Lane West, Piscataway, New Jersey 08854, USA
| |
Collapse
|
1309
|
RNA mimicry by the fap7 adenylate kinase in ribosome biogenesis. PLoS Biol 2014; 12:e1001860. [PMID: 24823650 PMCID: PMC4019466 DOI: 10.1371/journal.pbio.1001860] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 04/04/2014] [Indexed: 11/22/2022] Open
Abstract
The structure of a ribosome assembly factor in complex bound to a ribosomal protein uncovers a chaperoning function that uses RNA mimicry and is regulated by ATP hydrolysis. During biogenesis of the 40S and 60S ribosomal subunits, the pre-40S particles are exported to the cytoplasm prior to final cleavage of the 20S pre-rRNA to mature 18S rRNA. Amongst the factors involved in this maturation step, Fap7 is unusual, as it both interacts with ribosomal protein Rps14 and harbors adenylate kinase activity, a function not usually associated with ribonucleoprotein assembly. Human hFap7 also regulates Cajal body assembly and cell cycle progression via the p53–MDM2 pathway. This work presents the functional and structural characterization of the Fap7–Rps14 complex. We report that Fap7 association blocks the RNA binding surface of Rps14 and, conversely, Rps14 binding inhibits adenylate kinase activity of Fap7. In addition, the affinity of Fap7 for Rps14 is higher with bound ADP, whereas ATP hydrolysis dissociates the complex. These results suggest that Fap7 chaperones Rps14 assembly into pre-40S particles via RNA mimicry in an ATP-dependent manner. Incorporation of Rps14 by Fap7 leads to a structural rearrangement of the platform domain necessary for the pre-rRNA to acquire a cleavage competent conformation. Ribosomes are the cellular machines responsible for all protein synthesis. In eukaryotes, the assembly of ribosomes from their protein and RNA components is extremely complicated and involves more than 200 nonribosomal factors—three times the number of proteins in the mature complex. Among these factors, the Fap7 protein is particularly intriguing because it interacts with the small subunit ribosomal protein Rps14 and it exhibits adenylate kinase activity—a molecular function more commonly associated with regulating ATP/ADP levels than assembling protein–RNA complexes. Combining structural and biochemical analysis of the Rps14–Fap7 complex, we show that Fap7 uses protein side chains to mimic RNA contacts, rendering the interaction of Rps14 with ribosomal RNA or with Fap7 competitive and mutually exclusive. Once bound, Rps14 blocks the substrate-binding cavity of Fap7, and ATP hydrolysis will then break the Fap7–Rps14 complex apart. At the same time, the ribosome structure at the location where Rps14 binds is disrupted when the Fap7/Rps14 complex is formed, and this process is regulated by ATP binding and hydrolysis. Our model is thus that Fap7 temporarily removes Rps14 from the ribosome to enable a conformational change of the ribosomal RNA that is needed for the final maturation step of the small ribosomal subunit.
Collapse
|
1310
|
The structural and functional basis of catalysis mediated by NAD(P)H:acceptor Oxidoreductase (FerB) of Paracoccus denitrificans. PLoS One 2014; 9:e96262. [PMID: 24817153 PMCID: PMC4015959 DOI: 10.1371/journal.pone.0096262] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 04/05/2014] [Indexed: 12/14/2022] Open
Abstract
FerB from Paracoccus denitrificans is a soluble cytoplasmic flavoprotein that accepts redox equivalents from NADH or NADPH and transfers them to various acceptors such as quinones, ferric complexes and chromate. The crystal structure and small-angle X-ray scattering measurements in solution reported here reveal a head-to-tail dimer with two flavin mononucleotide groups bound at the opposite sides of the subunit interface. The dimers tend to self-associate to a tetrameric form at higher protein concentrations. Amino acid residues important for the binding of FMN and NADH and for the catalytic activity are identified and verified by site-directed mutagenesis. In particular, we show that Glu77 anchors a conserved water molecule in close proximity to the O2 of FMN, with the probable role of facilitating flavin reduction. Hydride transfer is shown to occur from the 4-pro-S position of NADH to the solvent-accessible si side of the flavin ring. When using deuterated NADH, this process exhibits a kinetic isotope effect of about 6 just as does the NADH-dependent quinone reductase activity of FerB; the first, reductive half-reaction of flavin cofactor is thus rate-limiting. Replacing the bulky Arg95 in the vicinity of the active site with alanine substantially enhances the activity towards external flavins that obeys the standard bi-bi ping-pong reaction mechanism. The new evidence for a cryptic flavin reductase activity of FerB justifies the previous inclusion of this enzyme in the protein family of NADPH-dependent FMN reductases.
Collapse
|
1311
|
Bartual SG, Straume D, Stamsås GA, Muñoz IG, Alfonso C, Martínez-Ripoll M, Håvarstein LS, Hermoso JA. Structural basis of PcsB-mediated cell separation in Streptococcus pneumoniae. Nat Commun 2014; 5:3842. [DOI: 10.1038/ncomms4842] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 04/08/2014] [Indexed: 01/01/2023] Open
|
1312
|
Kuhle K, Krausze J, Curth U, Rössle M, Heuner K, Lang C, Flieger A. Oligomerization inhibits Legionella pneumophila PlaB phospholipase A activity. J Biol Chem 2014; 289:18657-66. [PMID: 24811180 DOI: 10.1074/jbc.m114.573196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The intracellularly replicating lung pathogen Legionella pneumophila consists of an extraordinary variety of phospholipases, including at least 15 different phospholipases A (PLA). Among them, PlaB, the first characterized member of a novel lipase family, is a hemolytic virulence factor that exhibits the most prominent PLA activity in L. pneumophila. We analyzed here protein oligomerization, the importance of oligomerization for activity, addressed further essential regions for activity within the PlaB C terminus, and the significance of PlaB-derived lipolytic activity for L. pneumophila intracellular replication. We determined by means of analytical ultracentrifugation and small angle x-ray scattering analysis that PlaB forms homodimers and homotetramers. The C-terminal 5, 10, or 15 amino acids, although the individual regions contributed to PLA activity, were not essential for protein tetramerization. Infection of mouse macrophages with L. pneumophila wild type, plaB knock-out mutant, and plaB complementing or various mutated plaB-harboring strains showed that catalytic activity of PlaB promotes intracellular replication. We observed that PlaB was most active in the lower nanomolar concentration range but not at or only at a low level at concentration above 0.1 μm where it exists in a dimer/tetramer equilibrium. We therefore conclude that PlaB is a virulence factor that, on the one hand, assembles in inactive tetramers at micromolar concentrations. On the other hand, oligomer dissociation at nanomolar concentrations activates PLA activity. Our data highlight the first example of concentration-dependent phospholipase inactivation by tetramerization, which may protect the bacterium from internal PLA activity, but enzyme dissociation may allow its activation after export.
Collapse
Affiliation(s)
- Katja Kuhle
- From the Robert Koch-Institut, 38855 Wernigerode
| | - Joern Krausze
- the Helmholtz Center for Infection Research, 38124 Braunschweig
| | - Ute Curth
- the Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover
| | - Manfred Rössle
- the European Molecular Biology Laboratory, 22603 Hamburg Branch, c/o DESY, Hamburg, and the Lübeck University of Applied Sciences, 23562 Lübeck, Germany
| | - Klaus Heuner
- From the Robert Koch-Institut, 38855 Wernigerode
| | | | | |
Collapse
|
1313
|
Williams SJ, Sohn KH, Wan L, Bernoux M, Sarris PF, Segonzac C, Ve T, Ma Y, Saucet SB, Ericsson DJ, Casey LW, Lonhienne T, Winzor DJ, Zhang X, Coerdt A, Parker JE, Dodds PN, Kobe B, Jones JDG. Structural basis for assembly and function of a heterodimeric plant immune receptor. Science 2014; 344:299-303. [PMID: 24744375 DOI: 10.1126/science.1247357] [Citation(s) in RCA: 242] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cytoplasmic plant immune receptors recognize specific pathogen effector proteins and initiate effector-triggered immunity. In Arabidopsis, the immune receptors RPS4 and RRS1 are both required to activate defense to three different pathogens. We show that RPS4 and RRS1 physically associate. Crystal structures of the N-terminal Toll-interleukin-1 receptor/resistance (TIR) domains of RPS4 and RRS1, individually and as a heterodimeric complex (respectively at 2.05, 1.75, and 2.65 angstrom resolution), reveal a conserved TIR/TIR interaction interface. We show that TIR domain heterodimerization is required to form a functional RRS1/RPS4 effector recognition complex. The RPS4 TIR domain activates effector-independent defense, which is inhibited by the RRS1 TIR domain through the heterodimerization interface. Thus, RPS4 and RRS1 function as a receptor complex in which the two components play distinct roles in recognition and signaling.
Collapse
Affiliation(s)
- Simon J Williams
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1314
|
Hennig J, Sattler M. The dynamic duo: combining NMR and small angle scattering in structural biology. Protein Sci 2014; 23:669-82. [PMID: 24687405 DOI: 10.1002/pro.2467] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 12/12/2022]
Abstract
Structural biology provides essential information for elucidating molecular mechanisms that underlie biological function. Advances in hardware, sample preparation, experimental methods, and computational approaches now enable structural analysis of protein complexes with increasing complexity that more closely represent biologically entities in the cellular environment. Integrated multidisciplinary approaches are required to overcome limitations of individual methods and take advantage of complementary aspects provided by different structural biology techniques. Although X-ray crystallography remains the method of choice for structural analysis of large complexes, crystallization of flexible systems is often difficult and does typically not provide insights into conformational dynamics present in solution. Nuclear magnetic resonance spectroscopy (NMR) is well-suited to study dynamics at picosecond to second time scales, and to map binding interfaces even of large systems at residue resolution but suffers from poor sensitivity with increasing molecular weight. Small angle scattering (SAS) methods provide low resolution information in solution and can characterize dynamics and conformational equilibria complementary to crystallography and NMR. The combination of NMR, crystallography, and SAS is, thus, very useful for analysis of the structure and conformational dynamics of (large) protein complexes in solution. In high molecular weight systems, where NMR data are often sparse, SAS provides additional structural information and can differentiate between NMR-derived models. Scattering data can also validate the solution conformation of a crystal structure and indicate the presence of conformational equilibria. Here, we review current state-of-the-art approaches for combining NMR, crystallography, and SAS data to characterize protein complexes in solution.
Collapse
Affiliation(s)
- Janosch Hennig
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr.1, D-85764, Neuherberg, Germany; Center for Integrated Protein Science Munich at Chair Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747, Garching, Germany
| | | |
Collapse
|
1315
|
Syson K, Stevenson CEM, Rashid AM, Saalbach G, Tang M, Tuukkanen A, Svergun DI, Withers SG, Lawson DM, Bornemann S. Structural insight into how Streptomyces coelicolor maltosyl transferase GlgE binds α-maltose 1-phosphate and forms a maltosyl-enzyme intermediate. Biochemistry 2014; 53:2494-504. [PMID: 24689960 PMCID: PMC4048318 DOI: 10.1021/bi500183c] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
![]()
GlgE (EC 2.4.99.16) is an α-maltose
1-phosphate:(1→4)-α-d-glucan 4-α-d-maltosyltransferase of the CAZy
glycoside hydrolase 13_3 family. It is the defining enzyme of a bacterial
α-glucan biosynthetic pathway and is a genetically validated
anti-tuberculosis target. It catalyzes the α-retaining transfer
of maltosyl units from α-maltose 1-phosphate to maltooligosaccharides
and is predicted to use a double-displacement mechanism. Evidence
of this mechanism was obtained using a combination of site-directed
mutagenesis of Streptomyces coelicolor GlgE isoform
I, substrate analogues, protein crystallography, and mass spectrometry.
The X-ray structures of α-maltose 1-phosphate bound to a D394A
mutein and a β-2-deoxy-2-fluoromaltosyl-enzyme intermediate
with a E423A mutein were determined. There are few examples of CAZy
glycoside hydrolase family 13 members that have had their glycosyl-enzyme
intermediate structures determined, and none before now have been
obtained with a 2-deoxy-2-fluoro substrate analogue. The covalent
modification of Asp394 was confirmed using mass spectrometry. A similar
modification of wild-type GlgE proteins from S. coelicolor and Mycobacterium tuberculosis was also observed.
Small-angle X-ray scattering of the M. tuberculosis enzyme revealed a homodimeric assembly similar to that of the S. coelicolor enzyme but with slightly differently oriented
monomers. The deeper understanding of the structure–function
relationships of S. coelicolor GlgE will aid the
development of inhibitors of the M. tuberculosis enzyme.
Collapse
Affiliation(s)
- Karl Syson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park , Norwich NR4 7UH, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1316
|
Abe H, Takekiyo T, Shigemi M, Yoshimura Y, Tsuge S, Hanasaki T, Ohishi K, Takata S, Suzuki JI. Direct Evidence of Confined Water in Room-Temperature Ionic Liquids by Complementary Use of Small-Angle X-ray and Neutron Scattering. J Phys Chem Lett 2014; 5:1175-1180. [PMID: 26274467 DOI: 10.1021/jz500299z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The direct evidence of confined water ("water pocket") inside hydrophilic room-temperature ionic liquids (RTILs) was obtained by complementary use of small-angle X-ray scattering and small-angle neutron scattering (SAXS and SANS). A large contrast in X-ray and neutron scattering cross-section of deuterons was used to distinguish the water pocket from the RTIL. In addition to nanoheterogeneity of pure RTILs, the water pocket formed in the water-rich region. Both water concentration and temperature dependence of the peaks in SANS profiles confirmed the existence of the hidden water pocket. The size of the water pocket was estimated to be ∼3 nm, and D2O aggregations were well-simulated on the basis of the observed SANS data.
Collapse
Affiliation(s)
| | | | | | | | - Shu Tsuge
- §Department of Applied Chemistry, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Tomonori Hanasaki
- §Department of Applied Chemistry, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Kazuki Ohishi
- ∥Research Center for Neutron Science and Technology, Comprehensive Research Organization for Science and Society (CROSS), IQBRC Bldg, 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Shinichi Takata
- ⊥Japan Atomic Energy Agency, 2-4 Shirane Shirakata, Tokai, Ibaraki 319-1195, Japan
| | - Jun-Ichi Suzuki
- ∥Research Center for Neutron Science and Technology, Comprehensive Research Organization for Science and Society (CROSS), IQBRC Bldg, 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| |
Collapse
|
1317
|
Tian X, Langkilde AE, Thorolfsson M, Rasmussen HB, Vestergaard B. Small-angle x-ray scattering screening complements conventional biophysical analysis: comparative structural and biophysical analysis of monoclonal antibodies IgG1, IgG2, and IgG4. J Pharm Sci 2014; 103:1701-10. [PMID: 24700358 PMCID: PMC4298811 DOI: 10.1002/jps.23964] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/25/2014] [Accepted: 03/13/2014] [Indexed: 12/21/2022]
Abstract
A crucial step in the development of therapeutic monoclonal antibodies is the selection of robust pharmaceutical candidates and screening of efficacious protein formulations to increase the resistance toward physicochemical degradation and aggregation during processing and storage. Here, we introduce small-angle X-ray scattering (SAXS) to characterize antibody solution behavior, which strongly complements conventional biophysical analysis. First, we apply a variety of conventional biophysical techniques for the evaluation of structural, conformational, and colloidal stability and report a systematic comparison between designed humanized IgG1, IgG2, and IgG4 with identical variable regions. Then, the high information content of SAXS data enables sensitive detection of structural differences between three IgG subclasses at neutral pH and rapid formation of dimers of IgG2 and IgG4 at low pH. We reveal subclass-specific variation in intermolecular repulsion already at low and medium protein concentrations, which explains the observed improved stability of IgG1 with respect to aggregation. We show how excipients dramatically influence such repulsive effects, hence demonstrating the potential application of extensive SAXS screening in antibody selection, eventual engineering, and formulation development.
Collapse
Affiliation(s)
- Xinsheng Tian
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
1318
|
Green TJ, Cox R, Tsao J, Rowse M, Qiu S, Luo M. Common mechanism for RNA encapsidation by negative-strand RNA viruses. J Virol 2014; 88:3766-75. [PMID: 24429372 PMCID: PMC3993539 DOI: 10.1128/jvi.03483-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/11/2014] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The nucleocapsid of a negative-strand RNA virus is assembled with a single nucleocapsid protein and the viral genomic RNA. The nucleocapsid protein polymerizes along the length of the single-strand genomic RNA (viral RNA) or its cRNA. This process of encapsidation occurs concomitantly with genomic replication. Structural comparisons of several nucleocapsid-like particles show that the mechanism of RNA encapsidation in negative-strand RNA viruses has many common features. Fundamentally, there is a unifying mechanism to keep the capsid protein protomer monomeric prior to encapsidation of viral RNA. In the nucleocapsid, there is a cavity between two globular domains of the nucleocapsid protein where the viral RNA is sequestered. The viral RNA must be transiently released from the nucleocapsid in order to reveal the template RNA sequence for transcription/replication. There are cross-molecular interactions among the protein subunits linearly along the nucleocapsid to stabilize its structure. Empty capsids can form in the absence of RNA. The common characteristics of RNA encapsidation not only delineate the evolutionary relationship of negative-strand RNA viruses but also provide insights into their mechanism of replication. IMPORTANCE What separates negative-strand RNA viruses (NSVs) from the rest of the virosphere is that the nucleocapsid of NSVs serves as the template for viral RNA synthesis. Their viral RNA-dependent RNA polymerase can induce local conformational changes in the nucleocapsid to temporarily release the RNA genome so that the viral RNA-dependent RNA polymerase can use it as the template for RNA synthesis during both transcription and replication. After RNA synthesis at the local region is completed, the viral RNA-dependent RNA polymerase processes downstream, and the RNA genome is restored in the nucleocapsid. We found that the nucleocapsid assembly of all NSVs shares three essential elements: a monomeric capsid protein protomer, parallel orientation of subunits in the linear nucleocapsid, and a (5H + 3H) motif that forms a proper cavity for sequestration of the RNA. This observation also suggests that all NSVs evolved from a common ancestor that has this unique nucleocapsid.
Collapse
Affiliation(s)
- Todd J Green
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | |
Collapse
|
1319
|
da Silva VM, Colussi F, de Oliveira Neto M, Braz ASK, Squina FM, Oliveira CLP, Garcia W. Modular hyperthermostable bacterial endo-β-1,4-mannanase: molecular shape, flexibility and temperature-dependent conformational changes. PLoS One 2014; 9:e92996. [PMID: 24671161 PMCID: PMC3966859 DOI: 10.1371/journal.pone.0092996] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/27/2014] [Indexed: 11/28/2022] Open
Abstract
Endo-β-1,4-mannanase from Thermotoga petrophila (TpMan) is a hyperthermostable enzyme that catalyzes the hydrolysis of β-1,4-mannoside linkages in various mannan-containing polysaccharides. A recent study reported that TpMan is composed of a GH5 catalytic domain joined by a linker to a carbohydrate-binding domain. However, at this moment, there is no three-dimensional structure determined for TpMan. Little is known about the conformation of the TpMan as well as the role of the length and flexibility of the linker on the spatial arrangement of the constitutive domains. In this study, we report the first structural characterization of the entire TpMan by small-angle X-ray scattering combined with the three-dimensional structures of the individual domains in order to shed light on the low-resolution model, overall dimensions, and flexibility of this modular enzyme at different temperatures. The results are consistent with a linker with a compact structure and that occupies a small volume with respect to its large number of amino acids. Furthermore, at 20°C the results are consistent with a model where TpMan is a molecule composed of three distinct domains and that presents some level of molecular flexibility in solution. Even though the full enzyme has some degree of molecular flexibility, there might be a preferable conformation, which could be described by the rigid-body modeling procedure. Finally, the results indicate that TpMan undergoes a temperature-driven transition between conformational states without a significant disruption of its secondary structure. Our results suggest that the linker can optimize the geometry between the other two domains with respect to the substrate at high temperatures. These studies should provide a useful basis for future biophysical studies of entire TpMan.
Collapse
Affiliation(s)
- Viviam M. da Silva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, São Paulo, Brazil
| | - Francieli Colussi
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, São Paulo, Brazil
| | - Mario de Oliveira Neto
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Antonio S. K. Braz
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, São Paulo, Brazil
| | - Fabio M. Squina
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brazil
| | | | - Wanius Garcia
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, São Paulo, Brazil
| |
Collapse
|
1320
|
Tuukkanen AT, Svergun DI. Weak protein-ligand interactions studied by small-angle X-ray scattering. FEBS J 2014; 281:1974-87. [PMID: 24588935 DOI: 10.1111/febs.12772] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/22/2014] [Accepted: 02/28/2014] [Indexed: 12/20/2022]
Abstract
Small-angle X-ray scattering (SAXS) is a powerful technique for studying weak interactions between proteins and their ligands (other proteins, DNA/RNA or small molecules) in solution. SAXS provides knowledge about the equilibrium state, the stoichiometry of binding and association-dissociation processes. The measurements are conducted in a solution environment that allows easy monitoring of modifications in protein-ligand association state upon environmental changes. Model-free parameters such as the molecular mass of a system and the radius of gyration can be obtained directly from the SAXS data and give indications about the association state. SAXS is also widely employed to build models of biological assemblies at a resolution of approximately 10-20 Å. Low-resolution shapes can be generated ab initio, although more detailed and biologically interpretable information can be obtained by hybrid modelling. In the latter approach, composite structures of protein-ligand complexes are constructed using atomic models of individual molecules. These may be predicted homology models or experimental structures from X-ray crystallography or NMR. This review focuses on using SAXS data to model structures of protein-ligand complexes and to study their dynamics. The combination of SAXS with other methods such as size exclusion chromatography and dynamic light scattering is discussed.
Collapse
|
1321
|
Pijning T, Vujičić-Žagar A, Kralj S, Dijkhuizen L, Dijkstra BW. Flexibility of truncated and full-length glucansucrase GTF180 enzymes from Lactobacillus reuteri 180. FEBS J 2014; 281:2159-71. [PMID: 24597929 DOI: 10.1111/febs.12769] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 02/24/2014] [Accepted: 02/26/2014] [Indexed: 11/30/2022]
Abstract
UNLABELLED Glucansucrase enzymes synthesize high-molecular-mass extracellular α-glucan polysaccharides from sucrose. Previously, the crystal structure of truncated glucansucrase glucosyltransferase (GTF)180-ΔN from Lactobacillus reuteri 180 (lacking the N-terminal domain) revealed an elongated overall structure with two remote domains (IV and V) extending away from the core. By contrast, a new crystal form of the α-1,6/α-1,3 specific glucansucrase GTF180-ΔN shows an approximate 120(o) rotation of domain V about a hinge located between domains IV and V, giving a much more compact structure than before. Positional variability of domain V in solution is confirmed by small angle X-ray scattering experiments and rigid-body ensemble calculations. In addition, small angle X-ray scattering measurements of full-length GTF180 also provide the first structural data for a full-length glucansucrase, showing that the enzyme has an almost symmetric boomerang-like molecular shape, with a bend likely located between domains IV and V. The ~ 700-residue N-terminal domain, which is not present in the crystal structures, extends away from domain V and the catalytic core of the enzyme. We conclude that, as a result of the hinge region, in solution, GTF180-ΔN (and likely also the full-length GTF180) shows conformational flexibility; this may be a general feature of GH70 glucansucrases. DATABASE • Structural data for GTF180-ΔN II have been deposited in the Protein Data Bank under accession code 4AYG.
Collapse
Affiliation(s)
- Tjaard Pijning
- Laboratory of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
1322
|
Mansoorabadi SO, Wu M, Tao Z, Gao P, Pingali SV, Guo L, Liu HW. Conformational activation of poly(ADP-ribose) polymerase-1 upon DNA binding revealed by small-angle X-ray scattering. Biochemistry 2014; 53:1779-88. [PMID: 24588584 PMCID: PMC3971956 DOI: 10.1021/bi401439n] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear protein that plays key roles in several fundamental cellular processes. PARP-1 catalyzes the polymerization of nicotinamide adenine dinucleotide on itself and other acceptor proteins, forming long branched poly(ADP-ribose) polymers. The catalytic activity of PARP-1 is stimulated upon binding to damaged DNA, but how this signal is transmitted from the N-terminal DNA binding domain to the C-terminal catalytic domain in the context of the full-length enzyme is unknown. In this paper, small-angle X-ray scattering experiments and molecular dynamics simulations were used to gain insight into the conformational changes that occur during the catalytic activation of PARP-1 by an 8-mer DNA ligand. The data are consistent with a model in which binding of the DNA ligand establishes interdomain interactions between the DNA binding and catalytic domains, which induces an allosteric change in the active site that promotes catalysis. Moreover, the PARP-1-8-mer complex is seen to adopt a conformation that is poised to recruit DNA repair factors to the site of DNA damage. This study provides the first structural information about the DNA-induced conformational activation of full-length PARP-1.
Collapse
Affiliation(s)
- Steven O Mansoorabadi
- Division of Medicinal Chemistry, College of Pharmacy, Department of Chemistry, and Institute of Cellular and Molecular Biology, The University of Texas at Austin , Austin, Texas 78712, United States
| | | | | | | | | | | | | |
Collapse
|
1323
|
Han S, Shin D, Choi H, Lee S. Molecular determinants of the interaction between Doa1 and Hse1 involved in endosomal sorting. Biochem Biophys Res Commun 2014; 446:352-7. [PMID: 24607902 DOI: 10.1016/j.bbrc.2014.02.118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 02/25/2014] [Indexed: 12/31/2022]
Abstract
Yeast Doa1/Ufd3 is an adaptor protein for Cdc48 (p97 in mammal), an AAA type ATPase associated with endoplasmic reticulum-associated protein degradation pathway and endosomal sorting into multivesicular bodies. Doa1 functions in the endosomal sorting by its association with Hse1, a component of endosomal sorting complex required for transport (ESCRT) system. The association of Doa1 with Hse1 was previously reported to be mediated between PFU domain of Doa1 and SH3 of Hse1. However, it remains unclear which residues are specifically involved in the interaction. Here we report that Doa1/PFU interacts with Hse1/SH3 with a moderate affinity of 5 μM. Asn-438 of Doa1/PFU and Trp-254 of Hse1/SH3 are found to be critical in the interaction while Phe-434, implicated in ubiquitin binding via a hydrophobic interaction, is not. Small-angle X-ray scattering measurements combined with molecular docking and biochemical analysis yield the solution structure of the Doa1/PFU:Hse1/SH3 complex. Taken together, our results suggest that hydrogen bonding is a major determinant in the interaction of Doa1/PFU with Hse1/SH3.
Collapse
Affiliation(s)
- Seungsu Han
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Donghyuk Shin
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Hoon Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, South Korea.
| |
Collapse
|
1324
|
Radically Different Thioredoxin Domain Arrangement of ERp46, an Efficient Disulfide Bond Introducer of the Mammalian PDI Family. Structure 2014; 22:431-43. [DOI: 10.1016/j.str.2013.12.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/25/2013] [Accepted: 12/28/2013] [Indexed: 11/20/2022]
|
1325
|
Gupta K, Contreras LM, Smith D, Qu G, Huang T, Spruce LA, Seeholzer SH, Belfort M, Van Duyne GD. Quaternary arrangement of an active, native group II intron ribonucleoprotein complex revealed by small-angle X-ray scattering. Nucleic Acids Res 2014; 42:5347-60. [PMID: 24567547 PMCID: PMC4005650 DOI: 10.1093/nar/gku140] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The stable ribonucleoprotein (RNP) complex formed between the Lactococcus lactis group II intron and its self-encoded LtrA protein is essential for the intron's genetic mobility. In this study, we report the biochemical, compositional, hydrodynamic and structural properties of active group II intron RNP particles (+A) isolated from its native host using a novel purification scheme. We employed small-angle X-ray scattering to determine the structural properties of these particles as they exist in solution. Using sucrose as a contrasting agent, we derived a two-phase quaternary model of the protein-RNA complex. This approach revealed that the spatial properties of the complex are largely defined by the RNA component, with the protein dimer located near the center of mass. A transfer RNA fusion engineered into domain II of the intron provided a distinct landmark consistent with this interpretation. Comparison of the derived +A RNP shape with that of the previously reported precursor intron (ΔA) particle extends previous findings that the loosely packed precursor RNP undergoes a dramatic conformational change as it compacts into its active form. Our results provide insights into the quaternary arrangement of these RNP complexes in solution, an important step to understanding the transition of the group II intron from the precursor to a species fully active for DNA invasion.
Collapse
Affiliation(s)
- Kushol Gupta
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059, USA, Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA, Wadsworth Center, NYS Department of Health, Albany, NY 12201, USA, Department of Biological Sciences and RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA, SUNY Downstate Medical Center, University Hospital, Brooklyn, NY 11203, USA and Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1326
|
Lin CSH, Chao SY, Hammel M, Nix JC, Tseng HL, Tsou CC, Fei CH, Chiou HS, Jeng US, Lin YS, Chuang WJ, Wu JJ, Wang S. Distinct structural features of the peroxide response regulator from group A Streptococcus drive DNA binding. PLoS One 2014; 9:e89027. [PMID: 24586487 PMCID: PMC3931707 DOI: 10.1371/journal.pone.0089027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 01/19/2014] [Indexed: 11/23/2022] Open
Abstract
Group A streptococcus (GAS, Streptococcus pyogenes) is a strict human pathogen that causes severe, invasive diseases. GAS does not produce catalase, but has an ability to resist killing by reactive oxygen species (ROS) through novel mechanisms. The peroxide response regulator (PerR), a member of ferric uptake regulator (Fur) family, plays a key role for GAS to cope with oxidative stress by regulating the expression of multiple genes. Our previous studies have found that expression of an iron-binding protein, Dpr, is under the direct control of PerR. To elucidate the molecular interactions of PerR with its cognate promoter, we have carried out structural studies on PerR and PerR-DNA complex. By combining crystallography and small-angle X-ray scattering (SAXS), we confirmed that the determined PerR crystal structure reflects its conformation in solution. Through mutagenesis and biochemical analysis, we have identified DNA-binding residues suggesting that PerR binds to the dpr promoter at the per box through a winged-helix motif. Furthermore, we have performed SAXS analysis and resolved the molecular architecture of PerR-DNA complex, in which two 30 bp DNA fragments wrap around two PerR homodimers by interacting with the adjacent positively-charged winged-helix motifs. Overall, we provide structural insights into molecular recognition of DNA by PerR and define the hollow structural arrangement of PerR-30bpDNA complex, which displays a unique topology distinct from currently proposed DNA-binding models for Fur family regulators.
Collapse
Affiliation(s)
- Chang Sheng-Huei Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shi-Yu Chao
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Michal Hammel
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Jay C. Nix
- Molecular Biology Consortium, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Hsiao-Ling Tseng
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Cheng Tsou
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Hsien Fei
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Huo-Sheng Chiou
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Woei-Jer Chuang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Molecular Biology Consortium, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shuying Wang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
1327
|
The structure of the N-terminal domain of the Legionella protein SidC. J Struct Biol 2014; 186:188-94. [PMID: 24556577 DOI: 10.1016/j.jsb.2014.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/10/2014] [Accepted: 02/12/2014] [Indexed: 01/15/2023]
Abstract
The Gram-negative bacterium Legionella pneumophila is the causative agent of Legionnaires' disease. During infection of eukaryotic cells, the bacterium releases about 300 different bacterial effector molecules that aid in the establishment of the Legionella-containing vacuole (LCV) among which SidC is one of these secreted proteins. However, apart from membrane lipid binding the function of SidC remains elusive. In order to characterize SidC further, we have determined the crystal structure of the N-terminal domain of SidC (amino acids 1-609, referred to as SidC-N) at 2.4Å resolution. SidC-N reveals a novel fold in which 4 potential subdomains (A-D) are arranged in a crescent-like structure. None of these subdomains currently has any known structural homologues, raising the question of how this fold has evolved. These domains are highly interconnected, with a low degree of flexibility towards each other. Due to the extended arrangement of the subdomains, SidC-N may contain multiple binding sites for potential interaction partners.
Collapse
|
1328
|
Malecki PH, Vorgias CE, Petoukhov MV, Svergun DI, Rypniewski W. Crystal structures of substrate-bound chitinase from the psychrophilic bacterium Moritella marina and its structure in solution. ACTA ACUST UNITED AC 2014; 70:676-84. [PMID: 24598737 DOI: 10.1107/s1399004713032264] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 11/26/2013] [Indexed: 11/11/2022]
Abstract
The four-domain structure of chitinase 60 from Moritella marina (MmChi60) is outstanding in its complexity. Many glycoside hydrolases, such as chitinases and cellulases, have multi-domain structures, but only a few have been solved. The flexibility of the hinge regions between the domains apparently makes these proteins difficult to crystallize. The analysis of an active-site mutant of MmChi60 in an unliganded form and in complex with the substrates NAG4 and NAG5 revealed significant differences in the substrate-binding site compared with the previously determined complexes of most studied chitinases. A SAXS experiment demonstrated that in addition to the elongated state found in the crystal, the protein can adapt other conformations in solution ranging from fully extended to compact.
Collapse
Affiliation(s)
- Piotr H Malecki
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Constantinos E Vorgias
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Zografou Campus, 157 01 Athens, Greece
| | - Maxim V Petoukhov
- Hamburg Unit, EMBL c/o DESY, European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
| | - Dmitri I Svergun
- Hamburg Unit, EMBL c/o DESY, European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
| | - Wojciech Rypniewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
1329
|
Structural and functional insights into peptidoglycan access for the lytic amidase LytA of Streptococcus pneumoniae. mBio 2014; 5:e01120-13. [PMID: 24520066 PMCID: PMC3950521 DOI: 10.1128/mbio.01120-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The cytosolic N-acetylmuramoyl-l-alanine amidase LytA protein of Streptococcus pneumoniae, which is released by bacterial lysis, associates with the cell wall via its choline-binding motif. During exponential growth, LytA accesses its peptidoglycan substrate to cause lysis only when nascent peptidoglycan synthesis is stalled by nutrient starvation or β-lactam antibiotics. Here we present three-dimensional structures of LytA and establish the requirements for substrate binding and catalytic activity. The solution structure of the full-length LytA dimer reveals a peculiar fold, with the choline-binding domains forming a rigid V-shaped scaffold and the relatively more flexible amidase domains attached in a trans position. The 1.05-Å crystal structure of the amidase domain reveals a prominent Y-shaped binding crevice composed of three contiguous subregions, with a zinc-containing active site localized at the bottom of the branch point. Site-directed mutagenesis was employed to identify catalytic residues and to investigate the relative impact of potential substrate-interacting residues lining the binding crevice for the lytic activity of LytA. In vitro activity assays using defined muropeptide substrates reveal that LytA utilizes a large substrate recognition interface and requires large muropeptide substrates with several connected saccharides that interact with all subregions of the binding crevice for catalysis. We hypothesize that the substrate requirements restrict LytA to the sites on the cell wall where nascent peptidoglycan synthesis occurs. IMPORTANCE Streptococcus pneumoniae is a human respiratory tract pathogen responsible for millions of deaths annually. Its major pneumococcal autolysin, LytA, is required for autolysis and fratricidal lysis and functions as a virulence factor that facilitates the spread of toxins and factors involved in immune evasion. LytA is also activated by penicillin and vancomycin and is responsible for the lysis induced by these antibiotics. The factors that regulate the lytic activity of LytA are unclear, but it was recently demonstrated that control is at the level of substrate recognition and that LytA required access to the nascent peptidoglycan. The present study was undertaken to structurally and functionally investigate LytA and its substrate-interacting interface and to determine the requirements for substrate recognition and catalysis. Our results reveal that the amidase domain comprises a complex substrate-binding crevice and needs to interact with a large-motif epitope of peptidoglycan for catalysis.
Collapse
|
1330
|
Vanwetswinkel S, Volkov AN, Sterckx YGJ, Garcia-Pino A, Buts L, Vranken WF, Bouckaert J, Roy R, Wyns L, van Nuland NAJ. Study of the structural and dynamic effects in the FimH adhesin upon α-d-heptyl mannose binding. J Med Chem 2014; 57:1416-27. [PMID: 24476493 DOI: 10.1021/jm401666c] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Uropathogenic Escherichia coli cause urinary tract infections by adhering to mannosylated receptors on the human urothelium via the carbohydrate-binding domain of the FimH adhesin (FimHL). Numerous α-d-mannopyranosides, including α-d-heptyl mannose (HM), inhibit this process by interacting with FimHL. To establish the molecular basis of the high-affinity HM binding, we solved the solution structure of the apo form and the crystal structure of the FimHL-HM complex. NMR relaxation analysis revealed that protein dynamics were not affected by the sugar binding, yet HM addition promoted protein dimerization, which was further confirmed by small-angle X-ray scattering. Finally, to address the role of Y48, part of the "tyrosine gate" believed to govern the affinity and specificity of mannoside binding, we characterized the FimHL Y48A mutant, whose conformational, dynamical, and HM binding properties were found to be very similar to those of the wild-type protein.
Collapse
Affiliation(s)
- Sophie Vanwetswinkel
- Jean Jeener NMR Centre, Structural Biology Brussels, Vrije Universiteit Brussel , Pleinlaan 2, 1050 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1331
|
De D, Jeong MH, Leem YE, Svergun DI, Wemmer DE, Kang JS, Kim KK, Kim SH. Inhibition of master transcription factors in pluripotent cells induces early stage differentiation. Proc Natl Acad Sci U S A 2014; 111:1778-83. [PMID: 24434556 PMCID: PMC3918783 DOI: 10.1073/pnas.1323386111] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The potential for pluripotent cells to differentiate into diverse specialized cell types has given much hope to the field of regenerative medicine. Nevertheless, the low efficiency of cell commitment has been a major bottleneck in this field. Here we provide a strategy to enhance the efficiency of early differentiation of pluripotent cells. We hypothesized that the initial phase of differentiation can be enhanced if the transcriptional activity of master regulators of stemness is suppressed, blocking the formation of functional transcriptomes. However, an obstacle is the lack of an efficient strategy to block protein-protein interactions. In this work, we take advantage of the biochemical property of seventeen kilodalton protein (Skp), a bacterial molecular chaperone that binds directly to sex determining region Y-box 2 (Sox2). The small angle X-ray scattering analyses provided a low resolution model of the complex and suggested that the transactivation domain of Sox2 is probably wrapped in a cleft on Skp trimer. Upon the transduction of Skp into pluripotent cells, the transcriptional activity of Sox2 was inhibited and the expression of Sox2 and octamer-binding transcription factor 4 was reduced, which resulted in the expression of early differentiation markers and appearance of early neuronal and cardiac progenitors. These results suggest that the initial stage of differentiation can be accelerated by inhibiting master transcription factors of stemness. This strategy can possibly be applied to increase the efficiency of stem cell differentiation into various cell types and also provides a clue to understanding the mechanism of early differentiation.
Collapse
Affiliation(s)
- Debojyoti De
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| | - Myong-Ho Jeong
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| | - Young-Eun Leem
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| | - Dmitri I. Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, 22603 Hamburg, Germany; and
| | - David E. Wemmer
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| | - Sung-Hou Kim
- Department of Chemistry, University of California, Berkeley, CA 94720
| |
Collapse
|
1332
|
Lansky S, Alalouf O, Solomon HV, Alhassid A, Govada L, Chayen NE, Belrhali H, Shoham Y, Shoham G. A unique octameric structure of Axe2, an intracellular acetyl-xylooligosaccharide esterase from Geobacillus stearothermophilus. ACTA ACUST UNITED AC 2014; 70:261-78. [PMID: 24531461 DOI: 10.1107/s139900471302840x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 10/15/2013] [Indexed: 08/26/2023]
Abstract
Geobacillus stearothermophilus T6 is a thermophilic, Gram-positive soil bacterium that possesses an extensive and highly regulated hemicellulolytic system, allowing the bacterium to efficiently degrade high-molecular-weight polysaccharides such as xylan, arabinan and galactan. As part of the xylan-degradation system, the bacterium uses a number of side-chain-cleaving enzymes, one of which is Axe2, a 219-amino-acid intracellular serine acetylxylan esterase that removes acetyl side groups from xylooligosaccharides. Bioinformatic analyses suggest that Axe2 belongs to the lipase GDSL family and represents a new family of carbohydrate esterases. In the current study, the detailed three-dimensional structure of Axe2 is reported, as determined by X-ray crystallography. The structure of the selenomethionine derivative Axe2-Se was initially determined by single-wavelength anomalous diffraction techniques at 1.70 Å resolution and was used for the structure determination of wild-type Axe2 (Axe2-WT) and the catalytic mutant Axe2-S15A at 1.85 and 1.90 Å resolution, respectively. These structures demonstrate that the three-dimensional structure of the Axe2 monomer generally corresponds to the SGNH hydrolase fold, consisting of five central parallel β-sheets flanked by two layers of helices (eight α-helices and five 310-helices). The catalytic triad residues, Ser15, His194 and Asp191, are lined up along a substrate channel situated on the concave surface of the monomer. Interestingly, the Axe2 monomers are assembled as a `doughnut-shaped' homo-octamer, presenting a unique quaternary structure built of two staggered tetrameric rings. The eight active sites are organized in four closely situated pairs, which face the relatively wide internal cavity. The biological relevance of this octameric structure is supported by independent results obtained from gel-filtration, TEM and SAXS experiments. These data and their comparison to the structural data of related hydrolases are used for a more general discussion focusing on the structure-function relationships of enzymes of this category.
Collapse
Affiliation(s)
- Shifra Lansky
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Onit Alalouf
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Hodaya Vered Solomon
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Anat Alhassid
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Lata Govada
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, England
| | - Naomi E Chayen
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, England
| | - Hassan Belrhali
- European Synchrotron Radiation Facility, BP 220, 38043 Grenoble, France
| | - Yuval Shoham
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Gil Shoham
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| |
Collapse
|
1333
|
Ptak CP, Hsieh CL, Weiland GA, Oswald RE. Role of stoichiometry in the dimer-stabilizing effect of AMPA receptor allosteric modulators. ACS Chem Biol 2014; 9:128-33. [PMID: 24152170 PMCID: PMC3947009 DOI: 10.1021/cb4007166] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Protein dimerization provides a mechanism for the modulation of cellular signaling events. In α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors, the rapidly desensitizing, activated state has been correlated with a weakly dimeric, glutamate-binding domain conformation. Allosteric modulators can form bridging interactions that stabilize the dimer interface. While most modulators can only bind to one position with a one modulator per dimer ratio, some thiazide-based modulators can bind to the interface in two symmetrical positions with a two modulator per dimer ratio. Based on small-angle X-ray scattering (SAXS) experiments, dimerization curves for the isolated glutamate-binding domain show that a second modulator binding site produces both an increase in positive cooperativity and a decrease in the EC50 for dimerization. Four body binding equilibrium models that incorporate a second dimer-stabilizing ligand were developed to fit the experimental data. The work illustrates why stoichiometry should be an important consideration during the rational design of dimerizing modulators.
Collapse
Affiliation(s)
- Christopher P. Ptak
- Department of Molecular
Medicine and ‡Department of Population Medicine
and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Ching-Lin Hsieh
- Department of Molecular
Medicine and ‡Department of Population Medicine
and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Gregory A. Weiland
- Department of Molecular
Medicine and ‡Department of Population Medicine
and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Robert E. Oswald
- Department of Molecular
Medicine and ‡Department of Population Medicine
and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
1334
|
Schulte T, Löfling J, Mikaelsson C, Kikhney A, Hentrich K, Diamante A, Ebel C, Normark S, Svergun D, Henriques-Normark B, Achour A. The basic keratin 10-binding domain of the virulence-associated pneumococcal serine-rich protein PsrP adopts a novel MSCRAMM fold. Open Biol 2014; 4:130090. [PMID: 24430336 PMCID: PMC3909270 DOI: 10.1098/rsob.130090] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Streptococcus pneumoniae is a major human pathogen, and a leading cause of disease and death worldwide. Pneumococcal invasive disease is triggered by initial asymptomatic colonization of the human upper respiratory tract. The pneumococcal serine-rich repeat protein (PsrP) is a lung-specific virulence factor whose functional binding region (BR) binds to keratin-10 (KRT10) and promotes pneumococcal biofilm formation through self-oligomerization. We present the crystal structure of the KRT10-binding domain of PsrP (BR187–385) determined to 2.0 Å resolution. BR187–385 adopts a novel variant of the DEv-IgG fold, typical for microbial surface components recognizing adhesive matrix molecules adhesins, despite very low sequence identity. An extended β-sheet on one side of the compressed, two-sided barrel presents a basic groove that possibly binds to the acidic helical rod domain of KRT10. Our study also demonstrates the importance of the other side of the barrel, formed by extensive well-ordered loops and stabilized by short β-strands, for interaction with KRT10.
Collapse
Affiliation(s)
- Tim Schulte
- Science for Life Laboratory, Center for Infectious Medicine (CIM), Department of Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet Science Park, Tomtebodavägen 23A Solna, Stockholm 17165, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1335
|
Wong JEMM, Alsarraf HMAB, Kaspersen JD, Pedersen JS, Stougaard J, Thirup S, Blaise M. Cooperative binding of LysM domains determines the carbohydrate affinity of a bacterial endopeptidase protein. FEBS J 2014; 281:1196-208. [PMID: 24355088 DOI: 10.1111/febs.12698] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 12/12/2013] [Accepted: 12/17/2013] [Indexed: 01/01/2023]
Abstract
Cellulose, chitin and peptidoglycan are major long-chain carbohydrates in living organisms, and constitute a substantial fraction of the biomass. Characterization of the biochemical basis of dynamic changes and degradation of these β,1-4-linked carbohydrates is therefore important for both functional studies of biological polymers and biotechnology. Here, we investigated the functional role of multiplicity of the carbohydrate-binding lysin motif (LysM) domain that is found in proteins involved in bacterial peptidoglycan synthesis and remodelling. The Bacillus subtilis peptidoglycan-hydrolysing NlpC/P60 D,L-endopeptidase, cell wall-lytic enzyme associated with cell separation, possesses four LysM domains. The contribution of each LysM domain was determined by direct carbohydrate-binding studies in aqueous solution with microscale thermophoresis. We found that bacterial LysM domains have affinity for N-acetylglucosamine (GlcNac) polymers in the lower-micromolar range. Moreover, we demonstrated that a single LysM domain is able to bind carbohydrate ligands, and that LysM domains act additively to increase the binding affinity. Our study reveals that affinity for GlcNAc polymers correlates with the chain length of the carbohydrate, and suggests that binding of long carbohydrates is mediated by LysM domain cooperativity. We also show that bacterial LysM domains, in contrast to plant LysM domains, do not discriminate between GlcNAc polymers, and recognize both peptidoglycan fragments and chitin polymers with similar affinity. Finally, an Ala replacement study suggested that the carbohydrate-binding site in LysM-containing proteins is conserved across phyla.
Collapse
Affiliation(s)
- Jaslyn E M M Wong
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Denmark
| | | | | | | | | | | | | |
Collapse
|
1336
|
Thestrup T, Litzlbauer J, Bartholomäus I, Mues M, Russo L, Dana H, Kovalchuk Y, Liang Y, Kalamakis G, Laukat Y, Becker S, Witte G, Geiger A, Allen T, Rome LC, Chen TW, Kim DS, Garaschuk O, Griesinger C, Griesbeck O. Optimized ratiometric calcium sensors for functional in vivo imaging of neurons and T lymphocytes. Nat Methods 2014; 11:175-82. [DOI: 10.1038/nmeth.2773] [Citation(s) in RCA: 253] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 11/29/2013] [Indexed: 01/20/2023]
|
1337
|
Linke-Winnebeck C, Paterson NG, Young PG, Middleditch MJ, Greenwood DR, Witte G, Baker EN. Structural model for covalent adhesion of the Streptococcus pyogenes pilus through a thioester bond. J Biol Chem 2014; 289:177-89. [PMID: 24220033 PMCID: PMC3879542 DOI: 10.1074/jbc.m113.523761] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/11/2013] [Indexed: 11/06/2022] Open
Abstract
The human pathogen Streptococcus pyogenes produces pili that are essential for adhesion to host surface receptors. Cpa, the adhesin at the pilus tip, was recently shown to have a thioester-containing domain. The thioester bond is believed to be important in adhesion, implying a mechanism of covalent attachment analogous to that used by human complement factors. Here, we have characterized a second active thioester-containing domain on Cpa, the N-terminal domain of Cpa (CpaN). Expression of CpaN in Escherichia coli gave covalently linked dimers. These were shown by x-ray crystallography and mass spectrometry to comprise two CpaN molecules cross-linked by the polyamine spermidine following reaction with the thioester bonds. This cross-linked CpaN dimer provides a model for the covalent attachment of Cpa to target receptors and thus the streptococcal pilus to host cells. Similar thioester domains were identified in cell wall proteins of other Gram-positive pathogens, suggesting that thioester domains are more widely used and provide a mechanism of adhesion by covalent bonding to target molecules on host cells that mimics that used by the human complement system to eliminate pathogens.
Collapse
MESH Headings
- Adhesins, Bacterial/chemistry
- Adhesins, Bacterial/genetics
- Adhesins, Bacterial/metabolism
- Base Sequence
- Complement System Proteins/chemistry
- Complement System Proteins/genetics
- Complement System Proteins/metabolism
- Crystallography, X-Ray
- Escherichia coli
- Fimbriae, Bacterial/chemistry
- Fimbriae, Bacterial/genetics
- Fimbriae, Bacterial/metabolism
- Humans
- Models, Molecular
- Molecular Sequence Data
- Protein Multimerization
- Protein Structure, Quaternary
- Protein Structure, Tertiary
- Streptococcus pyogenes/chemistry
- Streptococcus pyogenes/genetics
- Streptococcus pyogenes/pathogenicity
Collapse
Affiliation(s)
- Christian Linke-Winnebeck
- From the School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 921019, Auckland 1142, New Zealand and
| | - Neil G. Paterson
- From the School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 921019, Auckland 1142, New Zealand and
| | - Paul G. Young
- From the School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 921019, Auckland 1142, New Zealand and
| | - Martin J. Middleditch
- From the School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 921019, Auckland 1142, New Zealand and
| | - David R. Greenwood
- From the School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 921019, Auckland 1142, New Zealand and
| | - Gregor Witte
- Department of Biochemistry and Gene Center, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Edward N. Baker
- From the School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 921019, Auckland 1142, New Zealand and
| |
Collapse
|
1338
|
Trewhella J, Hendrickson WA, Kleywegt GJ, Sali A, Sato M, Schwede T, Svergun DI, Tainer JA, Westbrook J, Berman HM. Report of the wwPDB Small-Angle Scattering Task Force: data requirements for biomolecular modeling and the PDB. Structure 2014; 21:875-81. [PMID: 23747111 DOI: 10.1016/j.str.2013.04.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/24/2013] [Accepted: 04/18/2013] [Indexed: 12/13/2022]
Abstract
This report presents the conclusions of the July 12-13, 2012 meeting of the Small-Angle Scattering Task Force of the worldwide Protein Data Bank (wwPDB; Berman et al., 2003) at Rutgers University in New Brunswick, New Jersey. The task force includes experts in small-angle scattering (SAS), crystallography, data archiving, and molecular modeling who met to consider questions regarding the contributions of SAS to modern structural biology. Recognizing there is a rapidly growing community of structural biology researchers acquiring and interpreting SAS data in terms of increasingly sophisticated molecular models, the task force recommends that (1) a global repository is needed that holds standard format X-ray and neutron SAS data that is searchable and freely accessible for download; (2) a standard dictionary is required for definitions of terms for data collection and for managing the SAS data repository; (3) options should be provided for including in the repository SAS-derived shape and atomistic models based on rigid-body refinement against SAS data along with specific information regarding the uniqueness and uncertainty of the model, and the protocol used to obtain it; (4) criteria need to be agreed upon for assessment of the quality of deposited SAS data and the accuracy of SAS-derived models, and the extent to which a given model fits the SAS data; (5) with the increasing diversity of structural biology data and models being generated, archiving options for models derived from diverse data will be required; and (6) thought leaders from the various structural biology disciplines should jointly define what to archive in the PDB and what complementary archives might be needed, taking into account both scientific needs and funding.
Collapse
Affiliation(s)
- Jill Trewhella
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1339
|
Moglianetti M, Ong QK, Reguera J, Harkness KM, Mameli M, Radulescu A, Kohlbrecher J, Jud C, Svergun DI, Stellacci F. Scanning tunneling microscopy and small angle neutron scattering study of mixed monolayer protected gold nanoparticles in organic solvents. Chem Sci 2014. [DOI: 10.1039/c3sc52595c] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
1340
|
Casey LW, Mark AE, Kobe B. Small-Angle X-Ray Scattering for the Discerning Macromolecular Crystallographer. Aust J Chem 2014. [DOI: 10.1071/ch14396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The role of small-angle X-ray scattering (SAXS) in structural biology is now well established, and its usefulness in combination with macromolecular crystallography is clear. However, the highly averaged SAXS data present a significant risk of over-interpretation to the unwary practitioner, and it can be challenging to frame SAXS results in a manner that maximises the reliability of the conclusions drawn. In this review, a series of recent examples are used to illustrate both the challenges for interpretation and approaches through which these can be overcome.
Collapse
|
1341
|
Small-angle X-ray scattering to obtain models of multivalent lectin-glycan complexes. Methods Mol Biol 2014; 1200:511-26. [PMID: 25117261 DOI: 10.1007/978-1-4939-1292-6_42] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent advances in small-angle X-ray scattering (SAXS) have led to the ability to model the glycans on glycoproteins and to obtain the low-resolution solution structures of complexes of lectins bound to multivalent glycan-presenting scaffolds. This progress in SAXS can respond to the increasing interest in the biological action of glycoproteins and lectins and in the design of multivalent glycan-based antagonists. Carbohydrates make up a significant part of the X-ray scattering content in SAXS and should be included in the model together with the protein, whose structure is most often based on a crystal structure or NMR ensemble, to give a far-improved fit with the experimental data. The modeling of the spatial positioning of glycans on proteins or in the architecture of lectin-glycan complexes delivers low-resolution structural information hitherto unmatched by any other method. SAXS data on the bacterial lectin FimH, strongly bound to heptyl α-D-mannose on a sevenfold derivatized β-cyclodextrin, permitted determination of the stoichiometry of the complex and the geometry of the lectin deposition on the multivalent β-cyclodextrin. The SAXS methods can be applied to larger complexes as the technique imposes no limit on the size of the macromolecular assembly in solution.
Collapse
|
1342
|
High-throughput SAXS for the characterization of biomolecules in solution: a practical approach. Methods Mol Biol 2014; 1091:245-58. [PMID: 24203338 DOI: 10.1007/978-1-62703-691-7_18] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The recent innovation of collecting X-ray scattering from solutions containing purified macromolecules in high-throughput has yet to be truly exploited by the biological community. Yet, this capability is becoming critical given that the growth of sequence and genomics data is significantly outpacing structural biology results. Given the huge mismatch in information growth rates between sequence and structural methods, their combined high-throughput and high success rate make high-throughput small angle X-ray scattering (HT-SAXS) analyses increasingly valuable. HT-SAXS connects sequence as well as NMR and crystallographic results to biological outcomes by defining the flexible and dynamic complexes controlling cell biology. Commonly falling under the umbrella of bio-SAXS, HT-SAXS data collection pipelines have or are being developed at most synchrotrons. How investigators practically get their biomolecules of interest into these pipelines, balance sample requirements and manage HT-SAXS data output format varies from facility to facility. While these features are unlikely to be standardized across synchrotron beamlines, a detailed description of HT-SAXS issues for one pipeline provides investigators with a practical guide to the general procedures they will encounter. One of the longest running and generally accessible HT-SAXS endstations is the SIBYLS beamline at the Advanced Light Source in Berkeley CA. Here we describe the current state of the SIBYLS HT-SAXS pipeline, what is necessary for investigators to integrate into it, the output format and a summary of results from 2 years of operation. Assessment of accumulated data informs issues of concentration, background, buffers, sample handling, sample shipping, homogeneity requirements, error sources, aggregation, radiation sensitivity, interpretation, and flags for concern. By quantitatively examining success and failures as a function of sample and data characteristics, we define practical concerns, considerations, and concepts for optimally applying HT-SAXS techniques to biological samples.
Collapse
|
1343
|
Castelletto V, Gouveia RJ, Connon CJ, Hamley IW, Seitsonen J, Ruokolainen J, Longo E, Siligardi G. Influence of elastase on alanine-rich peptide hydrogels. Biomater Sci 2014; 2:867-874. [DOI: 10.1039/c4bm00001c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The self-assembly of the alanine-rich amphiphilic peptides Lys(Ala)6Lys (KA6K) and Lys(Ala)6Glu (KA6E) with homotelechelic or heterotelechelic charged termini respectively has been investigated in aqueous solution. The latter forms enzyme-degradable hydrogels.
Collapse
Affiliation(s)
- V. Castelletto
- School of Chemistry
- Food Biosciences and Pharmacy
- University of Reading
- Reading RG6 6AD, UK
| | - R. J. Gouveia
- School of Chemistry
- Food Biosciences and Pharmacy
- University of Reading
- Reading RG6 6AD, UK
| | - C. J. Connon
- School of Chemistry
- Food Biosciences and Pharmacy
- University of Reading
- Reading RG6 6AD, UK
| | - I. W. Hamley
- School of Chemistry
- Food Biosciences and Pharmacy
- University of Reading
- Reading RG6 6AD, UK
| | - J. Seitsonen
- Department of Applied Physics
- Aalto University School of Science
- FI-00076 Aalto, Finland
| | - J. Ruokolainen
- Department of Applied Physics
- Aalto University School of Science
- FI-00076 Aalto, Finland
| | - E. Longo
- Diamond Light Source Ltd
- Harwell Science and Innovation campus
- Didcot, UK
| | - G. Siligardi
- Diamond Light Source Ltd
- Harwell Science and Innovation campus
- Didcot, UK
| |
Collapse
|
1344
|
Shtykova EV, Baratova LA, Fedorova NV, Radyukhin VA, Ksenofontov AL, Volkov VV, Shishkov AV, Dolgov AA, Shilova LA, Batishchev OV, Jeffries CM, Svergun DI. Structural analysis of influenza A virus matrix protein M1 and its self-assemblies at low pH. PLoS One 2013; 8:e82431. [PMID: 24358182 PMCID: PMC3865061 DOI: 10.1371/journal.pone.0082431] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 10/24/2013] [Indexed: 11/19/2022] Open
Abstract
Influenza A virus matrix protein M1 is one of the most important and abundant proteins in the virus particles broadly involved in essential processes of the viral life cycle. The absence of high-resolution data on the full-length M1 makes the structural investigation of the intact protein particularly important. We employed synchrotron small-angle X-ray scattering (SAXS), analytical ultracentrifugation and atomic force microscopy (AFM) to study the structure of M1 at acidic pH. The low-resolution structural models built from the SAXS data reveal a structurally anisotropic M1 molecule consisting of a compact NM-fragment and an extended and partially flexible C-terminal domain. The M1 monomers co-exist in solution with a small fraction of large clusters that have a layered architecture similar to that observed in the authentic influenza virions. AFM analysis on a lipid-like negatively charged surface reveals that M1 forms ordered stripes correlating well with the clusters observed by SAXS. The free NM-domain is monomeric in acidic solution with the overall structure similar to that observed in previously determined crystal structures. The NM-domain does not spontaneously self assemble supporting the key role of the C-terminus of M1 in the formation of supramolecular structures. Our results suggest that the flexibility of the C-terminus is an essential feature, which may be responsible for the multi-functionality of the entire protein. In particular, this flexibility could allow M1 to structurally organise the viral membrane to maintain the integrity and the shape of the intact influenza virus.
Collapse
Affiliation(s)
- Eleonora V. Shtykova
- Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, Russia
| | - Lyudmila A. Baratova
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Natalia V. Fedorova
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Victor A. Radyukhin
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | | | - Vladimir V. Volkov
- Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, Russia
| | | | - Alexey A. Dolgov
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Liudmila A. Shilova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
| | - Oleg V. Batishchev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
| | | | | |
Collapse
|
1345
|
Cherry AL, Finta C, Karlström M, Jin Q, Schwend T, Astorga-Wells J, Zubarev RA, Del Campo M, Criswell AR, de Sanctis D, Jovine L, Toftgård R. Structural basis of SUFU-GLI interaction in human Hedgehog signalling regulation. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2563-79. [PMID: 24311597 PMCID: PMC3852661 DOI: 10.1107/s0907444913028473] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/16/2013] [Indexed: 12/13/2022]
Abstract
Hedgehog signalling plays a fundamental role in the control of metazoan development, cell proliferation and differentiation, as highlighted by the fact that its deregulation is associated with the development of many human tumours. SUFU is an essential intracellular negative regulator of mammalian Hedgehog signalling and acts by binding and modulating the activity of GLI transcription factors. Despite its central importance, little is known about SUFU regulation and the nature of SUFU-GLI interaction. Here, the crystal and small-angle X-ray scattering structures of full-length human SUFU and its complex with the key SYGHL motif conserved in all GLIs are reported. It is demonstrated that GLI binding is associated with major conformational changes in SUFU, including an intrinsically disordered loop that is also crucial for pathway activation. These findings reveal the structure of the SUFU-GLI interface and suggest a mechanism for an essential regulatory step in Hedgehog signalling, offering possibilities for the development of novel pathway modulators and therapeutics.
Collapse
Affiliation(s)
- Amy L Cherry
- Department of Biosciences and Nutrition and Center for Biosciences, Karolinska Institutet, Novum, Hälsovägen 7, SE-141 83 Huddinge, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1346
|
Ruszkowski M, Szpotkowski K, Sikorski M, Jaskolski M. The landscape of cytokinin binding by a plant nodulin. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2365-80. [PMID: 24311578 PMCID: PMC3852650 DOI: 10.1107/s0907444913021975] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 08/06/2013] [Indexed: 11/10/2022]
Abstract
Nodulation is an extraordinary symbiotic interaction between leguminous plants and nitrogen-fixing bacteria (rhizobia) that assimilate atmospheric nitrogen (in root nodules) and convert it into compounds suitable for the plant host. A class of plant hormones called cytokinins are involved in the nodulation process. In the model legume Medicago truncatula, nodulin 13 (MtN13), which belongs to the pathogenesis-related proteins of class 10 (PR-10), is expressed in the outer cortex of the nodules. In general, PR-10 proteins are small and monomeric and have a characteristic fold with an internal hydrophobic cavity formed between a seven-stranded antiparallel β-sheet and a C-terminal α-helix. Previously, some PR-10 proteins not related to nodulation were found to bind cytokinins such as trans-zeatin. Here, four crystal structures of the MtN13 protein are reported in complexes with several cytokinins, namely trans-zeatin, N6-isopentenyladenine, kinetin and N6-benzyladenine. All four phytohormones are bound in the hydrophobic cavity in the same manner and have excellent definition in the electron-density maps. The binding of the cytokinins appears to be strong and specific and is reinforced by several hydrogen bonds. Although the binding stoichiometry is 1:1, the complex is actually dimeric, with a cytokinin molecule bound in each subunit. The ligand-binding site in each cavity is formed with the participation of a loop element from the other subunit, which plugs the only entrance to the cavity. Interestingly, a homodimer of MtN13 is also formed in solution, as confirmed by small-angle X-ray scattering (SAXS).
Collapse
Affiliation(s)
- M. Ruszkowski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - K. Szpotkowski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - M. Sikorski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - M. Jaskolski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| |
Collapse
|
1347
|
Brookes E, Pérez J, Cardinali B, Profumo A, Vachette P, Rocco M. Fibrinogen species as resolved by HPLC-SAXS data processing within the UltraScan Solution Modeler ( US-SOMO) enhanced SAS module. J Appl Crystallogr 2013; 46:1823-1833. [PMID: 24282333 PMCID: PMC3831300 DOI: 10.1107/s0021889813027751] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 10/09/2013] [Indexed: 12/04/2022] Open
Abstract
Fibrinogen is a large heterogeneous aggregation/degradation-prone protein playing a central role in blood coagulation and associated pathologies, whose structure is not completely resolved. When a high-molecular-weight fraction was analyzed by size-exclusion high-performance liquid chromatography/small-angle X-ray scattering (HPLC-SAXS), several composite peaks were apparent and because of the stickiness of fibrinogen the analysis was complicated by severe capillary fouling. Novel SAS analysis tools developed as a part of the UltraScan Solution Modeler (US-SOMO; http://somo.uthscsa.edu/), an open-source suite of utilities with advanced graphical user interfaces whose initial goal was the hydrodynamic modeling of biomacromolecules, were implemented and applied to this problem. They include the correction of baseline drift due to the accumulation of material on the SAXS capillary walls, and the Gaussian decomposition of non-baseline-resolved HPLC-SAXS elution peaks. It was thus possible to resolve at least two species co-eluting under the fibrinogen main monomer peak, probably resulting from in-column degradation, and two others under an oligomers peak. The overall and cross-sectional radii of gyration, molecular mass and mass/length ratio of all species were determined using the manual or semi-automated procedures available within the US-SOMO SAS module. Differences between monomeric species and linear and sideways oligomers were thus identified and rationalized. This new US-SOMO version additionally contains several computational and graphical tools, implementing functionalities such as the mapping of residues contributing to particular regions of P(r), and an advanced module for the comparison of primary I(q) versus q data with model curves computed from atomic level structures or bead models. It should be of great help in multi-resolution studies involving hydrodynamics, solution scattering and crystallographic/NMR data.
Collapse
Affiliation(s)
- Emre Brookes
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | - Javier Pérez
- Beamline SWING, Synchrotron SOLEIL, L’Orme des Merisiers, BP48, Saint-Aubin, Gif sur Yvette, France
| | - Barbara Cardinali
- Biopolimeri e Proteomica, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Aldo Profumo
- Biopolimeri e Proteomica, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Patrice Vachette
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, CNRS UMR 8619, UPS 11, Orsay, France
- Université Paris-Sud 11, Bâtiment 430, Orsay, France
| | - Mattia Rocco
- Biopolimeri e Proteomica, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| |
Collapse
|
1348
|
Murakami MT, Rodrigues NC, Gava LM, Honorato RV, Canduri F, Barbosa LR, Oliva G, Borges JC. Structural studies of the Trypanosoma cruzi Old Yellow Enzyme: Insights into enzyme dynamics and specificity. Biophys Chem 2013; 184:44-53. [DOI: 10.1016/j.bpc.2013.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 08/12/2013] [Accepted: 08/12/2013] [Indexed: 12/15/2022]
|
1349
|
Szambowska A, Tessmer I, Kursula P, Usskilat C, Prus P, Pospiech H, Grosse F. DNA binding properties of human Cdc45 suggest a function as molecular wedge for DNA unwinding. Nucleic Acids Res 2013; 42:2308-19. [PMID: 24293646 PMCID: PMC3936751 DOI: 10.1093/nar/gkt1217] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The cell division cycle protein 45 (Cdc45) represents an essential replication factor that, together with the Mcm2-7 complex and the four subunits of GINS, forms the replicative DNA helicase in eukaryotes. Recombinant human Cdc45 (hCdc45) was structurally characterized and its DNA-binding properties were determined. Synchrotron radiation circular dichroism spectroscopy, dynamic light scattering, small-angle X-ray scattering and atomic force microscopy revealed that hCdc45 exists as an alpha-helical monomer and possesses a structure similar to its bacterial homolog RecJ. hCdc45 bound long (113-mer or 80-mer) single-stranded DNA fragments with a higher affinity than shorter ones (34-mer). hCdc45 displayed a preference for 3′ protruding strands and bound tightly to single-strand/double-strand DNA junctions, such as those presented by Y-shaped DNA, bubbles and displacement loops, all of which appear transiently during the initiation of DNA replication. Collectively, our findings suggest that hCdc45 not only binds to but also slides on DNA with a 3′–5′ polarity and, thereby acts as a molecular ‘wedge’ to initiate DNA strand displacement.
Collapse
Affiliation(s)
- Anna Szambowska
- Research Group Biochemistry, Leibniz Institute for Age Research -Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany, Laboratory of Molecular Biology IBB PAS, Affiliated with University of Gdansk, Wita Stwosza 59 Gdansk, Poland, Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, Josef Schneider Strasse 2, 7080 Wurzburg, Germany, Department of Biochemistry, Oulu, P.O. Box 3000, University of Oulu, Oulu 90014, Finland, Department of Chemistry, University of Hamburg/DESY, Notkestrasse 85, 22607 Hamburg, Germany, Biocenter Oulu, P.O. Box 3000, University of Oulu, Oulu 90014, Finland and Center for Molecular Biomedicine, Friedrich-Schiller University, Biochemistry Department, Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
1350
|
Alaidarous M, Ve T, Casey LW, Valkov E, Ericsson DJ, Ullah MO, Schembri MA, Mansell A, Sweet MJ, Kobe B. Mechanism of bacterial interference with TLR4 signaling by Brucella Toll/interleukin-1 receptor domain-containing protein TcpB. J Biol Chem 2013; 289:654-68. [PMID: 24265315 DOI: 10.1074/jbc.m113.523274] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Upon activation of Toll-like receptors (TLRs), cytoplasmic Toll/interleukin-1 receptor (TIR) domains of the receptors undergo homo- or heterodimerization. This in turn leads to the recruitment of adaptor proteins, activation of transcription factors, and the secretion of pro-inflammatory cytokines. Recent studies have described the TIR domain-containing protein from Brucella melitensis, TcpB (BtpA/Btp1), to be involved in virulence and suppression of host innate immune responses. TcpB interferes with TLR4 and TLR2 signaling pathways by a mechanism that remains controversial. In this study, we show using co-immunoprecipitation analyses that TcpB interacts with MAL, MyD88, and TLR4 but interferes only with the MAL-TLR4 interaction. We present the crystal structure of the TcpB TIR domain, which reveals significant structural differences in the loop regions compared with other TIR domain structures. We demonstrate that TcpB forms a dimer in solution, and the crystal structure reveals the dimerization interface, which we validate by mutagenesis and biophysical studies. Our study advances the understanding of the molecular mechanisms of host immunosuppression by bacterial pathogens.
Collapse
|