1351
|
Tanaka M, Marunouchi T. Immunohistochemical analysis of developmental stage of external granular layer neurons which undergo apoptosis in postnatal rat cerebellum. Neurosci Lett 1998; 242:85-8. [PMID: 9533400 DOI: 10.1016/s0304-3940(98)00032-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Some granule neurons naturally undergo apoptosis in the external granular layer (EGL) of the postnatally developing rat cerebellum. We analyzed the developmental stage-specificity of this apoptosis using double staining by in situ nick end labeling and immunohistochemistry against three proteins expressed at specific stages of granule neuron development. The amount of apoptosis of EGL neurons peaked on postnatal day 9. In the 9-day-old rat cerebellum, 54.0% of apoptotic EGL neurons expressed proliferating cell nuclear antigen. On the other hand, 22.2 and 15.4% of apoptotic EGL neurons existed in the postmitotic and premigratory zone defined by expression of TAG-1 and 440 kDa ankyrinB, respectively. Thus, proliferative granule neurons undergo apoptosis more frequently than postmitotic granule neurons in EGL of the developing cerebellum. This suggests that there are developmental stage-specific mechanisms of apoptosis of cerebellar granule neurons.
Collapse
Affiliation(s)
- M Tanaka
- Division of Cell Biology, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan.
| | | |
Collapse
|
1352
|
Abstract
BCL-2 family members and caspases are essential components of the death machinery in neurons. Identification of Apaf-1 as the mammalian homologue of Caenorhabditis elegans ced-4 provided the final proof of the complete conservation of the C. elegans programmed cell death pathway in mammals. When neurons are deprived of trophic factors, a sequence of events is initiated, which includes a reduction in macromolecule synthesis, elevation of c-Jun and cyclin D1, and activation of BAX. The final episode of this sequence is the activation of caspases, which may mark the death commitment point at which neurons cannot be rescued by addition of trophic factors. In addition, recent evidence suggests that the components in the developmental programmed cell death pathway may play a critical role in neurodegenerative disorders.
Collapse
Affiliation(s)
- L Bergeron
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
1353
|
Abstract
Heterogeneity among progenitor cells in the vertebrate nervous system has been documented with increasing frequency over the past few years. It has become clear that differences in progenitor cells help to determine when and how they respond to environmental signals. More recent studies have begun to elucidate the molecular basis of the differences in progenitor cell subpopulations that control their developmental potential and responsiveness to environmental signals.
Collapse
Affiliation(s)
- L Lillien
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA. lillien+@pitt.edu
| |
Collapse
|
1354
|
Martinez-Lorenzo MJ, Gamen S, Etxeberria J, Lasierra P, Larrad L, Piñeiro A, Anel A, Naval J, Alava MA. Resistance to apoptosis correlates with a highly proliferative phenotype and loss of Fas and CPP32 (caspase-3) expression in human leukemia cells. Int J Cancer 1998; 75:473-81. [PMID: 9455811 DOI: 10.1002/(sici)1097-0215(19980130)75:3<473::aid-ijc23>3.0.co;2-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Apoptosis induced by effector cells of the immune system or by cytotoxic drugs is a main mechanism mediating the prevention or elimination of tumoral cells. For instance, the human T-cell leukemia Jurkat is sensitive to Fas-induced apoptosis and to activation-induced cell death (AICD), and the promonocytic leukemia U937 is sensitive to Fas- and TNF-induced apoptosis. In this work, we have analyzed the mechanisms of resistance to physiological or pharmacological apoptosis in human leukemia by generating highly proliferative (hp) sub-lines derived from Jurkat and U937 cells. These hp sub-lines were resistant to Fas- and TNF-induced apoptosis, as well as to AICD. This was due to the complete loss of Fas and TNFR surface expression and, in the case of Jurkat-derived sub-lines, also of CD3, CD2 and CD59 molecules. The sub-lines also completely lacked the expression of the apoptotic protease CPP32, present in parental cells. Moreover, these sub-lines were no longer sensitive to doxorubicin-induced apoptosis, which was efficiently blocked by the general caspase inhibitor Z-VAD-fmk in the parental cell lines. These data suggest a molecular mechanism for the development of resistance of leukemic cells to physiological and pharmacological apoptosis inducers, giving rise to highly proliferative tumoral phenotypes. These results also indicate that Fas and CPP32 could be useful prognostic markers for the progression and/or therapy outcome of human leukemias.
Collapse
MESH Headings
- Antibiotics, Antineoplastic/pharmacology
- Apoptosis/drug effects
- Apoptosis/physiology
- Cell Division/physiology
- Cysteine Endopeptidases/biosynthesis
- Doxorubicin/pharmacology
- Drug Screening Assays, Antitumor
- Flow Cytometry
- Humans
- Jurkat Cells/enzymology
- Jurkat Cells/metabolism
- Jurkat Cells/pathology
- Leukemia, Promyelocytic, Acute/enzymology
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Phenotype
- Receptors, Tumor Necrosis Factor/biosynthesis
- Receptors, Tumor Necrosis Factor/metabolism
- Tumor Cells, Cultured
- fas Receptor/biosynthesis
- fas Receptor/metabolism
Collapse
Affiliation(s)
- M J Martinez-Lorenzo
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
1355
|
Abstract
There is increasing evidence that programmed cell death (PCD) depends on a novel family of intracellular cysteine proteases, called caspases, that includes the Ced-3 protease in the nematode Caenorhabditis elegans and the interleukin-1beta-converting enzyme (ICE)-like proteases in mammals. Some developing cells, including lens epithelial cells, erythroblasts, and keratinocytes, lose their nucleus and other organelles when they terminally differentiate, but it is not known whether the enzymatic machinery of PCD is involved in any of these normal differentiation events. We show here that at least one CPP32 (caspase-3)-like member of the caspase family becomes activated when rodent lens epithelial cells terminally differentiate into anucleate lens fibers in vivo, and that a peptide inhibitor of these proteases blocks the denucleation process in an in vitro model of lens fiber differentiation. These findings suggest that at least part of the machinery of PCD is involved in lens fiber differentiation.
Collapse
Affiliation(s)
- Y Ishizaki
- Department of Hygiene, Kobe University School of Medicine, Chuo-ku, Kobe 650, Japan
| | | | | |
Collapse
|
1356
|
Abstract
Caspases, a class of cysteine proteases, are an essential component of the apoptotic cell death program. During Drosophila oogenesis, nurse cells transfer their cytoplasmic contents to developing oocytes and then die. Loss of function for the dcp-1 gene, which encodes a caspase, caused female sterility by inhibiting this transfer. dcp-1- nurse cells were defective in the cytoskeletal reorganization and nuclear breakdown that normally accompany this process. The dcp-1- phenotype suggests that the cytoskeletal and nuclear events in the nurse cells make use of the machinery normally associated with apoptosis and that apoptosis of the nurse cells is a necessary event for oocyte development.
Collapse
Affiliation(s)
- K McCall
- Howard Hughes Medical Institute, Department of Biology, 31 Ames Street, 68-430, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
1357
|
Takadera T, Ohyashiki T. Apoptotic cell death and CPP32-like activation induced by thapsigargin and their prevention by nerve growth factor in PC12 cells. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1401:63-71. [PMID: 9459486 DOI: 10.1016/s0167-4889(97)00116-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thapsigargin, an endoplasmic reticular Ca2+-ATPase inhibitor, induced apoptotic cell death (chromatin condensation and DNA fragmentation) accompanied by the activation of CPP32-like protease, a member of the interleukin-1beta converting enzyme protease (ICE) family, but not the activation of ICE-like protease. Nerve growth factor (NGF) completely inhibited the cell death and CPP32-like activation induced by thapsigargin while Ac-Asp-Glu-Val-Asp-CHO, an inhibitor of CPP32-like protease, reduced the cell death. PD98059, a specific inhibitor of Map kinase kinase, did not reduce the protective effect of NGF on thapsigargin-induced cell death. These results suggest that calcium ion-induced apoptotic cell death was mediated by CPP32-like, but not ICE-like, protease and was regulated by a neurotrophic factor possibly, through the Map kinase cascade independent pathway.
Collapse
Affiliation(s)
- T Takadera
- Department of Clinical Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan.
| | | |
Collapse
|
1358
|
Bossy-Wetzel E, Newmeyer DD, Green DR. Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J 1998; 17:37-49. [PMID: 9427739 PMCID: PMC1170356 DOI: 10.1093/emboj/17.1.37] [Citation(s) in RCA: 953] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mitochondrial cytochrome c, which functions as an electron carrier in the respiratory chain, translocates to the cytosol in cells undergoing apoptosis, where it participates in the activation of DEVD-specific caspases. The apoptosis inhibitors Bcl-2 or Bcl-xL prevent the efflux of cytochrome c from mitochondria. The mechanism responsible for the release of cytochrome c from mitochondria during apoptosis is unknown. Here, we report that cytochrome c release from mitochondria is an early event in the apoptotic process induced by UVB irradiation or staurosporine treatment in CEM or HeLa cells, preceding or at the time of DEVD-specific caspase activation and substrate cleavage. A reduction in mitochondrial transmembrane potential (Deltapsim) occurred considerably later than cytochrome c translocation and caspase activation, and was not necessary for DNA fragmentation. Although zVAD-fmk substantially blocked caspase activity, a reduction in Deltapsim and cell death, it failed to prevent the passage of cytochrome c from mitochondria to the cytosol. Thus the translocation of cytochrome c from mitochondria to cytosol does not require a mitochondrial transmembrane depolarization.
Collapse
Affiliation(s)
- E Bossy-Wetzel
- Division of Cellular Immunology, La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, CA 92121 USA
| | | | | |
Collapse
|
1359
|
Affiliation(s)
- L Dorstyn
- Hanson Centre for Cancer Research, Institute of Medical and Veterinary Science, Adelaide, Australia
| | | | | |
Collapse
|
1360
|
Talanian RV, Allen HJ. Roles of Caspases in Inflammation and Apoptosis: Prospects as Drug Discovery Targets. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1998. [DOI: 10.1016/s0065-7743(08)61092-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
1361
|
Nava VE, Rosen A, Veliuona MA, Clem RJ, Levine B, Hardwick JM. Sindbis virus induces apoptosis through a caspase-dependent, CrmA-sensitive pathway. J Virol 1998; 72:452-9. [PMID: 9420245 PMCID: PMC109394 DOI: 10.1128/jvi.72.1.452-459.1998] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/1997] [Accepted: 10/16/1997] [Indexed: 02/05/2023] Open
Abstract
Sindbis virus infection of cultured cells and of neurons in mouse brains leads to programmed cell death exhibiting the classical characteristics of apoptosis. Although the mechanism by which Sindbis virus activates the cell suicide program is not known, we demonstrate here that Sindbis virus activates caspases, a family of death-inducing proteases, resulting in cleavage of several cellular substrates. To study the role of caspases in virus-induced apoptosis, we determined the effects of specific caspase inhibitors on Sindbis virus-induced cell death. CrmA (a serpin from cowpox virus) and zVAD-FMK (N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone) inhibited Sindbis virus-induced cell death, suggesting that cellular caspases facilitate apoptosis induced by Sindbis virus. Furthermore, CrmA significantly increased the rate of survival of infected mice. These inhibitors appear to protect cells by inhibiting the cellular death pathway rather than impairing virus replication or by inhibiting the nsP2 and capsid viral proteases. The specificity of CrmA indicates that the Sindbis virus-induced death pathway is similar to that induced by Fas or tumor necrosis factor alpha rather than being like the death pathway induced by DNA damage. Taken together, these data suggest a central role for caspases in Sindbis virus-induced apoptosis.
Collapse
Affiliation(s)
- V E Nava
- Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Public Health, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
1362
|
Abstract
In eukaryotes, the regulation of tissue cell numbers is a critical homeostatic objective that is achieved through tight control of apoptosis, mitosis and differentiation. While much is known about the genetic regulation of cell growth and differentiation, the molecular basis of apoptosis is less well understood. Genes involved in both cell proliferation and apoptosis reflect the role of some stimuli in both of these processes, the cell response depending on the overall cellular milieu. Recent research has given fascinating insights into the complex genetic and molecular mechanisms regulating apoptosis. A picture is emerging of the initiation in certain cells, after an apoptotic trigger, of sequential gene expression and specific signal transduction cascades that guide cells along the cell death pathway. Changes in gene expression precede the better known biochemical and morphological changes of apoptosis. It seems possible that, as a result of increased understanding of the cellular events preceding cell death, apoptosis may become more amenable to manipulation by appropriate drug- and gene-based therapies.
Collapse
Affiliation(s)
- K S Saini
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Woolloongabba, Brisbane, Queensland, Australia
| | | |
Collapse
|
1363
|
Ohgoh M, Kimura M, Ogura H, Katayama K, Nishizawa Y. Apoptotic cell death of cultured cerebral cortical neurons induced by withdrawal of astroglial trophic support. Exp Neurol 1998; 149:51-63. [PMID: 9454614 DOI: 10.1006/exnr.1997.6719] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Peripheral neurons which depend on NGF for their survival undergo apoptosis after NGF deprivation. However, a convenient in vitro method for assessing the programmed cell death of the central neurons has not been established, because the dependence of particular central neurons on neurotrophic factors has been clarified only for small populations of neurons. Based on the fact that cortical neurons survive in culture for many weeks in the presence of astroglial cells, we have established an in vitro cell death model in which the neurons die through apoptosis. Cortical neurons were maintained on a cover slip for 1 week on top of astroglial cells, and then cell death was induced by separation of the neurons from the astroglial cells. The cortical neurons died within 2-4 days. Nuclei of the dying neurons showed the morphological features of apoptosis, and DNA fragmentation was observed by the TUNEL method and by in situ nick translation (ISNT) staining. The cell death was significantly suppressed by neurotrophic factors, NT-3, NT-4, BDNF, and GDNF, but not by NGF. The neuronal survival was prolonged, as in the case of peripheral neurons, by bFGF, elevated potassium, cAMP, forskolin, and metabotropic glutamate receptor agonist. The cell death was inhibited by inhibitors of interleukin-1 beta-converting enzyme and CPP32. CPP32-like proteolytic activity was increased prior to the appearance of apoptotic cells. These results suggest that cortical neurons die after separation from glial cells through apoptosis caused by deprivation of neurotrophic factors produced by the astroglial cells.
Collapse
Affiliation(s)
- M Ohgoh
- Eisai Tsukuba Research Laboratories, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
1364
|
Morrison RS, Kinoshita Y, Xiang H, Johnson MD, Kuntz C, Ghatan S, Ho JT, Schwartzkroin PA. Mechanisms of neuronal cell death. ACTA ACUST UNITED AC 1998. [DOI: 10.1002/(sici)1098-2779(1998)4:3<157::aid-mrdd3>3.0.co;2-l] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
1365
|
Seshagiri S, Miller LK. Baculovirus inhibitors of apoptosis (IAPs) block activation of Sf-caspase-1. Proc Natl Acad Sci U S A 1997; 94:13606-11. [PMID: 9391073 PMCID: PMC28353 DOI: 10.1073/pnas.94.25.13606] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have investigated the ability of Sf-caspase-1 and two mammalian caspases, caspase-1 and caspase-3, to induce apoptosis in Spodoptera frugiperda Sf-21 insect cells. While the transient expression of the pro-Sf-caspase-1 did not induce apoptosis, expression of the pro-domain deleted form, p31, or coexpression of the two subunits of mature Sf-caspase-1, p19 and p12, induced apoptosis in Sf-21 cells. The behavior of Sf-caspase-1 resembled that of the closely related mammalian caspase, caspase-3, and contrasted with that of the mammalian caspase-1, the pro-form of which was active in inducing apoptosis in Sf-21 cells. The baculovirus caspase inhibitor P35 blocked apoptosis induced by active forms of all three caspases. In contrast, members of the baculovirus inhibitor of apoptosis (IAP) family failed to block active caspase-induced apoptosis. However, during viral infection, expression of OpIAP or CpIAP blocked the activation of pro-Sf-caspase-1 and the associated induction of apoptosis. Thus, the mechanism by which baculovirus IAPs inhibit apoptosis is distinct from the mechanism by which P35 blocks apoptosis and involves inhibition of the activation of pro-caspases like Sf-caspase-1.
Collapse
Affiliation(s)
- S Seshagiri
- Department of Entomology, The University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
1366
|
Kim YM, Talanian RV, Billiar TR. Nitric oxide inhibits apoptosis by preventing increases in caspase-3-like activity via two distinct mechanisms. J Biol Chem 1997; 272:31138-48. [PMID: 9388267 DOI: 10.1074/jbc.272.49.31138] [Citation(s) in RCA: 670] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nitric oxide (NO) has emerged as an important endogenous inhibitor of apoptosis, and here we report that NO prevents hepatocyte apoptosis initiated by the removal of growth factors or exposure to TNFalpha or anti-Fas antibody. We postulated that the mechanism of the inhibition of apoptosis by NO would include an effect on caspase-3-like protease activity. Caspase-3-like activity increased coincident with apoptosis due to all three stimuli, and treatment with the caspase-3-like protease inhibitor N-acetyl-Asp-Glu-Val-Asp-aldehyde inhibited both proteolytic activity and apoptosis. Endogenous or exogenous sources of NO prevented the increase in caspase-3-like activity in hepatocytes. Exposure of purified recombinant caspase-3 to an NO or NO+ donor inhibited proteolytic activity. Dithiothreitol (DTT), but not glutathione, reversed the inhibition of recombinant caspase-3 by NO. When lysates from cells stimulated to express inducible NO synthase or cells exposed to NO donors were incubated in DTT, caspase-3-like activity increased to about 55% of cells not exposed to a source of NO. Similarly, administration of an NO donor to rats treated with TNFalpha and D-galactosamine also prevented the increase in caspase-3-like activity as measured in liver homogenates. The effect of the NO donor was reversed by about 50% if the homogenate was incubated with DTT. TNFalpha-induced apoptosis and caspase-3-like activity were also reduced in cultured hepatocytes exposed to 8-bromo-cGMP, and both effects were inhibited by the cGMP-dependent kinase inhibitor KT5823. The suppression in caspase-3-like activity in hepatocytes exposed to an NO donor was partially blocked by an inhibitor of soluble guanylyl cyclase, 1H-[1,2,4]oxadiazolo[4,3, -a]quinoxalin-1-one, (ODQ), while the incubation of these lysates in DTT almost completely restored caspase-3-like activity to the level of TNFalpha-treated controls. These data indicate that NO prevents apoptosis in hepatocytes by either directly or indirectly inhibiting caspase-3-like activation via a cGMP-dependent mechanism and by direct inhibition of caspase-3-like activity through protein S-nitrosylation.
Collapse
Affiliation(s)
- Y M Kim
- Department of Surgery, College of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
1367
|
White JK, Auerbach W, Duyao MP, Vonsattel JP, Gusella JF, Joyner AL, MacDonald ME. Huntingtin is required for neurogenesis and is not impaired by the Huntington's disease CAG expansion. Nat Genet 1997; 17:404-10. [PMID: 9398841 DOI: 10.1038/ng1297-404] [Citation(s) in RCA: 352] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Huntington's disease (HD) is an autosomal-dominant neurodegenerative disorder caused by a CAG repeat expansion that lengthens a glutamine segment in the novel huntingtin protein. To elucidate the molecular basis of HD, we extended the polyglutamine tract of the mouse homologue, Hdh, by targetted introduction of an expanded human HD CAG repeat, creating mutant HdhneoQ50 and HdhQ50 alleles that express reduced and wild-type levels of altered huntingtin, respectively. Mice homozygous for reduced levels displayed characteristic aberrant brain development and perinatal lethality, indicating a critical function for Hdh in neurogenesis. However, mice with normal levels of mutant huntingtin did not display these abnormalities, indicating that the expanded CAG repeat does not eliminate or detectably impair huntingtin's neurogenic function. Thus, the HD defect in man does not mimic complete or partial Hdh inactivation and appears to cause neurodegenerative disease by a gain-of-function mechanism.
Collapse
Affiliation(s)
- J K White
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Charlestown 02129, USA
| | | | | | | | | | | | | |
Collapse
|
1368
|
Medema JP, Toes RE, Scaffidi C, Zheng TS, Flavell RA, Melief CJ, Peter ME, Offringa R, Krammer PH. Cleavage of FLICE (caspase-8) by granzyme B during cytotoxic T lymphocyte-induced apoptosis. Eur J Immunol 1997; 27:3492-8. [PMID: 9464839 DOI: 10.1002/eji.1830271250] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cytotoxic T lymphocytes induce apoptosis in target cells through the CD95(APO-1/Fas) and the perforin/granzyme B (GrB) pathway. The exact substrate of GrB in vivo is still unknown, but to induce apoptosis GrB requires the activity of caspases in target cells. We show here that in HeLa target cells induction of apoptosis through the perforin/GrB pathway resulted in minor direct cleavage of CPP32 (caspase-3) by GrB. Most caspase-3 cleavage resulted from activation of an upstream caspase. Moreover, target cells derived from caspase-3(-/-) mice displayed GrB-induced poly(ADP-ribose) polymerase (PARP) cleavage with only partially reduced efficiency compared to wild-type target cells. This indicates that other PARP-cleaving caspases can be activated during perforin/GrB-induced cell death. In contrast to caspase-3, FLICE (caspase-8) was directly cleaved by GrB in HeLa cells. We therefore conclude that FLICE not only plays a central role in CD95(APO-1/Fas)-induced apoptosis but can also be directly activated during perforin/GrB-induced apoptosis.
Collapse
Affiliation(s)
- J P Medema
- Tumorimmunology Program, German Cancer Research Center, Heidelberg
| | | | | | | | | | | | | | | | | |
Collapse
|
1369
|
Li F, Srinivasan A, Wang Y, Armstrong RC, Tomaselli KJ, Fritz LC. Cell-specific induction of apoptosis by microinjection of cytochrome c. Bcl-xL has activity independent of cytochrome c release. J Biol Chem 1997; 272:30299-305. [PMID: 9374516 DOI: 10.1074/jbc.272.48.30299] [Citation(s) in RCA: 287] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bcl-xL, an antiapoptotic member of the Bcl-2 family, inhibits programmed cell death in a broad variety of cell types. Recent reports have demonstrated that cytochrome c is released from mitochondria during apoptosis and have suggested that this release may be a critical step in the activation of proapoptotic caspases and subsequent cell death. Furthermore, it has been demonstrated that Bcl-2 can prevent the release of cytochrome c from mitochondria in cells triggered to undergo apoptosis. This has led to the hypothesis that the antiapoptotic effects of Bcl-2 family members are due specifically to their ability to prevent cytochrome c release thus preventing subsequent cytochrome c-dependent caspase activation. In the present report, we use microinjection techniques to investigate the relationship between cytochrome c release, induction of apoptosis, and Bcl-xL activity in intact cells. We demonstrate that microinjection of cytochrome c into the cytosol of human kidney 293 cells results in a dose-dependent induction of apoptosis. In contrast, MCF7 breast carcinoma cells (stably transfected to express the Fas antigen CD95, and denoted MCF7F) that lack detectable levels of caspase 3 (CPP32), are totally resistant to microinjection of cytochrome c. However, transfection of MCF7F cells with an expression plasmid coding for pro-caspase 3, but not other pro-caspases, restores cytochrome c sensitivity. Although MCF7F cells are insensitive to cytochrome c microinjection, they rapidly undergo apoptosis in a caspase-dependent manner in response to either tumor necrosis factor or anti-Fas plus cycloheximide, and these deaths are strongly inhibited by Bcl-xL expression. Furthermore, microinjection of cytochrome c does not overcome these antiapoptotic effects of Bcl-xL. Our results support the concept that the release of cytochrome c into the cytoplasm can promote the apoptotic process in cells expressing pro-caspase 3 but that cytochrome c release is not sufficient to induce death in all cells. Importantly, the ability of Bcl-xL to inhibit cell death in the cytochrome c-insensitive MCF7F cells cannot be due solely to inhibition of cytochrome c release from mitochondria.
Collapse
Affiliation(s)
- F Li
- IDUN Pharmaceuticals, Inc., La Jolla, California 92037, USA.
| | | | | | | | | | | |
Collapse
|
1370
|
Kumar A, Commane M, Flickinger TW, Horvath CM, Stark GR. Defective TNF-alpha-induced apoptosis in STAT1-null cells due to low constitutive levels of caspases. Science 1997; 278:1630-2. [PMID: 9374464 DOI: 10.1126/science.278.5343.1630] [Citation(s) in RCA: 412] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Signal transducers and activators of transcription (STATs) enhance transcription of specific genes in response to cytokines and growth factors. STAT1 is also required for efficient constitutive expression of the caspases Ice, Cpp32, and Ich-1 in human fibroblasts. As a consequence, STAT1-null cells are resistant to apoptosis by tumor necrosis factor alpha (TNF-alpha). Reintroduction of STAT1alpha restored both TNF-alpha-induced apoptosis and the expression of Ice, Cpp32, and Ich-1. Variant STAT1 proteins carrying point mutations that inactivate domains required for STAT dimer formation nevertheless restored protease expression and sensitivity to apoptosis, indicating that the functions of STAT1 required for these activities are different from those that mediate induced gene expression.
Collapse
Affiliation(s)
- A Kumar
- Department of Molecular Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
1371
|
Barkett M, Xue D, Horvitz HR, Gilmore TD. Phosphorylation of IkappaB-alpha inhibits its cleavage by caspase CPP32 in vitro. J Biol Chem 1997; 272:29419-22. [PMID: 9367996 DOI: 10.1074/jbc.272.47.29419] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
IkappaB proteins function as direct regulators of Rel/NF-kappaB transcription complexes. We show that the cell-death protease CPP32 (caspase-3) in vitro specifically cleaved chicken and human IkappaB-alpha at a conserved Asp-Ser sequence. This cleavage site appears to be identical to the site at which chicken IkappaB-alpha is cleaved in vivo in temperature-sensitive v-Rel-transformed chicken spleen cells undergoing apoptosis. Other caspases, namely interleukin-1beta-converting enzyme (caspase-1) and Ich-1 (caspase-2), did not cleave IkappaB-alpha. CPP32 also cleaved mammalian IkappaB-beta in vitro at the analogous Asp-Ser sequence. Cleavage of IkappaB-alpha by CPP32 was blocked by serine phosphorylation of IkappaB-alpha. Cleavage of IkappaB-alpha by a CPP32- like protease could generate a constitutive inhibitor of Rel transcription complexes. This report provides evidence for a direct biochemical interaction between the NF-kappaB signaling pathway and a cell-death protease signaling pathway.
Collapse
Affiliation(s)
- M Barkett
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
1372
|
Cryns VL, Byun Y, Rana A, Mellor H, Lustig KD, Ghanem L, Parker PJ, Kirschner MW, Yuan J. Specific proteolysis of the kinase protein kinase C-related kinase 2 by caspase-3 during apoptosis. Identification by a novel, small pool expression cloning strategy. J Biol Chem 1997; 272:29449-53. [PMID: 9368003 DOI: 10.1074/jbc.272.47.29449] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The caspase family of proteases plays a critical role in the execution of apoptosis. However, efforts to decipher the molecular mechanisms by which caspases induce cell death have been greatly hindered by the lack of systematic and broadly applicable strategies to identify their substrates. Here we describe a novel expression cloning strategy to rapidly isolate cDNAs encoding caspase substrates that are cleaved during apoptosis. Small cDNA pools (approximately 100 clones each) are transcribed/translated in vitro in the presence of [35S]methionine; these labeled protein pools are then incubated with cytosolic extracts from control and apoptotic cells. cDNA pools encoding proteins that are specifically cleaved by the apoptotic extract and whose cleavage is prevented by the caspase inhibitor acetyl-Tyr-Val-Ala-Asp chloromethylketone are subdivided and retested until a single cDNA is isolated. Using this approach, we isolated a partial cDNA encoding protein kinase C-related kinase 2 (PRK2), a serine-threonine kinase, and demonstrate that full-length human PRK2 is proteolyzed by caspase-3 at Asp117 and Asp700 in vitro. In addition, PRK2 is cleaved rapidly during Fas- and staurosporine-induced apoptosis in vivo by caspase-3 or a closely related caspase. Both of the major apoptotic cleavage sites of PRK2 in vivo lie within its regulatory domain, suggesting that its activity may be deregulated by proteolysis.
Collapse
Affiliation(s)
- V L Cryns
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1373
|
Li J, Billiar TR, Talanian RV, Kim YM. Nitric oxide reversibly inhibits seven members of the caspase family via S-nitrosylation. Biochem Biophys Res Commun 1997; 240:419-24. [PMID: 9388494 DOI: 10.1006/bbrc.1997.7672] [Citation(s) in RCA: 382] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The caspases are a family of at least 10 human cysteine proteases that participate in cytokine maturation and in apoptotic signal transduction and execution mechanisms. Peptidic inhibitors of these enzymes are capable of blocking cytokine maturation and apoptosis, demonstrating their crucial roles in these processes. We have recently discovered that nitric oxide (NO), produced either extracellularly by NO donors or intracellularly by the inducible nitric oxide synthase, prevented apoptosis in hepatocytes. Caspase-3-like activity was found to be inhibited under these conditions. To investigate further the interaction between NO and caspases, we utilized purified human recombinant caspases and examined the effect of NO on enzymatic activities of different caspases. We report here that of the seven caspases studied, all were reversibly inhibited by NO. Dithiothreitol was able to reverse the NO inhibition, indicating direct S-nitrosylation of caspase catalytic cysteine residue by NO. Our results support the concept that NO is an endogenous regulator of caspase activity.
Collapse
Affiliation(s)
- J Li
- Department of Surgery, School of Medicine, University of Pittsburgh, Pennsylvania 15261, USA.
| | | | | | | |
Collapse
|
1374
|
Miyashita T, Okamura-Oho Y, Mito Y, Nagafuchi S, Yamada M. Dentatorubral pallidoluysian atrophy (DRPLA) protein is cleaved by caspase-3 during apoptosis. J Biol Chem 1997; 272:29238-42. [PMID: 9361003 DOI: 10.1074/jbc.272.46.29238] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Dentatorubral pallidoluysian atrophy (DRPLA) is an autosomal dominant neurodegenerative disorder. It is associated with an abnormal CAG repeat expansion resulting in formation of a protein with an elongated polyglutamine stretch. However, neither the physiological roles of the DRPLA gene product nor molecular mechanisms of its pathogenesis have yet been elucidated. Here we report that the DRPLA protein is cleaved at a site near the N terminus during apoptosis induced by VP-16, staurosporine, or glucocorticoid. Moreover, the in vitro translated DRPLA protein is cleaved by recombinant caspase-3, a member of the cysteine protease family, which is thought to be a main executioner of apoptosis. Using mutant DRPLA proteins, the cleavage site was identified as 106DSLDG110. The cleavage, however, was not modulated by the length of the polyglutamine stretch. These findings suggest that the DRPLA protein is one of the physiological substrates of caspase-3, and its cleavage may result in structural and biochemical alterations associated with apoptosis.
Collapse
Affiliation(s)
- T Miyashita
- Department of Genetics, National Children's Medical Research Center, 3-35-31, Taishido, Setagaya, Tokyo 154, Japan
| | | | | | | | | |
Collapse
|
1375
|
Affiliation(s)
- G S Salvesen
- Burnham Institute, San Diego, California 92037, USA
| | | |
Collapse
|
1376
|
Vito P, Ghayur T, D'Adamio L. Generation of anti-apoptotic presenilin-2 polypeptides by alternative transcription, proteolysis, and caspase-3 cleavage. J Biol Chem 1997; 272:28315-20. [PMID: 9353287 DOI: 10.1074/jbc.272.45.28315] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
PS2, the chromosome 1 familial Alzheimer's disease gene, has been shown to be involved in programmed cell death by three complementary experimental approaches. Reduction of PS2 protein levels by antisense RNA protects from apoptosis, whereas overexpression of an Alzheimer's PS2 mutant increases cell death induced by several stimuli. In addition, ALG-3, a truncated PS2 cDNA, encodes an artificial COOH-terminal PS2 segment that dominantly inhibits apoptosis. Here we describe a physiological COOH-terminal PS2 polypeptide (PS2s, Met298-Ile448) generated by both an alternative PS2 transcript and proteolytic cleavage. We find that PS2s protects transfected cells from Fas- and tumor necrosis factor alpha (TNFalpha)-induced apoptosis. Furthermore, a similar anti-apoptotic COOH-terminal PS2 polypeptide (PS2Ccas) is generated by caspase-3 cleavage at Asp329. These results suggest that caspase-3 not only activates pro-apoptotic substrates but also generates a negative feedback signal in which PS2Ccas antagonizes the progression of cell death. Thus, whereas PS2 is required for apoptosis, PS2s and PS2Ccas oppose this process, and the balance between PS2 and these COOH-terminal fragments may dictate the cell fate.
Collapse
Affiliation(s)
- P Vito
- T Cell Molecular Biology Unit, Laboratory of Cellular and Molecular Immunology, NIAID, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
1377
|
Alam A, Braun MY, Hartgers F, Lesage S, Cohen L, Hugo P, Denis F, Sékaly RP. Specific activation of the cysteine protease CPP32 during the negative selection of T cells in the thymus. J Exp Med 1997; 186:1503-12. [PMID: 9348308 PMCID: PMC2199117 DOI: 10.1084/jem.186.9.1503] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cysteine proteases of the CED-3 and ICE family have been recently proposed as the ultimate executioners in several mammalian cell death pathways. Among them, the cysteine protease CPP32 has been shown to participate in programmed cell death (PCD), or apoptosis, affecting lymphoid cells in vitro. In the thymus, negative selection is a mechanism through which developing thymocytes expressing a TcR with high affinity for self peptide-MHC complexes are eliminated by PCD. In order to investigate the role of CPP32 in thymic apoptosis, isolated thymocytes were submitted to cell surface CD3 crosslinking by immobilized anti-CD3 mAb or to dexamethasone treatment. Although apoptosis occurred in the absence or after crosslinking with anti-CD3 mAb, specific activation of CPP32, as assessed by the extent of proteolytic cleavage of the p32 zymogen, was only detected in thymocytes cultured in the presence of the immobilized antibody or dexamethasone. This activation was a very early event during apoptosis as it occurred before the exposure of phosphatidyl serine to the upper side of the cell membrane. This was observed both in anti-CD3- and dexamethasone-induced apoptosis. Moreover, using mice transgenic for pigeon cytochrome C (PCC)-specific TcR, we were able to show that, after injection of PCC, the activation of CPP32 and cleavage of its substrate occurred in thymocytes obtained from mice expressing a permissive MHC haplotype for PCC presentation (H-2k). Moreover, PCC induced apoptosis was blocked by the caspase inhibitor zVAD. While spontaneous apoptosis was not accompanied by detectable levels of CPP32 processing, it was characterized by the proteolysis of poly(ADP-ribose) polymerase (PARP) and was blocked by the cysteine protease inhibitor, zVAD-CH2F. Taken together, these results support the concept that CPP32 is among the earliest effectors of the pathway leading to negative selection of autoreactive thymocytes. Our results also suggest the involvement of a distinct CPP32-like cysteine protease in spontaneous apoptosis of thymocytes.
Collapse
Affiliation(s)
- A Alam
- Laboratoire d'Immunologie, Institut de Recherches Cliniques de Montréal, Montréal H2W 1R7, Canada
| | | | | | | | | | | | | | | |
Collapse
|
1378
|
Brancolini C, Lazarevic D, Rodriguez J, Schneider C. Dismantling cell-cell contacts during apoptosis is coupled to a caspase-dependent proteolytic cleavage of beta-catenin. J Cell Biol 1997; 139:759-71. [PMID: 9348292 PMCID: PMC2141701 DOI: 10.1083/jcb.139.3.759] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cell death by apoptosis is a tightly regulated process that requires coordinated modification in cellular architecture. The caspase protease family has been shown to play a key role in apoptosis. Here we report that specific and ordered changes in the actin cytoskeleton take place during apoptosis. In this context, we have dissected one of the first hallmarks in cell death, represented by the severing of contacts among neighboring cells. More specifically, we provide demonstration for the mechanism that could contribute to the disassembly of cytoskeletal organization at cell-cell adhesion. In fact, beta-catenin, a known regulator of cell-cell adhesion, is proteolytically processed in different cell types after induction of apoptosis. Caspase-3 (cpp32/apopain/yama) cleaves in vitro translated beta-catenin into a form which is similar in size to that observed in cells undergoing apoptosis. beta-Catenin cleavage, during apoptosis in vivo and after caspase-3 treatment in vitro, removes the amino- and carboxy-terminal regions of the protein. The resulting beta-catenin product is unable to bind alpha-catenin that is responsible for actin filament binding and organization. This evidence indicates that connection with actin filaments organized at cell-cell contacts could be dismantled during apoptosis. Our observations suggest that caspases orchestrate the specific and sequential changes in the actin cytoskeleton occurring during cell death via cleavage of different regulators of the microfilament system.
Collapse
Affiliation(s)
- C Brancolini
- Laboratorio Nazionale Consorzio Interuniversitario Biotecnologie AREA Science Park, 34142 Trieste, Italy
| | | | | | | |
Collapse
|
1379
|
Zhou A, Paranjape J, Brown TL, Nie H, Naik S, Dong B, Chang A, Trapp B, Fairchild R, Colmenares C, Silverman RH. Interferon action and apoptosis are defective in mice devoid of 2',5'-oligoadenylate-dependent RNase L. EMBO J 1997; 16:6355-63. [PMID: 9351818 PMCID: PMC1170242 DOI: 10.1093/emboj/16.21.6355] [Citation(s) in RCA: 435] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
2',5'-Oligoadenylate-dependent RNase L functions in the interferon-inducible, RNA decay pathway known as the 2-5A system. To determine the physiological roles of the 2-5A system, mice were generated with a targeted disruption of the RNase L gene. The antiviral effect of interferon alpha was impaired in RNase L-/- mice providing the first evidence that the 2-5A system functions as an antiviral pathway in animals. In addition, remarkably enlarged thymuses in the RNase L-/- mice resulted from a suppression of apoptosis. There was a 2-fold decrease in apoptosis in vivo in the thymuses and spleens of RNase L-/- mice. Furthermore, apoptosis was substantially suppressed in RNase L-/- thymocytes and fibroblasts treated with different apoptotic agents. These results suggest that both interferon action and apoptosis can be controlled at the level of RNA stability by RNase L. Another implication is that the 2-5A system is likely to contribute to the antiviral activity of interferon by inducing apoptosis of infected cells.
Collapse
Affiliation(s)
- A Zhou
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, OH 44195, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1380
|
Scaffidi C, Medema JP, Krammer PH, Peter ME. FLICE is predominantly expressed as two functionally active isoforms, caspase-8/a and caspase-8/b. J Biol Chem 1997; 272:26953-8. [PMID: 9341131 DOI: 10.1074/jbc.272.43.26953] [Citation(s) in RCA: 331] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Induction of apoptosis by the cell surface receptor CD95 (APO-1/Fas) has been shown to involve activation of a family of cysteine proteases (caspases). Recently, a new member of this family has been identified, designated FLICE (caspase-8/MACH/Mch5). FLICE is part of the CD95 death-inducing signaling complex and is therefore the most upstream caspase in the CD95 apoptotic pathway. A total of eight different isoforms of FLICE (caspase-8/a-h) have been described. To determine which isoforms are expressed in different cells we have generated a panel of monoclonal antibodies directed against all functional domains of FLICE. Using these antibodies we could show that only two of the FLICE isoforms (caspase-8/a and caspase-8/b) were predominantly expressed in cells of different origin. Both isoforms were recruited to the CD95 death-inducing signaling complex and were activated upon CD95 stimulation with similar kinetics. Taken together, only two of the eight published caspase-8 isoforms could be detected in significant amounts at the protein level.
Collapse
Affiliation(s)
- C Scaffidi
- Tumor Immunology Program, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
1381
|
Strasser A, Huang DC, Vaux DL. The role of the bcl-2/ced-9 gene family in cancer and general implications of defects in cell death control for tumourigenesis and resistance to chemotherapy. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1333:F151-78. [PMID: 9395285 DOI: 10.1016/s0304-419x(97)00019-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cell production within an organ is determined by the rate of immigration, proliferation, differentiation, emigration and death of cells. Abnormalities in any one of these processes will disturb normal control of cell production, thereby eliciting hyperplasia can be an early event in neoplasia. Cell death, apoptosis, is a physiological process responsible for removing unwanted cells. It is used in multi-cellular organisms for tissue remodelling during embryogenesis, regulation of cell turnover and as a defence strategy against invading pathogens. In this review article we describe the role of the bcl-2/ced-9 gene family in cancer and discuss the general implications of defects in the apoptosis program for tumourigenesis and resistance of cancer cells to chemotherapy in light of current knowledge of the molecular mechanisms of cell death.
Collapse
Affiliation(s)
- A Strasser
- The Walter and Eliza Hall Institute of Medical Research, PO Royal Melbourne Hospital, Victoria, Australia.
| | | | | |
Collapse
|
1382
|
Gillardon F, Böttiger B, Schmitz B, Zimmermann M, Hossmann KA. Activation of CPP-32 protease in hippocampal neurons following ischemia and epilepsy. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 50:16-22. [PMID: 9406913 DOI: 10.1016/s0169-328x(97)00162-9] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recent in vitro studies indicate an involvement of members of the interleukin-1beta converting enzyme (ICE) family of proteases in programmed neuronal cell death. Cell death of hippocampal neurons in animal models of cerebral ischemia and epilepsy shows morphological features of apoptosis and can be prevented by administration of protein synthesis inhibitors suggesting that de novo synthesis of components of the cell death program is necessary for neuronal apoptosis. In the present study we demonstrate by in situ hybridization analysis that expression of CPP-32, an ICE-related protease, is significantly upregulated in CA1 hippocampal neurons following global ischemia induced by cardiac arrest and in hippocampal neurons of the CA3/CA4 region after kainate-mediated epilepsy, respectively. Moreover, an increase in CPP-32-like proteolytic activity was detected in hippocampal extracts 24 h after ischemia using the fluorogenic CPP-32 substrate Ac-DEVD-AMC. Activation of CPP-32 clearly preceded cell death of hippocampal neurons as assessed by in situ end-labelling of nuclear DNA fragments. These results indicate that CPP-32 protease may be activated at both the transcriptional and post-translational level during neuronal apoptosis and that activation correlates with the selective vulnerability of hippocampal pyramidal neurons to ischemic and epileptic insults.
Collapse
Affiliation(s)
- F Gillardon
- Max-Planck-Institut für neurologische Forschung, Abteilung für experimentelle Neurologie, Köln, Germany
| | | | | | | | | |
Collapse
|
1383
|
Du Y, Bales KR, Dodel RC, Hamilton-Byrd E, Horn JW, Czilli DL, Simmons LK, Ni B, Paul SM. Activation of a caspase 3-related cysteine protease is required for glutamate-mediated apoptosis of cultured cerebellar granule neurons. Proc Natl Acad Sci U S A 1997; 94:11657-62. [PMID: 9326666 PMCID: PMC23571 DOI: 10.1073/pnas.94.21.11657] [Citation(s) in RCA: 238] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Neurotoxicity induced by overstimulation of N-methyl-D-aspartate (NMDA) receptors is due, in part, to a sustained rise in intracellular Ca2+; however, little is known about the ensuing intracellular events that ultimately result in cell death. Here we show that overstimulation of NMDA receptors by relatively low concentrations of glutamate induces apoptosis of cultured cerebellar granule neurons (CGNs) and that CGNs do not require new RNA or protein synthesis. Glutamate-induced apoptosis of CGNs is, however, associated with a concentration- and time-dependent activation of the interleukin 1beta-converting enzyme (ICE)/CED-3-related protease, CPP32/Yama/apopain (now designated caspase 3). Further, the time course of caspase 3 activation after glutamate exposure of CGNs parallels the development of apoptosis. Moreover, glutamate-induced apoptosis of CGNs is almost completely blocked by the selective cell permeable tetrapeptide inhibitor of caspase 3, Ac-DEVD-CHO but not by the ICE (caspase 1) inhibitor, Ac-YVAD-CHO. Western blots of cytosolic extracts from glutamate-exposed CGNs reveal both cleavage of the caspase 3 substrate, poly(ADP-ribose) polymerase, as well as proteolytic processing of pro-caspase 3 to active subunits. Our data demonstrate that glutamate-induced apoptosis of CGNs is mediated by a posttranslational activation of the ICE/CED-3-related cysteine protease caspase 3.
Collapse
Affiliation(s)
- Y Du
- Neuroscience Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1384
|
Kothakota S, Azuma T, Reinhard C, Klippel A, Tang J, Chu K, McGarry TJ, Kirschner MW, Koths K, Kwiatkowski DJ, Williams LT. Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science 1997; 278:294-8. [PMID: 9323209 DOI: 10.1126/science.278.5336.294] [Citation(s) in RCA: 876] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The caspase-3 (CPP32, apopain, YAMA) family of cysteinyl proteases has been implicated as key mediators of apoptosis in mammalian cells. Gelsolin was identified as a substrate for caspase-3 by screening the translation products of small complementary DNA pools for sensitivity to cleavage by caspase-3. Gelsolin was cleaved in vivo in a caspase-dependent manner in cells stimulated by Fas. Caspase-cleaved gelsolin severed actin filaments in vitro in a Ca2+-independent manner. Expression of the gelsolin cleavage product in multiple cell types caused the cells to round up, detach from the plate, and undergo nuclear fragmentation. Neutrophils isolated from mice lacking gelsolin had delayed onset of both blebbing and DNA fragmentation, following apoptosis induction, compared with wild-type neutrophils. Thus, cleaved gelsolin may be one physiological effector of morphologic change during apoptosis.
Collapse
Affiliation(s)
- S Kothakota
- Chiron Corporation, Emeryville, CA 94608, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1385
|
Miller TM, Moulder KL, Knudson CM, Creedon DJ, Deshmukh M, Korsmeyer SJ, Johnson EM. Bax deletion further orders the cell death pathway in cerebellar granule cells and suggests a caspase-independent pathway to cell death. J Cell Biol 1997; 139:205-17. [PMID: 9314540 PMCID: PMC2139809 DOI: 10.1083/jcb.139.1.205] [Citation(s) in RCA: 320] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/1997] [Revised: 07/29/1997] [Indexed: 02/05/2023] Open
Abstract
Dissociated cerebellar granule cells maintained in medium containing 25 mM potassium undergo an apoptotic death when switched to medium with 5 mM potassium. Granule cells from mice in which Bax, a proapoptotic Bcl-2 family member, had been deleted, did not undergo apoptosis in 5 mM potassium, yet did undergo an excitotoxic cell death in response to stimulation with 30 or 100 microM NMDA. Within 2 h after switching to 5 mM K+, both wild-type and Bax-deficient granule cells decreased glucose uptake to <20% of control. Protein synthesis also decreased rapidly in both wild-type and Bax-deficient granule cells to 50% of control within 12 h after switching to 5 mM potassium. Both wild-type and Bax -/- neurons increased mRNA levels of c-jun, and caspase 3 (CPP32) and increased phosphorylation of the transactivation domain of c-Jun after K+ deprivation. Wild-type granule cells in 5 mM K+ increased cleavage of DEVD-aminomethylcoumarin (DEVD-AMC), a fluorogenic substrate for caspases 2, 3, and 7; in contrast, Bax-deficient granule cells did not cleave DEVD-AMC. These results place BAX downstream of metabolic changes, changes in mRNA levels, and increased phosphorylation of c-Jun, yet upstream of the activation of caspases and indicate that BAX is required for apoptotic, but not excitotoxic, cell death. In wild-type cells, Boc-Asp-FMK and ZVAD-FMK, general inhibitors of caspases, blocked cleavage of DEVD-AMC and blocked the increase in TdT-mediated dUTP nick end labeling (TUNEL) positivity. However, these inhibitors had only a marginal effect on preventing cell death, suggesting a caspase-independent death pathway downstream of BAX in cerebellar granule cells.
Collapse
Affiliation(s)
- T M Miller
- Department of Neurology, Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
1386
|
Abstract
Apoptosis research has accelerated with the discovery of genes within a common cell death pathway and evidence for their inter-relationship. Breakthroughs include insights into the mechanism of action of the Bcl-2 family, caspases and their targets, and death receptor complexes. Deregulation of apoptosis is evident in tumors and viral infection, as well as in autoimmune disease, immunodeficiency, neurodegeneration, and infertility.
Collapse
Affiliation(s)
- J L Rinkenberger
- Department of Anatomy, University of California, San Francisco 94143-0750, USA.
| | | |
Collapse
|
1387
|
Takadera T, Ohyashiki T. Apoptotic cell death and caspase 3 (CPP32) activation induced by calcium ionophore at low concentrations and their prevention by nerve growth factor in PC12 cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 249:8-12. [PMID: 9363747 DOI: 10.1111/j.1432-1033.1997.00008.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A23187 (a calcium ionophore) at low concentration (0.1 microM) induced apoptotic cell death (chromatin condensation and DNA fragmentation) accompanied by the activation of caspase-3 (CPP32), a member of the interleukin-1beta-converting enzyme protease. On the other hand, A23187 at high concentration (2 microM) induced necrotic cell death not accompanied by the activation of CPP32. Nerve growth factor inhibited the cell death and CPP32 activation induced by 0.1 microM A23187, but not the cell death induced by 2 microM A23187. Acylaspartyl-glutamyl-valyl-aspartyl-aldehyde, an inhibitor of CPP32, reduced the cell death induced by 0.1 microM A23187. These results suggest that calcium-ion-induced apoptotic cell death was mediated by CPP32 activation in PC12 cells.
Collapse
Affiliation(s)
- T Takadera
- Department of Clinical Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan
| | | |
Collapse
|
1388
|
Abstract
Five years ago, little was known about mechanisms of apoptotic execution. Now, one class of cell-death gene, the cysteine and aspartases (caspases) has come under intensive study. This review discusses the two classes of caspases, the reasons why humans may have so many caspase genes, the growing list of caspase substrates, and viral and pharmacological caspase inhibitors.
Collapse
Affiliation(s)
- P Villa
- Institute of Cell and Molecular Biology, University of Edinburgh, UK
| | | | | |
Collapse
|
1389
|
Sun J, Bottomley SP, Kumar S, Bird PI. Recombinant caspase-3 expressed in Pichia pastoris is fully activated and kinetically indistinguishable from the native enzyme. Biochem Biophys Res Commun 1997; 238:920-4. [PMID: 9325193 DOI: 10.1006/bbrc.1997.7370] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Intracellular cysteine proteinases (caspases) play key roles in inflammation and apoptosis. Recombinant caspases are typically produced in Escherichia coli expression systems with the attendant problems of solubilization, re-folding and activation of the protease. Here we describe the expression of hexahistidine-tagged caspase-3 (CPP32/Yama/Apopain) in the methylotropic yeast Pichia pastoris, and the purification of soluble enzyme from yeast lysates using cobalt affinity chromatography. The recombinant protease is fully activated, stable, and cleaves the synthetic substrate DEVD-AFC (Km 16.8 microM) but not YVAD-AFC. It mediates the cleavage of the apoptotic death substrate poly(ADP-ribose) polymerase in cell extracts, but does not cleave pro-interleukin-1beta. It is inhibited by the peptide DEVD-CHO (Ki 2.2 nM), far less efficiently by YVAD-CMK (Ki 0.3 microM), and not detectably by CrmA. By these criteria, recombinant caspase-3 is indistinguishable from native caspase-3 purified from apoptotic cell extracts. Activation of recombinant caspase-3 occurs in yeast in the absence of any intrinsic caspase activity, suggesting that caspase-3 can auto-activate. However, the purified enzyme was incapable of cleaving pro-caspase-3 indicating that autoactivation of caspase-3 in vivo is not likely to occur unless very high concentrations are achieved.
Collapse
Affiliation(s)
- J Sun
- Department of Medicine, Monash Medical School, Box Hill Hospital, Australia
| | | | | | | |
Collapse
|
1390
|
Abstract
Apoptosis, or physiological cell death, is the way in which unwanted cells are removed. The majority of cells formed during haemopoiesis are destined to die by apoptosis before they are fully differentiated, and homeostasis of cell number is maintained by a balance between mitosis and apoptosis. Many haematological malignancies are associated with changes in the number of cells undergoing apoptosis, which may be a direct or an indirect effect. Genetic mutations that prevent cell death cause cells to accumulate and can eventually lead to malignancy. Alternatively, oncogenic mutations that lead to increased cell production can indirectly cause a decrease in apoptosis in some populations and an increase in others. Chemotherapeutic drugs may kill cells directly, or indirectly by inducing apoptosis as a stress response. Therapeutic strategies are evolving to increase the propensity of malignant cells to die by either means and to mitigate side effects by reducing apoptosis in non-malignant cells.
Collapse
Affiliation(s)
- P G Ekert
- Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria, Australia
| | | |
Collapse
|
1391
|
|
1392
|
Abstract
Malformations of the human neocortex are commonly associated with developmental delays, mental retardation, and epilepsy. This study describes a novel neurologically mutant rat exhibiting a forebrain anomaly resembling the human neuronal migration disorder of double cortex. This mutant displays a telencephalic internal structural heterotopia (tish) that is inherited in an autosomal recessive manner. The bilateral heterotopia is prominent below the frontal and parietal neocortices but is rarely observed in temporal neocortex. Neurons in the heterotopia exhibit neocortical-like morphologies and send typical projections to subcortical sites; however, characteristic lamination and radial orientation are disturbed in the heterotopia. The period of neurogenesis during which cells in the heterotopia are generated is the same as in the normotopic neocortex; however, the cells in the heterotopia exhibit a "rim-to-core" neurogenetic pattern rather than the characteristic "inside-out" pattern observed in normotopic neocortex. Similar to the human syndrome of double cortex, some of the animals with the tish phenotype exhibit spontaneous recurrent electrographic and behavioral seizures. The tish rat is a unique neurological mutant that shares several features with a human cortical malformation associated with epilepsy. On the basis of its regional connectivity, histological composition, and period of neurogenesis, the heterotopic region in the tish rat is neocortical in nature. This neurological mutant represents a novel model system for investigating mechanisms of aberrant neocortical development and is likely to provide insights into the cellular and molecular events contributing to seizure development in dysplastic neocortex.
Collapse
|
1393
|
Abstract
The CED-3-related cysteine proteases (CRCPs) have been implicated as mediators of apoptosis, primarily in hematogenous cell systems, but their role in neuronal apoptosis remains unclear. The present study examined the role of two CRCP families-CPP32- and interleukin-1beta converting enzyme (ICE)-like cysteine proteases-in apoptosis of cerebellar granule cells (CGCs) caused by withdrawal of serum and/or potassium (K+). Serum deprivation potentiated apoptosis caused by K+ withdrawal, reducing cell viability by approximately one half of control values after 12 hr as measured by calcein fluorescence. Cell death after serum/K+ deprivation was significantly attenuated by the CPP32-like inhibitor z-DEVD-fmk; however, the ICE-like inhibitor z-YVAD-fmk had only slightly protective effects at the highest concentration used. Both inhibitors reduced CPP32-like activity directly in an in vitro fluorometric assay system, although z-DEVD-fmk showed much greater potency. K+ and serum/K+ deprivation each were accompanied by increased CPP32-like activity; however, ICE-like activity was absent after 12 hr of serum and/or K+ deprivation. CPP32 mRNA levels were unchanged after K+ deprivation but increased after serum and combined serum/K+ withdrawal as measured by reverse transcription-PCR (RT-PCR), with peak values at 4 hr reaching 210 +/- 37% and 269 +/- 42% of control levels, respectively. In contrast, ICE mRNA was undetectable by RT-PCR. These results are consistent with the hypothesis that CPP32-like proteases play an important role in apoptosis of CGCs caused by deprivation of K+ or serum/K+.
Collapse
|
1394
|
Lotem J, Sachs L. Cytokine suppression of protease activation in wild-type p53-dependent and p53-independent apoptosis. Proc Natl Acad Sci U S A 1997; 94:9349-53. [PMID: 9256485 PMCID: PMC23189 DOI: 10.1073/pnas.94.17.9349] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
M1 myeloid leukemic cells overexpressing wild-type p53 undergo apoptosis. This apoptosis can be suppressed by some cytokines, protease inhibitors, and antioxidants. We now show that induction of apoptosis by overexpressing wild-type p53 is associated with activation of interleukin-1beta-converting enzyme (ICE)-like proteases, resulting in cleavage of poly(ADP- ribose) polymerase and the proenzyme of the ICE-like protease Nedd-2. Activation of these proteases and apoptosis were suppressed by the cytokine interleukin 6 or by a combination of the cytokine interferon gamma and the antioxidant butylated hydroxyanisole, and activation of poly(ADP-ribose) polymerase and apoptosis were suppressed by some protease inhibitors. In a clone of M1 cells that did not express p53, vincristine or doxorubicin induced protease activation and apoptosis that were not suppressed by protease inhibitors, but were suppressed by interleukin 6. In another myeloid leukemia (7-M12) doxorubicin also induced protease activation and apoptosis that were not suppressed by protease inhibitors, but were suppressed by granulocyte-macrophage colony-stimulating factor. The results indicate that (i) overexpression of wild-type p53 by itself or treatment with cytotoxic compounds in wild-type p53-expressing or p53-nonexpressing myeloid leukemic cells is associated with activation of ICE-like proteases; (ii) cytokines exert apoptosis-suppressing functions upstream of protease activation; (iii) the cytotoxic compounds induce additional pathways in apoptosis; and (iv) cytokines can also suppress these other components of the apoptotic machinery.
Collapse
Affiliation(s)
- J Lotem
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
1395
|
Abstract
Apoptosis is a major form of cell death, characterized initially by a series of stereotypic morphological changes. In the nematode Caenorhabditis elegans, the gene ced-3 encodes a protein required for developmental cell death. Since the recognition that CED-3 has sequence identity with the mammalian cysteine protease interleukin-1 beta-converting enzyme (ICE), a family of at least 10 related cysteine proteases has been identified. These proteins are characterized by almost absolute specificity for aspartic acid in the P1 position. All the caspases (ICE-like proteases) contain a conserved QACXG (where X is R, Q or G) pentapeptide active-site motif. Capases are synthesized as inactive proenzymes comprising an N-terminal peptide (prodomain) together with one large and one small subunit. The crystal structures of both caspase-1 and caspase-3 show that the active enzyme is a heterotetramer, containing two small and two large subunits. Activation of caspases during apoptosis results in the cleavage of critical cellular substrates, including poly(ADP-ribose) polymerase and lamins, so precipitating the dramatic morphological changes of apoptosis. Apoptosis induced by CD95 (Fas/APO-1) and tumour necrosis factor activates caspase-8 (MACH/FLICE/Mch5), which contains an N-terminus with FADD (Fas-associating protein with death domain)-like death effector domains, so providing a direct link between cell death receptors and the caspases. The importance of caspase prodomains in the regulation of apoptosis is further highlighted by the recognition of adapter molecules, such as RAIDD [receptor-interacting protein (RIP)-associated ICH-1/CED-3-homologous protein with a death domain]/CRADD (caspase and RIP adapter with death domain), which binds to the prodomain of caspase-2 and recruits it to the signalling complex. Cells undergoing apoptosis following triggering of death receptors execute the death programme by activating a hierarchy of caspases, with caspase-8 and possibly caspase-10 being at or near the apex of this apoptotic cascade.
Collapse
Affiliation(s)
- G M Cohen
- MRC Toxicology Unit, University of Leicester, U.K
| |
Collapse
|
1396
|
Abstract
The flow of new information on gene expression related to apoptosis has been relentless in the last several years. This has also been the case with respect to gene expression after cerebral ischemia. Many of genes associated with an apoptotic mode of cell death have now been studied in the context of experimental cerebral ischemia from the immediate early genes through modulating genes such as bcl-2 to genes in the final execution phase such as interleukin-1β converting enzyme (ICE)-related proteases. It was impossible to adequately cite all primary reports on these subjects. However, many excellent reviews have appeared in the last year, which together, cover all these areas of interest. In this review, we have elected to cite only reports published since January 1996 and use an extensive collection of reviews (indicated in italics) to guide the reader to the earlier literature. Our intent is to provide the reader with a timely and useful analysis of the current state of the art. It is hoped that this approach does not cause offense with our colleagues whose contributions before 1996 laid the foundation for much of this work.
Collapse
Affiliation(s)
- J P MacManus
- Apoptosis Research Group, Institute for Biological Sciences, Ottawa, Ontario, Canada
| | | |
Collapse
|
1397
|
Lucius R, Sievers J. YVAD protect post-natal retinal ganglion cells against axotomy-induced but not free radical-induced axonal degeneration in vitro. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 48:181-4. [PMID: 9379844 DOI: 10.1016/s0169-328x(97)00170-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the developing central nervous system (CNS), the differentiation of neurons is accompanied by a large amount of cell loss in the form of programmed cell death (apoptosis). On the other hand, injury in the adult CNS often results in permanent neuronal degeneration leading to the failure of axonal regeneration. This could be related to an axotomy-induced activation of an apoptotic program. The interleukin-1beta-converting enzyme family of proteases has been implicated in playing a fundamental role in apoptotic processes in both invertebrates and vertebrates. In order to determine what role, if any, inhibitors of the interleukin-1beta-converting enzyme family might play in axonal regeneration after axotomy we employed an in vitro system using retinal explants from post-natal rats at the age between 9 and 12 days [R. Lucius, P. Young, S. Tidow and J. Sievers, Growth stimulation and chemotropic attraction of retinal ganglion cell axons in vitro by co-cultured optic nerves, astrocytes and astrocyte conditioned medium, Int. J. Dev. Neurosci., Vol. 14 (1996) 387-398]. The retinal ganglion cells in this model are comparable to adult animals in their regenerative response (D. Alcutt, M. Berry and J. Sievers, A qualitative comparison of the reaction of retinal ganglion cells to optic nerve crush in neonatal and adult mice, Dev. Brain Res., Vol. 16 (1984a) 231-240; D. Allcutt, M. Berry and J. Sievers, A quantitative comparison of the reaction of retinal ganglion cells to optic nerve crush in neonatal and adult mice, Dev. Brain Res., Vol. 16 (1984b) 219-230]. The addition of the synthetic peptide inhibitor YVAD (Ac-Tyr-Val-Ala-Asp-aldehyde), which reversible inhibits interleukin-1beta-converting enzyme and subsequent apoptosis, enhances the number and length of regenerating neurites of retinal ganglion cells. However, this manipulation was not able to overcome free radical-induced axonal degeneration/neuronal apoptosis, suggesting at least two different death pathways leading to neuronal degeneration/cell death. These results provide the first evidence that inhibitors of key enzymes of the apoptotic program could play a beneficial role to overcome neurite degeneration after axotomy in the adult mammalian CNS.
Collapse
Affiliation(s)
- R Lucius
- Anatomisches Institut der Universität Kiel, Germany
| | | |
Collapse
|
1398
|
Suzuki A. Amyloid beta-protein induces necrotic cell death mediated by ICE cascade in PC12 cells. Exp Cell Res 1997; 234:507-11. [PMID: 9260921 DOI: 10.1006/excr.1997.3639] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A major component of Alzheimer's disease plaque amyloid beta protein (betaAP) showed the cytolytic activity to rat pheochromocytoma PC 12 cells. Nuclear morphological study revealed that betaAP-induced cytolytic activity is due to necrotic cell death, rather than apoptotic cell death. To examine the molecular machinery of betaAP-induced necrotic cell death in detail, I investigated the direct involvement of caspase. When nerve growth factor-treated and -untreated PC12 cells were incubated with the synthesized tetrapeptide inhibitors of caspase, YVAD-CHO (Ac-Tyr-Val-Ala-Asp-CHO) or DEVD-CHO (Ac-Asp-Glu-Val-Asp-CHO), betaAP-induced necrotic cell death was prevented. In addition, the interleukin-1beta converting enzyme (ICE) subfamily activation preceded CPP32 subfamily activation during betaAP-induced necrotic cell death. On the basis of these findings, I suggest that betaAP induces necrotic cell death mediated by the ICE cascade and that the ICE cascade may possibly be involved in Alzheimer's disease.
Collapse
Affiliation(s)
- A Suzuki
- Drug Safety Research Lab., Daiichi Pharmaceutical Co., Ltd., Tokyo R&D Center, Edogawa-ku, Japan.
| |
Collapse
|
1399
|
Nasir J, Theilmann JL, Vaillancourt JP, Munday NA, Ali A, Scherer S, Beatty B, Nicholson DW, Hayden MR. Interleukin-1beta-converting enzyme (ICE) and related cell death genes ICErel-II and ICErel-III map to the same PAC clone at band 11q22.2-22.3. Mamm Genome 1997; 8:611-3. [PMID: 9250871 DOI: 10.1007/s003359900514] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- J Nasir
- Department of Medical Genetics and Centre for Molecular Medicine & Therapeutics (CMMT), University of British Columbia, 416-2125 East Mall, NCE Building, Vancouver B.C., V6T 1Z4, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
1400
|
Abstract
Caspases (cysteinyl aspartate-specific proteinases) mediate highly specific proteolytic cleavage events in dying cells, which collectively manifest the apoptotic phenotype. The key and central role that these enzymes play in a biochemical cell-suicide pathway has been conserved throughout the evolution of multicellular eukaryotes.
Collapse
Affiliation(s)
- D W Nicholson
- Department of Biochemistry and Molecular Biology, Merck Frosst Centre for Therapeutic Research, Merck Frosst Canada Inc., Pointe Claire-Dorval, Quebec, Canada
| | | |
Collapse
|