1351
|
Mitochondrial dependency in progression of acute myeloid leukemia. Mitochondrion 2015; 21:41-8. [PMID: 25640960 DOI: 10.1016/j.mito.2015.01.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/23/2014] [Accepted: 01/21/2015] [Indexed: 11/20/2022]
Abstract
Acute myeloid leukemia (AML) is a clonal hematopoietic malignant disorder which arises due to dysregulated differentiation, uncontrolled growth and inhibition of apoptosis leading to the accumulation of immature myeloid progenitor in the bone marrow. The heterogeneity of the disease at the molecular and cytogenetic level has led to the identification of several alteration of biological and clinical significance. One of the alterations which have gained attention in recent times is the altered energy and metabolic dependency of cancer originally proposed by Warburg. Mitochondria are important cell organelles regulating cellular energetic level, metabolism and apoptosis which in turn can affect cell proliferation and differentiation, the major manifestations of diseases like AML. In recent times the importance of mitochondrial generated ATP and mitochondrial localized metabolic pathways has been shown to play important role in the progression of AML. These studies have also demonstrated the clinical significance of mitochondrial targets for its effectiveness in combating relapsed or refractory AML. Here we review the importance of the mitochondrial dependency for the progression of AML and the emergence of the mitochondrial molecular targets which holds therapeutic importance.
Collapse
|
1352
|
Shang S, Yang SY, Liu ZM, Yang X. Oxidative damage in the kidney and brain of mice induced by different nano-materials. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s11515-015-1345-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
1353
|
Xu J, Eriksson SE, Cebula M, Sandalova T, Hedström E, Pader I, Cheng Q, Myers CR, Antholine WE, Nagy P, Hellman U, Selivanova G, Lindqvist Y, Arnér ESJ. The conserved Trp114 residue of thioredoxin reductase 1 has a redox sensor-like function triggering oligomerization and crosslinking upon oxidative stress related to cell death. Cell Death Dis 2015; 6:e1616. [PMID: 25611390 PMCID: PMC4669772 DOI: 10.1038/cddis.2014.574] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/19/2014] [Accepted: 12/03/2014] [Indexed: 12/19/2022]
Abstract
The selenoprotein thioredoxin reductase 1 (TrxR1) has several key roles in cellular redox systems and reductive pathways. Here we discovered that an evolutionarily conserved and surface-exposed tryptophan residue of the enzyme (Trp114) is excessively reactive to oxidation and exerts regulatory functions. The results indicate that it serves as an electron relay communicating with the FAD moiety of the enzyme, and, when oxidized, it facilitates oligomerization of TrxR1 into tetramers and higher multimers of dimers. A covalent link can also be formed between two oxidized Trp114 residues of two subunits from two separate TrxR1 dimers, as found both in cell extracts and in a crystal structure of tetrameric TrxR1. Formation of covalently linked TrxR1 subunits became exaggerated in cells on treatment with the pro-oxidant p53-reactivating anticancer compound RITA, in direct correlation with triggering of a cell death that could be prevented by antioxidant treatment. These results collectively suggest that Trp114 of TrxR1 serves a function reminiscent of an irreversible sensor for excessive oxidation, thereby presenting a previously unrecognized level of regulation of TrxR1 function in relation to cellular redox state and cell death induction.
Collapse
Affiliation(s)
- J Xu
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - S E Eriksson
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - M Cebula
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - T Sandalova
- Division of Molecular Structural Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - E Hedström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - I Pader
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Q Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - C R Myers
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - W E Antholine
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - P Nagy
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, Rath György ut 7-91, 1122, Budapest, Hungary
| | - U Hellman
- Ludwig Institutet for Cancer Research Ltd., Uppsala University BMC, SE-75 124 Uppsala, Sweden
| | - G Selivanova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Y Lindqvist
- Division of Molecular Structural Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - E S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| |
Collapse
|
1354
|
Abstract
Oxidative stress refers to elevated intracellular levels of reactive oxygen species (ROS) that cause damage to lipids, proteins and DNA. Oxidative stress has been linked to a myriad of pathologies. However, elevated ROS also act as signaling molecules in the maintenance of physiological functions--a process termed redox biology. In this review we discuss the two faces of ROS--redox biology and oxidative stress--and their contribution to both physiological and pathological conditions. Redox biology involves a small increase in ROS levels that activates signaling pathways to initiate biological processes, while oxidative stress denotes high levels of ROS that result in damage to DNA, protein or lipids. Thus, the response to ROS displays hormesis, given that the opposite effect is observed at low levels compared with that seen at high levels. Here, we argue that redox biology, rather than oxidative stress, underlies physiological and pathological conditions.
Collapse
Affiliation(s)
- Michael Schieber
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Navdeep S Chandel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
1355
|
Chang HY, Li MH, Huang TC, Hsu CL, Tsai SR, Lee SC, Huang HC, Juan HF. Quantitative proteomics reveals middle infrared radiation-interfered networks in breast cancer cells. J Proteome Res 2015; 14:1250-62. [PMID: 25556991 DOI: 10.1021/pr5011873] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Breast cancer is one of the leading cancer-related causes of death worldwide. Treatment of triple-negative breast cancer (TNBC) is complex and challenging, especially when metastasis has developed. In this study, we applied infrared radiation as an alternative approach for the treatment of TNBC. We used middle infrared (MIR) with a wavelength range of 3-5 μm to irradiate breast cancer cells. MIR significantly inhibited cell proliferation in several breast cancer cells but did not affect the growth of normal breast epithelial cells. We performed iTRAQ-coupled LC-MS/MS analysis to investigate the MIR-triggered molecular mechanisms in breast cancer cells. A total of 1749 proteins were identified, quantified, and subjected to functional enrichment analysis. From the constructed functionally enriched network, we confirmed that MIR caused G2/M cell cycle arrest, remodeled the microtubule network to an astral pole arrangement, altered the actin filament formation and focal adhesion molecule localization, and reduced cell migration activity and invasion ability. Our results reveal the coordinative effects of MIR-regulated physiological responses in concentrated networks, demonstrating the potential implementation of infrared radiation in breast cancer therapy.
Collapse
Affiliation(s)
- Hsin-Yi Chang
- Department of Life Science, National Taiwan University , Taipei 10617, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
1356
|
Bigarella CL, Liang R, Ghaffari S. Stem cells and the impact of ROS signaling. Development 2015; 141:4206-18. [PMID: 25371358 DOI: 10.1242/dev.107086] [Citation(s) in RCA: 454] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An appropriate balance between self-renewal and differentiation is crucial for stem cell function during both early development and tissue homeostasis throughout life. Recent evidence from both pluripotent embryonic and adult stem cell studies suggests that this balance is partly regulated by reactive oxygen species (ROS), which, in synchrony with metabolism, mediate the cellular redox state. In this Primer, we summarize what ROS are and how they are generated in the cell, as well as their downstream molecular targets. We then review recent findings that provide molecular insights into how ROS signaling can influence stem cell homeostasis and lineage commitment, and discuss the implications of this for reprogramming and stem cell ageing. We conclude that ROS signaling is an emerging key regulator of multiple stem cell populations.
Collapse
Affiliation(s)
- Carolina L Bigarella
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Raymond Liang
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA Developmental and Stem Cell Biology, Multidisciplinary Training Area, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Saghi Ghaffari
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA Developmental and Stem Cell Biology, Multidisciplinary Training Area, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA Department of Medicine, Division of Hematology and Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
1357
|
Palavra F, Díaz EC, Sena A. Cardiometabolic Risk, Inflammation, and Neurodegenerative Disorders. BIOMARKERS OF CARDIOMETABOLIC RISK, INFLAMMATION AND DISEASE 2015:133-159. [DOI: 10.1007/978-3-319-16018-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
1358
|
Peng T, Jia MM, Liu JH. RNAi-based functional elucidation of PtrPRP, a gene encoding a hybrid proline rich protein, in cold tolerance of Poncirus trifoliata. FRONTIERS IN PLANT SCIENCE 2015; 6:808. [PMID: 26483822 PMCID: PMC4587090 DOI: 10.3389/fpls.2015.00808] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/16/2015] [Indexed: 05/18/2023]
Abstract
Hybrid proline-rich proteins (HyPRPs) have been suggested to play important roles in various plant development and stress response. In this study, we report the cloning and functional analysis of PtrPRP, a HyPRP-encoding gene of Poncirus trifoliata. PtrPRP contains 176 amino acids, among which 21% are proline residues, and has an 8-cysteine motif (8 CM) domain at the C terminal, a signal peptide and a proline-rich region at the N terminal. PtrPRP is constitutively expressed in root, stem and leaf, with the highest expression levels in leaf. It was progressively induced by cold, but transiently upregulated by salt and ABA. Transgenic P. trifoliata plants with knock-down PtrPRP by RNA interference (RNAi) were generated to investigate the role of PtrPRP in cold tolerance. When challenged by low temperature, the PtrPRP-RNAi plants displayed more sensitive performance compared with wild type (WT), as shown by higher electrolyte leakage and malondialdehyde content. In addition, the RNAi lines accumulated more reactive oxygen species (ROS) and lower levels of proline relative to WT. These results suggested that PtrPRP might be positively involved in cold tolerance by maintaining membrane integrity and ROS homeostasis.
Collapse
Affiliation(s)
- Ting Peng
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, WuhanChina
- National Navel Orange Engineering Research Center, College of Navel Orange, Gannan Normal University, GanzhouChina
| | - Mao-Mao Jia
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, WuhanChina
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, WuhanChina
- *Correspondence: Ji-Hong Liu, Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China,
| |
Collapse
|
1359
|
Camões F, Islinger M, Guimarães SC, Kilaru S, Schuster M, Godinho LF, Steinberg G, Schrader M. New insights into the peroxisomal protein inventory: Acyl-CoA oxidases and -dehydrogenases are an ancient feature of peroxisomes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:111-25. [DOI: 10.1016/j.bbamcr.2014.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/29/2014] [Accepted: 10/01/2014] [Indexed: 12/22/2022]
|
1360
|
Sarewicz M, Osyczka A. Electronic connection between the quinone and cytochrome C redox pools and its role in regulation of mitochondrial electron transport and redox signaling. Physiol Rev 2015; 95:219-43. [PMID: 25540143 PMCID: PMC4281590 DOI: 10.1152/physrev.00006.2014] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial respiration, an important bioenergetic process, relies on operation of four membranous enzymatic complexes linked functionally by mobile, freely diffusible elements: quinone molecules in the membrane and water-soluble cytochromes c in the intermembrane space. One of the mitochondrial complexes, complex III (cytochrome bc1 or ubiquinol:cytochrome c oxidoreductase), provides an electronic connection between these two diffusible redox pools linking in a fully reversible manner two-electron quinone oxidation/reduction with one-electron cytochrome c reduction/oxidation. Several features of this homodimeric enzyme implicate that in addition to its well-defined function of contributing to generation of proton-motive force, cytochrome bc1 may be a physiologically important point of regulation of electron flow acting as a sensor of the redox state of mitochondria that actively responds to changes in bioenergetic conditions. These features include the following: the opposing redox reactions at quinone catalytic sites located on the opposite sides of the membrane, the inter-monomer electronic connection that functionally links four quinone binding sites of a dimer into an H-shaped electron transfer system, as well as the potential to generate superoxide and release it to the intermembrane space where it can be engaged in redox signaling pathways. Here we highlight recent advances in understanding how cytochrome bc1 may accomplish this regulatory physiological function, what is known and remains unknown about catalytic and side reactions within the quinone binding sites and electron transfers through the cofactor chains connecting those sites with the substrate redox pools. We also discuss the developed molecular mechanisms in the context of physiology of mitochondria.
Collapse
Affiliation(s)
- Marcin Sarewicz
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Artur Osyczka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
1361
|
Piazzi M, Blalock WL, Bavelloni A, Faenza I, Raffini M, Tagliavini F, Manzoli L, Cocco L. PI-PLCβ1b affects Akt activation, cyclin E expression, and caspase cleavage, promoting cell survival in pro-B-lymphoblastic cells exposed to oxidative stress. FASEB J 2014; 29:1383-94. [PMID: 25550457 DOI: 10.1096/fj.14-259051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 12/01/2014] [Indexed: 12/31/2022]
Abstract
The phosphoinositide-dependent signal transduction pathway has been implicated in the control of a variety of biologic processes, such as the regulation of cellular metabolism and homeostasis, cell proliferation and differentiation, and apoptosis. One of the key players in the regulation of inositol lipid signaling is the phospholipase Cβ1 (PI-PLCβ1), that hydrolyzes phosphatidylinositol 4,5-bisphosphate [PtIns(4,5)P2], giving rise to the second messengers inositol triphosphate and diacylglicerol. PI-PLCβ1 has been associated with the regulation of several cellular functions, some of which have not yet been fully understood. In particular, it has been reported that PI-PLCβ1 protects murine fibroblasts from oxidative stress-induced cell death. The mediators of oxidative stress, reactive oxygen species (ROS), have been shown to regulate major epigenetic processes, causing the silencing of tumor suppressors and enhancing the proliferation of leukemic cells under oxidative stress. Investigation of the interplay between ROS, PI-PLCβ1, and their signaling mediators in leukemia might therefore reveal innovative targets of pharmacological therapy in the treatment for leukemia. In this work, we demonstrate that in pro-B-lymphoblastic cells (Ba/F3), treated with H2O2, PI-PLCβ1b conferred resistance to cell death, promoting cell cycle progression and cell proliferation and influencing the expression of cyclin A and E. Interestingly, we found that, expression of PI-PLCβ1b affects the activity of caspase-3, caspase-7, and of several protein kinases induced by oxidative stress. In particular, PI-PLCβ1b expression completely abolished the phosphorylation of Erk1/2 MAP kinases, down-regulated phosphatase and tensin homolog (PTEN), and up-regulated the phosphorylation of Akt, thereby sustaining cellular proliferation.
Collapse
Affiliation(s)
- Manuela Piazzi
- *Cell Signaling Laboratory, Department of Biomedical Sciences, University of Bologna, Bologna, Italy; Struttura Complessa Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopedic Institute, Bologna, Italy; Institute of Molecular Genetics, National Research Council of Italy, Bologna, Italy; and RAMSES Laboratory, Rizzoli Orthopedic Institute, Bologna, Italy
| | - William L Blalock
- *Cell Signaling Laboratory, Department of Biomedical Sciences, University of Bologna, Bologna, Italy; Struttura Complessa Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopedic Institute, Bologna, Italy; Institute of Molecular Genetics, National Research Council of Italy, Bologna, Italy; and RAMSES Laboratory, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Alberto Bavelloni
- *Cell Signaling Laboratory, Department of Biomedical Sciences, University of Bologna, Bologna, Italy; Struttura Complessa Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopedic Institute, Bologna, Italy; Institute of Molecular Genetics, National Research Council of Italy, Bologna, Italy; and RAMSES Laboratory, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Irene Faenza
- *Cell Signaling Laboratory, Department of Biomedical Sciences, University of Bologna, Bologna, Italy; Struttura Complessa Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopedic Institute, Bologna, Italy; Institute of Molecular Genetics, National Research Council of Italy, Bologna, Italy; and RAMSES Laboratory, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Mirco Raffini
- *Cell Signaling Laboratory, Department of Biomedical Sciences, University of Bologna, Bologna, Italy; Struttura Complessa Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopedic Institute, Bologna, Italy; Institute of Molecular Genetics, National Research Council of Italy, Bologna, Italy; and RAMSES Laboratory, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Francesca Tagliavini
- *Cell Signaling Laboratory, Department of Biomedical Sciences, University of Bologna, Bologna, Italy; Struttura Complessa Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopedic Institute, Bologna, Italy; Institute of Molecular Genetics, National Research Council of Italy, Bologna, Italy; and RAMSES Laboratory, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Lucia Manzoli
- *Cell Signaling Laboratory, Department of Biomedical Sciences, University of Bologna, Bologna, Italy; Struttura Complessa Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopedic Institute, Bologna, Italy; Institute of Molecular Genetics, National Research Council of Italy, Bologna, Italy; and RAMSES Laboratory, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Lucio Cocco
- *Cell Signaling Laboratory, Department of Biomedical Sciences, University of Bologna, Bologna, Italy; Struttura Complessa Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopedic Institute, Bologna, Italy; Institute of Molecular Genetics, National Research Council of Italy, Bologna, Italy; and RAMSES Laboratory, Rizzoli Orthopedic Institute, Bologna, Italy
| |
Collapse
|
1362
|
D'Aprile A, Scrima R, Quarato G, Tataranni T, Falzetti F, Di Ianni M, Gemei M, Del Vecchio L, Piccoli C, Capitanio N. Hematopoietic stem/progenitor cells express myoglobin and neuroglobin: adaptation to hypoxia or prevention from oxidative stress? Stem Cells 2014; 32:1267-77. [PMID: 24446190 DOI: 10.1002/stem.1646] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 12/25/2013] [Indexed: 12/22/2022]
Abstract
Oxidative metabolism and redox signaling prove to play a decisional role in controlling adult hematopoietic stem/progenitor cells (HSPCs) biology. However, HSPCs reside in a hypoxic bone marrow microenvironment raising the question of how oxygen metabolism might be ensued. In this study, we provide for the first time novel functional and molecular evidences that human HSPCs express myoglobin (Mb) at level comparable with that of a muscle-derived cell line. Optical spectroscopy and oxymetry enabled to estimate an O2-sensitive heme-containing protein content of approximately 180 ng globin per 10(6) HSPC and a P50 of approximately 3 µM O2. Noticeably, expression of Mb mainly occurs through a HIF-1-induced alternative transcript (Mb-V/Mb-N = 35 ± 15, p < .01). A search for other Mb-related globins unveiled significant expression of neuroglobin (Ngb) but not of cytoglobin. Confocal microscopy immune detection of Mb in HSPCs strikingly revealed nuclear localization in cell subsets expressing high level of CD34 (nuclear/cytoplasmic Mb ratios 1.40 ± 0.02 vs. 0.85 ± 0.05, p < .01) whereas Ngb was homogeneously distributed in all the HSPC population. Dual-color fluorescence flow cytometry indicated that while the Mb content was homogeneously distributed in all the HSPC subsets that of Ngb was twofold higher in more immature HSPC. Moreover, we show that HSPCs exhibit a hypoxic nitrite reductase activity releasing NO consistent with described noncanonical functions of globins. Our finding extends the notion that Mb and Ngb can be expressed in nonmuscle and non-neural contexts, respectively, and is suggestive of a differential role of Mb in HSPC in controlling oxidative metabolism at different stages of commitment.
Collapse
Affiliation(s)
- Annamaria D'Aprile
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1363
|
Zhao Y, Morgan MA, Sun Y. Targeting Neddylation pathways to inactivate cullin-RING ligases for anticancer therapy. Antioxid Redox Signal 2014; 21:2383-400. [PMID: 24410571 PMCID: PMC4241876 DOI: 10.1089/ars.2013.5795] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/12/2014] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Protein neddylation is catalyzed by an E1 NEDD8-activating enzyme (NAE), an E2 NEDD8-conjugating enzyme, and an E3 NEDD8 ligase. Known physiological substrates of neddylation are cullin family members. Cullin neddylation leads to activation of cullin-RING ligases (CRLs), the largest family of E3 ubiquitin ligases responsible for ubiquitylation and degradation of many key signaling/regulatory proteins. Thus, through modulating CRLs, neddylation regulates many biological processes, including cell cycle progression, signal transduction, and tumorigenesis. Given that NEDD8 is overexpressed and CRLs are abnormally activated in many human cancers, targeting protein neddylation, in general, and cullin neddylation, in particular, appears to be an attractive anticancer approach. RECENT ADVANCES MLN4924, a small molecule inhibitor of NAE, was discovered that inactivates CRLs and causes accumulation of CRL substrates to suppress tumor cell growth both in vitro and in vivo. Promising preclinical results advanced MLN4924 to several clinical trials for anticancer therapy. CRITICAL ISSUES In preclinical settings, MLN4924 effectively suppresses tumor cell growth by inducing apoptosis, senescence, and autophagy, and causes sensitization to chemoradiation therapies in a cellular context-dependent manner. Signal molecules that determine the cell fate upon MLN4924 treatment, however, remain elusive. Cancer cells develop MLN4924 resistance by selecting target mutations. FUTURE DIRECTIONS In the clinical side, several Phase 1b trials are under way to determine the safety and efficacy of MLN4924, acting alone or in combination with conventional chemotherapy, against human solid tumors. In the preclinical side, the efforts are being made to develop additional neddylation inhibitors by targeting NEDD8 E2s and E3s.
Collapse
Affiliation(s)
- Yongchao Zhao
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan , Ann Arbor, Michigan
| | | | | |
Collapse
|
1364
|
Abstract
In the past several years, it has been demonstrated that the reactive oxygen species (ROS) may act as intracellular signalling molecules to activate or inhibit specific signalling pathways and regulate physiological cellular functions. It is now well-established that ROS regulate autophagy, an intracellular degradation process. However, the signalling mechanisms through which ROS modulate autophagy in a regulated manner have only been minimally clarified. NADPH oxidase (Nox) enzymes are membrane-bound enzymatic complexes responsible for the dedicated generation of ROS. Different isoforms of Nox exist with different functions. Recent studies demonstrated that Nox-derived ROS can promote autophagy, with Nox2 and Nox4 representing the isoforms of Nox implicated thus far. Nox2- and Nox4-dependent autophagy plays an important role in the elimination of pathogens by phagocytes and in the regulation of vascular- and cancer-cell survival. Interestingly, we recently found that Nox is also important for autophagy regulation in cardiomyocytes. We found that Nox4, but not Nox2, promotes the activation of autophagy and survival in cardiomyocytes in response to nutrient deprivation and ischaemia through activation of the PERK (protein kinase RNA-like endoplasmic reticulum kinase) signalling pathway. In the present paper, we discuss the importance of Nox family proteins and ROS in the regulation of autophagy, with a particular focus on the role of Nox4 in the regulation of autophagy in the heart.
Collapse
|
1365
|
Ried K, Fakler P. Potential of garlic (Allium sativum) in lowering high blood pressure: mechanisms of action and clinical relevance. Integr Blood Press Control 2014; 7:71-82. [PMID: 25525386 PMCID: PMC4266250 DOI: 10.2147/ibpc.s51434] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Garlic supplements have shown promise in the treatment of uncontrolled hypertension, lowering blood pressure (BP) by about 10 mmHg systolic and 8 mmHg diastolic, similar to standard BP medication. Aged garlic extract, which contains S-allylcysteine as the bioactive sulfur compound, in particular is standardizable and highly tolerable, with little or no known harmful interaction when taken with other BP-reducing or blood-thinning medication. Here we describe biologically plausible mechanisms of garlic's BP-lowering effect. Garlic-derived polysulfides stimulate the production of the vascular gasotransmitter hydrogen sulfide (H2S) and enhance the regulation of endothelial nitric oxide (NO), which induce smooth muscle cell relaxation, vasodilation, and BP reduction. Several dietary and genetic factors influence the efficiency of the H2S and NO signaling pathways and may contribute to the development of hypertension. Sulfur deficiency might play a part in the etiology of hypertension, and could be alleviated with supplementation of organosulfur compounds derived from garlic.
Collapse
Affiliation(s)
- Karin Ried
- National Institute of Integrative Medicine, Melbourne, VIC, Australia
| | - Peter Fakler
- National Institute of Integrative Medicine, Melbourne, VIC, Australia
| |
Collapse
|
1366
|
Lee SH, Kyung H, Yokota R, Goto T, Oe T. Hydroxyl Radical-Mediated Novel Modification of Peptides: N-Terminal Cyclization through the Formation of α-Ketoamide. Chem Res Toxicol 2014; 28:59-70. [DOI: 10.1021/tx500332y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Seon Hwa Lee
- Department of Bio-analytical
Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Hyunsook Kyung
- Department of Bio-analytical
Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Ryo Yokota
- Department of Bio-analytical
Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Takaaki Goto
- Department of Bio-analytical
Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Tomoyuki Oe
- Department of Bio-analytical
Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
1367
|
Yi YW, Oh S. Comparative analysis of NRF2-responsive gene expression in AcPC-1 pancreatic cancer cell line. Genes Genomics 2014; 37:97-109. [PMID: 25540678 PMCID: PMC4269820 DOI: 10.1007/s13258-014-0253-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 11/27/2014] [Indexed: 02/08/2023]
Abstract
NRF2 is a nuclear transcription factor activated in response to oxidative stress and related with metabolizing of xenotoxic materials and ABC transporter mediated drug resistance. We studied the expression of mRNAs under the siRNA-mediated knockdown of NRF2 and tBHQ-treated condition in AsPC-1 metastatic pancreatic cancer cell line to understand the AsPC-1 specific role(s) of NRF2 and further to investigate the relationship between drug resistance and metastatic plasticity and mobility of AsPc1. Here we show that the genes of aldo–keto reductases, cytochrome P450 family, aldehyde dehydrogenase, thioredoxin reductase, ABC transporter and epoxide hydrolase responsible for drug metabolism or oxidative stress concisely responded to NRF2 stabilization and knockdown of NRF2. In addition the expression of PIR, a candidate of oncogene and KISS1, a suppressor of metastasis were affected by NRF2 stabilization and knockdown. Our result provide comprehensive understanding of NRF2 target genes of drug response, oxidative stress response and metastasis in AsPc-1 metastatic pancreatic cancer cell line.
Collapse
Affiliation(s)
- Yong Weon Yi
- Department of Nanobiomedical Science, Graduate School, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam 330-714 Republic of Korea
| | - Seunghoon Oh
- Department of Physiology, College of Medicine, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam 330-714 Republic of Korea
| |
Collapse
|
1368
|
Eren OO, Ozturk MA, Sonmez OU, Oyan B. Should we be more cautious about replacement of vitamin B12 in patients with cancer receiving cytotoxic chemotherapy? Med Hypotheses 2014; 83:726-9. [PMID: 25459143 DOI: 10.1016/j.mehy.2014.09.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 09/08/2014] [Accepted: 09/25/2014] [Indexed: 12/01/2022]
Abstract
Vitamin B12 (Cbl) deficiency may cause hematologic and neurologic dysfunction. Replacement therapy is effective in correcting hematologic abnormalities and improving neurologic symptoms. Cbl is known to have antioxidant activity. This antioxidant activity may antagonize the effects of chemotherapeutics (i.e. genotoxic effects of paclitaxel) on tumor DNA. We claim that Cbl replacement should be done more cautiously in patients receiving cytotoxic chemotherapy.
Collapse
Affiliation(s)
- Orhan Onder Eren
- Department of Medical Oncology, Yeditepe University Hospital, Istanbul, Turkey.
| | - Mehmet Akif Ozturk
- Department of Internal Medicine, Yeditepe University Hospital, Istanbul, Turkey
| | - Ozlem Uysal Sonmez
- Department of Medical Oncology, Yeditepe University Hospital, Istanbul, Turkey
| | - Basak Oyan
- Department of Medical Oncology, Yeditepe University Hospital, Istanbul, Turkey
| |
Collapse
|
1369
|
Sobotta MC, Liou W, Stöcker S, Talwar D, Oehler M, Ruppert T, Scharf AND, Dick TP. Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling. Nat Chem Biol 2014; 11:64-70. [PMID: 25402766 DOI: 10.1038/nchembio.1695] [Citation(s) in RCA: 465] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 10/01/2014] [Indexed: 01/10/2023]
Abstract
Hydrogen peroxide (H(2)O(2)) acts as a signaling messenger by oxidatively modifying distinct cysteinyl thiols in distinct target proteins. However, it remains unclear how redox-regulated proteins, which often have low intrinsic reactivity towards H(2)O(2) (k(app) ∼1-10 M(-1) s(-1)), can be specifically and efficiently oxidized by H(2)O(2). Moreover, cellular thiol peroxidases, which are highly abundant and efficient H(2)O(2) scavengers, should effectively eliminate virtually all of the H(2)O(2) produced in the cell. Here, we show that the thiol peroxidase peroxiredoxin-2 (Prx2), one of the most H(2)O(2)-reactive proteins in the cell (k(app) ∼10(7)-10(8) M(-1) s(-1)), acts as a H(2)O(2) signal receptor and transmitter in transcription factor redox regulation. Prx2 forms a redox relay with the transcription factor STAT3 in which oxidative equivalents flow from Prx2 to STAT3. The redox relay generates disulfide-linked STAT3 oligomers with attenuated transcriptional activity. Cytokine-induced STAT3 signaling is accompanied by Prx2 and STAT3 oxidation and is modulated by Prx2 expression levels.
Collapse
Affiliation(s)
- Mirko C Sobotta
- Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Willy Liou
- Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Sarah Stöcker
- Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Deepti Talwar
- Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Michael Oehler
- Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Thomas Ruppert
- Core facility for Mass Spectrometry and Proteomics, Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Annette N D Scharf
- Core facility for Mass Spectrometry and Proteomics, Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Tobias P Dick
- Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
1370
|
KITAGAWA TAKEHIRO, YAMAMOTO JUNKOH, TANAKA TOHRU, NAKANO YOSHITERU, AKIBA DAISUKE, UETA KUNIHIRO, NISHIZAWA SHIGERU. 5-Aminolevulinic acid strongly enhances delayed intracellular production of reactive oxygen species (ROS) generated by ionizing irradiation: Quantitative analyses and visualization of intracellular ROS production in glioma cells in vitro. Oncol Rep 2014; 33:583-90. [DOI: 10.3892/or.2014.3618] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/17/2014] [Indexed: 11/06/2022] Open
|
1371
|
Vernekar AA, Sinha D, Srivastava S, Paramasivam PU, D’Silva P, Mugesh G. An antioxidant nanozyme that uncovers the cytoprotective potential of vanadia nanowires. Nat Commun 2014; 5:5301. [DOI: 10.1038/ncomms6301] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 09/18/2014] [Indexed: 12/13/2022] Open
|
1372
|
Cell death induced by ozone and various non-thermal plasmas: therapeutic perspectives and limitations. Sci Rep 2014; 4:7129. [PMID: 25410636 PMCID: PMC4238021 DOI: 10.1038/srep07129] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/03/2014] [Indexed: 12/27/2022] Open
Abstract
Non-thermal plasma has been recognized as a promising tool across a vast variety of biomedical applications, with the potential to create novel therapeutic methods. However, the understanding of the molecular mechanisms behind non-thermal plasma cellular effects remains a significant challenge. In this study, we show how two types of different non-thermal plasmas induce cell death in mammalian cell cultures via the formation of multiple intracellular reactive oxygen/nitrogen species. Our results showed a discrepancy in the superoxide accumulation and lysosomal activity in response to air and helium plasma, suggesting that triggered signalling cascades might be grossly different between different plasmas. In addition, the effects of ozone, a considerable component of non-thermal plasma, have been simultaneously evaluated and have revealed much faster and higher cytotoxic effects. Our findings offer novel insight into plasma-induced cellular responses, and provide a basis for better controlled biomedical applications.
Collapse
|
1373
|
Peroxiredoxin 3 levels regulate a mitochondrial redox setpoint in malignant mesothelioma cells. Redox Biol 2014; 3:79-87. [PMID: 25462069 PMCID: PMC4297934 DOI: 10.1016/j.redox.2014.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/05/2014] [Accepted: 11/07/2014] [Indexed: 12/31/2022] Open
Abstract
Peroxiredoxin 3 (PRX3), a typical 2-Cys peroxiredoxin located exclusively in the mitochondrial matrix, is the principal peroxidase responsible for metabolizing mitochondrial hydrogen peroxide, a byproduct of cellular respiration originating from the mitochondrial electron transport chain. Mitochondrial oxidants are produced in excess in cancer cells due to oncogenic transformation and metabolic reorganization, and signals through FOXM1 and other redox-responsive factors to support a hyper-proliferative state. Over-expression of PRX3 in cancer cells has been shown to counteract oncogene-induced senescence and support tumor cell growth and survival making PRX3 a credible therapeutic target. Using malignant mesothelioma (MM) cells stably expressing shRNAs to PRX3 we show that decreased expression of PRX3 alters mitochondrial structure, function and cell cycle kinetics. As compared to control cells, knockdown of PRX3 expression increased mitochondrial membrane potential, basal ATP production, oxygen consumption and extracellular acidification rates. shPRX3 MM cells failed to progress through the cell cycle compared to wild type controls, with increased numbers of cells in G2/M phase. Diminished PRX3 expression also induced mitochondrial hyperfusion similar to the DRP1 inhibitor mdivi-1. Cell cycle progression and changes in mitochondrial networking were rescued by transient expression of either catalase or mitochondrial-targeted catalase, indicating high levels of hydrogen peroxide contribute to perturbations in mitochondrial structure and function in shPRX3 MM cells. Our results indicate that PRX3 levels establish a redox set point that permits MM cells to thrive in response to increased levels of mROS, and that perturbing the redox status governed by PRX3 impairs proliferation by altering cell cycle-dependent dynamics between mitochondrial networking and energy metabolism. Knockdown of PRX3 in malignant mesothelioma cells increases mitochondrial oxidants. Knockdown of PRX3 induces mitochondrial fusion and an increase in G2/M cells. Overexpression of catalase or mito-catalase rescues G2/M cell cycle block and mitochondrial defects.
Collapse
|
1374
|
Mailloux RJ, Willmore WG. S-glutathionylation reactions in mitochondrial function and disease. Front Cell Dev Biol 2014; 2:68. [PMID: 25453035 PMCID: PMC4233936 DOI: 10.3389/fcell.2014.00068] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/31/2014] [Indexed: 01/23/2023] Open
Abstract
Mitochondria are highly efficient energy-transforming organelles that convert energy stored in nutrients into ATP. The production of ATP by mitochondria is dependent on oxidation of nutrients and coupling of exergonic electron transfer reactions to the genesis of transmembrane electrochemical potential of protons. Electrons can also prematurely “spin-off” from prosthetic groups in Krebs cycle enzymes and respiratory complexes and univalently reduce di-oxygen to generate reactive oxygen species (ROS) superoxide (O2•−) and hydrogen peroxide (H2O2), important signaling molecules that can be toxic at high concentrations. Production of ATP and ROS are intimately linked by the respiratory chain and the genesis of one or the other inherently depends on the metabolic state of mitochondria. Various control mechanisms converge on mitochondria to adjust ATP and ROS output in response to changing cellular demands. One control mechanism that has gained a high amount of attention recently is S-glutathionylation, a redox sensitive covalent modification that involves formation of a disulfide bridge between glutathione and an available protein cysteine thiol. A number of S-glutathionylation targets have been identified in mitochondria. It has also been established that S-glutathionylation reactions in mitochondria are mediated by the thiol oxidoreductase glutaredoxin-2 (Grx2). In the following review, emerging knowledge on S-glutathionylation reactions and its importance in modulating mitochondrial ATP and ROS production will be discussed. Major focus will be placed on Complex I of the respiratory chain since (1) it is a target for reversible S-glutathionylation by Grx2 and (2) deregulation of Complex I S-glutathionylation is associated with development of various disease states particularly heart disease. Other mitochondrial enzymes and how their S-glutathionylation profile is affected in different disease states will also be discussed.
Collapse
Affiliation(s)
- Ryan J Mailloux
- Department of Biology, Faculty of Sciences, University of Ottawa Ottawa, ON, Canada
| | | |
Collapse
|
1375
|
Menon R. Oxidative stress damage as a detrimental factor in preterm birth pathology. Front Immunol 2014; 5:567. [PMID: 25429290 PMCID: PMC4228920 DOI: 10.3389/fimmu.2014.00567] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/23/2014] [Indexed: 11/13/2022] Open
Abstract
Normal term and spontaneous preterm births (PTB) are documented to be associated with oxidative stress (OS), and imbalances in the redox system (balance between pro- and antioxidant) have been reported in the maternal-fetal intrauterine compartments. The exact mechanism of labor initiation either at term or preterm by OS is still unclear, and this lack of understanding can partially be blamed for failure of antioxidant supplementation trials in PTB prevention. Based on recent findings from our laboratory, we postulate heterogeneity in host OS response. The physiologic (at term) and pathophysiologic (preterm) pathways of labor are not mediated by OS alone but by OS-induced damage to intrauterine tissues, especially fetal membranes of the placenta. OS damage affects all major cellular elements in the fetal cells, and this damage promotes fetal cell senescence (aging). The aging of the fetal cells is predominated by p38 mitogen activated kinase (p38MAPK) pathways. Senescing cells generate biomolecular signals that are uterotonic, triggering labor process. The aging of fetal cells is normal at term. However, aging is premature in PTB, especially in those PTBs complicated by preterm premature rupture of the membranes, where elements of redox imbalances and OS damage are more dominant. We postulate that fetal cell senescence signals generated by OS damage are likely triggers for labor. This review highlights the mechanisms involved in senescence development at term and preterm by OS damage and provides insight into novel fetal signals of labor initiation pathways.
Collapse
Affiliation(s)
- Ramkumar Menon
- Department of Obstetrics and Gynecology, School of Medicine, The University of Texas Medical Branch , Galveston, TX , USA
| |
Collapse
|
1376
|
Pliyev BK, Dimitrieva TV, Savchenko VG. Cytokine-mediated induction of MHC class II in human neutrophils is dependent on NADPH oxidase activity. Eur J Cell Biol 2014; 94:67-70. [PMID: 25464901 DOI: 10.1016/j.ejcb.2014.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 11/28/2022] Open
Abstract
In response to selected cytokines, neutrophils are induced to express MHC class II and acquire properties of antigen-presenting cells. Here we show that (a) GM-CSF- and IFN-γ-mediated induction of MHC class II in human neutrophils is associated with intracellular ROS up-regulation, (b) cell-permeable ROS scavengers MnTMPyP and polyethylene glycol-conjugated superoxide dismutase and NADPH oxidase inhibitors diphenylene iodonium and apocynin abrogate both the cytokine-mediated ROS elevation and the induction of MHC class II and (c) neutrophils from chronic granulomatous disease patients which lack NADPH oxidase activity fail to express MHC class II in response to the cytokines. Thus, NADPH oxidase activity is required for the cytokine-mediated induction of MHC class II expression in neutrophils.
Collapse
Affiliation(s)
- Boris K Pliyev
- Hematology Research Center, Novy Zykovsky Pr. 4, Moscow 125167, Russia.
| | | | | |
Collapse
|
1377
|
Goichberg P, Chang J, Liao R, Leri A. Cardiac stem cells: biology and clinical applications. Antioxid Redox Signal 2014; 21:2002-17. [PMID: 24597850 PMCID: PMC4208604 DOI: 10.1089/ars.2014.5875] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Heart disease is the primary cause of death in the industrialized world. Cardiac failure is dictated by an uncompensated reduction in the number of viable and fully functional cardiomyocytes. While current pharmacological therapies alleviate the symptoms associated with cardiac deterioration, heart transplantation remains the only therapy for advanced heart failure. Therefore, there is a pressing need for novel therapeutic modalities. Cell-based therapies involving cardiac stem cells (CSCs) constitute a promising emerging approach for the replenishment of the lost tissue and the restoration of cardiac contractility. RECENT ADVANCES CSCs reside in the adult heart and govern myocardial homeostasis and repair after injury by producing new cardiomyocytes and vascular structures. In the last decade, different classes of immature cells expressing distinct stem cell markers have been identified and characterized in terms of their growth properties, differentiation potential, and regenerative ability. Phase I clinical trials, employing autologous CSCs in patients with ischemic cardiomyopathy, are being completed with encouraging results. CRITICAL ISSUES Accumulating evidence concerning the role of CSCs in heart regeneration imposes a reconsideration of the mechanisms of cardiac aging and the etiology of heart failure. Deciphering the molecular pathways that prevent activation of CSCs in their environment and understanding the processes that affect CSC survival and regenerative function with cardiac pathologies, commonly accompanied by alterations in redox conditions, are of great clinical importance. FUTURE DIRECTIONS Further investigations of CSC biology may be translated into highly effective and novel therapeutic strategies aiming at the enhancement of the endogenous healing capacity of the diseased heart.
Collapse
Affiliation(s)
- Polina Goichberg
- Departments of Anesthesia and Medicine, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts
| | | | | | | |
Collapse
|
1378
|
Khalil HS, Goltsov A, Langdon SP, Harrison DJ, Bown J, Deeni Y. Quantitative analysis of NRF2 pathway reveals key elements of the regulatory circuits underlying antioxidant response and proliferation of ovarian cancer cells. J Biotechnol 2014; 202:12-30. [PMID: 25449014 DOI: 10.1016/j.jbiotec.2014.09.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/23/2014] [Accepted: 09/30/2014] [Indexed: 12/19/2022]
Abstract
Cells are constantly exposed to Reactive Oxygen Species (ROS) produced both endogenously to meet physiological requirements and from exogenous sources. While endogenous ROS are considered as important signalling molecules, high uncontrollable ROS are detrimental. It is unclear how cells can achieve a balance between maintaining physiological redox homeostasis and robustly activate the antioxidant system to remove exogenous ROS. We have utilised a Systems Biology approach to understand how this robust adaptive system fulfils homeostatic requirements of maintaining steady-state ROS and growth rate, while undergoing rapid readjustment under challenged conditions. Using a panel of human ovarian and normal cell lines, we experimentally quantified and established interrelationships between key elements of ROS homeostasis. The basal levels of NRF2 and KEAP1 were cell line specific and maintained in tight correlation with their growth rates and ROS. Furthermore, perturbation of this balance triggered cell specific kinetics of NRF2 nuclear-cytoplasmic relocalisation and sequestration of exogenous ROS. Our experimental data were employed to parameterise a mathematical model of the NRF2 pathway that elucidated key response mechanisms of redox regulation and showed that the dynamics of NRF2-H2O2 regulation defines a relationship between half-life, total and nuclear NRF2 level and endogenous H2O2 that is cell line specific.
Collapse
Affiliation(s)
- Hilal S Khalil
- Scottish Informatics, Mathematics, Biology and Statistics Centre (SIMBIOS), University of Abertay Dundee, Dundee DD1 1HG, United Kingdom.
| | - Alexey Goltsov
- Scottish Informatics, Mathematics, Biology and Statistics Centre (SIMBIOS), University of Abertay Dundee, Dundee DD1 1HG, United Kingdom.
| | - Simon P Langdon
- Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom.
| | - David J Harrison
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, United Kingdom.
| | - James Bown
- Scottish Informatics, Mathematics, Biology and Statistics Centre (SIMBIOS), University of Abertay Dundee, Dundee DD1 1HG, United Kingdom.
| | - Yusuf Deeni
- Scottish Informatics, Mathematics, Biology and Statistics Centre (SIMBIOS), University of Abertay Dundee, Dundee DD1 1HG, United Kingdom.
| |
Collapse
|
1379
|
Manganese superoxide dismutase deficiency triggers mitochondrial uncoupling and the Warburg effect. Oncogene 2014; 34:4229-37. [PMID: 25362851 PMCID: PMC4859767 DOI: 10.1038/onc.2014.355] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 09/07/2014] [Accepted: 09/19/2014] [Indexed: 12/22/2022]
Abstract
Manganese superoxide dismutase (MnSOD) is a mitochondrially localized primary antioxidant enzyme, known to be essential for the survival of aerobic life and to have important roles in tumorigenesis. Here, we show that MnSOD deficiency in skin tissues of MnSOD-heterozygous knockout (Sod2(+/-)) mice leads to increased expresson of uncoupling proteins (UCPs). When MnSOD is deficient, superoxide radical and its resulting reactive oxygen species (ROS) activate ligand binding to peroxisome proliferator-activated receptor alpha (PPARα), suggesting that the activation of PPARα signaling is a major mechanism underlying MnSOD-dependent UCPs expression that consequently triggers the PI3K/Akt/mTOR pathway, leading to increased aerobic glycolysis. Knockdown of UCPs and mTOR suppresses lactate production and increases ATP levels, suggesting that UCPs contribute to increased glycolysis. These results highlight the existence of a free radical-mediated mechanism that activates mitochondria uncoupling to reduce ROS production, which precedes the glycolytic adaptation described as the Warburg Effect.
Collapse
|
1380
|
Abstract
The common pathogenetic pathway of progressive injury in patients with chronic kidney disease (CKD) is epitomized as normal kidney parenchymal destruction due to scarring (fibrosis). Understanding the fundamental pathways that lead to renal fibrosis is essential in order to develop better therapeutic options for human CKD. Although complex, four cellular responses are pivotal. (1) An interstitial inflammatory response that has multiple consequences—some harmful and others healing. (2) The appearance of a unique interstitial cell population of myofibroblasts, primarily derived from kidney stromal cells (fibroblasts and pericytes), that are the primary source of the various extracellular matrix proteins that form interstitial scars. (3) Tubular epithelial cells that have variable and time-dependent roles as early responders to injury and later as victims of fibrosis due to the loss of their regenerative abilities. (4) Loss of interstitial capillary integrity that compromises oxygen delivery and leads to a vicious cascade of hypoxia–oxidant stress that accentuates injury and fibrosis. In the absence of adequate angiogenic responses, a healthy interstitial capillary network is not maintained. The fibrotic ‘scar' that typifies CKD is an interesting consortium of multifunctional macromolecules that not only change in composition and structure over time, but can be degraded via extracellular and intracellular proteases. Although transforming growth factor beta appears to be the primary driver of kidney fibrosis, a vast array of additional molecules may have modulating roles. The importance of genetic and epigenetic factors is increasingly appreciated. An intriguing but incompletely understood cardiorenal syndrome underlies the high morbidity and mortality rates that develop in association with progressive kidney fibrosis.
Collapse
|
1381
|
Urata Y, Goto S, Luo L, Doi H, Kitajima Y, Masuda S, Ono Y, Li TS. Enhanced Nox1 expression and oxidative stress resistance in c-kit-positive hematopoietic stem/progenitor cells. Biochem Biophys Res Commun 2014; 454:376-80. [DOI: 10.1016/j.bbrc.2014.10.090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 10/19/2014] [Indexed: 12/15/2022]
|
1382
|
Weller J, Kizina KM, Can K, Bao G, Müller M. Response properties of the genetically encoded optical H2O2 sensor HyPer. Free Radic Biol Med 2014; 76:227-41. [PMID: 25179473 DOI: 10.1016/j.freeradbiomed.2014.07.045] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 01/20/2023]
Abstract
Reactive oxygen species mediate cellular signaling and neuropathologies. Hence, there is tremendous interest in monitoring (sub)cellular redox conditions. We evaluated the genetically engineered redox sensor HyPer in mouse hippocampal cell cultures. Two days after lipofection, neurons and glia showed sufficient expression levels, and H2O2 reversibly and dose-dependently increased the fluorescence ratio of cytosolic HyPer. Yet, repeated H2O2 treatment caused progressively declining responses, and with millimolar doses an apparent recovery started while H2O2 was still present. Although HyPer should be H2O2 specific, it seemingly responded also to other oxidants and altered cell-endogenous superoxide production. Control experiments with the SypHer pH sensor confirmed that the HyPer ratio responds to pH changes, decreasing with acidosis and increasing during alkalosis. Anoxia/reoxygenation evoked biphasic HyPer responses reporting apparent reduction/oxidation; replacing Cl(-) exerted only negligible effects. Mitochondria-targeted HyPer readily responded to H2O2-albeit less intensely than cytosolic HyPer. With ratiometric two-photon excitation, H2O2 increased the cytosolic HyPer ratio. Time-correlated fluorescence-lifetime imaging microscopy (FLIM) revealed a monoexponential decay of HyPer fluorescence, and H2O2 decreased fluorescence lifetimes. Dithiothreitol failed to further reduce HyPer or to induce reasonable FLIM and two-photon responses. By enabling dynamic recordings, HyPer is superior to synthetic redox-sensitive dyes. Its feasibility for two-photon excitation also enables studies in more complex preparations. Based on FLIM, quantitative analyses might be possible independent of switching excitation wavelengths. Yet, because of its pronounced pH sensitivity, adaptation to repeated oxidation, and insensitivity to reducing stimuli, HyPer responses have to be interpreted carefully. For reliable data, side-by-side pH monitoring with SypHer is essential.
Collapse
Affiliation(s)
- Jonathan Weller
- Institut für Neuro- und Sinnesphysiologie, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Zentrum Physiologie und Pathophysiologie, Georg-August-Universität Göttingen, Universitätsmedizin, D-37073 Göttingen, Germany
| | - Kathrin M Kizina
- Institut für Neuro- und Sinnesphysiologie, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Zentrum Physiologie und Pathophysiologie, Georg-August-Universität Göttingen, Universitätsmedizin, D-37073 Göttingen, Germany
| | - Karolina Can
- Institut für Neuro- und Sinnesphysiologie, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Zentrum Physiologie und Pathophysiologie, Georg-August-Universität Göttingen, Universitätsmedizin, D-37073 Göttingen, Germany
| | - Guobin Bao
- Institut für Neurophysiologie und Zelluläre Biophysik, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Zentrum Physiologie und Pathophysiologie, Georg-August-Universität Göttingen, Universitätsmedizin, D-37073 Göttingen, Germany
| | - Michael Müller
- Institut für Neuro- und Sinnesphysiologie, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Zentrum Physiologie und Pathophysiologie, Georg-August-Universität Göttingen, Universitätsmedizin, D-37073 Göttingen, Germany.
| |
Collapse
|
1383
|
Kostecka A, Sznarkowska A, Meller K, Acedo P, Shi Y, Mohammad Sakil HA, Kawiak A, Lion M, Królicka A, Wilhelm M, Inga A, Zawacka-Pankau J. JNK-NQO1 axis drives TAp73-mediated tumor suppression upon oxidative and proteasomal stress. Cell Death Dis 2014; 5:e1484. [PMID: 25341038 PMCID: PMC4649515 DOI: 10.1038/cddis.2014.408] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/24/2014] [Accepted: 08/18/2014] [Indexed: 12/17/2022]
Abstract
Hyperproliferating cancer cells produce energy mainly from aerobic glycolysis, which results in elevated ROS levels. Thus aggressive tumors often possess enhanced anti-oxidant capacity that impedes many current anti-cancer therapies. Additionally, in ROS-compromised cancer cells ubiquitin proteasome system (UPS) is often deregulated for timely removal of oxidized proteins, thus enabling cell survival. Taken that UPS maintains the turnover of factors controlling cell cycle and apoptosis--such as p53 or p73, it represents a promising target for pharmaceutical intervention. Enhancing oxidative insult in already ROS-compromised cancer cells appears as an attractive anti-tumor scenario. TAp73 is a bona fide tumor suppressor that drives the chemosensitivity of some cancers to cisplatin or γ-radiation. It is an important drug target in tumors where p53 is lost or mutated. Here we discovered a novel synergistic mechanism leading to potent p73 activation and cancer cell death by oxidative stress and inhibition of 20S proteasomes. Using a small-molecule inhibitor of 20S proteasome and ROS-inducer--withaferin A (WA), we found that WA-induced ROS activates JNK kinase and stabilizes phase II anti-oxidant response effector NF-E2-related transcription factor (NRF2). This results in activation of Nrf2 target--NQO1 (NADPH quinone oxidoreductase), and TAp73 protein stabilization. The observed effect was ablated by the ROS scavenger--NAC. Concurrently, stress-activated JNK phosphorylates TAp73 at multiple serine and threonine residues, which is crucial to ablate TAp73/MDM2 complex and to promote TAp73 transcriptional function and induction of robust apoptosis. Taken together our data demonstrate that ROS insult in combination with the inhibition of 20S proteasome and TAp73 activation endows synthetic lethality in cancer cells. Thus, our results may enable the establishment of a novel pharmacological strategy to exploit the enhanced sensitivity of tumors to elevated ROS and proteasomal stress to kill advanced tumors by pharmacological activation of TAp73 using molecules like WA.
Collapse
Affiliation(s)
- A Kostecka
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - A Sznarkowska
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - K Meller
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - P Acedo
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Y Shi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - H A Mohammad Sakil
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - A Kawiak
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - M Lion
- Centre for Integrative Biology, CIBIO, University of Trento, Mattarello, Italy
| | - A Królicka
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - M Wilhelm
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - A Inga
- Centre for Integrative Biology, CIBIO, University of Trento, Mattarello, Italy
| | - J Zawacka-Pankau
- 1] Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland [2] Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
1384
|
Johnstone VPA, Hool LC. Glutathionylation of the L-type Ca2+ channel in oxidative stress-induced pathology of the heart. Int J Mol Sci 2014; 15:19203-25. [PMID: 25340983 PMCID: PMC4227269 DOI: 10.3390/ijms151019203] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 09/29/2014] [Accepted: 10/02/2014] [Indexed: 01/11/2023] Open
Abstract
There is mounting evidence to suggest that protein glutathionylation is a key process contributing to the development of pathology. Glutathionylation occurs as a result of posttranslational modification of a protein and involves the addition of a glutathione moiety at cysteine residues. Such modification can occur on a number of proteins, and exerts a variety of functional consequences. The L-type Ca2+ channel has been identified as a glutathionylation target that participates in the development of cardiac pathology. Ca2+ influx via the L-type Ca2+ channel increases production of mitochondrial reactive oxygen species (ROS) in cardiomyocytes during periods of oxidative stress. This induces a persistent increase in channel open probability, and the resulting constitutive increase in Ca2+ influx amplifies the cross-talk between the mitochondria and the channel. Novel strategies utilising targeted peptide delivery to uncouple mitochondrial ROS and Ca2+ flux via the L-type Ca2+ channel following ischemia-reperfusion have delivered promising results, and have proven capable of restoring appropriate mitochondrial function in myocytes and in vivo.
Collapse
Affiliation(s)
- Victoria P A Johnstone
- School of Anatomy, Physiology and Human Biology, the University of Western Australia, Crawley 6009, WA, Australia.
| | - Livia C Hool
- School of Anatomy, Physiology and Human Biology, the University of Western Australia, Crawley 6009, WA, Australia.
| |
Collapse
|
1385
|
Abstract
Recent studies in Drosophila, Hydra, planarians, zebrafish, mice, indicate that cell death can open paths to regeneration in adult animals. Indeed injury can induce cell death, itself triggering regeneration following an immediate instructive mechanism, whereby the dying cells release signals that induce cellular responses over short and/or long-range distances. Cell death can also provoke a sustained derepressing response through the elimination of cells that suppress regeneration in homeostatic conditions. Whether common properties support what we name "regenerative cell death," is currently unclear. As key parameters, we review here the injury proapoptotic signals, the signals released by the dying cells, the cellular responses, and their respective timing. ROS appears as a common signal triggering cell death through MAPK and/or JNK pathway activation. But the modes of ROS production vary, from a brief pulse upon wounding, to repeated waves as observed in the zebrafish fin where ROS supports two peaks of cell death. Indeed regenerative cell death can be restricted to the injury phase, as in Hydra, Drosophila, or biphasic, immediate, and delayed, as in planarians and zebrafish. The dying cells release in a caspase-dependent manner a variety of signaling molecules, cytokines, growth factors, but also prostaglandins or ATP as recorded in Drosophila, Hydra, mice, and zebrafish, respectively. Interestingly, the ROS-producing cells often resist to cell death, implying a complex paracrine mode of signaling to launch regeneration, involving ROS-producing cells, ROS-sensing cells that release signaling molecules upon caspase activation, and effector cells that respond to these signals by proliferating, migrating, and/or differentiating.
Collapse
Affiliation(s)
- Sophie Vriz
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris, France; University Paris-Diderot, Paris, France
| | - Silke Reiter
- Department of Genetics and Evolution, University of Geneva, Switzerland
| | - Brigitte Galliot
- Department of Genetics and Evolution, University of Geneva, Switzerland.
| |
Collapse
|
1386
|
Enhanced ROS production and oxidative damage in subcutaneous white adipose tissue mitochondria in obese and type 2 diabetes subjects. Mol Cell Biochem 2014; 399:95-103. [PMID: 25312902 DOI: 10.1007/s11010-014-2236-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 10/01/2014] [Indexed: 01/08/2023]
Abstract
Oxidative stress in the insulin target tissues has been implicated in the pathophysiology of type 2 diabetes. The study has examined the oxidative stress parameters in the mitochondria of subcutaneous white adipose tissue from obese and non-obese subjects with or without type 2 diabetes. An accumulation of protein carbonyls, fluorescent lipid peroxidation products, and malondialdehyde occurs in the adipose tissue mitochondria of obese type 2 diabetic, non-diabetic obese, and non-obese diabetic subjects with the maximum increase noticed in the obese type 2 diabetes patients and the minimum in non-obese type 2 diabetics. The mitochondria from obese type 2 diabetics, non-diabetic obese, and non-obese type 2 diabetics also produce significantly more reactive oxygen species (ROS) in vitro compared to those of controls, and apparently the mitochondrial ROS production rate in each group is proportional to the respective load of oxidative damage markers. Likewise, the mitochondrial antioxidant enzymes like superoxide dismutase and glutathione peroxidase show decreased activities most markedly in obese type 2 diabetes subjects and to a lesser degree in non-obese type 2 diabetes or non-diabetic obese subjects in comparison to control. The results imply that mitochondrial dysfunction with enhanced ROS production may contribute to the metabolic abnormality of adipose tissue in obesity and diabetes.
Collapse
|
1387
|
Singh RK, Srivastava A, Kalaiarasan P, Manvati S, Chopra R, Bamezai RNK. mtDNA germ line variation mediated ROS generates retrograde signaling and induces pro-cancerous metabolic features. Sci Rep 2014; 4:6571. [PMID: 25300428 PMCID: PMC4192639 DOI: 10.1038/srep06571] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/18/2014] [Indexed: 12/21/2022] Open
Abstract
mtDNA non-synonymous germ line variation (G10398A; p.A114T) has remained equivocal with least mechanistic understanding in showing an association with cancer. This has necessitated showing in-vitro how an over-expression within mitochondria of either of the variants produces higher intracellular ROS, resulting in differential anchorage dependent and independent growth. Both these features were observed to be relatively higher in ND3:114T variant. An elevated amount of intracellular carbonylated proteins and a reduced activity of a key glycolytic enzyme, Pyruvate kinase M2, along with high glucose uptake and lactate production were other pro-cancerous features observed. The retrograde signaling through surplus ROS was generated by post-ND3 over-expression regulated nuclear gene expression epigenetically, involving selectively the apoptotic-DDR-pathways. The feature of ND3 over-expression, inducing ROS mediated pro-cancerous features in the cells in in vitro, was replicated in a pilot study in a limited number of sporadic breast tumors, suggesting the importance of mitochondrial germ-line variant(s) in enabling the cells to acquire pro-cancerous features.
Collapse
Affiliation(s)
- Rajnish Kumar Singh
- National Centre of Applied Human Genetics, School of life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Archita Srivastava
- National Centre of Applied Human Genetics, School of life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ponnusamy Kalaiarasan
- School of Biotechnology, Shri Mata Vaishno Devi University, Kakriyal, Katra, Jammu &Kashmir, 182320, India
| | - Siddharth Manvati
- School of Biotechnology, Shri Mata Vaishno Devi University, Kakriyal, Katra, Jammu &Kashmir, 182320, India
| | - Rupali Chopra
- National Centre of Applied Human Genetics, School of life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rameshwar N K Bamezai
- National Centre of Applied Human Genetics, School of life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
1388
|
Guo Z, Li J, Zhang L, Jiang Y, Gao F, Zhou G. Effects of alpha-lipoic acid supplementation in different stages on growth performance, antioxidant capacity and meat quality in broiler chickens. Br Poult Sci 2014; 55:635-43. [DOI: 10.1080/00071668.2014.958057] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
1389
|
Lorenz JE, Kallenborn-Gerhardt W, Lu R, Syhr KMJ, Eaton P, Geisslinger G, Schmidtko A. Oxidant-induced activation of cGMP-dependent protein kinase Iα mediates neuropathic pain after peripheral nerve injury. Antioxid Redox Signal 2014; 21:1504-15. [PMID: 24450940 PMCID: PMC4158966 DOI: 10.1089/ars.2013.5585] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AIMS Emerging lines of evidence indicate that oxidants such as hydrogen peroxide exert specific signaling functions during the processing of chronic pain. However, the mechanisms by which oxidants regulate pain processing in vivo remain poorly understood. Here, we investigated whether cyclic guanosine monophosphate (cGMP)-dependent protein kinase Iα (cGKIα), which can be activated by oxidants independently of cGMP, serves as a primary redox target during pain processing. RESULTS After peripheral nerve injury, oxidant-induced cGKIα activation is increased in dorsal root ganglia of mice. Knock-in (KI) mice in which cGKIα cannot transduce oxidant signals demonstrated reduced neuropathic pain behaviors after peripheral nerve injury, and reduced pain behaviors after intrathecal delivery of oxidants. In contrast, acute nociceptive, inflammatory, and cGMP-induced pain behaviors were not impaired in these mice. INNOVATION Studying cGKIα KI mice, we provide the first evidence that oxidants activate cGKIα in sensory neurons after peripheral nerve injury in vivo. CONCLUSION Our results suggest that oxidant-induced activation of cGKIα specifically contributes to neuropathic pain processing, and that prevention of cGKIα redox activation could be a potential novel strategy to manage neuropathic pain.
Collapse
Affiliation(s)
- Jana E Lorenz
- 1 Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Universitätsklinikum Frankfurt , Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
1390
|
Nantajit D, Lin D, Li JJ. The network of epithelial-mesenchymal transition: potential new targets for tumor resistance. J Cancer Res Clin Oncol 2014; 141:1697-713. [PMID: 25270087 DOI: 10.1007/s00432-014-1840-y] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 09/20/2014] [Indexed: 12/12/2022]
Abstract
PURPOSE In multiple cell metazoans, the ability of polarized epithelial cells to convert to motile mesenchymal cells in order to relocate to another location is governed by a unique process termed epithelial-mesenchymal transition (EMT). While being an essential process of cellular plasticity for normal tissue and organ developments, EMT is found to be involved in an array of malignant phenotypes of tumor cells including proliferation and invasion, angiogenesis, stemness of cancer cells and resistance to chemo-radiotherapy. Although EMT is being extensively studied and demonstrated to play a key role in tumor metastasis and in sustaining tumor hallmarks, there is a lack of clear picture of the overall EMT signaling network, wavering the potential clinical trials targeting EMT. METHODS In this review, we highlight the potential key therapeutic targets of EMT linked with tumor aggressiveness, hypoxia, angiogenesis and cancer stem cells, emphasizing on an emerging EMT-associated NF-κB/HER2/STAT3 pathway in radioresistance of breast cancer stem cells. RESULTS Further definition of cancer stem cell repopulation due to EMT-controlled tumor microenvironment will help to understand how tumors exploit the EMT mechanisms for their survival and expansion advantages. CONCLUSIONS The knowledge of EMT will offer more effective targets in clinical trials to treat therapy-resistant metastatic lesions.
Collapse
Affiliation(s)
- Danupon Nantajit
- Radiation Oncology Unit, Chulabhorn Hospital, Bangkok, 10210, Thailand
| | | | | |
Collapse
|
1391
|
Wong CM, Zhang Y, Huang Y. Bone morphogenic protein-4-induced oxidant signaling via protein carbonylation for endothelial dysfunction. Free Radic Biol Med 2014; 75:178-90. [PMID: 25091895 DOI: 10.1016/j.freeradbiomed.2014.07.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 07/19/2014] [Accepted: 07/24/2014] [Indexed: 12/31/2022]
Abstract
The increased expression of bone morphogenic protein-4 (BMP-4) under hyperglycemic and diabetic conditions mediates the overgeneration of reactive oxygen species to cause endothelial cell dysfunction and apoptosis. Protein carbonylation plays an important role in oxidant signaling through ligand-receptor interactions in vascular smooth muscle cells, cardiac cells, and bronchial smooth muscle cells to trigger different diseases. However, the role of oxidant signaling via protein carbonylation in endothelial dysfunction is unclear. The level of protein carbonylation was higher in renal arteries from diabetic patients than those from nondiabetic subjects. BMP-4 promoted protein carbonylation, which was followed by decarbonylation or degradation in primary rat aortic endothelial cells. Organ culture of normal C57BL/6J mouse aortas treated with either hydralazine or deferoxamine inhibited the effect of BMP-4 on impairment of acetylcholine-induced endothelium-dependent relaxation (EDR). In isolated diabetic db/db mouse aortas, treatment with hydralazine improved the impaired EDR while deferoxamine had no effect. BMP-4-induced carbonylated proteins in aortic endothelial cells were successfully identified by a proteomic approach. These proteins have important cellular functions and include glyceraldehyde-3-phosphate dehydrogenase, triosephosphate isomerase, alpha-enolase, protein disulfide-isomerase A3, annexin II, 26S protease regulatory subunit, integrin-linked protein kinase, and vimentin. Protein carbonylation induced by BMP-4 was inhibited by BMP-4 antagonist while protein decarbonylation induced by BMP-4 was thiol dependent. The carbonyl signals did not involve 4-hydrononenal and malondialdehyde. The present results suggest that BMP-4- or diabetes-mediated endothelial dysfunction is partly triggered through protein carbonylation and blockade of this metal-catalyzed protein oxidation can be considered as an alternative therapeutic strategy to alleviate diabetic vasculopathy.
Collapse
Affiliation(s)
- Chi Ming Wong
- Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China.
| | - Yang Zhang
- Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Yu Huang
- Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
1392
|
Pouvreau S. Genetically encoded reactive oxygen species (ROS) and redox indicators. Biotechnol J 2014; 9:282-93. [PMID: 24497389 DOI: 10.1002/biot.201300199] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/10/2013] [Accepted: 11/06/2013] [Indexed: 12/17/2022]
Abstract
Redox processes are increasingly being recognized as key elements in the regulation of cellular signaling cascades. They are frequently encountered at the frontier between physiological functions and pathological events. The biological relevance of intracellular redox changes depends on the subcellular origin, the spatio-temporal distribution and the redox couple involved. Thus, a key task in the elucidation of the role of redox reactions is the specific and quantitative measurement of redox conditions with high spatio-temporal resolution. Unfortunately, until recently, our ability to perform such measurements was limited by the lack of adequate technology. Over the last 10 years, promising imaging tools have been developed from fluorescent proteins. Genetically encoded reactive oxygen species (ROS) and redox indicators (GERRIs) have the potential to allow real-time and pseudo-quantitative monitoring of specific ROS and thiol redox state in subcellular compartments or live organisms. Redox-sensitive yellow fluorescent proteins (rxYFP family), redox-sensitive green fluorescent proteins (roGFP family), HyPer (a probe designed to measure H2 O2 ), circularly permuted YFP and others have been used in several models and sufficient information has been collected to highlight their main characteristics. This review is intended to be a tour guide of the main types of GERRIs, their origins, properties, advantages and pitfalls.
Collapse
Affiliation(s)
- Sandrine Pouvreau
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France; CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France.
| |
Collapse
|
1393
|
Yang M, Haase AD, Huang FK, Coulis G, Rivera KD, Dickinson BC, Chang CJ, Pappin DJ, Neubert TA, Hannon GJ, Boivin B, Tonks NK. Dephosphorylation of tyrosine 393 in argonaute 2 by protein tyrosine phosphatase 1B regulates gene silencing in oncogenic RAS-induced senescence. Mol Cell 2014; 55:782-90. [PMID: 25175024 PMCID: PMC4159145 DOI: 10.1016/j.molcel.2014.07.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 05/29/2014] [Accepted: 07/21/2014] [Indexed: 11/20/2022]
Abstract
Oncogenic RAS (H-RAS(V12)) induces premature senescence in primary cells by triggering production of reactive oxygen species (ROS), but the molecular role of ROS in senescence remains elusive. We investigated whether inhibition of protein tyrosine phosphatases by ROS contributed to H-RAS(V12)-induced senescence. We identified protein tyrosine phosphatase 1B (PTP1B) as a major target of H-RAS(V12)-induced ROS. Inactivation of PTP1B was necessary and sufficient to induce premature senescence in H-RAS(V12)-expressing IMR90 fibroblasts. We identified phospho-Tyr 393 of argonaute 2 (AGO2) as a direct substrate of PTP1B. Phosphorylation of AGO2 at Tyr 393 inhibited loading with microRNAs (miRNAs) and thus miRNA-mediated gene silencing, which counteracted the function of H-RAS(V12)-induced oncogenic miRNAs. Overall, our data illustrate that premature senescence in H-RAS(V12)-transformed primary cells is a consequence of oxidative inactivation of PTP1B and inhibition of miRNA-mediated gene silencing.
Collapse
Affiliation(s)
- Ming Yang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11790, USA
| | - Astrid D Haase
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Howard Hughes Medical Institute
| | - Fang-Ke Huang
- Department of Biochemistry and Molecular Pharmacology, Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Gérald Coulis
- Department of Biochemistry and Department of Medicine, Université de Montréal, Montréal, H3C 3J7 QC, Canada; Montreal Heart Institute, Montréal, H1T 1C8 QC, Canada
| | - Keith D Rivera
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Bryan C Dickinson
- Howard Hughes Medical Institute; Departments of Chemistry and Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Christopher J Chang
- Howard Hughes Medical Institute; Departments of Chemistry and Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Darryl J Pappin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Thomas A Neubert
- Department of Biochemistry and Molecular Pharmacology, Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Gregory J Hannon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Howard Hughes Medical Institute
| | - Benoit Boivin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Department of Biochemistry and Department of Medicine, Université de Montréal, Montréal, H3C 3J7 QC, Canada; Montreal Heart Institute, Montréal, H1T 1C8 QC, Canada.
| | - Nicholas K Tonks
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
1394
|
Grintzalis K, Papapostolou I, Zisimopoulos D, Stamatiou I, Georgiou CD. Multiparametric protocol for the determination of thiol redox state in living matter. Free Radic Biol Med 2014; 74:85-98. [PMID: 24996203 DOI: 10.1016/j.freeradbiomed.2014.06.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/13/2014] [Accepted: 06/20/2014] [Indexed: 12/22/2022]
Abstract
Thiol redox state (TRS) evaluation is mostly restricted to the estimation of GSH and GSSG. However, these TRS parameters can estimate the GSSG/GSH potential, which might be useful for indicating abnormalities in redox metabolism. Nonetheless, evaluation of the multiparameric nature of TRS is required for a more accurate assessment of its physiological role. The present protocol extends the partial assessment of TRS by current methodologies. It measures 15 key parameters of TRS by two modular subprotocols: one for the glutathione (GSH)- and cysteine (CSH)-based nonprotein (NP) thiols/mixed disulfides (i.e., GSH, GSSG, GSSNP, CSH, CSSNP, NPSH, NPSSNP, NP(x)SH(NPSSNP), NP(x)SH(NPSH)), and the other for their protein (P) thiols/mixed disulfides (i.e., PSH, PSSG, PSSC, PSSNP, PSSP, NP(x)SH(PSSNP)). The protocol eliminates autoxidation of GSH and CSH (and thus overestimation of GSSG and CSSNP). Its modularity allows the determination GSH and GSSG also by other published specific assays. The protocol uses three assays; two are based on the photometric reagents 4,4'-dithiopyridine (DTP) and ninhydrin (NHD), and the third on the fluorometric reagent o-phthaldialdehyde (OPT). The initial assays employing these reagents have been extensively modified and redesigned for increased specificity, sensitivity, and simplicity. TRS parameter values and their standard errors are estimated automatically by sets of Excel-adapted algebraic equations. Protocol sensitivity for NPSH, PSH, NPSSNP, PSSP, PSSNP, CSH, CSSNP, PSSC, NP(x)SH(NPSSNP), and NP(x)SH(NPSH) is 1 nmol -SH/CSH, for GSSNP 0.2 nmol, for GSH and GSSG 0.4 nmol, and for PSSG 0.6 nmol. The protocol was applied on human plasma, a sample of high clinical value, and can be also applied in any organism.
Collapse
Affiliation(s)
- Konstantinos Grintzalis
- Genetics, Cell and Developmental Biology Section, Department of Biology, University of Patras, Patras, Greece.
| | - Ioannis Papapostolou
- Genetics, Cell and Developmental Biology Section, Department of Biology, University of Patras, Patras, Greece.
| | - Dimitris Zisimopoulos
- Genetics, Cell and Developmental Biology Section, Department of Biology, University of Patras, Patras, Greece.
| | - Irene Stamatiou
- Genetics, Cell and Developmental Biology Section, Department of Biology, University of Patras, Patras, Greece.
| | - Christos D Georgiou
- Genetics, Cell and Developmental Biology Section, Department of Biology, University of Patras, Patras, Greece.
| |
Collapse
|
1395
|
Srivastava S, Sinha D, Saha PP, Marthala H, D'Silva P. Magmas functions as a ROS regulator and provides cytoprotection against oxidative stress-mediated damages. Cell Death Dis 2014; 5:e1394. [PMID: 25165880 PMCID: PMC4454327 DOI: 10.1038/cddis.2014.355] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/25/2014] [Accepted: 07/14/2014] [Indexed: 12/14/2022]
Abstract
Redox imbalance generates multiple cellular damages leading to oxidative stress-mediated pathological conditions such as neurodegenerative diseases and cancer progression. Therefore, maintenance of reactive oxygen species (ROS) homeostasis is most important that involves well-defined antioxidant machinery. In the present study, we have identified for the first time a component of mammalian protein translocation machinery Magmas to perform a critical ROS regulatory function. Magmas overexpression has been reported in highly metabolically active tissues and cancer cells that are prone to oxidative damage. We found that Magmas regulates cellular ROS levels by controlling its production as well as scavenging. Magmas promotes cellular tolerance toward oxidative stress by enhancing antioxidant enzyme activity, thus preventing induction of apoptosis and damage to cellular components. Magmas enhances the activity of electron transport chain (ETC) complexes, causing reduced ROS production. Our results suggest that J-like domain of Magmas is essential for maintenance of redox balance. The function of Magmas as a ROS sensor was found to be independent of its role in protein import. The unique ROS modulatory role of Magmas is highlighted by its ability to increase cell tolerance to oxidative stress even in yeast model organism. The cytoprotective capability of Magmas against oxidative damage makes it an important candidate for future investigation in therapeutics of oxidative stress-related diseases.
Collapse
Affiliation(s)
- S Srivastava
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - D Sinha
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - P P Saha
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - H Marthala
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - P D'Silva
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
1396
|
Kankotia S, Stacpoole PW. Dichloroacetate and cancer: new home for an orphan drug? Biochim Biophys Acta Rev Cancer 2014; 1846:617-29. [PMID: 25157892 DOI: 10.1016/j.bbcan.2014.08.005] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 02/06/2023]
Abstract
We reviewed the anti-cancer effects of DCA, an orphan drug long used as an investigational treatment for various acquired and congenital disorders of mitochondrial intermediary metabolism. Inhibition by DCA of mitochondrial pyruvate dehydrogenase kinases and subsequent reactivation of the pyruvate dehydrogenase complex and oxidative phosphorylation is the common mechanism accounting for the drug's anti-neoplastic effects. At least two fundamental changes in tumor metabolism are induced by DCA that antagonize tumor growth, metastases and survival: the first is the redirection of glucose metabolism from glycolysis to oxidation (reversal of the Warburg effect), leading to inhibition of proliferation and induction of caspase-mediated apoptosis. These effects have been replicated in both human cancer cell lines and in tumor implants of diverse germ line origin. The second fundamental change is the oxidative removal of lactate, via pyruvate, and the co-incident buffering of hydrogen ions by dehydrogenases located in the mitochondrial matrix. Preclinical studies demonstrate that DCA has additive or synergistic effects when used in combination with standard agents designed to modify tumor oxidative stress, vascular remodeling, DNA integrity or immunity. These findings and limited clinical results suggest that potentially fruitful areas for additional clinical trials include 1) adult and pediatric high grade astrocytomas; 2) BRAF-mutant cancers, such as melanoma, perhaps combined with other pro-oxidants; 3) tumors in which resistance to standard platinum-class drugs alone may be overcome with combination therapy; and 4) tumors of endodermal origin, in which extensive experimental research has demonstrated significant anti-proliferative, pro-apoptotic effects of DCA, leading to improved host survival.
Collapse
Affiliation(s)
- Shyam Kankotia
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida College of Medicine, Gainesville, FL, United States
| | - Peter W Stacpoole
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida College of Medicine, Gainesville, FL, United States; Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL, United States.
| |
Collapse
|
1397
|
Weitzer S, Hanada T, Penninger JM, Martinez J. CLP1 as a novel player in linking tRNA splicing to neurodegenerative disorders. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:47-63. [DOI: 10.1002/wrna.1255] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/27/2014] [Accepted: 06/28/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Stefan Weitzer
- IMBA; Institute of Molecular Biotechnology of the Academy of Sciences; Vienna Austria
| | - Toshikatsu Hanada
- TK Project, Medical Innovation Center; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Josef M. Penninger
- IMBA; Institute of Molecular Biotechnology of the Academy of Sciences; Vienna Austria
| | - Javier Martinez
- IMBA; Institute of Molecular Biotechnology of the Academy of Sciences; Vienna Austria
| |
Collapse
|
1398
|
O-Uchi J, Ryu SY, Jhun BS, Hurst S, Sheu SS. Mitochondrial ion channels/transporters as sensors and regulators of cellular redox signaling. Antioxid Redox Signal 2014; 21:987-1006. [PMID: 24180309 PMCID: PMC4116125 DOI: 10.1089/ars.2013.5681] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Mitochondrial ion channels/transporters and the electron transport chain (ETC) serve as key sensors and regulators for cellular redox signaling, the production of reactive oxygen species (ROS) and nitrogen species (RNS) in mitochondria, and balancing cell survival and death. Although the functional and pharmacological characteristics of mitochondrial ion transport mechanisms have been extensively studied for several decades, the majority of the molecular identities that are responsible for these channels/transporters have remained a mystery until very recently. RECENT ADVANCES Recent breakthrough studies uncovered the molecular identities of the diverse array of major mitochondrial ion channels/transporters, including the mitochondrial Ca2+ uniporter pore, mitochondrial permeability transition pore, and mitochondrial ATP-sensitive K+ channel. This new information enables us to form detailed molecular and functional characterizations of mitochondrial ion channels/transporters and their roles in mitochondrial redox signaling. CRITICAL ISSUES Redox-mediated post-translational modifications of mitochondrial ion channels/transporters and ETC serve as key mechanisms for the spatiotemporal control of mitochondrial ROS/RNS generation. FUTURE DIRECTIONS Identification of detailed molecular mechanisms for redox-mediated regulation of mitochondrial ion channels will enable us to find novel therapeutic targets for many diseases that are associated with cellular redox signaling and mitochondrial ion channels/transporters.
Collapse
Affiliation(s)
- Jin O-Uchi
- 1 Department of Medicine, Center for Translational Medicine, Jefferson Medical College, Thomas Jefferson University , Philadelphia, Pennsylvania
| | | | | | | | | |
Collapse
|
1399
|
Rharass T, Lemcke H, Lantow M, Kuznetsov SA, Weiss DG, Panáková D. Ca2+-mediated mitochondrial reactive oxygen species metabolism augments Wnt/β-catenin pathway activation to facilitate cell differentiation. J Biol Chem 2014; 289:27937-51. [PMID: 25124032 PMCID: PMC4183826 DOI: 10.1074/jbc.m114.573519] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Emerging evidence suggests that reactive oxygen species (ROS) can stimulate the Wnt/β-catenin pathway in a number of cellular processes. However, potential sources of endogenous ROS have not been thoroughly explored. Here, we show that growth factor depletion in human neural progenitor cells induces ROS production in mitochondria. Elevated ROS levels augment activation of Wnt/β-catenin signaling that regulates neural differentiation. We find that growth factor depletion stimulates the release of Ca(2+) from the endoplasmic reticulum stores. Ca(2+) subsequently accumulates in the mitochondria and triggers ROS production. The inhibition of mitochondrial Ca(2+) uptake with simultaneous growth factor depletion prevents the rise in ROS metabolism. Moreover, low ROS levels block the dissociation of the Wnt effector Dishevelled from nucleoredoxin. Attenuation of the response amplitudes of pathway effectors delays the onset of the Wnt/β-catenin pathway activation and results in markedly impaired neuronal differentiation. Our findings reveal Ca(2+)-mediated ROS metabolic cues that fine-tune the efficiency of cell differentiation by modulating the extent of the Wnt/β-catenin signaling output.
Collapse
Affiliation(s)
- Tareck Rharass
- From Electrochemical Signaling in Development and Disease, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, D-13125 Berlin-Buch and Cell Biology and Biosystems Technology, Institute of Biological Sciences, and Live Cell Imaging Center, University of Rostock, Albert-Einstein-Strasse 3, D-18059 Rostock, Germany
| | - Heiko Lemcke
- Cell Biology and Biosystems Technology, Institute of Biological Sciences, and Live Cell Imaging Center, University of Rostock, Albert-Einstein-Strasse 3, D-18059 Rostock, Germany
| | - Margareta Lantow
- Cell Biology and Biosystems Technology, Institute of Biological Sciences, and
| | - Sergei A Kuznetsov
- Live Cell Imaging Center, University of Rostock, Albert-Einstein-Strasse 3, D-18059 Rostock, Germany
| | - Dieter G Weiss
- Cell Biology and Biosystems Technology, Institute of Biological Sciences, and Live Cell Imaging Center, University of Rostock, Albert-Einstein-Strasse 3, D-18059 Rostock, Germany
| | - Daniela Panáková
- From Electrochemical Signaling in Development and Disease, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, D-13125 Berlin-Buch and
| |
Collapse
|
1400
|
The fission yeast Schizosaccharomyces pombe as a model to understand how peroxiredoxins influence cell responses to hydrogen peroxide. Biochem Soc Trans 2014; 42:909-16. [DOI: 10.1042/bst20140059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
As a more selectively reactive oxygen species, H2O2 (hydrogen peroxide) has been co-opted as a signalling molecule, but high levels can still lead to lethal amounts of cell damage. 2-Cys Prxs (peroxiredoxins) are ubiquitous thioredoxin peroxidases which utilize reversibly oxidized catalytic cysteine residues to reduce peroxides. As such, Prxs potentially make an important contribution to the repertoire of cell defences against oxidative damage. Although the abundance of eukaryotic 2-Cys Prxs suggests an important role in maintaining cell redox, the surprising sensitivity of their thioredoxin peroxidase activity to inactivation by H2O2 has raised questions as to their role as an oxidative stress defence. Indeed, work in model yeast has led the way in revealing that Prxs do much more than simply remove peroxides and have even uncovered circumstances where their thioredoxin peroxidase activity is detrimental. In the present paper, we focus on what we have learned from studies in the fission yeast Schizosaccharomyces pombe about the different roles of 2-Cys Prxs in responses to H2O2 and discuss the general implications of these findings for other systems.
Collapse
|