101
|
Chen T, Gao C. Innate immune signal transduction pathways to fungal infection: Components and regulation. CELL INSIGHT 2024; 3:100154. [PMID: 38464417 PMCID: PMC10924179 DOI: 10.1016/j.cellin.2024.100154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 03/12/2024]
Abstract
Candida species are significant causes of mucosal and systemic infections in immune compromised populations, including HIV-infected individuals and cancer patients. Drug resistance and toxicity have limited the use of anti-fungal drugs. A good comprehension of the nature of the immune responses to the pathogenic fungi will aid in the developing of new approaches to the treatment of fungal diseases. In recent years, extensive research has been done to understand the host defending systems to fungal infections. In this review, we described how pattern recognition receptors senses the cognate fungal ligands and the cellular and molecular mechanisms of anti-fungal innate immune responses. Furthermore, particular focus is placed on how anti-fungal signal transduction cascades are being activated for host defense and being modulated to better treat the infections in terms of immunotherapy. Understanding the role that these pathways have in mediating host anti-fungal immunity will be crucial for future therapeutic development.
Collapse
Affiliation(s)
- Tian Chen
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Department of Pathogenic Biology, School of Biomedical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, 250012, Shandong, China
| |
Collapse
|
102
|
Wei X, Tu Y, Bu S, Guo G, Wang H, Wang Z. Unraveling the Intricate Web: Complement Activation Shapes the Pathogenesis of Sepsis-Induced Coagulopathy. J Innate Immun 2024; 16:337-353. [PMID: 38815564 PMCID: PMC11249610 DOI: 10.1159/000539502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Sepsis-associated coagulopathy specifically refers to widespread systemic coagulation activation accompanied by a high risk of hemorrhage and organ damage, which in severe cases manifests as disseminated intravascular coagulation (DIC), or even develops into multiple organ dysfunction syndrome (MODS). The complement system and the coagulation system as the main columns of innate immunity and hemostasis, respectively, undergo substantial activation after sepsis. SUMMARY Dysfunction of the complement, coagulation/fibrinolytic cascades caused by sepsis leads to "thromboinflammation," which ultimately amplifies the systemic inflammatory response and accelerates the development of MODS. Recent studies have revealed that massive activation of the complement system exacerbates sepsis-induced coagulation and even results in DIC, which suggests that inhibition of complement activation may have therapeutic potential in the treatment of septic coagulopathy. KEY MESSAGES Sepsis-associated thrombosis involves the upregulation or activation of procoagulant factors, down-regulation or inactivation of anticoagulant factors, and impairment of the fibrinolytic mechanism. This review aims to summarize the latest literature and analyze the underlying molecular mechanisms of the activation of the complement system on the abnormal coagulation cascades in sepsis.
Collapse
Affiliation(s)
- Xin Wei
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ye Tu
- Department of Pharmacy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shuhong Bu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guimei Guo
- Department of Pediatric Nephrology and Rheumatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hongbin Wang
- Master Program of Pharmaceutical Scieneces College of Graduate Studies, Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, Department of Basic Science College of Medicine, California Northstate University, Elk Grove, CA, USA
| | - Zhibin Wang
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai, China
| |
Collapse
|
103
|
Jacobson JC, Qiao J, Cochran ED, McCreery S, Chung DH. Migration, invasion, and metastasis are mediated by P-Rex1 in neuroblastoma. Front Oncol 2024; 14:1336031. [PMID: 38884093 PMCID: PMC11176429 DOI: 10.3389/fonc.2024.1336031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/08/2024] [Indexed: 06/18/2024] Open
Abstract
Neuroblastoma accounts for approximately 15% of pediatric cancer-related deaths despite intensive multimodal therapy. This is due, in part, to high rates of metastatic disease at diagnosis and disease relapse. A better understanding of tumor biology of aggressive, pro-metastatic phenotypes is necessary to develop novel, more effective therapeutics against neuroblastoma. Phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger 1 (P-Rex1) has been found to stimulate migration, invasion, and metastasis in several adult malignancies. However, its role in neuroblastoma is currently unknown. In the present study, we found that P-Rex1 is upregulated in pro-metastatic murine models of neuroblastoma, as well as human neuroblastoma metastases. Correspondingly, silencing of P-Rex1 was associated with decreased migration and invasion in vitro. This was associated with decreased AKT-mTOR and ERK2 activity, dysregulation of Rac, and diminished secretion of matrix metalloproteinases. Furthermore, increased P-Rex1 expression was associated with inferior relapse-free and overall survival via tissue microarray and Kaplan-Meier survival analysis of a publicly available clinical database. Together, these findings suggest that P-Rex1 may be a novel therapeutic target and potential prognostic factor in neuroblastoma.
Collapse
Affiliation(s)
- Jillian C Jacobson
- Division of Pediatric Surgery, Department of Surgery, University of Texas Southwestern Medical Center and Children's Health, Dallas, TX, United States
| | - Jingbo Qiao
- Division of Pediatric Surgery, Department of Surgery, University of Texas Southwestern Medical Center and Children's Health, Dallas, TX, United States
| | - Elizabeth D Cochran
- Division of Pediatric Surgery, Department of Surgery, University of Texas Southwestern Medical Center and Children's Health, Dallas, TX, United States
| | - Sullivan McCreery
- Division of Pediatric Surgery, Department of Surgery, University of Texas Southwestern Medical Center and Children's Health, Dallas, TX, United States
| | - Dai H Chung
- Division of Pediatric Surgery, Department of Surgery, University of Texas Southwestern Medical Center and Children's Health, Dallas, TX, United States
| |
Collapse
|
104
|
Sun T, Zhang P, Zhang Q, Wang B, Zhao Q, Liu F, Ma X, Zhao C, Zhou X, Chen R, Ouyang S. Transcriptome analysis reveals PRKCA as a potential therapeutic target for overcoming cisplatin resistance in lung cancer through ferroptosis. Heliyon 2024; 10:e30780. [PMID: 38765024 PMCID: PMC11096979 DOI: 10.1016/j.heliyon.2024.e30780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/21/2024] Open
Abstract
Cisplatin-based chemotherapy is the current standard care for lung cancer patients; however, drug resistance frequently develops during treatment, thereby limiting therapeutic efficacy.The molecular mechanisms underlying cisplatin resistance remain elusive. In this study, we conducted an analysis of microarray data from the Gene Expression Omnibus (GEO) database under the accession numbers GSE21656, which encompassed expression profiling of cisplatin-resistant H460 (DDP-H460)and the parental cells (H460). Subsequently, we calculated the differentially expressed genes (DEGs) between DDP-H460 and H460. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of DEGs demonstrated significant impact on the Rap1, PI3K/AKT and MAPK signaling pathways. Moreover, protein and protein interaction (PPI) network analysis identified PRKCA, DET1, and UBE2N as hub genes that potentially contribute predominantly to cisplatin resistance. Ultimately, PRKCA was selected for validation due to its significant prognostic effect, which predicts unfavorable overall survival and disease-free survival in patients with lung cancer. Network analysis conducted on The Cancer Genome Atlas (TCGA) database revealed a strong gene-level correlation between PRKCA and TP53, CDKN2A, BYR2, TTN, KRAS, and PIK3CA; whereas at the protein level, it exhibited a high correlation with EGFR, Lck, Bcl2, and Syk. The in vitro experiments revealed that PRKCA was upregulated in the cisplatin-resistant A549 cells (DDP-A549), while knockdown of PRKCA increased DDP-A549 apoptosis upon cisplatin treatment. Moreover, we observed that PRKCA knockdown attenuated DDP-A549 proliferation, migration and invasion ability. Western blot analysis demonstrated that PRKCA knockdown downregulated phosphorylation of PI3K expression while upregulated the genes involved in ferroptosis signaling. In summary, our results elucidate the role of PRKCA in acquiring resistance to cisplatin and underscore its potential as a therapeutic target for cisplatin-resistant lung cancer.
Collapse
Affiliation(s)
- Ting Sun
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Penghua Zhang
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingyi Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Binhui Wang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Qitai Zhao
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Fenghui Liu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaohua Ma
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chunling Zhao
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaolei Zhou
- Department of Respiratory medicine, Henan Province Chest Hospital, Zhengzhou 450052, Henan, China
| | - Ruiying Chen
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Songyun Ouyang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
105
|
Chang WC, Hsieh TC, Hsu WL, Chang FL, Tsai HR, He MS. Diabetes and further risk of cancer: a nationwide population-based study. BMC Med 2024; 22:214. [PMID: 38807177 PMCID: PMC11134680 DOI: 10.1186/s12916-024-03430-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Individuals with diabetes have a significantly higher risk of developing various forms of cancer, and the potential biological links between these two diseases are not completely understood. METHODS This was a longitudinal retrospective nationwide cohort study, a study design that allows us to examine the natural course of cancer development over an extended period of time with a large sample size. Initially, 3,111,975 and 22,208,395 eligible patients aged ≥ 20 years with and without diabetes, respectively, were matched by age, sex, and the Charlson comorbidity index. Ultimately, 1,751,457 patients were selected from each group. Stratified populations for diabetic retinopathy (DR) (n = 380,822) and without DR (n = 380,822) as well as proliferative DR (PDR) (n = 141,150) and non-proliferative DR (NPDR) (n = 141,150) were analyzed in this study. The main outcome measure was the first-time diagnosis of cancer during the follow-up period. RESULTS We observed a 20% higher risk of total cancer incidence [hazard ratios (HR), 1.20; p < 0.001] in the diabetes cohort compared to the non-diabetes cohort. The highest HR was observed for liver and pancreas cancers. Moderately increased risks were observed for oral, colon, gallbladder, reproductive (female), kidney, and brain cancer. Furthermore, there was a borderline significantly increased risk of stomach, skin, soft tissue, female breast, and urinary tract (except kidney) cancers and lymphatic and hematopoietic malignancies. The stratified analysis revealed that the total cancer incidence was significantly higher in the DR cohort compared to the non-DR cohort (HR, 1.31; p < 0.001), and there was a borderline increased risk in the PDR cohort compared to the NPDR cohort (HR, 1.13; p = 0.001). CONCLUSIONS This study provides large-scale, nationwide, population-based evidence that diabetes is independently associated with an increased risk of subsequent development of total cancer and cancer at specific sites. Notably, this risk may further increase when DR develops.
Collapse
Affiliation(s)
- Wei-Chuan Chang
- Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | | | - Wen-Lin Hsu
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Radiation Oncology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Fang-Ling Chang
- Department of Ophthalmology, Buddhist Tzu Chi General Hospital, No. 707, Sec. 3 Chung-Yung Road, Hualien, 970, Taiwan
| | - Hou-Ren Tsai
- Department of Ophthalmology, Buddhist Tzu Chi General Hospital, No. 707, Sec. 3 Chung-Yung Road, Hualien, 970, Taiwan
| | - Ming-Shan He
- Department of Ophthalmology, Buddhist Tzu Chi General Hospital, No. 707, Sec. 3 Chung-Yung Road, Hualien, 970, Taiwan.
- Department of Ophthalmology and Visual Science, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
106
|
Wu J, Li W, Su J, Zheng J, Liang Y, Lin J, Xu B, Liu Y. Integration of single-cell sequencing and bulk RNA-seq to identify and develop a prognostic signature related to colorectal cancer stem cells. Sci Rep 2024; 14:12270. [PMID: 38806611 PMCID: PMC11133358 DOI: 10.1038/s41598-024-62913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024] Open
Abstract
The prognosis for patients with colorectal cancer (CRC) remains worse than expected due to metastasis, recurrence, and resistance to chemotherapy. Colorectal cancer stem cells (CRCSCs) play a vital role in tumor metastasis, recurrence, and chemotherapy resistance. However, there are currently no prognostic markers based on CRCSCs-related genes available for clinical use. In this study, single-cell transcriptome sequencing was employed to distinguish cancer stem cells (CSCs) in the CRC microenvironment and analyze their properties at the single-cell level. Subsequently, data from TCGA and GEO databases were utilized to develop a prognostic risk model for CRCSCs-related genes and validate its diagnostic performance. Additionally, functional enrichment, immune response, and chemotherapeutic drug sensitivity of the relevant genes in the risk model were investigated. Lastly, the key gene RPS17 in the risk model was identified as a potential prognostic marker and therapeutic target for further comprehensive studies. Our findings provide new insights into the prognostic treatment of CRC and offer novel perspectives for a systematic and comprehensive understanding of CRC development.
Collapse
Affiliation(s)
- Jiale Wu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Wanyu Li
- Well Lead Medical Co., Ltd., Guangzhou, 511434, Guangdong, China
| | - Junyu Su
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Jiamin Zheng
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Yanwen Liang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Jiansuo Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Bilian Xu
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China.
| | - Yi Liu
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China.
| |
Collapse
|
107
|
Cervantes-Villagrana RD, Mendoza V, Hinck CS, de la Fuente-León RL, Hinck AP, Reyes-Cruz G, Vázquez-Prado J, López-Casillas F. Betaglycan sustains HGF/Met signaling in lung cancer and endothelial cells promoting cell migration and tumor growth. Heliyon 2024; 10:e30520. [PMID: 38756586 PMCID: PMC11096750 DOI: 10.1016/j.heliyon.2024.e30520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
Persistent HGF/Met signaling drives tumor growth and dissemination. Proteoglycans within the tumor microenvironment might control HGF availability and signaling by affecting its accessibility to Met (HGF receptor), likely defining whether acute or sustained HGF/Met signaling cues take place. Given that betaglycan (BG, also known as type III TGFβ receptor or TGFBR3), a multi-faceted proteoglycan TGFβ co-receptor, can be found within the tumor microenvironment, we addressed its hypothetical role in oncogenic HGF signaling. We found that HGF/Met promotes lung cancer and endothelial cells migration via PI3K and mTOR. This effect was enhanced by recombinant soluble betaglycan (solBG) via a mechanism attributable to its glycosaminoglycan chains, as a mutant without them did not modulate HGF effects. Moreover, soluble betaglycan extended the effect of HGF-induced phosphorylation of Met, Akt, and Erk, and membrane recruitment of the RhoGEF P-Rex1. Data-mining analysis of lung cancer patient datasets revealed a significant correlation between high MET receptor, HGF, and PREX1 expression and reduced patient survival. Soluble betaglycan showed biochemical interaction with HGF and, together, they increased tumor growth in immunocompetent mice. In conclusion, the oncogenic properties of the HGF/Met pathway are enhanced and sustained by GAG-containing soluble betaglycan.
Collapse
Affiliation(s)
| | - Valentín Mendoza
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Cynthia S. Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Andrew P. Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | - Fernando López-Casillas
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
108
|
Sukocheva OA, Neganova ME, Aleksandrova Y, Burcher JT, Chugunova E, Fan R, Tse E, Sethi G, Bishayee A, Liu J. Signaling controversy and future therapeutical perspectives of targeting sphingolipid network in cancer immune editing and resistance to tumor necrosis factor-α immunotherapy. Cell Commun Signal 2024; 22:251. [PMID: 38698424 PMCID: PMC11064425 DOI: 10.1186/s12964-024-01626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/21/2024] [Indexed: 05/05/2024] Open
Abstract
Anticancer immune surveillance and immunotherapies trigger activation of cytotoxic cytokine signaling, including tumor necrosis factor-α (TNF-α) and TNF-related apoptosis-inducing ligand (TRAIL) pathways. The pro-inflammatory cytokine TNF-α may be secreted by stromal cells, tumor-associated macrophages, and by cancer cells, indicating a prominent role in the tumor microenvironment (TME). However, tumors manage to adapt, escape immune surveillance, and ultimately develop resistance to the cytotoxic effects of TNF-α. The mechanisms by which cancer cells evade host immunity is a central topic of current cancer research. Resistance to TNF-α is mediated by diverse molecular mechanisms, such as mutation or downregulation of TNF/TRAIL receptors, as well as activation of anti-apoptotic enzymes and transcription factors. TNF-α signaling is also mediated by sphingosine kinases (SphK1 and SphK2), which are responsible for synthesis of the growth-stimulating phospholipid, sphingosine-1-phosphate (S1P). Multiple studies have demonstrated the crucial role of S1P and its transmembrane receptors (S1PR) in both the regulation of inflammatory responses and progression of cancer. Considering that the SphK/S1P/S1PR axis mediates cancer resistance, this sphingolipid signaling pathway is of mechanistic significance when considering immunotherapy-resistant malignancies. However, the exact mechanism by which sphingolipids contribute to the evasion of immune surveillance and abrogation of TNF-α-induced apoptosis remains largely unclear. This study reviews mechanisms of TNF-α-resistance in cancer cells, with emphasis on the pro-survival and immunomodulatory effects of sphingolipids. Inhibition of SphK/S1P-linked pro-survival branch may facilitate reactivation of the pro-apoptotic TNF superfamily effects, although the role of SphK/S1P inhibitors in the regulation of the TME and lymphocyte trafficking should be thoroughly assessed in future studies.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia.
| | - Margarita E Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Jack T Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Elena Chugunova
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Ruitai Fan
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Edmund Tse
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| | - Junqi Liu
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
109
|
Chen XY, Cheng AY, Wang ZY, Jin JM, Lin JY, Wang B, Guan YY, Zhang H, Jiang YX, Luan X, Zhang LJ. Dbl family RhoGEFs in cancer: different roles and targeting strategies. Biochem Pharmacol 2024; 223:116141. [PMID: 38499108 DOI: 10.1016/j.bcp.2024.116141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/06/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Small Ras homologous guanosine triphosphatase (Rho GTPase) family proteins are highly associated with tumorigenesis and development. As intrinsic exchange activity regulators of Rho GTPases, Rho guanine nucleotide exchange factors (RhoGEFs) have been demonstrated to be closely involved in tumor development and received increasing attention. They mainly contain two families: the diffuse B-cell lymphoma (Dbl) family and the dedicator of cytokinesis (Dock) family. More and more emphasis has been paid to the Dbl family members for their abnormally high expression in various cancers and their correlation to poor prognosis. In this review, the common and distinctive structures of Dbl family members are discussed, and their roles in cancer are summarized with a focus on Ect2, Tiam1/2, P-Rex1/2, Vav1/2/3, Trio, KALRN, and LARG. Significantly, the strategies targeting Dbl family RhoGEFs are highlighted as novel therapeutic opportunities for cancer.
Collapse
Affiliation(s)
- Xin-Yi Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ao-Yu Cheng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zi-Ying Wang
- School of Biological Engineering, Tianjin University of Science&Technology, Tianjin 301617, China
| | - Jin-Mei Jin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jia-Yi Lin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bei Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying-Yun Guan
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Hao Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi-Xin Jiang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Li-Jun Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
110
|
Gao Y, Cai X, Zou W, Tang X, Jiang L, Hao J, Zheng Y, Ye X, Ying T, Li A. Self-supplying Cu 2+ and H 2O 2 synergistically enhancing disulfiram-mediated melanoma chemotherapy. RSC Adv 2024; 14:13180-13189. [PMID: 38655468 PMCID: PMC11036371 DOI: 10.1039/d4ra01075b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
Disulfiram (DSF) can target and kill cancer cells by disrupting cellular degradation of extruded proteins and has therefore received particular attention for its tumor chemotherapeutic potential. However, the uncontrollable Cu2+/DSF ratio reduces the efficacy of DSF-mediated chemotherapy. Herein, self-supplying Cu2+ and oxidative stress synergistically enhanced DSF-mediated chemotherapy is proposed for melanoma-based on PVP-coated CuO2 nanodots (CPNDs). Once ingested, DSF is broken down to diethyldithiocarbamate (DTC), which is delivered into a tumor via the circulation. Under the acidic tumor microenvironment, CPNDs produce sufficient Cu2+ and H2O2. DTC readily chelates Cu2+ ions to generate CuET, which shows antitumor efficacy. CuET-mediated chemotherapy can be enhanced by H2O2. Sufficient Cu2+ generation can guarantee the maximum efficacy of DSF-mediated chemotherapy. Furthermore, released Cu2+ can be reduced to Cu+ by glutathione (GSH) and O2- in tumor cells, and Cu+ can react with H2O2 to generate toxic hydroxyl radicals (·OH) via a Fenton-like reaction, promoting the efficacy of CuET. Therefore, this study hypothesizes that employing CPNDs instead of Cu2+ ions could enhance DSF-mediated melanoma chemotherapy, providing a simple but efficient strategy for achieving chemotherapeutic efficacy.
Collapse
Affiliation(s)
- Yingqian Gao
- Department of Ultrasound in Medicine, The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
- Department of Ultrasound in Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University Nanjing Jiangsu China
| | - Xiaojun Cai
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Weijuan Zou
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Xiuzhen Tang
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Lixian Jiang
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Junnian Hao
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yuanyi Zheng
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Xinhua Ye
- Department of Ultrasound in Medicine, The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| | - Tao Ying
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Ao Li
- Department of Ultrasound in Medicine, The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| |
Collapse
|
111
|
Tao C, Li Y, An N, Liu H, Liu Z, Sun Y, Qian Y, Li N, Xing Y, Gao Y. Pathological mechanisms and future therapeutic directions of thrombin in intracerebral hemorrhage: a systematic review. Front Pharmacol 2024; 15:1293428. [PMID: 38698822 PMCID: PMC11063263 DOI: 10.3389/fphar.2024.1293428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/05/2024] [Indexed: 05/05/2024] Open
Abstract
Intracerebral hemorrhage (ICH), a common subtype of hemorrhagic stroke, often causes severe disability or death. ICH induces adverse events that might lead to secondary brain injury (SBI), and there is currently a lack of specific effective treatment strategies. To provide a new direction for SBI treatment post-ICH, the systematic review discussed how thrombin impacts secondary injury after ICH through several potentially deleterious or protective mechanisms. We included 39 studies and evaluated them using SYRCLE's ROB tool. Subsequently, we explored the potential molecular mechanisms of thrombin-mediated effects on SBI post-ICH in terms of inflammation, iron deposition, autophagy, and angiogenesis. Furthermore, we described the effects of thrombin in endothelial cells, astrocytes, pericytes, microglia, and neurons, as well as the harmful and beneficial effects of high and low thrombin concentrations on ICH. Finally, we concluded the current research status of thrombin therapy for ICH, which will provide a basis for the future clinical application of thrombin in the treatment of ICH.
Collapse
Affiliation(s)
- Chenxi Tao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanyuan Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Na An
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Haoqi Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhenhong Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Yikun Sun
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Qian
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Na Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yanwei Xing
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
112
|
Bommareddy PK, Wakimoto H, Martuza RL, Kaufman HL, Rabkin SD, Saha D. Oncolytic herpes simplex virus expressing IL-2 controls glioblastoma growth and improves survival. J Immunother Cancer 2024; 12:e008880. [PMID: 38599661 PMCID: PMC11015300 DOI: 10.1136/jitc-2024-008880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM), a highly immunosuppressive and often fatal primary brain tumor, lacks effective treatment options. GBMs contain a subpopulation of GBM stem-like cells (GSCs) that play a central role in tumor initiation, progression, and treatment resistance. Oncolytic viruses, especially oncolytic herpes simplex virus (oHSV), replicate selectively in cancer cells and trigger antitumor immunity-a phenomenon termed the "in situ vaccine" effect. Although talimogene laherparepvec (T-VEC), an oHSV armed with granulocyte macrophage-colony stimulating factor (GM-CSF), is Food and Drug Administration (FDA)-approved for melanoma, its use in patients with GBM has not been reported. Interleukin 2 (IL-2) is another established immunotherapy that stimulates T cell growth and orchestrates antitumor responses. IL-2 is FDA-approved for melanoma and renal cell carcinoma but has not been widely evaluated in GBM, and IL-2 treatment is limited by its short half-life, minimal tumor accumulation, and significant systemic toxicity. We hypothesize that local intratumoral expression of IL-2 by an oHSV would avoid the systemic IL-2-related therapeutic drawbacks while simultaneously producing beneficial antitumor immunity. METHODS We developed G47Δ-mIL2 (an oHSV expressing IL-2) using the flip-flop HSV BAC system to deliver IL-2 locally within the tumor microenvironment (TME). We then tested its efficacy in orthotopic mouse GBM models (005 GSC, CT-2A, and GL261) and evaluated immune profiles in the treated tumors and spleens by flow cytometry and immunohistochemistry. RESULTS G47Δ-mIL2 significantly prolonged median survival without any observable systemic IL-2-related toxicity in the 005 and CT-2A models but not in the GL261 model due to the non-permissive nature of GL261 cells to HSV infection. The therapeutic activity of G47Δ-mIL2 in the 005 GBM model was associated with increased intratumoral infiltration of CD8+ T cells, critically dependent on the release of IL-2 within the TME, and CD4+ T cells as their depletion completely abrogated therapeutic efficacy. The use of anti-PD-1 immune checkpoint blockade did not improve the therapeutic outcome of G47Δ-mIL2. CONCLUSIONS Our findings illustrate that G47Δ-mIL2 is efficacious, stimulates antitumor immunity against orthotopic GBM, and may also target GSC. OHSV expressing IL-2 may represent an agent that merits further exploration in patients with GBM.
Collapse
Affiliation(s)
- Praveen K Bommareddy
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Brain Tumor Research Center, Boston, Massachusetts, USA
- Cancer Institute of New Jersey (CINJ), New Brunswick, New Jersey, USA
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Brain Tumor Research Center, Boston, Massachusetts, USA
| | - Robert L Martuza
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Brain Tumor Research Center, Boston, Massachusetts, USA
| | - Howard L Kaufman
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Brain Tumor Research Center, Boston, Massachusetts, USA
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Samuel D Rabkin
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Brain Tumor Research Center, Boston, Massachusetts, USA
| | - Dipongkor Saha
- Department of Pharmaceutical and Biomedical Sciences, California Northstate University College of Pharmacy, Elk Grove, California, USA
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center School of Pharmacy, Abilene, Texas, USA
| |
Collapse
|
113
|
Li G, Tanaka T, Ouchida T, Kaneko MK, Suzuki H, Kato Y. Cx 1Mab-1: A Novel Anti-mouse CXCR1 Monoclonal Antibody for Flow Cytometry. Monoclon Antib Immunodiagn Immunother 2024; 43:59-66. [PMID: 38593439 DOI: 10.1089/mab.2023.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
The C-X-C motif chemokine receptor-1 (CXCR1) is a rhodopsin-like G-protein-coupled receptor, expressed on the cell surface of immune cells and tumors. CXCR1 interacts with some C-X-C chemokines, such as CXCL6, CXCL7, and CXCL8/interleukin-8, which are produced by various cells. Since CXCR1 is involved in several diseases including tumors and diabetes mellitus, drugs targeting CXCR1 have been developed. Therefore, the development of sensitive monoclonal antibodies (mAbs) for CXCR1 has been desired for the diagnosis and treatment. This study established a novel anti-mouse CXCR1 (mCXCR1) mAb, Cx1Mab-1 (rat IgG1, kappa), using the Cell-Based Immunization and Screening method. Cx1Mab-1 reacted with mCXCR1-overexpressed Chinese hamster ovary-K1 (CHO/mCXCR1) and mCXCR1-overexpressed LN229 glioblastoma (LN229/mCXCR1) in flow cytometry. Cx1Mab-1 demonstrated a high binding affinity for CHO/mCXCR1 and LN229/mCXCR1 with a dissociation constant of 2.6 × 10-9 M and 2.1 × 10-8 M, respectively. Furthermore, Cx1Mab-1 could detect mCXCR1 by Western blot analysis. These results indicated that Cx1Mab-1 is useful for detecting mCXCR1, and provides a possibility for targeting mCXCR1-expressing cells in vivo experiments.
Collapse
Affiliation(s)
- Guanjie Li
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tsunenori Ouchida
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
114
|
Dekker PM, Boeren S, Saccenti E, Hettinga KA. Network analysis of the proteome and peptidome sheds light on human milk as a biological system. Sci Rep 2024; 14:7569. [PMID: 38555284 PMCID: PMC10981717 DOI: 10.1038/s41598-024-58127-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/26/2024] [Indexed: 04/02/2024] Open
Abstract
Proteins and peptides found in human milk have bioactive potential to benefit the newborn and support healthy development. Research has been carried out on the health benefits of proteins and peptides, but many questions still need to be answered about the nature of these components, how they are formed, and how they end up in the milk. This study explored and elucidated the complexity of the human milk proteome and peptidome. Proteins and peptides were analyzed with non-targeted nanoLC-Orbitrap-MS/MS in a selection of 297 milk samples from the CHILD Cohort Study. Protein and peptide abundances were determined, and a network was inferred using Gaussian graphical modeling (GGM), allowing an investigation of direct associations. This study showed that signatures of (1) specific mechanisms of transport of different groups of proteins, (2) proteolytic degradation by proteases and aminopeptidases, and (3) coagulation and complement activation are present in human milk. These results show the value of an integrated approach in evaluating large-scale omics data sets and provide valuable information for studies that aim to associate protein or peptide profiles from biofluids such as milk with specific physiological characteristics.
Collapse
Affiliation(s)
- Pieter M Dekker
- Food Quality and Design Group, Wageningen University and Research, Wageningen, 6708 WE, The Netherlands
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, 6708 WE, The Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, 6708 WE, The Netherlands
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, 6708 WE, The Netherlands
| | - Kasper A Hettinga
- Food Quality and Design Group, Wageningen University and Research, Wageningen, 6708 WE, The Netherlands.
| |
Collapse
|
115
|
Abcouwer SF, Miglioranza Scavuzzi B, Kish PE, Kong D, Shanmugam S, Le XA, Yao J, Hager H, Zacks DN. The mouse retinal pigment epithelium mounts an innate immune defense response following retinal detachment. J Neuroinflammation 2024; 21:74. [PMID: 38528525 PMCID: PMC10964713 DOI: 10.1186/s12974-024-03062-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024] Open
Abstract
The retinal pigment epithelium (RPE) maintains photoreceptor viability and function, completes the visual cycle, and forms the outer blood-retinal barrier (oBRB). Loss of RPE function gives rise to several monogenic retinal dystrophies and contributes to age-related macular degeneration. Retinal detachment (RD) causes separation of the neurosensory retina from the underlying RPE, disrupting the functional and metabolic relationships between these layers. Although the retinal response to RD is highly studied, little is known about how the RPE responds to loss of this interaction. RNA sequencing (RNA-Seq) was used to compare normal and detached RPE in the C57BL6/J mouse. The naïve mouse RPE transcriptome was compared to previously published RPE signature gene lists and from the union of these 14 genes (Bmp4, Crim1, Degs1, Gja1, Itgav, Mfap3l, Pdpn, Ptgds, Rbp1, Rnf13, Rpe65, Slc4a2, Sulf1 and Ttr) representing a core signature gene set applicable across rodent and human RPE was derived. Gene ontology enrichment analysis (GOEA) of the mouse RPE transcriptome identified expected RPE features and functions, such as pigmentation, phagocytosis, lysosomal and proteasomal degradation of proteins, and barrier function. Differentially expressed genes (DEG) at 1 and 7 days post retinal detachment (dprd) were defined as mRNA with a significant (padj≤0.05) fold change (FC) of 0.67 ≥ FC ≥ 1.5 in detached versus naïve RPE. The RPE transcriptome exhibited dramatic changes at 1 dprd, with 2297 DEG identified. The KEGG pathways and biological process GO groups related to innate immune responses were significantly enriched. Lipocalin 2 (Lcn2) and several chemokines were upregulated, while numerous genes related to RPE functions, such as pigment synthesis, visual cycle, phagocytosis, and tight junctions were downregulated at 1 dprd. The response was largely transient, with only 18 significant DEG identified at 7 dprd, including upregulation of complement gene C4b. Validation studies confirmed RNA-Seq results. Thus, the RPE quickly downregulates cell-specific functions and mounts an innate immune defense response following RD. Our data demonstrate that the RPE contributes to the inflammatory response to RD and may play a role in attraction of immune cells to the subretinal space.
Collapse
Affiliation(s)
- Steven F Abcouwer
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medicine, 1000 Wall Street, Ann Arbor, MI, 48105, USA.
| | - Bruna Miglioranza Scavuzzi
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medicine, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Phillip E Kish
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medicine, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Dejuan Kong
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medicine, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Sumathi Shanmugam
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medicine, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Xuan An Le
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medicine, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Jingyu Yao
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medicine, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Heather Hager
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medicine, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - David N Zacks
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medicine, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| |
Collapse
|
116
|
Ouyang P, Wang L, Wu J, Tian Y, Chen C, Li D, Yao Z, Chen R, Xiang G, Gong J, Bao Z. Overcoming cold tumors: a combination strategy of immune checkpoint inhibitors. Front Immunol 2024; 15:1344272. [PMID: 38545114 PMCID: PMC10965539 DOI: 10.3389/fimmu.2024.1344272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/26/2024] [Indexed: 04/12/2024] Open
Abstract
Immune Checkpoint Inhibitors (ICIs) therapy has advanced significantly in treating malignant tumors, though most 'cold' tumors show no response. This resistance mainly arises from the varied immune evasion mechanisms. Hence, understanding the transformation from 'cold' to 'hot' tumors is essential in developing effective cancer treatments. Furthermore, tumor immune profiling is critical, requiring a range of diagnostic techniques and biomarkers for evaluation. The success of immunotherapy relies on T cells' ability to recognize and eliminate tumor cells. In 'cold' tumors, the absence of T cell infiltration leads to the ineffectiveness of ICI therapy. Addressing these challenges, especially the impairment in T cell activation and homing, is crucial to enhance ICI therapy's efficacy. Concurrently, strategies to convert 'cold' tumors into 'hot' ones, including boosting T cell infiltration and adoptive therapies such as T cell-recruiting bispecific antibodies and Chimeric Antigen Receptor (CAR) T cells, are under extensive exploration. Thus, identifying key factors that impact tumor T cell infiltration is vital for creating effective treatments targeting 'cold' tumors.
Collapse
Affiliation(s)
- Peng Ouyang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Lijuan Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Jianlong Wu
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yao Tian
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Caiyun Chen
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Dengsheng Li
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Zengxi Yao
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Ruichang Chen
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Guoan Xiang
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Jin Gong
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Zhen Bao
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
117
|
Chen Q, Liu Y, Zhu Y, Zhu Z, Zou J, Pan Y, Lu Y, Chen W. Cryptotanshinone inhibits PFK-mediated aerobic glycolysis by activating AMPK pathway leading to blockade of cutaneous melanoma. Chin Med 2024; 19:45. [PMID: 38454519 PMCID: PMC10921599 DOI: 10.1186/s13020-024-00913-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/24/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Cutaneous melanoma is a kind of skin malignancy with low morbidity but high mortality. Cryptotanshinone (CPT), an important component of salvia miltiorrhiza has potent anti-tumor activity and also indicates therapeutic effect on dermatosis. So we thought that CPT maybe a potential agent for therapy of cutaneous melanoma. METHODS B16F10 and A375 melanoma cells were used for in vitro assay. Tumor graft models were made in C57BL/6N and BALB/c nude mice for in vivo assay. Seahorse XF Glycolysis Stress Test Kit was used to detect extracellular acidification rate and oxygen consumption rate. Si-RNAs were used for knocking down adenosine monophosphate-activated protein kinase (AMPK) expression in melanoma cells. RESULTS CPT could inhibit the proliferation of melanoma cells. Meanwhile, CPT changed the glucose metabolism and inhibited phosphofructokinase (PFK)-mediated glycolysis in melanoma cells to a certain extent. Importantly, CPT activated AMPK and inhibited the expression of hypoxia inducible factor 1α (HIF-1α). Both AMPK inhibitor and silencing AMPK could partially reverse CPT's effect on cell proliferation, cell apoptosis and glycolysis. Finally, in vivo experimental data demonstrated that CPT blocked the growth of melanoma, in which was dependent on the glycolysis-mediated cell proliferation. CONCLUSIONS CPT activated AMPK and then inhibited PFK-mediated aerobic glycolysis leading to inhibition of growth of cutaneous melanoma. CPT should be a promising anti-melanoma agent for clinical melanoma therapy.
Collapse
Affiliation(s)
- Qiong Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yang Liu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yunxuan Zhu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ziyan Zhu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jueyao Zou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yanhong Pan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Department of Pharmacy, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China.
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing, China.
| | - Wenxing Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China.
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing, China.
| |
Collapse
|
118
|
Dasari N, Guntuku GS, Pindiprolu SKSS. Targeting triple negative breast cancer stem cells using nanocarriers. DISCOVER NANO 2024; 19:41. [PMID: 38453756 PMCID: PMC10920615 DOI: 10.1186/s11671-024-03985-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Breast cancer is a complex and heterogeneous disease, encompassing various subtypes characterized by distinct molecular features, clinical behaviors, and treatment responses. Categorization of subtypes is based on the presence or absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), leading to subtypes such as luminal A, luminal B, HER2-positive, and triple-negative breast cancer (TNBC). TNBC, comprising around 20% of all breast cancers, lacks expression of ER, PR, and HER2 receptors, rendering it unresponsive to targeted therapies and presenting significant challenges in treatment. TNBC is associated with aggressive behavior, high rates of recurrence, and resistance to chemotherapy. Tumor initiation, progression, and treatment resistance in TNBC are attributed to breast cancer stem cells (BCSCs), which possess self-renewal, differentiation, and tumorigenic potential. Surface markers, self-renewal pathways (Notch, Wnt, Hedgehog signaling), apoptotic protein (Bcl-2), angiogenesis inhibition (VEGF inhibitors), and immune modulation (cytokines, immune checkpoint inhibitors) are among the key targets discussed in this review. However, targeting the BCSC subpopulation in TNBC presents challenges, including off-target effects, low solubility, and bioavailability of anti-BCSC agents. Nanoparticle-based therapies offer a promising approach to target various molecular pathways and cellular processes implicated in survival of BSCS in TNBC. In this review, we explore various nanocarrier-based approaches for targeting BCSCs in TNBC, aiming to overcome these challenges and improve treatment outcomes for TNBC patients. These nanoparticle-based therapeutic strategies hold promise for addressing the therapeutic gap in TNBC treatment by delivering targeted therapies to BCSCs while minimizing systemic toxicity and enhancing treatment efficacy.
Collapse
Affiliation(s)
- Nagasen Dasari
- Andhra University College of Pharmaceutical Sciences, Andhra University, Vishakhapatnam, Andhra Pradesh, India.
- Aditya Pharmacy College, Surampalem, Andhra Pradesh, India.
- Jawaharlal Nehru Technological University, Kakinada, Andhra Pradesh, India.
| | - Girija Sankar Guntuku
- Andhra University College of Pharmaceutical Sciences, Andhra University, Vishakhapatnam, Andhra Pradesh, India
| | - Sai Kiran S S Pindiprolu
- Aditya Pharmacy College, Surampalem, Andhra Pradesh, India
- Jawaharlal Nehru Technological University, Kakinada, Andhra Pradesh, India
| |
Collapse
|
119
|
Li X, Zheng S, Feng Z, Liu X, Ding Y, Zhang L, Zhang G, Liu M, Zhu H, Jia H. Serum proteomics analysis of drug-naïve patients with generalised anxiety disorder: Tandem mass tags and multiple reaction monitoring. World J Biol Psychiatry 2024; 25:188-199. [PMID: 38247046 DOI: 10.1080/15622975.2023.2301064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024]
Abstract
OBJECTIVES The prevalence of generalised anxiety disorder (GAD) is high. However, the underlying mechanisms remain elusive. Proteomics techniques can be employed to assess the pathological mechanisms involved in GAD. METHODS Twenty-two drug-naive GAD patients were recruited, their serum samples were used for protein quantification and identified using Tandem Mass Tag and Multiple Reaction Monitoring (MRM). Machine learning models were employed to construct predictive models for disease occurrence by using clinical scores and target proteins as input variables. RESULTS A total of 991 proteins were differentially expressed between GAD and healthy participants. Gene Ontology analysis revealed that these proteins were significantly associated with stress response and biological regulation, suggesting a significant implication in anxiety disorders. MRM validation revealed evident disparities in 12 specific proteins. The machine learning model found a set of five proteins accurately predicting the occurrence of the disease at a rate of 87.5%, such as alpha 1B-glycoprotein, complement component 4 A, transferrin, V3-3, and defensin alpha 1. These proteins had a functional association with immune inflammation. CONCLUSIONS The development of generalised anxiety disorder might be closely linked to the immune inflammatory stress response.
Collapse
Affiliation(s)
- Xue Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Sisi Zheng
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Zhengtian Feng
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xinzi Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Ying Ding
- Hangzhou Seventh People's Hospital, Zhejiang, China
| | - Lina Zhang
- Hangzhou Seventh People's Hospital, Zhejiang, China
| | - Guofu Zhang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Min Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Hong Zhu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Hongxiao Jia
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
120
|
Liu Z, Shi Z, Deng Y. Clinical features and biomarker differences of severe intrinsic and extrinsic atopic dermatitis. Cutan Ocul Toxicol 2024; 43:97-103. [PMID: 38258428 DOI: 10.1080/15569527.2023.2300782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024]
Abstract
OBJECTIVES Atopic dermatitis (AD) can be classified into intrinsic AD(IAD) and extrinsic AD(EAD). However, the differences in clinical features and pathogenesis between these two subtypes of AD are currently unclear. This study aimed to analyse the differences in clinical features and peripheral blood biomarkers between Chinese patients with severe IAD and EAD in order to elucidate the physiopathogenesis of AD. MATERIALS AND METHODS A total of 316 hospitalised patients definitively diagnosed with severe AD were included in this study. There were 72 cases of severe IAD and 244 cases of severe EAD. The clinical features of the patients were recorded in details. Serum total IgE, IgA, IgG, IgM, complementC3/C4, peripheral blood cell counts, lactate dehydrogenase (LDH), C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), IL-2R, IL-6, IL-8, and TNF-α in AD patients and 60 age-matched healthy controls were analysed. IAD and EAD had similar severity/Scoring Atopic Dermatitis (SCORAD) scores. RESULTS Compared with healthy controls, IAD patients had significantly higher total IgE, eosinophils, monocytes, LDH, CRP, IL-2R, IL-6, IL-8 and TNF-α, and lower IgM and C4. EAD patients had significantly higher total IgE, IgA, eosinophils, white blood cell (WBC) counts, neutrophils, monocytes, basophils, LDH, CRP, IL-2R, IL-6, IL-8, TNF-α and lower IgM than healthy controls. IAD patients had a higher percentage of rural/urban living and female/male, a shorter course of disease and lower total IgE, eosinophils, WBC counts, neutrophils, monocytes, basophils, LDH, IgG and C4 than EAD patients. SCORAD scores, eosinophils, LDH expression levels increased with total IgE uniquely in patients with EAD. CONCLUSIONS IAD and EAD exhibit specific clinical features and molecular changes. IAD has a more complex physiopathogenesis, and deserves further investigation.
Collapse
Affiliation(s)
- Zhong Liu
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Dermatology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeqi Shi
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunhua Deng
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
121
|
Zhong S, Borlak J. Sex differences in the tumor promoting effects of tobacco smoke in a cRaf transgenic lung cancer disease model. Arch Toxicol 2024; 98:957-983. [PMID: 38245882 PMCID: PMC10861769 DOI: 10.1007/s00204-023-03671-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024]
Abstract
Tobacco smoke (TS) is the leading cause for lung cancer (LC), and female smokers are at a greater risk for LC. Yet, the underlying causes are unknown. We performed whole genome scans in TS exposed wild type and histologically characterized tumor lesions of cRaf transgenic mice. We constructed miRNA-gene and transcription factor-miRNA/gene regulatory networks and determined sex-specific gene regulations by evaluating hormone receptor activities. We validated the findings from TS exposed cRaf mice in a large cohort of smoking and never-smoking LC patients. When compared to males, TS prompted a sevenfold increase in tumor multiplicity in cRaf females. Genome-wide scans of tumor lesions identified 161 and 53 genes and miRNAs, which code for EGFR/MAPK signaling, cell proliferation, oncomirs and oncogenes, and 50% of DEGs code for immune response and tumor evasion. Outstandingly, in transgenic males, TS elicited upregulation of 20 tumor suppressors, some of which are the targets of the androgen and estrogen receptor. Conversely, in females, 18 tumor suppressors were downregulated, and five were specifically repressed by the estrogen receptor. We found TS to perturb the circadian clock in a sex-specific manner and identified a female-specific regulatory loop that consisted of the estrogen receptor, miR-22-3p and circadian genes to support LC growth. Finally, we confirmed sex-dependent tumor promoting effects of TS in a large cohort of LC patients. Our study highlights the sex-dependent genomic responses to TS and the interplay of circadian clock genes and hormone receptors in the regulation of oncogenes and oncomirs in LC growth.
Collapse
Affiliation(s)
- Shen Zhong
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
122
|
Kazanietz MG, Cooke M. Protein kinase C signaling "in" and "to" the nucleus: Master kinases in transcriptional regulation. J Biol Chem 2024; 300:105692. [PMID: 38301892 PMCID: PMC10907189 DOI: 10.1016/j.jbc.2024.105692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
PKC is a multifunctional family of Ser-Thr kinases widely implicated in the regulation of fundamental cellular functions, including proliferation, polarity, motility, and differentiation. Notwithstanding their primary cytoplasmic localization and stringent activation by cell surface receptors, PKC isozymes impel prominent nuclear signaling ultimately impacting gene expression. While transcriptional regulation may be wielded by nuclear PKCs, it most often relies on cytoplasmic phosphorylation events that result in nuclear shuttling of PKC downstream effectors, including transcription factors. As expected from the unique coupling of PKC isozymes to signaling effector pathways, glaring disparities in gene activation/repression are observed upon targeting individual PKC family members. Notably, specific PKCs control the expression and activation of transcription factors implicated in cell cycle/mitogenesis, epithelial-to-mesenchymal transition and immune function. Additionally, PKCs isozymes tightly regulate transcription factors involved in stepwise differentiation of pluripotent stem cells toward specific epithelial, mesenchymal, and hematopoietic cell lineages. Aberrant PKC expression and/or activation in pathological conditions, such as in cancer, leads to profound alterations in gene expression, leading to an extensive rewiring of transcriptional networks associated with mitogenesis, invasiveness, stemness, and tumor microenvironment dysregulation. In this review, we outline the current understanding of PKC signaling "in" and "to" the nucleus, with significant focus on established paradigms of PKC-mediated transcriptional control. Dissecting these complexities would allow the identification of relevant molecular targets implicated in a wide spectrum of diseases.
Collapse
Affiliation(s)
- Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
123
|
Alvarez I, Ducatez M, Guo Y, Lion A, Widgren A, Dubourdeau M, Baillif V, Saias L, Zohari S, Bergquist J, Meyer G, Valarcher JF, Hägglund S. Proteomic and Lipidomic Profiling of Calves Experimentally Co-Infected with Influenza D Virus and Mycoplasma bovis: Insights into the Host-Pathogen Interactions. Viruses 2024; 16:361. [PMID: 38543727 PMCID: PMC10975297 DOI: 10.3390/v16030361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 05/23/2024] Open
Abstract
The role of Influenza D virus (IDV) in bovine respiratory disease remains unclear. An in vivo experiment resulted in increased clinical signs, lesions, and pathogen replication in calves co-infected with IDV and Mycoplasma bovis (M. bovis), compared to single-infected calves. The present study aimed to elucidate the host-pathogen interactions and profile the kinetics of lipid mediators in the airways of these calves. Bronchoalveolar lavage (BAL) samples collected at 2 days post-infection (dpi) were used for proteomic analyses by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Additionally, lipidomic analyses were performed by LC-MS/MS on BAL samples collected at 2, 7 and 14 dpi. Whereas M. bovis induced the expression of proteins involved in fibrin formation, IDV co-infection counteracted this coagulation mechanism and downregulated other acute-phase response proteins, such as complement component 4 (C4) and plasminogen (PLG). The reduced inflammatory response against M. bovis likely resulted in increased M. bovis replication and delayed M. bovis clearance, which led to a significantly increased abundance of oxylipids in co-infected calves. The identified induced oxylipids mainly derived from arachidonic acid; were likely oxidized by COX-1, COX-2, and LOX-5; and peaked at 7 dpi. This paper presents the first characterization of BAL proteome and lipid mediator kinetics in response to IDV and M. bovis infection in cattle and raises hypotheses regarding how IDV acts as a co-pathogen in bovine respiratory disease.
Collapse
Affiliation(s)
- Ignacio Alvarez
- Division of Ruminant Medicine, Department of Clinical Sciences, Swedish University of Agriculture Sciences, 8 Almas Allé, 75007 Uppsala, Sweden (J.-F.V.); (S.H.)
| | - Mariette Ducatez
- IHAP, Université de Tolouse, INRAE, ENVT, 31076 Toulouse, France
| | - Yongzhi Guo
- Division of Ruminant Medicine, Department of Clinical Sciences, Swedish University of Agriculture Sciences, 8 Almas Allé, 75007 Uppsala, Sweden (J.-F.V.); (S.H.)
| | - Adrien Lion
- IHAP, Université de Tolouse, INRAE, ENVT, 31076 Toulouse, France
| | - Anna Widgren
- Department of Chemistry-BMC, Analytical Chemistry and Neurochemistry, Uppsala University, Husargatan 3, 75124 Uppsala, Sweden; (A.W.); (J.B.)
| | | | | | - Laure Saias
- Ambiotis SAS, 3 Rue des Satellites, 31400 Toulouse, France
| | - Siamak Zohari
- Department of Microbiology, Swedish Veterinary Agency, Ullsvägen 2B, 75189 Uppsala, Sweden;
| | - Jonas Bergquist
- Department of Chemistry-BMC, Analytical Chemistry and Neurochemistry, Uppsala University, Husargatan 3, 75124 Uppsala, Sweden; (A.W.); (J.B.)
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Ulls väg 26, 75007 Uppsala, Sweden
| | - Gilles Meyer
- IHAP, Université de Tolouse, INRAE, ENVT, 31076 Toulouse, France
| | - Jean-Francois Valarcher
- Division of Ruminant Medicine, Department of Clinical Sciences, Swedish University of Agriculture Sciences, 8 Almas Allé, 75007 Uppsala, Sweden (J.-F.V.); (S.H.)
| | - Sara Hägglund
- Division of Ruminant Medicine, Department of Clinical Sciences, Swedish University of Agriculture Sciences, 8 Almas Allé, 75007 Uppsala, Sweden (J.-F.V.); (S.H.)
| |
Collapse
|
124
|
Oliveira MM, Mohamed M, Elder MK, Banegas-Morales K, Mamcarz M, Lu EH, Golhan EAN, Navrange N, Chatterjee S, Abel T, Klann E. The integrated stress response effector GADD34 is repurposed by neurons to promote stimulus-induced translation. Cell Rep 2024; 43:113670. [PMID: 38219147 PMCID: PMC10964249 DOI: 10.1016/j.celrep.2023.113670] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/11/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024] Open
Abstract
Neuronal protein synthesis is required for long-lasting plasticity and long-term memory consolidation. Dephosphorylation of eukaryotic initiation factor 2α is one of the key translational control events that is required to increase de novo protein synthesis that underlies long-lasting plasticity and memory consolidation. Here, we interrogate the molecular pathways of translational control that are triggered by neuronal stimulation with brain-derived neurotrophic factor (BDNF), which results in eukaryotic initiation factor 2α (eIF2α) dephosphorylation and increases in de novo protein synthesis. Primary rodent neurons exposed to BDNF display elevated translation of GADD34, which facilitates eIF2α dephosphorylation and subsequent de novo protein synthesis. Furthermore, GADD34 requires G-actin generated by cofilin to dephosphorylate eIF2α and enhance protein synthesis. Finally, GADD34 is required for BDNF-induced translation of synaptic plasticity-related proteins. Overall, we provide evidence that neurons repurpose GADD34, an effector of the integrated stress response, as an orchestrator of rapid increases in eIF2-dependent translation in response to plasticity-inducing stimuli.
Collapse
Affiliation(s)
| | - Muhaned Mohamed
- Center for Neural Science, New York University, New York, NY, USA
| | - Megan K Elder
- Center for Neural Science, New York University, New York, NY, USA
| | | | - Maggie Mamcarz
- Center for Neural Science, New York University, New York, NY, USA
| | - Emily H Lu
- Center for Neural Science, New York University, New York, NY, USA
| | - Ela A N Golhan
- Center for Neural Science, New York University, New York, NY, USA
| | - Nishika Navrange
- Center for Neural Science, New York University, New York, NY, USA
| | - Snehajyoti Chatterjee
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY, USA; NYU Neuroscience Institute, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
125
|
Paul K, Restoux G, Phocas F. Genome-wide detection of positive and balancing signatures of selection shared by four domesticated rainbow trout populations (Oncorhynchus mykiss). Genet Sel Evol 2024; 56:13. [PMID: 38389056 PMCID: PMC10882880 DOI: 10.1186/s12711-024-00884-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Evolutionary processes leave footprints along the genome over time. Highly homozygous regions may correspond to positive selection of favorable alleles, while maintenance of heterozygous regions may be due to balancing selection phenomena. We analyzed data from 176 fish from four disconnected domestic rainbow trout populations that were genotyped using a high-density Axiom Trout genotyping 665K single nucleotide polymorphism array, including 20 from the US and 156 from three French lines. Using methods based on runs of homozygosity and extended haplotype homozygosity, we detected signatures of selection in these four populations. RESULTS Nine genomic regions that included 253 genes were identified as being under positive selection in all four populations Most were located on chromosome 2 but also on chromosomes 12, 15, 16, and 20. In addition, four heterozygous regions that contain 29 genes that are putatively under balancing selection were also shared by the four populations. These were located on chromosomes 10, 13, and 19. Regardless of the homozygous or heterozygous nature of the regions, in each region, we detected several genes that are highly conserved among vertebrates due to their critical roles in cellular and nuclear organization, embryonic development, or immunity. We identified new candidate genes involved in rainbow trout fitness, as well as 17 genes that were previously identified to be under positive selection, 10 of which in other fishes (auts2, atp1b3, zp4, znf135, igf-1α, brd2, col9a2, mrap2, pbx1, and emilin-3). CONCLUSIONS Using material from disconnected populations of different origins allowed us to draw a genome-wide map of signatures of positive selection that are shared between these rainbow trout populations, and to identify several regions that are putatively under balancing selection. These results provide a valuable resource for future investigations of the dynamics of genetic diversity and genome evolution during domestication.
Collapse
Affiliation(s)
- Katy Paul
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Gwendal Restoux
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Florence Phocas
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.
| |
Collapse
|
126
|
Cao Q, Zhu J, Wu X, Li J, Chen Y, You Y, Li X, Huang X, Zhang Y, Li R, Han D. Efficacy and Safety Assessment of Intrathoracic Perfusion Chemotherapy Combined with immunological factor Interleukin-2 in the Treatment of Advanced Non-Small Cell Lung Cancer: A Retrospective Cohort Study. J Cancer 2024; 15:2024-2032. [PMID: 38434976 PMCID: PMC10905414 DOI: 10.7150/jca.92624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/12/2024] [Indexed: 03/05/2024] Open
Abstract
Objective: This study evaluated the efficacy and safety of the gemcitabine and oxaliplatin intrathoracic perfusion chemotherapy (IPCGOR) regimen combined with interleukin-2 (IL-2) for advanced non-small cell lung cancer (NSCLC). Methods: We conducted a retrospective analysis of 460 advanced NSCLC patients from the Yunnan Province Early Cancer Diagnosis and Treatment Project (June 2020-October 2022), assessing the IPCGOR and IL-2 combination. Outcomes were measured based on RECIST 1.1 criteria, focusing on objective response rate (ORR), disease control rate (DCR), median progression-free survival (mPFS), median overall survival (MOS), and treatment safety. Results: The treatment demonstrated an ORR of 67.4%, a DCR of 97.4%, an mPFS of 8.5 months, and an MOS of 12.5 months. 14 patients underwent successful surgery post-treatment. Common adverse reactions were manageable, with no treatment-related deaths reported. Conclusion: The IPCGOR combined with IL-2 regimen shows promising efficacy and a tolerable safety profile for advanced NSCLC. These findings suggest its potential as a reference for treating advanced NSCLC. However, the study's retrospective nature and single-center design pose limitations. Future research should focus on prospective studies, randomized controlled trials, and long-term outcome assessments, particularly in diverse patient subgroups, to further validate and refine the clinical application of this regimen.
Collapse
Affiliation(s)
- Qiang Cao
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- School of Medicine, Macau University of Science and Technology, 999078, Macau, Macao
- Department of Earth Sciences, Kunming University of Science and Technology, 650093, Kunming, China
| | - Jinyi Zhu
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Xinyan Wu
- Department of Earth Sciences, Kunming University of Science and Technology, 650093, Kunming, China
- College of Veterinary Medicine, Sichuan Agricultural University, 610000, Chengdu, China
| | - Jiapeng Li
- Undergraduate Department, University of Toronto, M2J4A6, Toronto, Canada
| | - Yuquan Chen
- Institute of Medical Information/Library, Chinese Academy of Medical Sciences, 100020 Beijing, China
| | - Yanwei You
- Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China
| | - Xiaochen Li
- Department of Earth Sciences, Kunming University of Science and Technology, 650093, Kunming, China
- The Third Affiliated Hospital of Shandong First Medical University, Jinan, 250000, Shandong, China
| | - Xufeng Huang
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Yujie Zhang
- College of Agriculture, Henan University of Science and Technology, 471023, Luoyang, China
| | - Rizhu Li
- Department of Cardiothoracic Surgery, the Affiliated Hospital of Youjiang Medical University for Nationalities, 18 zhongshan 2nd Road, Baise, Guangxi Province, China
| | - Dan Han
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
127
|
Pimenta J, Prada J, Pires I, Cotovio M. Cyclooxygenase-2 (COX-2) Expression in Equine Melanocytic Tumors. Vet Sci 2024; 11:77. [PMID: 38393095 PMCID: PMC10891553 DOI: 10.3390/vetsci11020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/27/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Equine melanocytic tumors are common and have an unusual benign behavior with low invasiveness and metastatic rates. However, tumoral mass growth is usually a concern that can have life-threatening consequences. COX-2 is related to oncogenesis, promoting neoplastic cell proliferation, invasion, and metastasis. The aim of this study was to evaluate the immunohistochemical expression of COX-2 in equine melanocytic tumors. Through extension and intensity of labeling, 39 melanocytomas and 38 melanomas were evaluated. Of the malignant tumors, 13.2% were negative and 63.2% presented a low COX-2 expression. Only 6 malignant tumors presented >50% of labeled cells, 18 malignant and 8 benign had an expression between 21 and 50%, 8 malignant and 3 benign tumors had an expression between 6 and 20%, 1 malignant tumor had an expression between 1 and 5%, and 5 malignant and 28 benign tumors had no expression. Malignant tumors showed higher COX-2 expression than did benign tumors, with statistically significant differences. The low levels of COX-2 may be one of the molecular reasons for the presence of expansive mass growth instead of the invasive pattern of other species, which is related to high COX-2 levels.
Collapse
Affiliation(s)
- José Pimenta
- CECAV—Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (M.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- CIVG—Vasco da Gama Research Center, EUVG—Vasco da Gama University School, 3020-210 Coimbra, Portugal
| | - Justina Prada
- CECAV—Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (M.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- Veterinary Sciences Department, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Isabel Pires
- CECAV—Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (M.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- Veterinary Sciences Department, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Mário Cotovio
- CECAV—Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (M.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande 376, 1749-024 Lisbon, Portugal
| |
Collapse
|
128
|
Han XY, Li HB, Wei JH, Xu XY, Li Y, Che YQ. Serological characteristics and clinical implications of IgG subclasses in visceral leishmaniasis. Trop Med Int Health 2024; 29:152-160. [PMID: 38158790 DOI: 10.1111/tmi.13960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
OBJECTIVES Visceral leishmaniasis (VL) represents the most severe form of Leishmaniasis infection, often resulting in fatality without timely treatment. Previous studies have found that immunosuppression increases the risk of VL disease progression and mortality, and the total immunoglobulin G (IgG) levels in peripheral blood vary before and after treatment. However, the distinct levels and roles of IgG subclasses in VL have not been documented yet. This study aims to elucidate the characteristics and clinical significance of IgG subclasses in VL. METHODS A total of 43 cases newly-diagnosed with VL were enrolled in the cohort. We measured the levels of IgG subclasses before and after standard treatment and conducted assessments of bone marrow features. In addition, we analysed other haematological indices and examined the variations in IgG subclasses, as well as their correlation with clinical and laboratory factors. RESULTS The levels of total IgG, IgG1, and the ratios of both IgG1/IgG and IgG1/IgG2 decreased significantly after treatment, whereas the ratios of IgG2/ IgG showed an obvious increase. The VL patients without hyperglobulinemia displayed significant lower IgG1/IgG2 ratios, but higher IgG2/IgG ratios compared with those with hyperglobulinemia. In addition, VL patients with positive bone marrow amastigotes had significant higher IgG1/IgG and IgG1/IgG2 ratios, but lower IgG2/IgG ratios. IgG subclasses were correlated with abnormal blood test results, particularly immunological elements including IgM and Complement 4 (C4). CONCLUSIONS IgG1 and IgG2 exhibited contrasting changes after treatment in VL patients. The features of bone marrow and laboratory tests indicated that IgG1 and IgG2 serve different roles in the progression of VL. The ratios of IgG subclasses may be more precise indicators to evaluate immune reaction in VL than traditional total IgG.
Collapse
Affiliation(s)
- Xin-Yu Han
- Center for Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Han-Bing Li
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jun-Hao Wei
- Center for Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xiao-Yong Xu
- Center for Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yan Li
- Center for Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yi-Qun Che
- Center for Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
129
|
Meuleman MS, Duval A, Grunenwald A, Rezola Artero M, Dermani M, Peliconi J, Revel M, Vieira-Martins P, Courbebaisse M, Parfait B, Lebeaux D, Friedlander G, Roumenina L, Chauvet S, Frémeaux-Bacchi V, Dragon-Durey MA. Usefulness and analytical performances of complement multiplex assay for measuring complement biomarkers in plasma. Clin Chim Acta 2024; 554:117750. [PMID: 38176523 DOI: 10.1016/j.cca.2023.117750] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
INTRODUCTION The complement system is involved in numerous diseases, through diverse mechanisms and degree of activation. With the emergence of complement targeting therapeutic, simple and accessible tools to evaluate the extent of complement activation are strongly needed. METHODS We evaluated two multiplex panels, measuring complement activation fragments (C4a, C3a, C5a, Bb, Ba, sC5b9) and intact components or regulators (C1q, C2, C3, C4, C5, FD, FP, FH, FI). The specificity of each measurement was assessed by using complement proteins depleted sera and plasma collected from patients with complement deficiencies. Normal values distribution was estimated using 124 plasma samples from healthy donors and complement activation profile was assessed in plasma collected from 31 patients with various complement-mediated disorders. RESULTS We observed good inter-assay variation. All tested protein deficiencies were accurately detected. We established assay-specific reference values for each analyte. Except for C3, C4 and C4a, the majority of the measurements were in good agreement with references methods or published data. CONCLUSION Our study substantiates the utility of the Complement Multiplex assay as a tool for measuring complement activation and deficiencies. Quantifying complement cleavage fragments in patients exhibiting classical or alternative pathway activation allowed evaluating the activation state of the whole cascade.
Collapse
Affiliation(s)
- Marie-Sophie Meuleman
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer Team, Paris, France; Laboratory of Immunology, Georges Pompidou European Hospital, APHP, Paris, France
| | - Anna Duval
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer Team, Paris, France; Department of Nephrology, Strasbourg University Hospital, Strasbourg, France
| | - Anne Grunenwald
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer Team, Paris, France; Department of Nephrology, Poissy Intercommunal Hospital, Poissy, France
| | - Mikel Rezola Artero
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer Team, Paris, France
| | - Mohamed Dermani
- Laboratory of Immunology, Georges Pompidou European Hospital, APHP, Paris, France
| | - Julie Peliconi
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer Team, Paris, France
| | - Margot Revel
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer Team, Paris, France
| | - Paula Vieira-Martins
- Laboratory of Immunology, Georges Pompidou European Hospital, APHP, Paris, France
| | - Marie Courbebaisse
- Paris Cité University, Physiology Department, European Georges-Pompidou Hospital, APHP, INSERM U1151, Paris, France
| | - Béatrice Parfait
- Centre de Ressources Biologiques - site Cochin, Fédération des CRB/PRB, DMU BioPhyGen, AP-HP.Centre-Université Paris Cité, Hôpital Cochin, Paris, France
| | - David Lebeaux
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Genetics of Biofilms Laboratory, 75015 Paris, France; Service de Microbiologie, Unité Mobile d'Infectiologie, AP-HP, Hôpital Européen Georges Pompidou, 20 rue Leblanc, 75015 Paris, France
| | | | - Lubka Roumenina
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer Team, Paris, France
| | - Sophie Chauvet
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer Team, Paris, France; Paris Cité University, Paris, France; Department of Nephrology, Georges Pompidou European Hospital, APHP, Paris, France
| | - Véronique Frémeaux-Bacchi
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer Team, Paris, France; Laboratory of Immunology, Georges Pompidou European Hospital, APHP, Paris, France
| | - Marie-Agnès Dragon-Durey
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer Team, Paris, France; Laboratory of Immunology, Georges Pompidou European Hospital, APHP, Paris, France; Paris Cité University, Paris, France.
| |
Collapse
|
130
|
Celli L, Gasparini P, Biino G, Zannini L, Cardano M. CRISPR/Cas9 mediated Y-chromosome elimination affects human cells transcriptome. Cell Biosci 2024; 14:15. [PMID: 38291538 PMCID: PMC10829266 DOI: 10.1186/s13578-024-01198-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/21/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Sexual dimorphism represents a key concept in the comprehension of molecular processes guiding several sex-specific physiological and pathological mechanisms. It has been reported that genes involved in many disorders show a sex-dependent expression pattern. Moreover, the loss of Y chromosome (LOY), found to be a physiological age-driven phenomenon, has been linked to many neurodegenerative and autoimmune disorders, and to an increased cancer risk. These findings drove us towards the consideration that LOY may cause the de-regulation of disease specific networks, involving genes located in both autosomal and sex chromosomes. RESULTS Exploiting the CRISPR/Cas9 and RNA-sequencing technologies, we generated a Y-deficient human cell line that has been investigated for its gene expression profile. Our results showed that LOY can influence the transcriptome displaying relevant enriched biological processes, such as cell migration regulation, angiogenesis and immune response. Interestingly, the ovarian follicle development pathway was found enriched, supporting the female-mimicking profile of male Y-depleted cells. CONCLUSION This study, besides proposing a novel approach to investigate sex-biased physiological and pathological conditions, highlights new roles for the Y chromosome in the sexual dimorphism characterizing human health and diseases. Moreover, this analysis paves the way for the research of new therapeutic approaches for sex dimorphic and LOY-related diseases.
Collapse
Affiliation(s)
- Ludovica Celli
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, 27100, Pavia, Italy
- Institute for Biomedical Technologies, National Research Council, Via Fratelli Cervi 93, 20054, Segrate, Italy
| | - Patrizia Gasparini
- Epigenomic and Biomarkers of Solid Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Ginevra Biino
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, 27100, Pavia, Italy
| | - Laura Zannini
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, 27100, Pavia, Italy.
| | - Miriana Cardano
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, 27100, Pavia, Italy.
| |
Collapse
|
131
|
Yip HYK, Shin SY, Chee A, Ang CS, Rossello FJ, Wong LH, Nguyen LK, Papa A. Integrative modeling uncovers p21-driven drug resistance and prioritizes therapies for PIK3CA-mutant breast cancer. NPJ Precis Oncol 2024; 8:20. [PMID: 38273040 PMCID: PMC10810864 DOI: 10.1038/s41698-024-00496-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
Utility of PI3Kα inhibitors like BYL719 is limited by the acquisition of genetic and non-genetic mechanisms of resistance which cause disease recurrence. Several combination therapies based on PI3K inhibition have been proposed, but a way to systematically prioritize them for breast cancer treatment is still missing. By integrating published and in-house studies, we have developed in silico models that quantitatively capture dynamics of PI3K signaling at the network-level under a BYL719-sensitive versus BYL719 resistant-cell state. Computational predictions show that signal rewiring to alternative components of the PI3K pathway promote resistance to BYL719 and identify PDK1 as the most effective co-target with PI3Kα rescuing sensitivity of resistant cells to BYL719. To explore whether PI3K pathway-independent mechanisms further contribute to BYL719 resistance, we performed phosphoproteomics and found that selection of high levels of the cell cycle regulator p21 unexpectedly promoted drug resistance in T47D cells. Functionally, high p21 levels favored repair of BYL719-induced DNA damage and bypass of the associated cellular senescence. Importantly, targeted inhibition of the check-point inhibitor CHK1 with MK-8776 effectively caused death of p21-high T47D cells, thus establishing a new vulnerability of BYL719-resistant breast cancer cells. Together, our integrated studies uncover hidden molecular mediators causing resistance to PI3Kα inhibition and provide a framework to prioritize combination therapies for PI3K-mutant breast cancer.
Collapse
Affiliation(s)
- Hon Yan Kelvin Yip
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Sung-Young Shin
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Annabel Chee
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Ching-Seng Ang
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Fernando J Rossello
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, 3052, Australia
- Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Lee Hwa Wong
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Lan K Nguyen
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia.
| | - Antonella Papa
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
132
|
Zhou Y, Song L, Li H. Full resolution HLA and KIR genes annotation for human genome assemblies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576452. [PMID: 38328160 PMCID: PMC10849470 DOI: 10.1101/2024.01.20.576452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The HLA (Human Leukocyte Antigen) genes and the KIR (Killer cell Immunoglobulin-like Receptor) genes are critical to immune responses and are associated with many immune-related diseases. Located in highly polymorphic regions, they are hard to be studied with traditional short-read alignment-based methods. Although modern long-read assemblers can often assemble these genes, using existing tools to annotate HLA and KIR genes in these assemblies remains a non-trivial task. Here, we describe Immuannot, a new computation tool to annotate the gene structures of HLA and KIR genes and to type the allele of each gene. Applying Immuannot to 56 regional and 212 whole-genome assemblies from previous studies, we annotated 9,931 HLA and KIR genes and found that almost half of these genes, 4,068, had novel sequences compared to the current Immuno Polymorphism Database (IPD). These novel gene sequences were represented by 2,664 distinct alleles, some of which contained non-synonymous variations resulting in 92 novel protein sequences. We demonstrated the complex haplotype structures at the two loci and reported the linkage between HLA/KIR haplotypes and gene alleles. We anticipate that Immuannot will speed up the discovery of new HLA/KIR alleles and enable the association of HLA/KIR haplotype structures with clinical outcomes in the future.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Li Song
- Department of Biomedical Data Science, Dartmouth College, Hanover, NH, 03755, USA
| | - Heng Li
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
133
|
Vítek L, Woronyczova J, Hanzikova V, Posová H. Complement System Deficiencies in Elite Athletes. SPORTS MEDICINE - OPEN 2024; 10:11. [PMID: 38252367 PMCID: PMC10803703 DOI: 10.1186/s40798-024-00681-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND Although regular physical activity improves immune competency and reduces the prevalence of inflammatory diseases, strenuous training in elite athletes is associated with an increased susceptibility to infectious complications. Therefore, the objective of our study was to assess the routinely examined parameters of the complement system in elite athletes. The study was carried out in a cohort of elite athletes (n = 134) and healthy control subjects (n = 110). In all subjects, besides a routine laboratory check-up, serum concentrations of the C3 and C4 complement components, mannose-binding lectin (MBL), as well as activation of all three complement pathways were determined. RESULTS Compared to healthy controls, lower C3 and C4 complement component concentrations were observed in elite athletes (0.96 ± 0.1 vs. 1.08 ± 0.2 mg/L, and 0.18 ± 0.1 vs. 0.25 ± 0.1 mg/L, respectively, p < 0.05); with much higher frequency rates of C3 and C4 deficiencies in athletes (31.3 vs. 14.5%, and 6 vs. 0%, p < 0.05). Simultaneously, athletes had much higher frequency rates of deficiencies of activation of classical and alternative complement pathways; while, deficiency of activation of the lectin pathway was similar in both cohorts. CONCLUSIONS We confirmed a high frequency of defects in the complement system in elite athletes. Lower concentrations of C3 and C4 complement components, with high frequencies of deficiencies of the classical and alternative complement activation pathways were the most prevalent disorder of the complement system in elite athletes. Further studies are needed to uncover the functional impacts of these observations upon the susceptibility to infectious diseases.
Collapse
Affiliation(s)
- Libor Vítek
- Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 120 00, Prague, Czech Republic.
- 4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| | - Jana Woronyczova
- Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 120 00, Prague, Czech Republic
- Sports Research Institute of the Czech Armed Forces, Prague, Czech Republic
| | - Veronika Hanzikova
- Blood Transfusion Unit, General University Hospital in Prague, Prague, Czech Republic
| | - Helena Posová
- Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 120 00, Prague, Czech Republic
| |
Collapse
|
134
|
Fuller SA, Abernathy JW, Sankappa NM, Beck BH, Rawles SD, Green BW, Rosentrater KA, McEntire ME, Huskey G, Webster CD. Hepatic transcriptome analyses of juvenile white bass ( Morone chrysops) when fed diets where fish meal is partially or totally replaced by alternative protein sources. Front Physiol 2024; 14:1308690. [PMID: 38288350 PMCID: PMC10822904 DOI: 10.3389/fphys.2023.1308690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/26/2023] [Indexed: 01/31/2024] Open
Abstract
White bass (Morone chrysops) are a popular sportfish throughout the southern United States, and one parent of the commercially-successful hybrid striped bass (M. chrysops ♂ x M. saxatilis ♀). Currently, white bass are cultured using diets formulated for other carnivorous fish, such as largemouth bass (Micropterus salmoides) or hybrid striped bass and contain a significant percentage of marine fish meal. Since there are no studies regarding the utilization of alternative proteins in this species, we evaluated the global gene expression of white bass fed diets in which fish meal was partially or totally replaced by various combinations of soybean meal, poultry by-product meal, canola meal, soy protein concentrate, wheat gluten, or a commercial protein blend (Pro-Cision™). Six isonitrogenous (40% protein), isolipidic (11%), and isocaloric (17.1 kJ/g) diets were formulated to meet the known nutrient and energy requirements of largemouth bass and hybrid striped bass using nutrient availability data for most of the dietary ingredients. One of the test diets consisted exclusively of plant protein sources. Juvenile white bass (40.2 g initial weight) were stocked into a flow-through aquaculture system (three tanks/diet; 10 fish/tank) and fed the test diets twice daily to satiation for 60 days. RNA sequencing and bioinformatic analyses revealed significant differentially expressed genes between all test diets when compared to fish meal control. A total of 1,260 differentially expressed genes were identified, with major ontology relating to cell cycle and metabolic processes as well as immune gene functions. This data will be useful as a resource for future refinements to moronid diet formulation, as marine fish meal becomes limiting and plant ingredients are increasingly added as a reliable protein source.
Collapse
Affiliation(s)
- S. Adam Fuller
- USDA-ARS Harry K. Dupree Stuttgart National Aquaculture Research Center (HKDSNARC), Stuttgart, AR, United States
| | - Jason W. Abernathy
- USDA-ARS Aquatic Animal Health Research Unit (AAHRU), Auburn, AL, United States
| | - Nithin Muliya Sankappa
- USDA-ARS Aquatic Animal Health Research Unit (AAHRU), Auburn, AL, United States
- Oak Ridge Institute for Science and Education (ORISE), ARS Research Participation Program, Oak Ridge, TN, United States
| | - Benjamin H. Beck
- USDA-ARS Aquatic Animal Health Research Unit (AAHRU), Auburn, AL, United States
| | - Steven D. Rawles
- USDA-ARS Harry K. Dupree Stuttgart National Aquaculture Research Center (HKDSNARC), Stuttgart, AR, United States
| | - Bartholomew W. Green
- USDA-ARS Harry K. Dupree Stuttgart National Aquaculture Research Center (HKDSNARC), Stuttgart, AR, United States
| | - Kurt A. Rosentrater
- Iowa State University, Agricultural and Biosystems Engineering, Ames, IA, United States
| | - Matthew E. McEntire
- USDA-ARS Harry K. Dupree Stuttgart National Aquaculture Research Center (HKDSNARC), Stuttgart, AR, United States
| | - George Huskey
- USDA-ARS Harry K. Dupree Stuttgart National Aquaculture Research Center (HKDSNARC), Stuttgart, AR, United States
| | - Carl D. Webster
- USDA-ARS Harry K. Dupree Stuttgart National Aquaculture Research Center (HKDSNARC), Stuttgart, AR, United States
| |
Collapse
|
135
|
Brzozowa-Zasada M, Piecuch A, Bajdak-Rusinek K, Gołąbek K, Michalski M, Matysiak N, Czuba Z. A Prognostic Activity of Glutaredoxin 1 Protein (Grx1) in Colon Cancer. Int J Mol Sci 2024; 25:1007. [PMID: 38256082 PMCID: PMC10816104 DOI: 10.3390/ijms25021007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Glutaredoxin 1 (Grx1) is an essential enzyme that regulates redox signal transduction and repairs protein oxidation by reversing S-glutathionylation, an oxidative modification of protein cysteine residues. Grx1 removes glutathione from proteins to restore their reduced state (protein-SH) and regulate protein-SSG levels in redox signaling networks. Thus, it can exert an influence on the development of cancer. To further investigate this problem, we performed an analysis of Grx1 expression in colon adenocarcinoma samples from the Polish population of patients with primary colon adenocarcinoma (stages I and II of colon cancer) and those with regional lymph node metastasis (stage III of colon cancer). Our study revealed a significant correlation between the expression of Grx1 protein through immunohistochemical analysis and various clinical characteristics of patients, such as histological grade, depth of invasion, angioinvasion, staging, regional lymph node invasion, and PCNA expression. It was found that almost 88% of patients with stage I had high levels of Grx1 expression, while only 1% of patients with stage III exhibited high levels of Grx1 protein expression. Furthermore, the study discovered that high levels of Grx1 expression were present in samples of colon mucosa without any pathological changes. These results were supported by in vitro analysis conducted on colorectal cancer cell lines that corresponded to stages I, II, and III of colorectal cancer, using qRT-PCR and Western blot.
Collapse
Affiliation(s)
- Marlena Brzozowa-Zasada
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Adam Piecuch
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Karolina Bajdak-Rusinek
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Karolina Gołąbek
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland
| | - Marek Michalski
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
- Silesian Nanomicroscopy Centre in Zabrze, Silesia LabMed—Research and Implementation Centre, Medical University of Silesia, 40-055 Katowice, Poland
| | - Natalia Matysiak
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Zenon Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland;
| |
Collapse
|
136
|
Aljagthmi AA, Hira A, Zhang J, Cooke M, Kazanietz MG, Kadakia MP. ∆Np63α inhibits Rac1 activation and cancer cell invasion through suppression of PREX1. Cell Death Discov 2024; 10:13. [PMID: 38191532 PMCID: PMC10774331 DOI: 10.1038/s41420-023-01789-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024] Open
Abstract
ΔNp63α, a member of the p53 family of transcription factors, plays a critical role in maintaining the proliferative potential of stem cells in the stratified epithelium. Although ΔNp63α is considered an oncogene and is frequently overexpressed in squamous cell carcinoma, loss of ΔNp63α expression is associated with increased tumor cell invasion and metastasis. We recently identified a ΔNp63α/miR-320a/PKCγ signaling axis that regulates cancer cell invasion by inhibiting phosphorylation of the small GTPase Rac1, a master switch of cell motility that positively regulates cell invasion in multiple human cancers. In this study, we identified a novel mechanism by which ΔNp63α negatively regulates Rac1 activity, by inhibiting the expression of the Rac-specific Guanine Exchange Factor PREX1. ΔNp63α knockdown in multiple squamous cell carcinoma cell lines leads to increased Rac1 activation, which is abrogated by treatment with the Rac1 inhibitor NSC23766. Furthermore, ΔNp63α negatively regulates PREX1 transcript and protein levels. Using a Rac-GEF activation assay, we also showed that ΔNp63α reduces the levels of active PREX1. The inhibition of the PREX1-Rac1 signaling axis by ΔNp63α leads to impaired cell invasion, thus establishing the functional relevance of this link. Our results elucidated a novel molecular mechanism by which ΔNp63α negatively affects cancer cell invasion and identifies the ΔNp63α/Rac1 axis as a potential target for metastasis.
Collapse
Affiliation(s)
- Amjad A Aljagthmi
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA
| | - Akshay Hira
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA
| | - Jin Zhang
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA
| | - Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Madhavi P Kadakia
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA.
| |
Collapse
|
137
|
Rohrhofer J, Hauser L, Lettenmaier L, Lutz L, Koidl L, Gentile SA, Ret D, Stingl M, Untersmayr E. Immunological Patient Stratification in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. J Clin Med 2024; 13:275. [PMID: 38202282 PMCID: PMC10779792 DOI: 10.3390/jcm13010275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex disease characterized by profound fatigue, post-exertional malaise (PEM), and neurocognitive dysfunction. Immune dysregulation and gastrointestinal symptoms are commonly observed in ME/CFS patients. Despite affecting approximately 0.89% of the general population, the underlying pathophysiological mechanisms remain poorly understood. This study aimed to elucidate the relationship between immunological characteristics and intestinal barrier function in ME/CFS patients. ME/CFS patients were stratified into two groups based on their immune competence. After documentation of detailed medical records, serum and plasma samples were collected for the assessment of inflammatory immune mediators and biomarkers for intestinal barrier integrity by ELISA. We found reduced complement protein C4a levels in immunodeficient ME/CFS patients suggesting a subgroup-specific innate immune dysregulation. ME/CFS patients without immunodeficiencies exhibit a mucosal barrier leakage, as indicated by elevated levels of Lipopolysaccharide-binding protein (LBP). Stratifying ME/CFS patients based on immune competence enabled the distinction of two subgroups with different pathophysiological patterns. The study highlights the importance of emphasizing precise patient stratification in ME/CFS, particularly in the context of defining suitable treatment strategies. Given the substantial health and socioeconomic burden associated with ME/CFS, urgent attention and research efforts are needed to define causative treatment approaches.
Collapse
Affiliation(s)
- Johanna Rohrhofer
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (J.R.); (L.K.); (S.A.G.); (D.R.)
| | - Lisa Hauser
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (J.R.); (L.K.); (S.A.G.); (D.R.)
| | - Lisa Lettenmaier
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (J.R.); (L.K.); (S.A.G.); (D.R.)
| | - Lena Lutz
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (J.R.); (L.K.); (S.A.G.); (D.R.)
| | - Larissa Koidl
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (J.R.); (L.K.); (S.A.G.); (D.R.)
| | - Salvatore Alessio Gentile
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (J.R.); (L.K.); (S.A.G.); (D.R.)
| | - Davide Ret
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (J.R.); (L.K.); (S.A.G.); (D.R.)
- Division of Macromolecular Chemistry, Institute of Applied Synthetic Chemistry, Vienna University of Technology, 1060 Vienna, Austria
| | | | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (J.R.); (L.K.); (S.A.G.); (D.R.)
| |
Collapse
|
138
|
Li L, Ling Z, Wang X, Zhang X, Li Y, Gao G. Proteomics-based screening of AKR1B1 as a therapeutic target and validation study for sepsis-associated acute kidney injury. PeerJ 2024; 12:e16709. [PMID: 38188141 PMCID: PMC10768659 DOI: 10.7717/peerj.16709] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024] Open
Abstract
Background Sepsis and sepsis-associated acute kidney injury (SA-AKI) pose significant global health challenges, necessitating the development of innovative therapeutic strategies. Dysregulated protein expression has been implicated in the initiation and progression of sepsis and SA-AKI. Identifying potential protein targets and modulating their expression is crucial for exploring alternative therapies. Method We established an SA-AKI rat model using cecum ligation perforation (CLP) and employed differential proteomic techniques to identify protein expression variations in kidney tissues. Aldose reductase (AKR1B1) emerged as a promising target. The SA-AKI rat model received treatment with the aldose reductase inhibitor (ARI), epalrestat. Blood urea nitrogen (BUN) and creatinine (CRE) levels, as well as IL-1β, IL-6 and TNF-α levels in the serum and kidney tissues, were monitored. Hematoxylin-eosin (H-E) staining and a pathological damage scoring scale assessed renal tissue damage, while protein blotting determined PKC (protein kinase C)/NF-κB pathway protein expression. Result Differential proteomics revealed significant downregulation of seven proteins and upregulation of 17 proteins in the SA-AKI rat model renal tissues. AKR1B1 protein expression was notably elevated, confirmed by Western blot. ARI prophylactic administration and ARI treatment groups exhibited reduced renal injury, low BUN and CRE levels and decreased IL-1β, IL-6 and TNF-α levels compared to the CLP group. These changes were statistically significant (P < 0.05). AKR1B1, PKC-α, and NF-κB protein expression levels were also lowered in the ARI prophylactic administration and ARI treatment groups compared to the CLP group (P < 0.05). Conclusions Epalrestat appeared to inhibit the PKC/NF-κB inflammatory pathway by inhibiting AKR1B1, resulting in reduced inflammatory cytokine levels in renal tissues and blood. This mitigated renal tissue injuries and improved the systemic inflammatory response in the severe sepsis rat model. Consequently, AKR1B1 holds promise as a target for treating sepsis-associated acute kidney injuries.
Collapse
Affiliation(s)
- Lei Li
- Intensive Care Unit, Shandong Public Health Clinical Center, Shandong University, Jinan, China
| | - Zaiqin Ling
- Department of Tubercular Medicine, Shandong Public Health Clinical Center, Shandong University, Jinan, China
| | - Xingsheng Wang
- Department of Emergency, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xinxin Zhang
- Department of Emergency Medicine, Fuyang People’s Hospital of Anhui Medical University, Fuyang, China
| | - Yun Li
- Intensive Care Unit, Central Hospital Affliated to Shandong First Medical University, Jinan, China
| | - Guangsheng Gao
- Neurological Intensive Care Unit, Central Hospital Affliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
139
|
Anees S, Ahmad M, Ashraf S, Bhat AH, Hamid R, Ganie SA. Bioactive fractions from Allium humile alleviate the risk of high fat diet induced atherosclerosis in albino Wistar rats by inhibiting protein kinase C. Fitoterapia 2024; 172:105775. [PMID: 38097019 DOI: 10.1016/j.fitote.2023.105775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Atherosclerosis is a global concern that worsens with age, and plants that are effective medicinal herbs can give a viable alternative. PKC is a key factor in cardiovascular and other disorders; targeting it can reduce the risk of these diseases. We evaluated Allium humile for PKC inhibition and therapeutic efficacy against atherosclerosis. Soxhlet extraction was done to obtain extracts (hexane, ethyl acetate, methanol, ethanol and aqueous) and then tested for DPPH radical scavenging and PKC inhibitory activity. The methanolic extract was more active than the other extracts, so it was subjected to column chromatography, and seventeen fractions were obtained. Only 11, 12, and 15 showed good activity against PKC. Wistar rats were divided into six groups and each group received high fat diet for 30 days. Then the three potent fractions (10 mg/kg) were administered for 15 days along with high fat diet. Fraction II had the highest effectiveness (P < 0.0001) in decreasing lipid levels, lipid peroxidation, reducing IL-6 and TNF-α expression, and raising nitric oxide. This also demonstrated a decrease in PKC activity, as well as a decrease in the formation of the lipoidal layer in the aorta wall and rupture of the intima and media as validated by histological analysis. The two compounds, phytol acetate and cyanidin 3-(6″-o-malonyllaminaribioside) were characterised in fraction II by NMR and HRMS and cyanidin 3-(6″-o-malonyllaminaribioside) inhibited PKC more efficiently. Thus, Allium humile has strong anti-atherogenic activity as well as the ability to inhibit PKC both in vitro and in vivo.
Collapse
Affiliation(s)
- Suhail Anees
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, India
| | - Muzaffar Ahmad
- Department of Biochemistry, University of Kashmir, Srinagar, India
| | - Suhail Ashraf
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, India
| | | | - Rabia Hamid
- Department of Nanotechnology, University of Kashmir, Srinagar, India.
| | - Showkat Ahmad Ganie
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, India.
| |
Collapse
|
140
|
Appendino G, Gaeta S. Tigliane Diterpenoids. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 125:1-189. [PMID: 39546131 DOI: 10.1007/978-3-031-67180-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The distribution, chemistry, and molecular bioactivity of tiglianes are reviewed from the very beginning of the studies on these diterpenoids, summarizing their clinical and toxicological literature mostly in its more recent and controversial aspects, and critically analyzing various proposals for their biosynthesis.
Collapse
Affiliation(s)
- Giovanni Appendino
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani, 2, 28100, Novara, Italy.
| | - Simone Gaeta
- Research & Development-Chemistry Research, QBiotics Group Limited, 165, Moggill Road, Taringa, QLD, 4068, Australia
| |
Collapse
|
141
|
Borlongan MC, Saha D, Wang H. Tumor Microenvironment: A Niche for Cancer Stem Cell Immunotherapy. Stem Cell Rev Rep 2024; 20:3-24. [PMID: 37861969 DOI: 10.1007/s12015-023-10639-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Tumorigenic Cancer Stem Cells (CSCs), often called tumor-initiating cells (TICs), represent a unique subset of cells within the tumor milieu. They stand apart from the bulk of tumor cells due to their exceptional self-renewal, metastatic, and differentiation capabilities. Despite significant progress in classifying CSCs, these cells remain notably resilient to conventional radiotherapy and chemotherapy, contributing to cancer recurrence. In this review, our objective is to explore novel avenues of research that delve into the distinctive characteristics of CSCs within their surrounding tumor microenvironment (TME). We will start with an overview of the defining features of CSCs and then delve into their intricate interactions with cells from the lymphoid lineage, namely T cells, B cells, and natural killer (NK) cells. Furthermore, we will discuss their dynamic interplay with myeloid lineage cells, including macrophages, neutrophils, and myeloid-derived suppressor cells (MDSCs). Moreover, we will illuminate the crosstalk between CSCs and cells of mesenchymal origin, specifically fibroblasts, adipocytes, and endothelial cells. Subsequently, we will underscore the pivotal role of CSCs within the context of the tumor-associated extracellular matrix (ECM). Finally, we will highlight pre-clinical and clinical studies that target CSCs within the intricate landscape of the TME, including CAR-T therapy, oncolytic viruses, and CSC-vaccines, with the ultimate goal of uncovering novel avenues for CSC-based cancer immunotherapy.
Collapse
Affiliation(s)
- Mia C Borlongan
- College of Medicine, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA
| | - Dipongkor Saha
- Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
| | - Hongbin Wang
- College of Medicine, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
- Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
- Master Program of Pharmaceutical Sciences College of Graduate Studies, Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, Department of Basic Science College of Medicine, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
| |
Collapse
|
142
|
Ray SK, Jayashankar E, Kotnis A, Mukherjee S. Oxidative versus Reductive Stress in Breast Cancer Development and Cellular Mechanism of Alleviation: A Current Perspective with Anti-breast Cancer Drug Resistance. Curr Mol Med 2024; 24:205-216. [PMID: 36892117 DOI: 10.2174/1566524023666230309112751] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 03/10/2023]
Abstract
Redox homeostasis is essential for keeping our bodies healthy, but it also helps breast cancer cells grow, stay alive, and resist treatment. Changes in the redox balance and problems with redox signaling can make breast cancer cells grow and spread and make them resistant to chemotherapy and radiation therapy. Reactive oxygen species/reactive nitrogen species (ROS/RNS) generation and the oxidant defense system are out of equilibrium, which causes oxidative stress. Many studies have shown that oxidative stress can affect the start and spread of cancer by interfering with redox (reduction-oxidation) signaling and damaging molecules. The oxidation of invariant cysteine residues in FNIP1 is reversed by reductive stress, which is brought on by protracted antioxidant signaling or mitochondrial inactivity. This permits CUL2FEM1B to recognize its intended target. After the proteasome breaks down FNIP1, mitochondrial function is restored to keep redox balance and cell integrity. Reductive stress is caused by unchecked amplification of antioxidant signaling, and changes in metabolic pathways are a big part of breast tumors' growth. Also, redox reactions make pathways like PI3K, PKC, and protein kinases of the MAPK cascade work better. Kinases and phosphatases control the phosphorylation status of transcription factors like APE1/Ref-1, HIF-1, AP-1, Nrf2, NF-B, p53, FOXO, STAT, and - catenin. Also, how well anti-breast cancer drugs, especially those that cause cytotoxicity by making ROS, treat patients depends on how well the elements that support a cell's redox environment work together. Even though chemotherapy aims to kill cancer cells, which it does by making ROS, this can lead to drug resistance in the long run. The development of novel therapeutic approaches for treating breast cancer will be facilitated by a better understanding of the reductive stress and metabolic pathways in tumor microenvironments.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Independent Researcher, Bhopal, Madhya Pradesh, 462020, India
| | - Erukkambattu Jayashankar
- Department of Pathology & Lab Medicine, All India Institute of Medical Sciences-Bhopal, Saket Nagar, Bhopal, Madhya Pradesh, 462020, India
| | - Ashwin Kotnis
- Department of Biochemistry, All India Institute of Medical Sciences-Bhopal, Saket Nagar, Bhopal, Madhya Pradesh, 462020, India
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences-Bhopal, Saket Nagar, Bhopal, Madhya Pradesh, 462020, India
| |
Collapse
|
143
|
Oruc A, Oruc KY, Yanar K, Mengi M, Caglar A, Kurt BO, Altan M, Sonmez OF, Cakatay U, Uzun H, Simsek G. The Role of Glycogen Synthase Kinase-3β in the Zinc-Mediated Neuroprotective Effect of Metformin in Rats with Glutamate Neurotoxicity. Biol Trace Elem Res 2024; 202:233-245. [PMID: 37071257 DOI: 10.1007/s12011-023-03667-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
Metformin has been suggested to have protective effects on the central nervous system, but the mechanism is unknown. The similarity between the effects of metformin and the inhibition of glycogen synthase kinase (GSK)-3β suggests that metformin may inhibit GSK-3β. In addition, zinc is an important element that inhibits GSK-3β by phosphorylation. In this study, we investigated whether the effects of metformin on neuroprotection and neuronal survival were mediated by zinc-dependent inhibition of GSK-3β in rats with glutamate-induced neurotoxicity. Forty adult male rats were divided into 5 groups: control, glutamate, metformin + glutamate, zinc deficiency + glutamate, and zinc deficiency + metformin + glutamate. Zinc deficiency was induced with a zinc-poor pellet. Metformin was orally administered for 35 days. D-glutamic acid was intraperitoneally administered on the 35th day. On the 38th day, neurodegeneration was examined histopathologically, and the effects on neuronal protection and survival were evaluated via intracellular S-100β immunohistochemical staining. The findings were examined in relation to nonphosphorylated (active) GSK-3β levels and oxidative stress parameters in brain tissue and blood. Neurodegeneration was increased (p < 0.05) in rats fed a zinc-deficient diet. Active GSK-3β levels were increased in groups with neurodegeneration (p < 0.01). Decreased neurodegeneration, increased neuronal survival (p < 0.01), decreased active GSK-3β (p < 0.01) levels and oxidative stress parameters, and increased antioxidant parameters were observed in groups treated with metformin (p < 0.01). Metformin had fewer protective effects on rats fed a zinc-deficient diet. Metformin may exert neuroprotective effects and increase S-100β-mediated neuronal survival by zinc-dependent inhibition of GSK-3β during glutamate neurotoxicity.
Collapse
Affiliation(s)
- Aykut Oruc
- Department of Physiology, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul, Turkey.
| | - Kadriye Yagmur Oruc
- Department of Physiology, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul, Turkey
- Department of Physiology, Faculty of Medicine, Istinye University, Istanbul, Turkey
| | - Karolin Yanar
- Department of Medical Biochemistry, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Murat Mengi
- Department of Physiology, Medical Faculty, Namık Kemal University, Tekirdag, Turkey
| | - Aysel Caglar
- Department of Pathology, Bagcilar Training and Research Hospital, Istanbul, Turkey
| | - Bahar Ozturk Kurt
- Department of Biophysics, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Mehmet Altan
- Department of Physiology, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Osman Fuat Sonmez
- Department of Physiology, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Ufuk Cakatay
- Department of Medical Biochemistry, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Hafize Uzun
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Atlas University, Istanbul, Turkey
| | - Gonul Simsek
- Department of Physiology, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| |
Collapse
|
144
|
Zhong C, Wang G, Guo M, Zhu N, Chen X, Yan Y, Li N, Yu W. The Role of Tumor Stem Cells in Colorectal Cancer Drug Resistance. Cancer Control 2024; 31:10732748241274196. [PMID: 39215442 PMCID: PMC11367616 DOI: 10.1177/10732748241274196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Background: Colorectal cancer is a major cause of mortality among the prevalent malignant tumors of the gastrointestinal tract. Although chemotherapy is a standard treatment for colorectal cancer, its efficacy is limited by chemoresistance. Recent studies have investigated targeting tumor stem cells as a potential new therapeutic approach for addressing chemoresistance in colorectal cancer. Colorectal cancer frequently relapses, with tumor stem cells often representing one of the leading causes of treatment failure. Purpose: Understanding drug resistance in colorectal cancer stem cells is crucial for improving treatment outcomes. By focusing on developing targeted therapies that specifically address drug resistance in colorectal cancer stem cells, there is potential to make significant advancements in the treatment of colorectal cancer.This approach may lead to more effective and lasting outcomes in patients battling colorectal cancer. Research Design: In this review, a comprehensive overview of recent research on colorectal cancer stem cell treatment resistance is presented.Results: Elucidating the key underlying mechanisms. This review also highlights the potential benefits of targeted therapies in overcoming colorectal cancer resistance to treatment. Conclusions: CCSCs are key players in drug resistance of CRC, indicating their potential as targets for effective therapy. Elucidating their role in this process could aid in discovering tailored treatment strategies.The significance of signaling pathways, TME, and miRNA in regulating drug resistance in CCSCs is been highlighted.
Collapse
Affiliation(s)
- Chen Zhong
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Guojuan Wang
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Min Guo
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Naicheng Zhu
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xiudan Chen
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yuwei Yan
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Nanxin Li
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Wenyan Yu
- Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
145
|
Marin WM, Augusto DG, Wade KJ, Hollenbach JA. High-throughput complement component 4 genomic sequence analysis with C4Investigator. HLA 2024; 103:e15273. [PMID: 37899688 PMCID: PMC11099535 DOI: 10.1111/tan.15273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/01/2023] [Accepted: 10/13/2023] [Indexed: 10/31/2023]
Abstract
The complement component 4 gene loci, composed of the C4A and C4B genes and located on chromosome 6, encodes for complement component 4 (C4) proteins, a key intermediate in the classical and lectin pathways of the complement system. The complement system is an important modulator of immune system activity and is also involved in the clearance of immune complexes and cellular debris. C4A and C4B gene loci exhibit copy number variation, with each composite gene varying between 0 and 5 copies per haplotype. C4A and C4B genes also vary in size depending on the presence of the human endogenous retrovirus (HERV) in intron 9, denoted by C4(L) for long-form and C4(S) for short-form, which affects expression and is found in both C4A and C4B. Additionally, human blood group antigens Rodgers and Chido are located on the C4 protein, with the Rodger epitope generally found on C4A protein, and the Chido epitope generally found on C4B protein. C4A and C4B copy number variation has been implicated in numerous autoimmune and pathogenic diseases. Despite the central role of C4 in immune function and regulation, high-throughput genomic sequence analysis of C4A and C4B variants has been impeded by the high degree of sequence similarity and complex genetic variation exhibited by these genes. To investigate C4 variation using genomic sequencing data, we have developed a novel bioinformatic pipeline for comprehensive, high-throughput characterization of human C4A and C4B sequences from short-read sequencing data, named C4Investigator. Using paired-end targeted or whole genome sequence data as input, C4Investigator determines the overall gene copy numbers, as well as C4A, C4B, C4(Rodger), C4(Ch), C4(L), and C4(S). Additionally, C4Ivestigator reports the full overall C4A and C4B aligned sequence, enabling nucleotide level analysis. To demonstrate the utility of this workflow we have analyzed C4A and C4B variation in the 1000 Genomes Project Data set, showing that these genes are highly poly-allelic with many variants that have the potential to impact C4 protein function.
Collapse
Affiliation(s)
- Wesley M. Marin
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Danillo G. Augusto
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
- Department of Biological Sciences, University of North Carolina Charlotte, Charlotte, NC, United States
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | - Kristen J. Wade
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Jill A. Hollenbach
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
146
|
Chaib M, Holt JR, Fisher EL, Sipe LM, Bohm MS, Joseph SC, Simmons BW, Eugin Simon S, Yarbro JR, Tanveer U, Halle JL, Carson JA, Hollingsworth T, Wei Q, Rathmell JC, Thomas PG, Hayes DN, Makowski L. Protein kinase C delta regulates mononuclear phagocytes and hinders response to immunotherapy in cancer. SCIENCE ADVANCES 2023; 9:eadd3231. [PMID: 38134280 PMCID: PMC10745701 DOI: 10.1126/sciadv.add3231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/21/2023] [Indexed: 12/24/2023]
Abstract
Mononuclear phagocytes (MPs) play a crucial role in tissue homeostasis; however, MPs also contribute to tumor progression and resistance to immune checkpoint blockade (ICB). Targeting MPs could be an effective strategy to enhance ICB efficacy. We report that protein kinase C delta (PKCδ), a serine/threonine kinase, is abundantly expressed by MPs in human and mouse tumors. PKCδ-/- mice displayed reduced tumor progression compared to wild types, with increased response to anti-PD-1. Tumors from PKCδ-/- mice demonstrated TH1-skewed immune response including increased antigen presentation and T cell activation. Depletion of MPs in vivo altered tumor growth in control but not PKCδ-/- mice. Coinjection of PKCδ-/- M2-like macrophages with cancer cells into wild-type mice markedly delayed tumor growth and significantly increased intratumoral T cell activation compared to PKCδ+/+ controls. PKCδ deficiency reprogrammed MPs by activating type I and type II interferon signaling. Thus, PKCδ might be targeted to reprogram MPs to augment ICB efficacy.
Collapse
Affiliation(s)
- Mehdi Chaib
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jeremiah R. Holt
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Emilie L. Fisher
- Vanderbilt Center for Immunobiology and Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Laura M. Sipe
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Margaret S. Bohm
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Sydney C. Joseph
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Boston W. Simmons
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Samson Eugin Simon
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Johnathan R. Yarbro
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ubaid Tanveer
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jessica L. Halle
- Department of Physical Therapy, College of Health Professions, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - James A. Carson
- Department of Physical Therapy, College of Health Professions, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - T.J. Hollingsworth
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Ophthalmology, Hamilton Eye Institute, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - QingQing Wei
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA 30912, USA
| | - Jeffrey C. Rathmell
- Vanderbilt Center for Immunobiology and Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Paul G. Thomas
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - D. Neil Hayes
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
- UTHSC Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Liza Makowski
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
- UTHSC Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
147
|
Gao J, Liu J, Yu T, Xu C, Sun H, Lu C, Dan W, Dai J. Synthesis of 3-formyl-eudistomin U with anti-proliferation, anti-migration and apoptosis-promoting activities on melanoma cells. BMC Chem 2023; 17:184. [PMID: 38124159 PMCID: PMC10734049 DOI: 10.1186/s13065-023-01102-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
The discovery of new lead skeleton against melanoma are urgently needed due to its highly malignant and mortality. Herein, a new molecular entity (EU-5) derived from eudistomin U was synthesized with total yield of 46%, which displayed potent activity against malignant melanoma A375 cells (IC50 = 4.4 µM), no hemolytic toxicity and good physicochemical properties in silico. Colony formation and cell cycle arrest assays revealed that EU-5 suppressed cell proliferation by causing cell cycle arrest at G0/G1 phase. Wound healing and transwell assays suggested that EU-5 could effectively inhibit migration of A375 cells in a dose-dependent manner. Calcein-AM/PI staining, Annexin V-FITC/PI apoptosis detection, mitochondrial membrane potential (MMP), reactive oxygen species (ROS), transcriptomics, quantitative real‑time polymerase chain reaction (qRT‑PCR), spectrometric titration and molecular docking assays indicated that EU-5 could activate p53 signaling pathway and trigger mitochondria-mediated cell apoptosis. Taken together, this study provided a promising lead structure for the design of a new generation of anti-melanoma drugs.
Collapse
Affiliation(s)
- Jixiang Gao
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong Province, 261053, China
- Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, 250100, China
| | - Jinyi Liu
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong Province, 261053, China
| | - Tao Yu
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong Province, 261053, China
| | - Chenggong Xu
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong Province, 261053, China
| | - Hao Sun
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong Province, 261053, China
| | - Chunbo Lu
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong Province, 261053, China
| | - Wenjia Dan
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong Province, 261053, China.
| | - Jiangkun Dai
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong Province, 261053, China.
| |
Collapse
|
148
|
Silnitsky S, Rubin SJS, Zerihun M, Qvit N. An Update on Protein Kinases as Therapeutic Targets-Part I: Protein Kinase C Activation and Its Role in Cancer and Cardiovascular Diseases. Int J Mol Sci 2023; 24:17600. [PMID: 38139428 PMCID: PMC10743896 DOI: 10.3390/ijms242417600] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Protein kinases are one of the most significant drug targets in the human proteome, historically harnessed for the treatment of cancer, cardiovascular disease, and a growing number of other conditions, including autoimmune and inflammatory processes. Since the approval of the first kinase inhibitors in the late 1990s and early 2000s, the field has grown exponentially, comprising 98 approved therapeutics to date, 37 of which were approved between 2016 and 2021. While many of these small-molecule protein kinase inhibitors that interact orthosterically with the protein kinase ATP binding pocket have been massively successful for oncological indications, their poor selectively for protein kinase isozymes have limited them due to toxicities in their application to other disease spaces. Thus, recent attention has turned to the use of alternative allosteric binding mechanisms and improved drug platforms such as modified peptides to design protein kinase modulators with enhanced selectivity and other pharmacological properties. Herein we review the role of different protein kinase C (PKC) isoforms in cancer and cardiovascular disease, with particular attention to PKC-family inhibitors. We discuss translational examples and carefully consider the advantages and limitations of each compound (Part I). We also discuss the recent advances in the field of protein kinase modulators, leverage molecular docking to model inhibitor-kinase interactions, and propose mechanisms of action that will aid in the design of next-generation protein kinase modulators (Part II).
Collapse
Affiliation(s)
- Shmuel Silnitsky
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, Safed 1311502, Israel; (S.S.); (M.Z.)
| | - Samuel J. S. Rubin
- Department of Medicine, School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA;
| | - Mulate Zerihun
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, Safed 1311502, Israel; (S.S.); (M.Z.)
| | - Nir Qvit
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, Safed 1311502, Israel; (S.S.); (M.Z.)
| |
Collapse
|
149
|
Xiao M, Tang D, Luan S, Hu B, Gong W, Pommer W, Dai Y, Yin L. Dysregulated coagulation system links to inflammation in diabetic kidney disease. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2023; 4:1270028. [PMID: 38143793 PMCID: PMC10748384 DOI: 10.3389/fcdhc.2023.1270028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023]
Abstract
Diabetic kidney disease (DKD) is a significant contributor to end-stage renal disease worldwide. Despite extensive research, the exact mechanisms responsible for its development remain incompletely understood. Notably, patients with diabetes and impaired kidney function exhibit a hypercoagulable state characterized by elevated levels of coagulation molecules in their plasma. Recent studies propose that coagulation molecules such as thrombin, fibrinogen, and platelets are interconnected with the complement system, giving rise to an inflammatory response that potentially accelerates the progression of DKD. Remarkably, investigations have shown that inhibiting the coagulation system may protect the kidneys in various animal models and clinical trials, suggesting that these systems could serve as promising therapeutic targets for DKD. This review aims to shed light on the underlying connections between coagulation and complement systems and their involvement in the advancement of DKD.
Collapse
Affiliation(s)
- Mengyun Xiao
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Donge Tang
- Shenzhen People’s Hospital/The Second Clinical School of Jinan University, Shenzhen, Guangdong, China
| | - Shaodong Luan
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Bo Hu
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Wenyu Gong
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Wolfgang Pommer
- KfH Kuratoriumfuer Dialyse und Nierentransplantatione.V., Bildungszentrum, Neu-Isenburg, Germany
| | - Yong Dai
- The First Affiliated Hospital, School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China
| | - Lianghong Yin
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
150
|
Bossio S, Perri A, Gallo R, De Bartolo A, Rago V, La Russa D, Di Dio M, La Vignera S, Calogero AE, Vitale G, Aversa A. Alpha-Lipoic Acid Reduces Cell Growth, Inhibits Autophagy, and Counteracts Prostate Cancer Cell Migration and Invasion: Evidence from In Vitro Studies. Int J Mol Sci 2023; 24:17111. [PMID: 38069431 PMCID: PMC10707055 DOI: 10.3390/ijms242317111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Alpha-lipoic acid (ALA) is a natural antioxidant dithiol compound, exerting antiproliferative and antimetastatic effects in various cancer cell lines. In our study, we demonstrated that ALA reduces the cell growth of prostate cancer cells LNCaP and DU-145. Western blot results revealed that in both cancer cells, ALA, by upregulating pmTOR expression, reduced the protein content of two autophagy initiation markers, Beclin-1 and MAPLC3. Concomitantly, MTT assays showed that chloroquine (CQ) exposure, a well-known autophagy inhibitor, reduced cells' viability. This was more evident for treatment using the combination ALA + CQ, suggesting that ALA can reduce cells' viability by inhibiting autophagy. In addition, in DU-145 cells we observed that ALA affected the oxidative/redox balance system by deregulating the KEAP1/Nrf2/p62 signaling pathway. ALA decreased ROS production, SOD1 and GSTP1 protein expression, and significantly reduced the cytosolic and nuclear content of the transcription factor Nrf2, concomitantly downregulating p62, suggesting that ALA disrupted p62-Nrf2 feedback loop. Conversely, in LNCaP cells, ALA exposure upregulated both SOD1 and p62 protein expression, but did not affect the KEAP1/Nrf2/p62 signaling pathway. In addition, wound-healing, Western blot, and immunofluorescence assays evidenced that ALA significantly reduced the motility of LNCaP and DU-145 cells and downregulated the protein expression of TGFβ1 and vimentin and the deposition of fibronectin. Finally, a soft agar assay revealed that ALA decreased the colony formation of both the prostate cancer cells by affecting the anchorage independent growth. Collectively, our in vitro evidence demonstrated that in prostate cancer cells, ALA reduces cell growth and counteracts both migration and invasion. Further studies are needed in order to achieve a better understanding of the underlined molecular mechanisms.
Collapse
Affiliation(s)
- Sabrina Bossio
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Græcia”, 88100 Catanzaro, Italy; (S.B.); (A.P.)
| | - Anna Perri
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Græcia”, 88100 Catanzaro, Italy; (S.B.); (A.P.)
| | - Raffaella Gallo
- Laboratory of Immunology, Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Græcia”, 88100 Catanzaro, Italy;
| | - Anna De Bartolo
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, University of Calabria, 87036 Rende, Italy;
| | - Vittoria Rago
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Daniele La Russa
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy;
| | - Michele Di Dio
- Division of Urology, Department of Surgery, Annunziata Hospital, 87100 Cosenza, Italy;
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (S.L.V.); (A.E.C.)
| | - Aldo E. Calogero
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (S.L.V.); (A.E.C.)
| | - Giovanni Vitale
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, 20133 Milan, Italy;
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, IRCCS Istituto Auxologico Italiano, 20145 Milan, Italy
| | - Antonio Aversa
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Græcia”, 88100 Catanzaro, Italy; (S.B.); (A.P.)
| |
Collapse
|