101
|
Zeng L, Ma G, Lin J, Huang P. Photoacoustic Probes for Molecular Detection: Recent Advances and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800782. [PMID: 29873182 DOI: 10.1002/smll.201800782] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Photoacoustic (PA) imaging (PAI) is a noninvasive and nonionizing biomedical imaging modality that combines the advantages of optical imaging and ultrasound imaging. Based on PAI, photoacoustic detection (PAD) is an emerging approach that is involved with the interaction between PA probes and analytes resulting in the changes of photoacoustic signals for molecular detection with rich contrast, high resolution, and deep tissue penetration. This Review focuses on the recent development of PA probes in PAD. The following contents will be discussed in detail: 1) the construction of PA probes; 2) the applications and mechanisms of PAD to different types of analytes, including microenvironments, small biomolecules, or metal ions; 3) the challenges and perspectives of PA probes in PAD.
Collapse
Affiliation(s)
- Leli Zeng
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Gongcheng Ma
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jing Lin
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
102
|
Affiliation(s)
- Zijuan Hai
- Hefei National Laboratory of Physical Sciences at Microscale; Department of Chemistry; University of Science and Technology of China; 96 Jinzhai Road Hefei Anhui 230026 China
| | - Gaolin Liang
- Hefei National Laboratory of Physical Sciences at Microscale; Department of Chemistry; University of Science and Technology of China; 96 Jinzhai Road Hefei Anhui 230026 China
| |
Collapse
|
103
|
Hu L, Wang H, Xia T, Fang B, Shen Y, Zhang Q, Tian X, Zhou H, Wu J, Tian Y. Two-Photon-Active Organotin(IV) Complexes for Antibacterial Function and Superresolution Bacteria Imaging. Inorg Chem 2018; 57:6340-6348. [DOI: 10.1021/acs.inorgchem.8b00413] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Hui Wang
- Department of Chemistry, Wannan Medical College, Wuhu 241002, People’s Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Qi GB, Gao YJ, Wang L, Wang H. Self-Assembled Peptide-Based Nanomaterials for Biomedical Imaging and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1703444. [PMID: 29460400 DOI: 10.1002/adma.201703444] [Citation(s) in RCA: 324] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/22/2017] [Indexed: 05/22/2023]
Abstract
Peptide-based materials are one of the most important biomaterials, with diverse structures and functionalities. Over the past few decades, a self-assembly strategy is introduced to construct peptide-based nanomaterials, which can form well-controlled superstructures with high stability and multivalent effect. More recently, peptide-based functional biomaterials are widely utilized in clinical applications. However, there is no comprehensive review article that summarizes this growing area, from fundamental research to clinic translation. In this review, the recent progress of peptide-based materials, from molecular building block peptides and self-assembly driving forces, to biomedical and clinical applications is systematically summarized. Ex situ and in situ constructed nanomaterials based on functional peptides are presented. The advantages of intelligent in situ construction of peptide-based nanomaterials in vivo are emphasized, including construction strategy, nanostructure modulation, and biomedical effects. This review highlights the importance of self-assembled peptide nanostructures for nanomedicine and can facilitate further knowledge and understanding of these nanosystems toward clinical translation.
Collapse
Affiliation(s)
- Guo-Bin Qi
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Yu-Juan Gao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| |
Collapse
|
105
|
Cai Q, Fei Y, An HW, Zhao XX, Ma Y, Cong Y, Hu L, Li LL, Wang H. Macrophage-Instructed Intracellular Staphylococcus aureus Killing by Targeting Photodynamic Dimers. ACS APPLIED MATERIALS & INTERFACES 2018; 10:9197-9202. [PMID: 29443494 DOI: 10.1021/acsami.7b19056] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The survival of Staphylococcus aureus inside phagocytes is considered to be the sticking point of long-term chronic inflammation. Here, we fabricate peptide-chlorophyll-based photodynamic therapy (PDT) agents with "sandwich" dimeric structure to enhance the PDT effect and active targeting property to eliminate intracellular infections, which could be seen as prospective antibacterial agents for inflammation.
Collapse
Affiliation(s)
- Qian Cai
- College of Life Science and Bioengineering , Beijing University of Technology , Beijing 100124 , China
| | - Yue Fei
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology , No. 11 Beiyitiao , Zhongguancun, Beijing 100190 , China
| | - Hong-Wei An
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology , No. 11 Beiyitiao , Zhongguancun, Beijing 100190 , China
| | - Xiao-Xiao Zhao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology , No. 11 Beiyitiao , Zhongguancun, Beijing 100190 , China
| | - Yang Ma
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology , No. 11 Beiyitiao , Zhongguancun, Beijing 100190 , China
| | - Yong Cong
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology , No. 11 Beiyitiao , Zhongguancun, Beijing 100190 , China
| | - Liming Hu
- College of Life Science and Bioengineering , Beijing University of Technology , Beijing 100124 , China
| | - Li-Li Li
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology , No. 11 Beiyitiao , Zhongguancun, Beijing 100190 , China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology , No. 11 Beiyitiao , Zhongguancun, Beijing 100190 , China
| |
Collapse
|
106
|
Yin C, Tang Y, Li X, Yang Z, Li J, Li X, Huang W, Fan Q. A Single Composition Architecture-Based Nanoprobe for Ratiometric Photoacoustic Imaging of Glutathione (GSH) in Living Mice. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703400. [PMID: 29318766 DOI: 10.1002/smll.201703400] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/19/2017] [Indexed: 06/07/2023]
Abstract
As one of the reduction species, glutathione (GSH) plays a tremendous role in regulating the homeostasis of redox state in living body. Accurate imaging of GSH in vivo is highly desired to provide a real-time visualization of physiological and pathological conditions while it is still a big challenge. Recently developed photoacoustic imaging (PAI) with high resolution and deep penetration characteristics is more promising for in vivo GSH detection. However, its application is dramatically limited by the difficult designation of photoacoustic probes with changeable near-infrared (NIR)-absorption under reductive activation. A cyanine derivative-based activatable probe is developed for in vivo ratiometric PAI of GSH for the first time. The probe is structurally designed to output ratiometric signals toward GSH in NIR-absorption region based on the cleavage of disulfide bond followed by a subsequent exchange between the secondary amine and sulfydryl group formed. Such a ratiometric manner provides high signal-to-noise imaging of blood vessels and their surrounding areas in tumor. Concomitantly, it also exhibits good specificity toward GSH over other thiols. Furthermore, the single composition architecture of the probe effectively overcomes the leakage issue compared with traditional multicomposition architecture-based nanoprobe, thus enhancing the imaging accuracy and fidelity in living body.
Collapse
Affiliation(s)
- Chao Yin
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Yufu Tang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Xiaozhen Li
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Zhen Yang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jie Li
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Xiang Li
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| |
Collapse
|
107
|
Vancomycin-assisted green synthesis of reduced graphene oxide for antimicrobial applications. J Colloid Interface Sci 2018; 514:733-739. [DOI: 10.1016/j.jcis.2018.01.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/03/2018] [Accepted: 01/03/2018] [Indexed: 12/16/2022]
|
108
|
A novel multifunctional electrochemical platform for simultaneous detection, elimination, and inactivation of pathogenic bacteria based on the Vancomycin-functionalised AgNPs/3D-ZnO nanorod arrays. Biosens Bioelectron 2017; 98:248-253. [DOI: 10.1016/j.bios.2017.06.058] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/25/2017] [Accepted: 06/27/2017] [Indexed: 11/19/2022]
|
109
|
Guan J, Wang Y, Wu S, Li Y, Li J. Durable Anti-Superbug Polymers: Covalent Bonding of Ionic Liquid onto the Polymer Chains. Biomacromolecules 2017; 18:4364-4372. [PMID: 29111688 DOI: 10.1021/acs.biomac.7b01416] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Here, we fabricated the ionic liquid (IL) grafted poly(vinylidene fluoride) (PVDF) (PVDF-g-IL) via electron-beam irradiation to fight common bacteria and multidrug-resistant "superbugs". Two types of ILs, 1-vinyl-3-butylimmidazolium chloride (IL (Cl)) and 1-vinyl-3-ethylimidazolium tetrafluoroborate (IL (BF4)), were used. It was found that the PVDF-g-IL exhibited superior antibacterial performance, with almost the same mechanical and thermal performance as unmodified PVDF. Nonwovens and films made from PVDF-g-IL materials exhibited broad-spectrum antimicrobial activity against common bacteria and "superbugs" with the strong electrostatic interactions between ILs and microbial cell membranes. With extremely low IL loading (0.05 wt %), the cell reduction of PVDF-g-IL (Cl) nonwovens improved from 0.2 to 4.4 against S. aureus. Moreover, the antibacterial activity of PVDF-g-IL nonwovens was permanent for the covalent bonds between ILs and polymer chains. The work provides a simple strategy to immobilize ionic antibacterial agents onto polymer substrates, which may have great potential applications in healthcare and household applications.
Collapse
Affiliation(s)
- Jipeng Guan
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University , No. 16 Xuelin Rd., Hangzhou 310036, People's Republic of China.,Shanghai Institute of Applied Physics, Chinese Academy of Sciences , No.2019, Jialuo Road, Jiading District, Shanghai 201800, People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Yanyuan Wang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University , No. 16 Xuelin Rd., Hangzhou 310036, People's Republic of China
| | - Shilu Wu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University , No. 16 Xuelin Rd., Hangzhou 310036, People's Republic of China
| | - Yongjin Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University , No. 16 Xuelin Rd., Hangzhou 310036, People's Republic of China
| | - Jingye Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences , No.2019, Jialuo Road, Jiading District, Shanghai 201800, People's Republic of China
| |
Collapse
|
110
|
Intracellular construction of topology-controlled polypeptide nanostructures with diverse biological functions. Nat Commun 2017; 8:1276. [PMID: 29097677 PMCID: PMC5668255 DOI: 10.1038/s41467-017-01296-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 09/07/2017] [Indexed: 11/08/2022] Open
Abstract
Topological structures of bio-architectonics and bio-interfaces play major roles in maintaining the normal functions of organs, tissues, extracellular matrix, and cells. In-depth understanding of natural self-assembly mechanisms and mimicking functional structures provide us opportunities to artificially control the natural assemblies and their biofunctions. Here, we report an intracellular enzyme-catalyzed polymerization approach for efficient synthesis of polypeptides and in situ construction of topology-controlled nanostructures. We reveal that the phase behavior and topological structure of polypeptides are encoded in monomeric peptide sequences. Next, we elucidate the relationship between polymerization dynamics and their temperature-dependent topological transition in biological conditions. Importantly, the linearly grown elastin-like polypeptides are biocompatible and aggregate into nanoparticles that exhibit significant molecular accumulation and retention effects. However, 3D gel-like structures with thermo-induced multi-directional traction interfere with cellular fates. These findings allow us to exploit new nanomaterials in living subjects for biomedical applications.
Collapse
|
111
|
Peng S, Pan Y, Wang Y, Xu Z, Chen C, Ding D, Wang Y, Guo D. Sequentially Programmable and Cellularly Selective Assembly of Fluorescent Polymerized Vesicles for Monitoring Cell Apoptosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1700310. [PMID: 29201625 PMCID: PMC5700639 DOI: 10.1002/advs.201700310] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/19/2017] [Indexed: 06/01/2023]
Abstract
The introduction of controlled self-assembly into living organisms opens up desired biomedical applications in wide areas including bioimaging/assays, drug delivery, and tissue engineering. Besides the enzyme-activated examples reported before, controlled self-assembly under integrated stimuli, especially in the form of sequential input, is unprecedented and ultimately challenging. This study reports a programmable self-assembling strategy in living cells under sequentially integrated control of both endogenous and exogenous stimuli. Fluorescent polymerized vesicles are constructed by using cholinesterase conversion followed by photopolymerization and thermochromism. Furthermore, as a proof-of-principle application, the cell apoptosis involved in the overexpression of cholinesterase in virtue of the generated fluorescence is monitored, showing potential in screening apoptosis-inducing drugs. The approach exhibits multiple advantages for bioimaging in living cells, including specificity to cholinesterase, red emission, wash free, high signal-to-noise ratio.
Collapse
Affiliation(s)
- Shu Peng
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryKey Laboratory of Functional Polymer MaterialsMinistry of EducationNankai UniversityTianjin300071China
| | - Yu‐Chen Pan
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryKey Laboratory of Functional Polymer MaterialsMinistry of EducationNankai UniversityTianjin300071China
| | - Yaling Wang
- Key Laboratory of Bioactive MaterialsMinistry of EducationCollege of Life SciencesNankai UniversityTianjin300071China
| | - Zhe Xu
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryKey Laboratory of Functional Polymer MaterialsMinistry of EducationNankai UniversityTianjin300071China
| | - Chao Chen
- Key Laboratory of Bioactive MaterialsMinistry of EducationCollege of Life SciencesNankai UniversityTianjin300071China
| | - Dan Ding
- Key Laboratory of Bioactive MaterialsMinistry of EducationCollege of Life SciencesNankai UniversityTianjin300071China
| | - Yongjian Wang
- Key Laboratory of Bioactive MaterialsMinistry of EducationCollege of Life SciencesNankai UniversityTianjin300071China
| | - Dong‐Sheng Guo
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryKey Laboratory of Functional Polymer MaterialsMinistry of EducationNankai UniversityTianjin300071China
- Collaborative Innovation Center of Chemical Science and EngineeringNankai UniversityTianjin300071China
| |
Collapse
|
112
|
Xie C, Zhen X, Lyu Y, Pu K. Nanoparticle Regrowth Enhances Photoacoustic Signals of Semiconducting Macromolecular Probe for In Vivo Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1703693. [PMID: 29024155 DOI: 10.1002/adma.201703693] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/11/2017] [Indexed: 05/26/2023]
Abstract
Smart molecular probes that emit deep-tissue penetrating photoacoustic (PA) signals responsive to the target of interest are imperative to understand disease pathology and develop innovative therapeutics. This study reports a self-assembly approach to develop semiconducting macromolecular activatable probe for in vivo imaging of reactive oxygen species (ROS). This probe comprises a near-infrared absorbing phthalocyanine core and four poly(ethylene glycol) (PEG) arms linked by ROS-responsive self-immolative segments. Such an amphiphilic macromolecular structure allows it to undergo an ROS-specific cleavage process to release hydrophilic PEG and enhance the hydrophobicity of the nanosystem. Consequently, the residual phthalocyanine component self-assembles and regrows into large nanoparticles, leading to ROS-enhanced PA signals. The small size of the intact macromolecular probe is beneficial to penetrate into the tumor tissue of living mice, while the ROS-activated regrowth of nanoparticles prolongs the retention along with enhanced PA signals, permitting imaging of ROS during chemotherapy. This study thus capitalizes on stimuli-controlled self-assembly of macromolecules in conjunction with enhanced heat transfer in large nanoparticles for the development of smart molecular probes for PA imaging.
Collapse
Affiliation(s)
- Chen Xie
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Xu Zhen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Yan Lyu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| |
Collapse
|
113
|
“In vivo self-assembled” nanoprobes for optimizing autophagy-mediated chemotherapy. Biomaterials 2017; 141:199-209. [DOI: 10.1016/j.biomaterials.2017.06.042] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/20/2017] [Accepted: 06/29/2017] [Indexed: 12/31/2022]
|
114
|
Qiao ZY, Zhao WJ, Gao YJ, Cong Y, Zhao L, Hu Z, Wang H. Reconfigurable Peptide Nanotherapeutics at Tumor Microenvironmental pH. ACS APPLIED MATERIALS & INTERFACES 2017; 9:30426-30436. [PMID: 28828864 DOI: 10.1021/acsami.7b09033] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Peptide nanomaterials have recently attracted considerable interest in the biomedical field. However, their poor bioavailability and less powerful therapeutic efficacy hamper their further applications. Herein, we discovered reconfigurable and activated nanotherapeutics in the tumor microenvironment. Two peptides, that is, a pH-responsive peptide HLAH and a matrix metalloprotease-2 (MMP2)-sensitive peptide with a poly(ethylene glycol) (PEG) terminal were conjugated onto the hydrophobic poly(β-thioester)s backbones to gain the copolymer P-S-H. The therapeutic activity of the HLAH peptide could be activated in tumors owing to its reconfiguration under microenvironmental pH. The resultant copolymers self-assembled into nanoparticles under physiological condition, with HLAH in cores protected by PEG shells. The moderate size (∼100 nm) and negative potential enabled the stable circulation of P-S-H in the bloodstream. Once arrived at the tumor site, the P-S-H nanoparticles were stimulated by overexpressed MMP2 and acidic pH, and subsequently the shedding of the PEG shell and protonation of the HLAH peptide induced the reassembly of nanoparticles, resulting in the formation of nanoparticles with activated cytotoxic peptides on the surface. In vivo experiments demonstrated that the reorganized nanoassembly contained three merits: (1) effective accumulation in the tumor site, (2) enhanced antitumor capacity, and (3) no obvious toxic effect at the treatment dose. This on-site reorganization strategy provides an avenue for developing high-performance peptide nanomaterials in cancer treatment.
Collapse
Affiliation(s)
- Zeng-Ying Qiao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, China
| | - Wen-Jing Zhao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, China
| | - Yu-Juan Gao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, China
| | - Yong Cong
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, China
| | - Lina Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
| | - Zhiyuan Hu
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, China
| | - Hao Wang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, China
| |
Collapse
|
115
|
|
116
|
Lin YX, Wang Y, Wang H. Recent Advances in Nanotechnology for Autophagy Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1700996. [PMID: 28677891 DOI: 10.1002/smll.201700996] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/14/2017] [Indexed: 05/23/2023]
Abstract
Autophagy is closely related to various diseases, and is a diagnostic and therapeutic target for some diseases. In recent years, tremendous efforts have been made to develop excellent probes for detection of autophagy. Nanostructure-based probes are interesting and promising approaches for in vivo biological imaging due to their unique structural and functional characteristics, e.g., modulating pharmacokinetics property by biocompatible coatings, multimodality capacity by delivering multiple imaging agents and highly specific targeting by antibody ligands. In this Review, we first introduce recent advancements in the development of nanostructure-based probes for detection of autophagy, including inorganic hybrid nanomaterials and self-assembled peptide polymeric nanoparticles. Meanwhile, a nanoprobe based on a "in vivo self-assembly" strategy is highlighted. The "in vivo self-assembly" endows nanoprobes with higher accumulation, and longer and better signal stability for in vivo detection of autophagy. Furthermore, this novel strategy could be widely used for biomedical imaging/diagnostics and therapeutics, which would attract more attention to this research area.
Collapse
Affiliation(s)
- Yao-Xin Lin
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yi Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
117
|
Qi GB, Zhang D, Liu FH, Qiao ZY, Wang H. An "On-Site Transformation" Strategy for Treatment of Bacterial Infection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1703461. [PMID: 28782856 DOI: 10.1002/adma.201703461] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Indexed: 05/22/2023]
Abstract
To date, numerous nanosystems have been developed as antibiotic replacements for bacterial infection treatment. However, these advanced systems are limited owing to their nontargeting accumulation and the consequent side effects. Herein, transformable polymer-peptide biomaterials have been developed that enable specific accumulation in the infectious site and long-term retention, resulting in enhanced binding capability and killing efficacy toward bacteria. The polymer-peptide conjugates are composed of a chitosan backbone and two functional peptides, i.e., an antimicrobial peptide and a poly(ethylene glycol)-tethered enzyme-cleavable peptide (CPC-1). The CPC-1 initially self-assembles into nanoparticles with pegylated coronas. Upon the peptides are cleaved by the gelatinase secreted by a broad spectrum of bacterial species, the resultant compartments of nanoparticles spontaneously transformed into fibrous nanostructures that are stabilized by enhanced chain-chain interaction, leading to exposure of antimicrobial peptide residues for multivalent cooperative electrostatic interactions with bacterial membranes. Intriguingly, the in situ morphological transformation also critically improves the accumulation and retention of CPC-1 in infectious sites in vivo, which exhibits highly efficient antibacterial activity. This proof-of-concept study demonstrates that pathological environment-driven smart self-assemblies may provide a new idea for design of high-performance biomaterials for disease diagnostics and therapeutics.
Collapse
Affiliation(s)
- Guo-Bin Qi
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Di Zhang
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Fu-Hua Liu
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Zeng-Ying Qiao
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| |
Collapse
|
118
|
Suff N, Waddington SN. The power of bioluminescence imaging in understanding host-pathogen interactions. Methods 2017; 127:69-78. [PMID: 28694065 DOI: 10.1016/j.ymeth.2017.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/12/2017] [Accepted: 07/03/2017] [Indexed: 01/06/2023] Open
Abstract
Infectious diseases are one of the leading causes of death worldwide. Modelling and understanding human infection is imperative to developing treatments to reduce the global burden of infectious disease. Bioluminescence imaging is a highly sensitive, non-invasive technique based on the detection of light, produced by luciferase-catalysed reactions. In the study of infectious disease, bioluminescence imaging is a well-established technique; it can be used to detect, localize and quantify specific immune cells, pathogens or immunological processes. This enables longitudinal studies in which the spectrum of the disease process and its response to therapies can be monitored. Light producing transgenic rodents are emerging as key tools in the study of host response to infection. Here, we review the strategies for identifying biological processes in vivo, including the technology of bioluminescence imaging and illustrate how this technique is shedding light on the host-pathogen relationship.
Collapse
Affiliation(s)
- Natalie Suff
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, United Kingdom.
| | - Simon N Waddington
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, United Kingdom
| |
Collapse
|
119
|
Gao T, Fan H, Wang X, Gao Y, Liu W, Chen W, Dong A, Wang YJ. Povidone-Iodine-Based Polymeric Nanoparticles for Antibacterial Applications. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25738-25746. [PMID: 28707872 DOI: 10.1021/acsami.7b05622] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As microbial contamination is becoming more and more serious, antibacterial agents play an important role in preventing and removing bacterial pathogens from microbial pollution in our daily life. To solve the issues with water solubility and antibacterial stability of PVP-I2 (povidone-iodine) as a strong antibacterial agent, we successfully obtain hydrophobic povidone-iodine nanoparticles (povidone-iodine NPs) by a two-step method related to the advantage of nanotechnology. First, the synthesis of poly(N-vinyl-2-pyrrolidone-co-methyl methacrylate) nanoparticles, i.e., P(NVP-MMA) NPs, was controlled by tuning a feed ratio of NVP to MMA. Then, the products P(NVP-MMA) NPs were allowed to undergo a complexation reaction with iodine, resulting in the formation of a water-insoluble antibacterial material, povidone-iodine NPs. It is found that the feed ratio of NVP to MMA has an active effect on morphology, chemical composition, molecular weight, and hydrophilic-hydrophobic properties of the P(NVP-MMA) copolymer after some technologies, such as SEM, DLS, elemental analysis, 1H NMR, GPC, and the contact angle test, were used in the characterizations. The antibacterial property of povidone-iodine NPs was investigated by using Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Pseudomonas aeruginosa (P. aeruginosa) as model bacteria with the colony count method. Interestingly, three products, such as glue, ink, and dye, after the incorporation of povidone-iodine NPs, show significant antibacterial properties. It is believed that, with the advantage of nanoscale morphology, the final povidone-iodine NPs should have great potential for utilization in various fields where antifouling and antibacterial properties are highly required.
Collapse
Affiliation(s)
- Tianyi Gao
- College of Chemistry and Chemical Engineering, Inner Mongolia University , Hohhot 010021, People's Republic of China
| | - Hongbo Fan
- The School of Environment and Civil Engineering, Dongguan University of Technology , No. 1 Daxue Road, Songshan Lake, Dongguan, Guangdong Province 523808, People's Republic of China
| | - Xinjie Wang
- Jiujiang Sixth People's Hospital , 145 Qianjin East Road, Lianxi District, Jiujiang, Jiangxi Province 332005, People's Republic of China
| | - Yangyang Gao
- College of Chemistry and Chemical Engineering, Inner Mongolia University , Hohhot 010021, People's Republic of China
| | - Wenxin Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia University , Hohhot 010021, People's Republic of China
| | - Wanjun Chen
- College of Chemistry and Chemical Engineering, Inner Mongolia University , Hohhot 010021, People's Republic of China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University , Hohhot 010021, People's Republic of China
| | - Yan-Jie Wang
- The School of Environment and Civil Engineering, Dongguan University of Technology , No. 1 Daxue Road, Songshan Lake, Dongguan, Guangdong Province 523808, People's Republic of China
- Department of Chemical and Biological Engineering, University of British Columbia , 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
120
|
Qiao SL, Ma Y, Wang Y, Lin YX, An HW, Li LL, Wang H. General Approach of Stimuli-Induced Aggregation for Monitoring Tumor Therapy. ACS NANO 2017; 11:7301-7311. [PMID: 28628744 DOI: 10.1021/acsnano.7b03375] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Intracellular construction of nanoaggregates from synthetic molecules to mimic natural ordered superstructures has gained increasing attention recently. Here, we develop an endogenous stimuli-induced aggregation (eSIA) approach to construct functional nanoaggregates for sensing and monitoring cellular physiological processes in situ. We design a series of thermosensitive polymer-peptide conjugates (PPCs), which are capable of constructing nanoaggregates in cells based on their isothermal phase transition property. The PPCs are composed of three moieties (i.e., a thermoresponsive polymer backbone, a grafted peptide, and a signal-molecule label). The bioenvironment-associated phase transition behavior of PPCs are carefully studied by consideration of various crucial parameters such as chain length, hydrophilicity, ratio of grafted peptides, and concentration. Intriguingly, under the specific intracellular stimulus, the PPCs are tailored and simultaneously form nanoaggregates exhibiting long-term retention effect, which enables specific identification and quantification of endogenous factors. This general approach is expected for high-performance in situ sensing and dynamic monitoring of disease progression in living subjects.
Collapse
Affiliation(s)
- Sheng-Lin Qiao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, P.R. China
- University of Chinese Academy of Sciences (UCAS) , Beijing 100049, P.R. China
| | - Yang Ma
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, P.R. China
- University of Chinese Academy of Sciences (UCAS) , Beijing 100049, P.R. China
| | - Yi Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, P.R. China
- University of Chinese Academy of Sciences (UCAS) , Beijing 100049, P.R. China
| | - Yao-Xin Lin
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, P.R. China
- University of Chinese Academy of Sciences (UCAS) , Beijing 100049, P.R. China
| | - Hong-Wei An
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, P.R. China
- University of Chinese Academy of Sciences (UCAS) , Beijing 100049, P.R. China
| | - Li-Li Li
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, P.R. China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, P.R. China
- University of Chinese Academy of Sciences (UCAS) , Beijing 100049, P.R. China
| |
Collapse
|
121
|
Zhao Z, Yan R, Yi X, Li J, Rao J, Guo Z, Yang Y, Li W, Li YQ, Chen C. Bacteria-Activated Theranostic Nanoprobes against Methicillin-Resistant Staphylococcus aureus Infection. ACS NANO 2017; 11:4428-4438. [PMID: 28350437 DOI: 10.1021/acsnano.7b00041] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Despite numerous advanced imaging and sterilization techniques available nowadays, the sensitive in vivo diagnosis and complete elimination of drug-resistant bacterial infections remain big challenges. Here we report a strategy to design activatable theranostic nanoprobes against methicillin-resistant Staphylococcus aureus (MRSA) infections. This probe is based on silica nanoparticles coated with vancomycin-modified polyelectrolyte-cypate complexes (SiO2-Cy-Van), which is activated by an interesting phenomenon of bacteria-responsive dissociation of the polyelectrolyte from silica nanoparticles. Due to the aggregation of hydrophobic cypate fluorophores on silica nanoparticles to induce ground-state quenching, the SiO2-Cy-Van nanoprobes are nonfluorescent in aqueous environments. We demonstrate that MRSA can effectively pull out the vancomycin-modified polyelectrolyte-cypate complexes from silica nanoparticles and draw them onto their own surface, changing the state of cypate from off (aggregation) to on (disaggregation) and leading to in vitro MRSA-activated near-infrared fluorescence (NIRF) and photothermal elimination involving bacterial cell wall and membrane disruption. In vivo experiments show that this de novo-designed nanoprobe can selectively enable rapid (4 h postinjection) NIRF imaging with high sensitivity (105 colony-forming units) and efficient photothermal therapy (PTT) of MRSA infections in mice. Remarkably, the SiO2-Cy-Van nanoprobes can also afford a long-term tracking (16 days) of the development of MRSA infections, allowing real-time estimation of bacterial load in infected tissues and further providing a possible way to monitor the efficacy of antimicrobial treatment. The strategy of bacteria-activated polyelectrolyte dissociation from nanoparticles proposed in this work could also be used as a general method for the design and fabrication of bacteria-responsive functional nanomaterials that offer possibilities to combat drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Zhiwei Zhao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions , Suzhou 215123, China
| | - Rong Yan
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions , Suzhou 215123, China
| | - Xuan Yi
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions , Suzhou 215123, China
| | - Jingling Li
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions , Suzhou 215123, China
| | - Jiaming Rao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions , Suzhou 215123, China
| | - Zhengqing Guo
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions , Suzhou 215123, China
| | - Yanmei Yang
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions , Suzhou 215123, China
| | - Weifeng Li
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions , Suzhou 215123, China
| | - Yong-Qiang Li
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions , Suzhou 215123, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China , Beijing 100190, China
| |
Collapse
|
122
|
Ni D, Jiang D, Valdovinos HF, Ehlerding EB, Yu B, Barnhart TE, Huang P, Cai W. Bioresponsive Polyoxometalate Cluster for Redox-Activated Photoacoustic Imaging-Guided Photothermal Cancer Therapy. NANO LETTERS 2017; 17:3282-3289. [PMID: 28418679 PMCID: PMC5495651 DOI: 10.1021/acs.nanolett.7b00995] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Although various types of imaging agents have been developed for photoacoustic (PA) imaging, relatively few imaging agents exhibit high selectivity/sensitivity to the tumor microenvironment for on-demand PA imaging and therapy. Herein, molybdenum-based polyoxometalate (POM) clusters with the highest oxidation state of Mo(VI) (denoted as Ox-POM) were designed as novel agents for redox-activated PA imaging-guided photothermal therapy. Capable of escaping from recognition and capture by the liver and spleen, these renal clearable clusters with ultrasmall size (hydrodynamic size: 1.9 nm) can accumulate in the tumor, self-assemble into larger nanoclusters at low pH, and are reduced to NIR absorptive agents in the tumor microenvironment. Studies in 4T1 tumor-bearing mice indicated that these clusters could be employed for bioresponsive PA imaging-guided tumor ablation in vivo. Our finding is expected to establish a new physicochemical paradigm for the design of PA imaging agents based on clusters, bridging the conventional concepts of "molecule" and "nano" in the bioimaging field.
Collapse
Affiliation(s)
- Dalong Ni
- Department of Radiology, University of Wisconsin-Madison, Wisconsin 53705, United States
| | - Dawei Jiang
- Department of Radiology, University of Wisconsin-Madison, Wisconsin 53705, United States
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen, China
| | - Hector F. Valdovinos
- Department of Medical Physics, University of Wisconsin-Madison, Wisconsin 53705, United States
| | - Emily B. Ehlerding
- Department of Medical Physics, University of Wisconsin-Madison, Wisconsin 53705, United States
| | - Bo Yu
- Department of Radiology, University of Wisconsin-Madison, Wisconsin 53705, United States
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| | - Todd E. Barnhart
- Department of Medical Physics, University of Wisconsin-Madison, Wisconsin 53705, United States
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen, China
| | - Weibo Cai
- Department of Radiology, University of Wisconsin-Madison, Wisconsin 53705, United States
- Department of Medical Physics, University of Wisconsin-Madison, Wisconsin 53705, United States
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53705, United States
| |
Collapse
|
123
|
Liu Y, Wang S, Ma Y, Lin J, Wang HY, Gu Y, Chen X, Huang P. Ratiometric Photoacoustic Molecular Imaging for Methylmercury Detection in Living Subjects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:10.1002/adma.201606129. [PMID: 28224711 PMCID: PMC5553071 DOI: 10.1002/adma.201606129] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 01/16/2017] [Indexed: 05/22/2023]
Abstract
Photoacoustic molecular imaging is an emerging and promising diagnostic tool for heavy metal ions detection. Methylmercury (MeHg+ ) is one of the most potent neurotoxins, which damages the brain and nervous system of human beings through fish consumption. The development of a selective and sensitive method for MeHg+ detection is highly desirable. In this Communication, we develope a chemoselective photoacoustic sensor (LP-hCy7) composed of the liposome (LP) and MeHg+ -responsive near-infrared (NIR) cyanine dye (hCy7) for MeHg+ detection within living subjects, such as zebrafish and mouse. The as-prepared LP-hCy7 nanoprobe displays unique dual-shift NIR absorbance peaks and produces a normalized turn-on response after the reaction of MeHg+ and hCy7 through a mercury-promoted cyclization reaction. The absorbance intensities of LP-hCy7 nanoprobe at 690 and 860 nm are decreased and increased, respectively. The ratiometric photoacoustic signal (PA860/PA690) is noticeably increased in the presence of MeHg+ . These findings not only provide a ratiometric photoacoustic molecular imaging probe for the detection of metal ions in vivo, but also provides a tool for spectroscopic photoacoustic molecular imaging.
Collapse
Affiliation(s)
- Yi Liu
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, P. R. China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Sheng Wang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ying Ma
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Jing Lin
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hai-Yan Wang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yueqing Gu
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
124
|
Yin C, Zhen X, Fan Q, Huang W, Pu K. Degradable Semiconducting Oligomer Amphiphile for Ratiometric Photoacoustic Imaging of Hypochlorite. ACS NANO 2017; 11:4174-4182. [PMID: 28296388 DOI: 10.1021/acsnano.7b01092] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Upregulation of highly reactive oxygen species (ROS) such as hypochlorite (ClO-) is associated with many pathological conditions including cardiovascular diseases, neuron degeneration, lung injury, and cancer. However, real-time imaging of ClO- is limited to the probes generally relying on fluorescence with shallow tissue-penetration depth. We here propose a self-assembly approach to develop activatable and degradable photoacoustic (PA) nanoprobes for in vivo imaging of ClO-. A near-infrared absorbing amphiphilic oligomer is synthesized to undergo degradation in the presence of a specific ROS (ClO-), which integrates a π-conjugated but ClO- oxidizable backbone with hydrophilic PEG side chains. This molecular architecture allows the oligomer to serve as a degradable nanocarrier to encapsulate the ROS-inert dye and self-assemble into structurally stable nanoparticles through both π-π stacking and hydrophobic interactions. The self-assembled nanoprobe exhibits sensitive and specific ratiometric PA signals toward ClO-, permitting ratiometric PA imaging of ClO- in the tumor of living mice.
Collapse
Affiliation(s)
- Chao Yin
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, 637457 Singapore
| | - Xu Zhen
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, 637457 Singapore
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, 637457 Singapore
| |
Collapse
|
125
|
Hu XX, He PP, Qi GB, Gao YJ, Lin YX, Yang C, Yang PP, Hao H, Wang L, Wang H. Transformable Nanomaterials as an Artificial Extracellular Matrix for Inhibiting Tumor Invasion and Metastasis. ACS NANO 2017; 11:4086-4096. [PMID: 28334523 DOI: 10.1021/acsnano.7b00781] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Tumor metastasis is one of the big challenges in cancer treatment and is often associated with high patient mortality. Until now, there is an agreement that tumor invasion and metastasis are related to degradation of extracellular matrix (ECM) by enzymes. Inspired by the formation of natural ECM and the in situ self-assembly strategy developed in our group, herein, we in situ constructed an artificial extracellular matrix (AECM) based on transformable Laminin (LN)-mimic peptide 1 (BP-KLVFFK-GGDGR-YIGSR) for inhibition of tumor invasion and metastasis. The peptide 1 was composed of three modules including (i) the hydrophobic bis-pyrene (BP) unit for forming and tracing nanoparticles; (ii) the KLVFF peptide motif that was inclined to form and stabilize fibrous structures through intermolecular hydrogen bonds; and (iii) the Y-type RGD-YIGSR motif, derived from LN conserved sequence, served as ligands to bind cancer cell surfaces. The peptide 1 formed nanoparticles (1-NPs) by the rapid precipitation method, owing to strong hydrophobic interactions of BP. Upon intravenous injection, 1-NPs effectively accumulated in the tumor site due to the enhanced permeability and retention (EPR) effect and/or targeting capability of RGD-YIGSR. The accumulated 1-NPs simultaneously transformed into nanofibers (1-NFs) around the solid tumor and further entwined to form AECM upon binding to receptors on the tumor cell surfaces. The AECM stably existed in the primary tumor site over 72 h, which consequently resulted in efficiently inhibiting the lung metastasis in breast and melanoma tumor models. The inhibition rates in two tumor models were 82.3% and 50.0%, respectively. This in vivo self-assembly strategy could be widely utilized to design effective drug-free biomaterials for inhibiting the tumor invasion and metastasis.
Collapse
Affiliation(s)
- Xiao-Xue Hu
- National Engineering Research Center of Industrial Crystallization Technology, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, P. R. China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Ping-Ping He
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Guo-Bin Qi
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Yu-Juan Gao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Yao-Xin Lin
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Chao Yang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Pei-Pei Yang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Hongxun Hao
- National Engineering Research Center of Industrial Crystallization Technology, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, P. R. China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| |
Collapse
|
126
|
Zhu M, Liu P, Niu ZW. A perspective on general direction and challenges facing antimicrobial peptides. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2016.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
127
|
Dong A, Wang YJ, Gao Y, Gao T, Gao G. Chemical Insights into Antibacterial N-Halamines. Chem Rev 2017; 117:4806-4862. [DOI: 10.1021/acs.chemrev.6b00687] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Alideertu Dong
- College
of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People’s Republic of China
| | - Yan-Jie Wang
- Department
of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, Canada V6T 1Z3
| | - Yangyang Gao
- College
of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People’s Republic of China
| | - Tianyi Gao
- College
of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People’s Republic of China
| | - Ge Gao
- College
of Chemistry, Jilin University, Changchun 130021, People’s Republic of China
| |
Collapse
|
128
|
Abbas M, Zou Q, Li S, Yan X. Self-Assembled Peptide- and Protein-Based Nanomaterials for Antitumor Photodynamic and Photothermal Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605021. [PMID: 28060418 DOI: 10.1002/adma.201605021] [Citation(s) in RCA: 515] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 10/18/2016] [Indexed: 05/20/2023]
Abstract
Tremendous interest in self-assembly of peptides and proteins towards functional nanomaterials has been inspired by naturally evolving self-assembly in biological construction of multiple and sophisticated protein architectures in organisms. Self-assembled peptide and protein nanoarchitectures are excellent promising candidates for facilitating biomedical applications due to their advantages of structural, mechanical, and functional diversity and high biocompability and biodegradability. Here, this review focuses on the self-assembly of peptides and proteins for fabrication of phototherapeutic nanomaterials for antitumor photodynamic and photothermal therapy, with emphasis on building blocks, non-covalent interactions, strategies, and the nanoarchitectures of self-assembly. The exciting antitumor activities achieved by these phototherapeutic nanomaterials are also discussed in-depth, along with the relationships between their specific nanoarchitectures and their unique properties, providing an increased understanding of the role of peptide and protein self-assembly in improving the efficiency of photodynamic and photothermal therapy.
Collapse
Affiliation(s)
- Manzar Abbas
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qianli Zou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shukun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
129
|
Lin YX, Qiao SL, Wang Y, Zhang RX, An HW, Ma Y, Rajapaksha RPYJ, Qiao ZY, Wang L, Wang H. An in Situ Intracellular Self-Assembly Strategy for Quantitatively and Temporally Monitoring Autophagy. ACS NANO 2017; 11:1826-1839. [PMID: 28112893 DOI: 10.1021/acsnano.6b07843] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Autophagy plays a crucial role in the metabolic process. So far, conventional methods are incapable of rapid, precise, and real-time monitoring of autophagy in living objects. Herein, we describe an in situ intracellular self-assembly strategy for quantitative and temporal determination of autophagy in living objectives. The intelligent building blocks (DPBP) are composed by a bulky dendrimer as a carrier, a bis(pyrene) derivative (BP) as a signal molecule, and a peptide linker as a responsive unit that can be cleaved by an autophagy-specific enzyme, i.e., ATG4B. DPBP maintains the quenched fluorescence with monomeric BP. However, the responsive peptide is specifically tailored upon activation of autophagy, resulting in self-aggregation of BP residues which emit a 30-fold enhanced fluorescence. By measuring the intensity of fluorescent signal, we are able to quantitatively evaluate the autophagic level. In comparison with traditional techniques, such as TEM, Western blot, and GFP-LC3, the reliability and accuracy of this method are finally validated. We believe this in situ intracellular self-assembly strategy provides a rapid, effective, real-time, and quantitative method for monitoring autophagy in living objects, and it will be a useful tool for autophagy-related fundamental and clinical research.
Collapse
Affiliation(s)
- Yao-Xin Lin
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Sheng-Lin Qiao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Yi Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Ruo-Xin Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, P. R. China
| | - Hong-Wei An
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Yang Ma
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - R P Yeshan J Rajapaksha
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, P. R. China
| | - Zeng-Ying Qiao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, P. R. China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, P. R. China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| |
Collapse
|
130
|
Yang C, Ren C, Zhou J, Liu J, Zhang Y, Huang F, Ding D, Xu B, Liu J. Dual Fluorescent- and Isotopic-Labelled Self-Assembling Vancomycin for in vivo Imaging of Bacterial Infections. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201610926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Cuihong Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine; Institute of Radiation Medicine; Chinese Academy of Medical Sciences & Peking Union Medical College; Tianjin 300192 P.R. China
- Department of Chemistry; Brandeis University; Waltham MA 02454 USA
| | - Chunhua Ren
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine; Institute of Radiation Medicine; Chinese Academy of Medical Sciences & Peking Union Medical College; Tianjin 300192 P.R. China
| | - Jie Zhou
- Department of Chemistry; Brandeis University; Waltham MA 02454 USA
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine; Institute of Radiation Medicine; Chinese Academy of Medical Sciences & Peking Union Medical College; Tianjin 300192 P.R. China
| | - Yumin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine; Institute of Radiation Medicine; Chinese Academy of Medical Sciences & Peking Union Medical College; Tianjin 300192 P.R. China
| | - Fan Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine; Institute of Radiation Medicine; Chinese Academy of Medical Sciences & Peking Union Medical College; Tianjin 300192 P.R. China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology; Nankai University; Tianjin 300071 P.R. China
| | - Bing Xu
- Department of Chemistry; Brandeis University; Waltham MA 02454 USA
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine; Institute of Radiation Medicine; Chinese Academy of Medical Sciences & Peking Union Medical College; Tianjin 300192 P.R. China
| |
Collapse
|
131
|
Yang C, Ren C, Zhou J, Liu J, Zhang Y, Huang F, Ding D, Xu B, Liu J. Dual Fluorescent- and Isotopic-Labelled Self-Assembling Vancomycin for in vivo Imaging of Bacterial Infections. Angew Chem Int Ed Engl 2017; 56:2356-2360. [DOI: 10.1002/anie.201610926] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/15/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Cuihong Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine; Institute of Radiation Medicine; Chinese Academy of Medical Sciences & Peking Union Medical College; Tianjin 300192 P.R. China
- Department of Chemistry; Brandeis University; Waltham MA 02454 USA
| | - Chunhua Ren
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine; Institute of Radiation Medicine; Chinese Academy of Medical Sciences & Peking Union Medical College; Tianjin 300192 P.R. China
| | - Jie Zhou
- Department of Chemistry; Brandeis University; Waltham MA 02454 USA
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine; Institute of Radiation Medicine; Chinese Academy of Medical Sciences & Peking Union Medical College; Tianjin 300192 P.R. China
| | - Yumin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine; Institute of Radiation Medicine; Chinese Academy of Medical Sciences & Peking Union Medical College; Tianjin 300192 P.R. China
| | - Fan Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine; Institute of Radiation Medicine; Chinese Academy of Medical Sciences & Peking Union Medical College; Tianjin 300192 P.R. China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology; Nankai University; Tianjin 300071 P.R. China
| | - Bing Xu
- Department of Chemistry; Brandeis University; Waltham MA 02454 USA
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine; Institute of Radiation Medicine; Chinese Academy of Medical Sciences & Peking Union Medical College; Tianjin 300192 P.R. China
| |
Collapse
|
132
|
Gui Ning L, Wang S, Feng Hu X, Ming Li C, Qun Xu L. Vancomycin-conjugated polythiophene for the detection and imaging of Gram-positive bacteria. J Mater Chem B 2017; 5:8814-8820. [DOI: 10.1039/c7tb02061a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Vancomycin-conjugated polythiophene was synthesized for the discrimination and elimination of Gram-positive bacteria.
Collapse
Affiliation(s)
- Ling Gui Ning
- Institute for Clean Energy and Advanced Materials
- Faculty of Materials and Energy
- Southwest University
- Chongqing
- P. R. China
| | - Shuai Wang
- Institute for Clean Energy and Advanced Materials
- Faculty of Materials and Energy
- Southwest University
- Chongqing
- P. R. China
| | - Xue Feng Hu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- P. R. China
| | - Chang Ming Li
- Institute for Clean Energy and Advanced Materials
- Faculty of Materials and Energy
- Southwest University
- Chongqing
- P. R. China
| | - Li Qun Xu
- Institute for Clean Energy and Advanced Materials
- Faculty of Materials and Energy
- Southwest University
- Chongqing
- P. R. China
| |
Collapse
|
133
|
Miao Q, Pu K. Emerging Designs of Activatable Photoacoustic Probes for Molecular Imaging. Bioconjug Chem 2016; 27:2808-2823. [DOI: 10.1021/acs.bioconjchem.6b00641] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Qingqing Miao
- School of Chemical and Biomedical
Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457
| | - Kanyi Pu
- School of Chemical and Biomedical
Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457
| |
Collapse
|
134
|
Wang S, Lin J, Wang T, Chen X, Huang P. Recent Advances in Photoacoustic Imaging for Deep-Tissue Biomedical Applications. Theranostics 2016; 6:2394-2413. [PMID: 27877243 PMCID: PMC5118603 DOI: 10.7150/thno.16715] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/16/2016] [Indexed: 12/12/2022] Open
Abstract
Photoacoustic imaging (PAI), a novel imaging modality based on photoacoustic effect, shows great promise in biomedical applications. By converting pulsed laser excitation into ultrasonic emission, PAI combines the advantages of optical imaging and ultrasound imaging, which benefits rich contrast, high resolution and deep tissue penetration. In this paper, we introduced recent advances of contrast agents, applications, and signal enhancement strategies for PAI. The PA contrast agents were categorized by their components, mainly including inorganic and organic PA contrast agents. The applications of PAI were summarized as follows: deep tumor imaging, therapeutic responses monitoring, metabolic imaging, pH detection, enzyme detection, reactive oxygen species (ROS) detection, metal ions detection, and so on. The enhancement strategies of PA signals were highlighted. In the end, we elaborated on the challenges and provided perspectives of PAI for deep-tissue biomedical applications.
Collapse
Affiliation(s)
- Sheng Wang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jing Lin
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Tianfu Wang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
135
|
Liu WJ, Zhang D, Li LL, Qiao ZY, Zhang JC, Zhao YX, Qi GB, Wan D, Pan J, Wang H. In Situ Construction and Characterization of Chlorin-Based Supramolecular Aggregates in Tumor Cells. ACS APPLIED MATERIALS & INTERFACES 2016; 8:22875-22883. [PMID: 27529787 DOI: 10.1021/acsami.6b07049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We demonstrate in situ construction and characterization of supramolecular aggregates from chlorin p6 (Cp6) molecules in tumor cells. Fully deprotonated Cp6 molecules in neutral condition were partially protonated inside the acidic lysosomes of cells and significantly increased the hydrophobicity of them that resulted in simultaneous formation of J-type aggregates. Importantly, the formation of J-aggregates was fully characterized in artificial tissues by UV-vis, circular dichroism (CD) and transmission electron microscope (TEM) techniques. Compared to the monomers, the J-aggregates exhibited 55-fold enhanced thermal conversion efficiency (η) at the optimal excitation wavelength (690 nm). The remarkably increased heat effect contributed to the stronger photoacoustic (PA) signals, leading to at least 2 orders of magnitude increase of the tumor-to-normal tissue ratio (T/N), which was defined as the PA signal ratio between tumor site and surrounding normal tissue. We envision that this proof-of-concept study will open a new way to develop tumor environment-induced self-assembly for variable biomedical applications.
Collapse
Affiliation(s)
- Wei-Jiao Liu
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Environmental and Chemical Engineering, Tianjin Polytechnic University , 100044 Tianjin, China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , No. 11 Beiyitiao, Zhongguancun, 100190 Beijing, China
| | - Di Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , No. 11 Beiyitiao, Zhongguancun, 100190 Beijing, China
| | - Li-Li Li
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , No. 11 Beiyitiao, Zhongguancun, 100190 Beijing, China
| | - Zeng-Ying Qiao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , No. 11 Beiyitiao, Zhongguancun, 100190 Beijing, China
| | - Ju-Chen Zhang
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Environmental and Chemical Engineering, Tianjin Polytechnic University , 100044 Tianjin, China
| | - Ying-Xi Zhao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , No. 11 Beiyitiao, Zhongguancun, 100190 Beijing, China
| | - Guo-Bin Qi
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , No. 11 Beiyitiao, Zhongguancun, 100190 Beijing, China
| | - Dong Wan
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Environmental and Chemical Engineering, Tianjin Polytechnic University , 100044 Tianjin, China
| | - Jie Pan
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Environmental and Chemical Engineering, Tianjin Polytechnic University , 100044 Tianjin, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , No. 11 Beiyitiao, Zhongguancun, 100190 Beijing, China
| |
Collapse
|
136
|
An HW, Qiao SL, Li LL, Yang C, Lin YX, Wang Y, Qiao ZY, Wang L, Wang H. Bio-orthogonally Deciphered Binary Nanoemitters for Tumor Diagnostics. ACS APPLIED MATERIALS & INTERFACES 2016; 8:19202-7. [PMID: 27434548 DOI: 10.1021/acsami.6b07497] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Bioinspired design concept has been recognized as one of the most promising strategies for discovering new biomaterials. However, smart biomaterials that are of growing interests in biomedical field need biological processability to meet their emergent applications in vivo. Herein, a new bio-orthogonally deciphered approach has been demonstrated for modulating optical properties of nanomaterials in living systems. The self-assembled nanoemitters based on cyanine-pyrene molecule 1 with inert optical property are designed and prepared. The structure and optical feature of the nanoemitters 1 can be efficiently and reliably modulated by a unique bio-orthogonal mechanism with abundant glutathione (GSH) as an activator. As a result, the self-assembled nanoemitters 1 spontaneously exhibits binary emissions for high-performance tumor imaging in vivo. We believe that this bio-orthogonally deciphered strategy opens a new avenue for designing variable smart biomaterials or devices in biomedical applications.
Collapse
Affiliation(s)
- Hong-Wei An
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , No. 11 Beiyitiao, Zhongguancun, Beijing, China
- University of Chinese Academy of Science (UCAS) , No. 19A Yuquan Road, Beijing, China
| | - Sheng-Lin Qiao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , No. 11 Beiyitiao, Zhongguancun, Beijing, China
- University of Chinese Academy of Science (UCAS) , No. 19A Yuquan Road, Beijing, China
| | - Li-Li Li
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , No. 11 Beiyitiao, Zhongguancun, Beijing, China
| | - Chao Yang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , No. 11 Beiyitiao, Zhongguancun, Beijing, China
| | - Yao-Xin Lin
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , No. 11 Beiyitiao, Zhongguancun, Beijing, China
- University of Chinese Academy of Science (UCAS) , No. 19A Yuquan Road, Beijing, China
| | - Yi Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , No. 11 Beiyitiao, Zhongguancun, Beijing, China
- University of Chinese Academy of Science (UCAS) , No. 19A Yuquan Road, Beijing, China
| | - Zeng-Ying Qiao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , No. 11 Beiyitiao, Zhongguancun, Beijing, China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , No. 11 Beiyitiao, Zhongguancun, Beijing, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , No. 11 Beiyitiao, Zhongguancun, Beijing, China
| |
Collapse
|
137
|
Li LL, Zeng Q, Liu WJ, Hu XF, Li Y, Pan J, Wan D, Wang H. Quantitative Analysis of Caspase-1 Activity in Living Cells Through Dynamic Equilibrium of Chlorophyll-Based Nano-assembly Modulated Photoacoustic Signals. ACS APPLIED MATERIALS & INTERFACES 2016; 8:17936-17943. [PMID: 27341352 DOI: 10.1021/acsami.6b05795] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In situ construction of self-assemblies with unique property in living systems is a promising direction in the biomedical field. The noninvasive methods for significant enzyme activity in living cells or living subjects are imperative and meantime challenge tasks. The dynamic process of self-assembly of chlorophyll-based molecules in complex biological systems can be monitored by photoacoustic signals, which supports a noninvasive way to understand and quantitatively measure the activity of caspase-1. Furthermore, the activity of caspase-1 enables reflection of the bacterial infection in the early stage. Here, we present a biocompatible self-assembly from chlorophyll-peptide derivatives and first correlate the dynamic equilibrium with ratiometric photoacoustic signals. The intracellular equilibrium was managed by a bacterial infection precaution protein, i.e., caspase-1. This system offers a trial of noninvasive method to quantitative detection and real-time monitoring of bacterial infection in the early stage.
Collapse
Affiliation(s)
- Li-Li Li
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) Department Institution , No. 11 Beiyitiao, Beijing, China
| | - Qian Zeng
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) Department Institution , No. 11 Beiyitiao, Beijing, China
| | - Wei-Jiao Liu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) Department Institution , No. 11 Beiyitiao, Beijing, China
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Environmental and Chemical Engineering, Tianjin Polytechnic University , Tianin, China
| | - Xue-Feng Hu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) Department Institution , No. 11 Beiyitiao, Beijing, China
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering, East China University of Science and Technology , Shanghai, China
| | - Yongsheng Li
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering, East China University of Science and Technology , Shanghai, China
| | - Jie Pan
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Environmental and Chemical Engineering, Tianjin Polytechnic University , Tianin, China
| | - Dong Wan
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Environmental and Chemical Engineering, Tianjin Polytechnic University , Tianin, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) Department Institution , No. 11 Beiyitiao, Beijing, China
| |
Collapse
|
138
|
Wang L, Yang PP, Zhao XX, Wang H. Self-assembled nanomaterials for photoacoustic imaging. NANOSCALE 2016; 8:2488-2509. [PMID: 26757620 DOI: 10.1039/c5nr07437a] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.
Collapse
Affiliation(s)
- Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing, 100190, China.
| | - Pei-Pei Yang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing, 100190, China.
| | - Xiao-Xiao Zhao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing, 100190, China.
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing, 100190, China.
| |
Collapse
|
139
|
Zhou J, Qi GB, Wang H. A purpurin-peptide derivative for selective killing of Gram-positive bacteria via insertion into cell membrane. J Mater Chem B 2016; 4:4855-4861. [DOI: 10.1039/c6tb00406g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A purpurin-peptide derivative was used for discriminating and killing bacteria based on the different surface components of bacteria.
Collapse
Affiliation(s)
- Jin Zhou
- CAS Center for Excellence in Nanoscience
- Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Zhongguancun
- China
| | - Guo-Bin Qi
- CAS Center for Excellence in Nanoscience
- Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Zhongguancun
- China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience
- Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Zhongguancun
- China
| |
Collapse
|