101
|
Tang YX, Cao Y, Shi WJ, Li JC, Lu WL, Fan T, Zheng L, Yan JW, Han D, Niu L. Construction of cationic meso-thiazolium-BODIPY AIE fluorescent probes for viscosity imaging in dual organelles. Chem Commun (Camb) 2024; 60:8864-8867. [PMID: 39081239 DOI: 10.1039/d4cc02977a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Two new cationic meso-thiazolium-BODIPY-based water-soluble and red-shifted fluorescent probes were constructed for the first time. They can monitor cellular viscosity in dual organelles and show aggregation-induced emission (AIE), which is ascribed to the efficient restricted rotation of meso-thiazolium in viscous or hindered systems. Probe 3 with an N-benzyl group shows better AIE as compared to probe 2 with an N-methyl group.
Collapse
Affiliation(s)
- Yu-Xin Tang
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Yingmei Cao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Wen-Jing Shi
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Jin-Cheng Li
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Wei-Lin Lu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Ting Fan
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Liyao Zheng
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Jin-Wu Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Dongxue Han
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Li Niu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| |
Collapse
|
102
|
Li K, Xie W, Zhang M, Fu D, Hu DD, Yang P. Synthesis of a Multi-Stimulus Responsive RGB Fluorescent Organic Molecule Based on Dark Through-Bond Energy Transfer Mechanism. Chemistry 2024:e202402708. [PMID: 39136930 DOI: 10.1002/chem.202402708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Indexed: 10/18/2024]
Abstract
In this study, a novel multi-stimulus responsive RGB fluorescent organic molecule, RTPE-NH2, was designed and synthesized based on the combination of aggregation-induced emission tetraphenylethylene (TPE) luminophore and acid-responsive fluorescent molecular switch Rhodamine B. RTPE-NH2 exhibits aggregation-induced emission behavior, as well as UV irradiation-stimulus and acid-stimulus responsive fluorescence properties. It could emit orange-red (R), green(G), and blue(B) light in both solution and PMMA film under 365 nm excitation. The dark through-bond energy transfer (DTBET) mechanism was proposed and supported by control experiments and TD-DFT calculations. The synthesis and application of RTPE-NH2 could accelerate the development of organic smart materials with high sensitivity and excellent optical properties.
Collapse
Affiliation(s)
- Kuiliang Li
- School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan, Anhui, 232001, P. R. China
| | - Wenqiang Xie
- School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan, Anhui, 232001, P. R. China
| | - Minggui Zhang
- School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan, Anhui, 232001, P. R. China
| | - Dexin Fu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Duo-Duo Hu
- School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan, Anhui, 232001, P. R. China
| | - Ping Yang
- School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan, Anhui, 232001, P. R. China
| |
Collapse
|
103
|
Jian X, Jiang G, Wang J. Recent advances of aggregation-induced emission luminogens for point-of-care biosensing systems. Chem Commun (Camb) 2024; 60:8484-8496. [PMID: 39042090 DOI: 10.1039/d4cc02901a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The rapid and sensitive detection of chemical compounds in body fluids and tissues is important for diagnosis of diseases and assessment of the effectiveness of treatment programs. Point-of-care (POC) sensors based on fluorescence signals have been widely used in the rapid detection of various infectious diseases. However, the aggregation-caused quenching phenomenon of conventional fluorescent probes limits the sensitivity and accuracy of fluorescent POC sensors. In this review, we first focus on aggregation-induced emission (AIE)-based POC detection for early diagnosis of diseases and then describe how to use mechanisms of AIE to improve the sensitivity of POC testing. This review gives a summary of the design mechanisms of AIE probes in AIE-based biosensors. Subsequently, it summarizes the design strategies of AIE-based POC sensors in the detection of ions, small molecules, nucleic acids, proteins, and whole entity (cells, bacteria, viruses, and exosomes), placing an emphasis on signal amplification. Finally, it gives an overview of AIE-based POC biosensors, including probes, instruments, and applications. We hope that this review will provide valuable guidance for further expanding the application of AIE luminogens in POC biosensors.
Collapse
Affiliation(s)
- Xiaoxia Jian
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Institutes of Biomedical Sciences, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Guoyu Jiang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Institutes of Biomedical Sciences, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Institutes of Biomedical Sciences, Inner Mongolia University, Hohhot 010021, P. R. China.
| |
Collapse
|
104
|
Liu H, Guo C, Huang Y, Zhou Z, Jian S, Zhang Z, Hou Y, Mu C, Zhang M. Fusion of two homoleptic truncated tetrahedra into a heteroleptic truncated octahedron. Chem Sci 2024:d4sc02736a. [PMID: 39165732 PMCID: PMC11331344 DOI: 10.1039/d4sc02736a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/01/2024] [Indexed: 08/22/2024] Open
Abstract
The exploration of novel structures and structural transformation of supramolecular assemblies is of vital importance for their functions and applications. Herein, based on coordination-driven self-assembly, we prepare a neutral truncated tetrahedron and a heteroleptic truncated octahedron, whose structures are unambiguously confirmed by X-ray diffraction analysis. More importantly, the truncated tetrahedron is quantitatively transformed into the truncated octahedron through its fusion with another cationic truncated tetrahedron, as evidenced by fluorescence, mass and NMR spectroscopy. This study not only deepens our understanding of the process of supramolecular fusion but also opens up possibilities for the subsequent preparation of advanced supramolecular assemblies with complex structures and integrated functions.
Collapse
Affiliation(s)
- Haifei Liu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University Shenzhen 518055 P. R. China
| | - Yujuan Huang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Zilin Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Shijin Jian
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Zeyuan Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Yali Hou
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Chaoqun Mu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology Xi'an 710055 Shaanxi P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University Xi'an 710049 P. R. China
| |
Collapse
|
105
|
Xia J, Xie S, Huang Y, Wu XX, Lu B. Emerging A-D-A fused-ring photosensitizers for tumor phototheranostics. Chem Commun (Camb) 2024; 60:8526-8536. [PMID: 39039905 DOI: 10.1039/d4cc02596b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
As we all know, cancer is still a disease that we are struggling against. Although the traditional treatment options are still the mainstream in clinical practice, emerging phototheranostics technologies based on photoacoustic or fluorescence imaging-guided phototherapy also provide a new exploration direction for non-invasive, low-risk and highly efficient cancer treatment. Photosensitizers are the core materials to accomplish this mission. Recently, more attention has been paid to the emerging A-D-A fused-ring photosensitizers. A-D-A fused-ring photosensitizers display strong and wide absorption spectra, high photostability and easy molecular modification. Since this type of photosensitizer was first used for tumor therapy in 2019, its application boundaries are constantly expanding. Therefore, in this feature article, from the perspective of molecular design, we focused on the development of these molecules for application in phototheranostics over the past five years. The effects of tiny structural changes on their photophysical properties are discussed in detail, which provides a way for structural optimization of the subsequent A-D-A photosensitizers.
Collapse
Affiliation(s)
- Jiachen Xia
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Shaoqi Xie
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yuying Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Xin-Xing Wu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Bing Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| |
Collapse
|
106
|
Yan S, Hu Y, Cui L, Feng M, Young DJ, Li HX, He X, Lu C, Ren ZG. Aggregation-Induced Emission Phosphorescence Featured Au-Ag Coordination Polymer with a Diphosphine N-Heterocyclic Carbene Ligand for Highly Sensitive Detection of Cr(VI). Inorg Chem 2024; 63:14415-14424. [PMID: 39041821 DOI: 10.1021/acs.inorgchem.4c01340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Luminescent materials with aggregation-induced emission (AIE) characteristics have been recognized as highly selective and sensitive probes for the detection of toxic metal ions in recent years. In this paper, a Au-Ag cluster-based coordination polymer [Au3Ag3(L)2(CN)6(H2O)2]n [1, L = 1,3-bis((diphenylphosphanyl)methyl)-4,5-dihydro-imidazolylidene] was prepared by in situ generation of the diphosphine N-heterocyclic carbene (PCNHCP)-type ligand L in the presence of the corresponding metal salts. Compound 1 exhibited 530 nm phosphorescence under 380 nm excitation with a QY of 6.30% and a lifetime (τ) of 7.14 μs in the solid state. 1 showed good AIE behavior in the mixture of MeOH/H2O while the best aggregation state (fwater = 90%, QY = 6.79%, τ = 6.70 μs) exhibited selective and sensitive emission quenching toward Cr(VI) ions. Ultralow detection limits of 9.7 ppb (w/w) for Cr2O72- and 17.9 ppb (w/w) for CrO42- were achieved.
Collapse
Affiliation(s)
- Sisi Yan
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Yuanyuan Hu
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Lin Cui
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Mengyao Feng
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - David James Young
- Glasgow College UESTC, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Hong-Xi Li
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Xuewen He
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Chengrong Lu
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Zhi-Gang Ren
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| |
Collapse
|
107
|
Rai A, Jha NS, Sharma P, Tiwari S, Subramanian R. Curcumin-derivatives as fluorescence-electrochemical dual probe for ultrasensitive detections of picric acid in aqueous media. Talanta 2024; 275:126113. [PMID: 38669958 DOI: 10.1016/j.talanta.2024.126113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/05/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024]
Abstract
We are reporting the two curcumin derivatives, ferrocenyl curcumin (Fc-cur) and 4-nitro-benzylidene curcumin (NBC), as a probe through dual modalities, i.e., fluorescence and electrochemical methods, for the detection of nitro-analytes, such as picric acid (PA). The probes exhibited aggregation-induced enhanced emission (AIEE), and the addition of picric acid (PA) demonstrated good and specific fluorimetric identification of PA in the aggregated state. By using density functional theory (DFT), the mechanism of picric acid's (PA) interactions with the probes was further investigated. DFT studies shows evidence of charge transfer from curcumin derivatives probe to picric acid resulting into the formation of an adduct. The reduction of trinitrophenol (PA) to 2, 4, 6-trinitrosophenol was investigated utilizing a probe-modified glassy carbon electrode (GCE) with a good detection limit of 9.63 ± 0.001 pM and 41.01 ± 0.002 pM, respectively, for Fc-cur@GCE and NBC@GCE, taking into account the redox behavior of the probe. The applicability of the designed sensor has been utilized for real-time application in the estimation of picric acid in several water samples collected from the different source.
Collapse
Affiliation(s)
- Anupama Rai
- Department of Chemistry, National Institute of Technology, Ashok Rajpath, Patna, 800005, Bihar, India
| | - Niki Sweta Jha
- Department of Chemistry, National Institute of Technology, Ashok Rajpath, Patna, 800005, Bihar, India.
| | - Padma Sharma
- Department of Chemistry, National Institute of Technology, Ashok Rajpath, Patna, 800005, Bihar, India
| | - Suresh Tiwari
- Department of Chemistry, Indian Institute of Technology, Patna, 801106, Bihar, India
| | - Ranga Subramanian
- Department of Chemistry, Indian Institute of Technology, Patna, 801106, Bihar, India
| |
Collapse
|
108
|
Cai X, Xu W, Ren C, Zhang L, Zhang C, Liu J, Yang C. Recent progress in quantitative analysis of self-assembled peptides. EXPLORATION (BEIJING, CHINA) 2024; 4:20230064. [PMID: 39175887 PMCID: PMC11335468 DOI: 10.1002/exp.20230064] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/05/2023] [Indexed: 08/24/2024]
Abstract
Self-assembled peptides have been among the important biomaterials due to its excellent biocompatibility and diverse functions. Over the past decades, substantial progress and breakthroughs have been made in designing self-assembled peptides with multifaceted biomedical applications. The techniques for quantitative analysis, including imaging-based quantitative techniques, chromatographic technique and computational approach (molecular dynamics simulation), are becoming powerful tools for exploring the structure, properties, biomedical applications, and even supramolecular assembly processes of self-assembled peptides. However, a comprehensive review concerning these quantitative techniques remains scarce. In this review, recent progress in techniques for quantitative investigation of biostability, cellular uptake, biodistribution, self-assembly behaviors of self-assembled peptide etc., are summarized. Specific applications and roles of these techniques are highlighted in detail. Finally, challenges and outlook in this field are concluded. It is believed that this review will provide technical guidance for researchers in the field of peptide-based materials and pharmaceuticals, and facilitate related research for newcomers in this field.
Collapse
Affiliation(s)
- Xiaoyao Cai
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| | - Wei Xu
- Department of PathologyCharacteristic Medical Center of Chinese People's Armed Police ForcesTianjinP. R. China
| | - Chunhua Ren
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| | - Liping Zhang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| | - Congrou Zhang
- Metabolomics and Analytics Center, Leiden Academic Centre of Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| | - Cuihong Yang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| |
Collapse
|
109
|
Fermi A, D'Agostino S, Dai Y, Brunetti F, Negri F, Gingras M, Ceroni P. Unravelling the Role of Structural Factors in the Luminescence Properties of Persulfurated Benzenes. Chemistry 2024; 30:e202401768. [PMID: 38818940 DOI: 10.1002/chem.202401768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/01/2024]
Abstract
Room temperature phosphorescence rarely occurs from pure organic molecules, especially in the solid-state. A strategy for the design of highly emissive organic phosphors is still hard to predict, thus impeding the development of new functional materials with the desired optical properties. Herein, we analyze a family of alkyl and aryl-substituted persulfurated benzenes, the latter representing a class of organic solid-state triplet emitters able to show very high emission quantum yield at room temperature. In this work, we correlate structural parameters with the photophysical properties observed in different experimental conditions (diluted solution, crystalline and amorphous phase at RT and low temperature). Our results, corroborated by a detailed computational analysis, indicate a close relationship between the luminescence properties and i) the nature of the substituents on the persulfurated core, ii) the adopted conformations in the solid state, both in crystalline and amorphous phases. These factors contribute to characterize the lowest-energy lying excited-state, its deactivation pathways, the phosphorescence lifetime and quantum yield. These findings provide a useful roadmap for the development of highly performing purely organic solid-state emitters based on the persulfurated benzene platform.
Collapse
Affiliation(s)
- Andrea Fermi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum -, Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Simone D'Agostino
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum -, Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Yasi Dai
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum -, Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Filippo Brunetti
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum -, Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Fabrizia Negri
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum -, Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Marc Gingras
- Aix-Marseille Université, CNRS, CINaM, 163 Av. de Luminy, 13009 -, Marseille, France
| | - Paola Ceroni
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum -, Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| |
Collapse
|
110
|
Wang Y, Zhang J, Xu Q, Tu W, Wang L, Xie Y, Sun JZ, Huang F, Zhang H, Tang BZ. Narrowband clusteroluminescence with 100% quantum yield enabled by through-space conjugation of asymmetric conformation. Nat Commun 2024; 15:6426. [PMID: 39080355 PMCID: PMC11289101 DOI: 10.1038/s41467-024-50815-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Different from traditional organic luminescent materials based on covalent delocalization, clusteroluminescence from nonconjugated luminogens relies on noncovalent through-space conjugation of electrons. However, such spatial electron delocalization is usually weak, resulting in low luminescent efficiency and board emission peak due to multiple vibrational energy levels. Herein, several nonconjugated luminogens are constructed by employing biphenyl as the building unit to reveal the structure-property relationship and solve current challenges. The intramolecular through-space conjugation can be gradually strengthened by introducing building units and stabilized by rigid molecular skeleton and multiple intermolecular interactions. Surprisingly, narrowband clusteroluminescence with full width at half-maximum of 40 nm and 100% efficiency is successfully achieved via an asymmetric conformation, exhibiting comparable performance to the traditional conjugated luminogens. This work realizes highly efficient and narrowband clusteroluminescence from nonconjugated luminogens and highlights the essential role of structural conformation in manipulating the photophysical properties of unconventional luminescent materials.
Collapse
Affiliation(s)
- Yipu Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Jianyu Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Qingyang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China
| | - Weihao Tu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China
| | - Lei Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Yuan Xie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Jing Zhi Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China
| | - Feihe Huang
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China.
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China.
| | - Ben Zhong Tang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong, 999077, China.
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-SZ), Guangzhou, 518172, China.
| |
Collapse
|
111
|
Gu P, He T, Wang Z, Wang S, Dong L, Yao H, Jia T, Long G, Liu G, Sun H. Isomer engineering for deep understanding of aggregation-induced photothermal enhancement in conjugated systems. Chem Sci 2024:d4sc03542a. [PMID: 39144464 PMCID: PMC11320371 DOI: 10.1039/d4sc03542a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Organic photothermal materials based on conjugated structures have significant potential applications in areas such as biomedical diagnosis, therapy, and energy conversion. Improving their photothermal conversion efficiency through molecular design is critical to promote their practical applications. Especially in similar structures, understanding how the position of heteroatoms affects the conversion efficiency is highly desirable. Herein, we prepared two isomeric small D-A molecules with different sulfur atom positions (TBP-MPA and i-TBP-MPA), which display strong and broad absorption in the UV-visible region due to their strong intramolecular charge transfer characteristics. Compared to i-TBP-MPA, TBP-MPA demonstrates aggregation-induced photothermal enhancement (AIPE). Under simulated sunlight (1 kW m-2) irradiation, the stable temperature of TBP-MPA powder reached 60 °C, significantly higher than the 50 °C achieved by i-TBP-MPA. Experimental and theoretical results indicate that the S⋯N non-covalent interactions in TBP-MPA impart a more rigid conjugated framework to the molecule, inducing ordered molecular stacking during aggregation. This ordered stacking provides additional non-radiative transition channels between TBP-MPA molecules, enhancing their photothermal performance in the aggregated state. Under 1 sun irradiation, TBP-MPA achieved a water evaporation rate of 1.0 kg m-2 h-1, surpassing i-TBP-MPA's rate of 0.92 kg m-2 h-1.
Collapse
Affiliation(s)
- Peiyang Gu
- Jiangsu Province Engineering Research Center of Biodegradable Materials, School of Petrochemical Engineering, Changzhou University Changzhou 213164 P. R. China
| | - Tengfei He
- School of Materials Science and Engineering, National Institute for Advanced Materials, Renewable Energy Conversion and Storage Center (RECAST), Nankai University Tianjin 300350 China
| | - Zuoyu Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry Based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University 26 Hexing Road Harbin 150040 P. R. China
| | - Shifan Wang
- Jiangsu Province Engineering Research Center of Biodegradable Materials, School of Petrochemical Engineering, Changzhou University Changzhou 213164 P. R. China
- School of Material and Chemistry Engineering, Xuzhou University of Technology 2 Lishui Road, Yunlong District Xuzhou 221018 China
| | - Liming Dong
- School of Material and Chemistry Engineering, Xuzhou University of Technology 2 Lishui Road, Yunlong District Xuzhou 221018 China
| | - Hanning Yao
- College of Agronomy, Northeast Agricultural University 600 Changjiang Road Harbin 150038 P. R. China
| | - Tao Jia
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry Based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University 26 Hexing Road Harbin 150040 P. R. China
| | - Guankui Long
- School of Materials Science and Engineering, National Institute for Advanced Materials, Renewable Energy Conversion and Storage Center (RECAST), Nankai University Tianjin 300350 China
| | - Guangfeng Liu
- Jiangsu Province Engineering Research Center of Biodegradable Materials, School of Petrochemical Engineering, Changzhou University Changzhou 213164 P. R. China
| | - Hua Sun
- Jiangsu Province Engineering Research Center of Biodegradable Materials, School of Petrochemical Engineering, Changzhou University Changzhou 213164 P. R. China
- School of Material and Chemistry Engineering, Xuzhou University of Technology 2 Lishui Road, Yunlong District Xuzhou 221018 China
| |
Collapse
|
112
|
Dong C, Zhang Z, Wu H, Liang X, Pang S, Wu K, Sun J, Dong X, Sun L, Gu X, Zhao C. Dual-modal imaging-guided agent based on NIR-II aggregation-induced emission luminogens with balanced phototheranostic performance. Chem Sci 2024; 15:10969-10979. [PMID: 39027299 PMCID: PMC11253120 DOI: 10.1039/d4sc01916d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
Phototherapy has garnered considerable interest for its potential to revolutionize conventional cancer treatment. Organic materials with near-infrared II (NIR-II, 1000-1700 nm) fluorescence and photothermal effects are key for precise tumor diagnosis and treatment, yet optimizing their output for higher resolution and reduced photodamage remains a challenge. Herein, a multifunctional NIR-II photosensitizer (LSC) has been developed using the aggregation-induced emission (AIE) technology. The utilization of thieno[3,2-b]thiophene as an electron-rich and bulky donor/acceptor bridge has allowed for the elongation of conjugation length and distortion of the AIE main chain. This strategic modification effectively enhances the electron push-pull effect, endowing the LSC with a Stokes shift of over 400 nm and AIE characteristics. We have successfully built-up stable nanoparticles called FA-LSC NPs using a nano-precipitation method. These nanoparticles exhibit high NIR-II fluorescent brightness (ε × QY = 1064 M-1 cm-1) and photothermal conversion efficiency (41%). Furthermore, the biocompatible FA-LSC NPs demonstrate effective tumor accumulation and exceptional photothermal therapeutic efficacy both in vitro and in vivo. These nanoparticles were applied to fluorescence-photothermal dual-mode imaging-guided photothermal ablation in a HeLa tumor xenograft mouse model, resulting in favorable photothermal clearance outcomes.
Collapse
Affiliation(s)
- Chengjun Dong
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Ziwen Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University Shanghai 201203 P. R. China
| | - Hongyu Wu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University Shanghai 201203 P. R. China
| | - Xinting Liang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Shihao Pang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Kehuan Wu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University Shanghai 201203 P. R. China
| | - Jie Sun
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Xuemei Dong
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Lixin Sun
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Xianfeng Gu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University Shanghai 201203 P. R. China
| | - Chunchang Zhao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
113
|
Xie H, Wang J, Lou Z, Hu L, Segawa S, Kang X, Wu W, Luo Z, Kwok RTK, Lam JWY, Zhang J, Tang BZ. Mechanochemical Fabrication of Full-Color Luminescent Materials from Aggregation-Induced Emission Prefluorophores for Information Storage and Encryption. J Am Chem Soc 2024; 146:18350-18359. [PMID: 38937461 PMCID: PMC11240258 DOI: 10.1021/jacs.4c02954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024]
Abstract
The development of luminescent materials via mechanochemistry embodies a compelling yet intricate frontier within materials science. Herein, we delineate a methodology for the synthesis of brightly luminescent polymers, achieved by the mechanochemical coupling of aggregation-induced emission (AIE) prefluorophores with generic polymers. An array of AIE moieties tethered to the 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) radical are synthesized as prefluorophores, which initially exhibit weak fluorescence due to intramolecular quenching. Remarkably, the mechanical coupling of these prefluorophores with macromolecular radicals, engendered through ball milling of generic polymers, leads to substantial augmentation of fluorescence within the resultant polymers. We meticulously evaluate the tunable emission of the AIE-modified polymers, encompassing an extensive spectrum from the visible to the near-infrared region. This study elucidates the potential of such materials in stimuli-responsive systems with a focus on information storage and encryption displays. By circumventing the complexity inherent to the conventional synthesis of luminescent polymers, this approach contributes a paradigm to the field of AIE-based polymers with implications for advanced technological applications.
Collapse
Affiliation(s)
- Huilin Xie
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Department of
Chemical and Biological Engineering, The
Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen
(CUHK-Shenzhen), Guangdong 518172, China
| | - Jingchun Wang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen
(CUHK-Shenzhen), Guangdong 518172, China
| | - Zhenchen Lou
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, Shanghai
Frontiers Science Center of Molecule Intelligent Syntheses, School
of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Lianrui Hu
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, Shanghai
Frontiers Science Center of Molecule Intelligent Syntheses, School
of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Shinsuke Segawa
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen
(CUHK-Shenzhen), Guangdong 518172, China
| | - Xiaowo Kang
- Department
of Biomedical Engineering, Southern University
of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Weijun Wu
- Department
of Biomedical Engineering, Southern University
of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Zhi Luo
- Department
of Biomedical Engineering, Southern University
of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Ryan T. K. Kwok
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Department of
Chemical and Biological Engineering, The
Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Jacky W. Y. Lam
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Department of
Chemical and Biological Engineering, The
Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Jianquan Zhang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen
(CUHK-Shenzhen), Guangdong 518172, China
| | - Ben Zhong Tang
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Department of
Chemical and Biological Engineering, The
Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen
(CUHK-Shenzhen), Guangdong 518172, China
| |
Collapse
|
114
|
Ye X, Gutenthaler‐Tietze J, Wu R, Xia G, Xu S, Liu B, Chen Y, Karaghiosoff K. In Situ X-Ray Techniques Unraveling Charge Distribution Induced by Halogen Bonds in Solvates of an Iodo-Substituted Squaraine Dye. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400661. [PMID: 38659278 PMCID: PMC11220701 DOI: 10.1002/advs.202400661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/22/2024] [Indexed: 04/26/2024]
Abstract
The importance of halogen bonds (XBs) in the regulation of material properties through a variation in the electrostatic potential of the halogen atom is not attracted much attention. Herein, this study utilizes in situ single crystal X-ray diffraction and synchrotron-based X-ray techniques to investigate the cooling-triggered irreversible single-crystal-to-single-crystal transformation of the DMF solvated iodo-substituted squaraine dye (SQD-I). Transformation is observed to be mediated by solvent-involved XB formation and strengthening of electrostatic interaction between adjacent SQD-I molecules. By immersing a DMF solvate in acetonitrile a solvent exchange without loss of long-range ordering is observed. This is attributed to conservation of the molecular charge distribution of SQD-I molecules during the process. The different solvates can be used in combination for temperature-dependent image encryption. This work emphasizes the changes caused by XB formation to the electrostatic potentials of halogen containing molecules and their influence on material properties and presents the potential utility of XBs in the design of soft-porous crystals and luminescent materials.
Collapse
Affiliation(s)
- Xiaoyu Ye
- The Institute for Advanced Studies (IAS)Wuhan UniversityWuhan430072China
| | | | - Ruoxuan Wu
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhou511442China
| | - Guomin Xia
- The Institute for Advanced Studies (IAS)Nanchang UniversityNanchang330031China
| | - Shidang Xu
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhou511442China
| | - Bin Liu
- Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingapore117585Singapore
| | - Yi‐Hung Chen
- The Institute for Advanced Studies (IAS)Wuhan UniversityWuhan430072China
| | | |
Collapse
|
115
|
Kato M. Chromic soft crystals based on luminescent platinum(II) complexes. IUCRJ 2024; 11:442-452. [PMID: 38860955 PMCID: PMC11220876 DOI: 10.1107/s2052252524003658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/22/2024] [Indexed: 06/12/2024]
Abstract
Platinum(II) complexes of square-planar geometry are interesting from a crystal engineering viewpoint because they exhibit strong luminescence based on the self-assembly of molecular units. The luminescence color changes in response to gentle stimuli, such as vapor exposure or weak mechanical forces. Both the molecular and the crystal designs for soft crystals are critical to effectively generate the chromic luminescence phenomenon of Pt(II) complexes. In this topical review, strategies for fabricating chromic luminescent Pt(II) complexes are described from a crystal design perspective, focusing on the structural regulation of Pt(II) complexes that exhibit assembly-induced luminescence via metal-metal interactions and structural control of anionic Pt(II) complexes using cations. The research progress on the evolution of various chromic luminescence properties of Pt(II) complexes, including the studies conducted by our group, are presented here along with the latest research outcomes, and an overview of the frontiers and future potential of this research field is provided.
Collapse
Affiliation(s)
- Masako Kato
- Department of Applied Chemistry for EnvironmentKwansei Gakuin University1 Gakuen UegaharaSandaHyogo669-1330Japan
| |
Collapse
|
116
|
Bonnot M, Ibrahim N, Allain M, Frère P. Designing Dual-State and Aggregation-Induced Emissive Luminogens from Lignocellulosic Biosourced Molecules. Molecules 2024; 29:3135. [PMID: 38999087 PMCID: PMC11243483 DOI: 10.3390/molecules29133135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Utilizing lignocellulosic biosourced platforms, we synthesized novel cyanostilbene (CS) derivatives featuring the 3,4-dimethoxyphenyl moiety. These derivatives were investigated for their emission properties in both solution and solid states. The two simple CS derivatives exhibit very weak luminescence in solution but significant luminescence in the solid state, indicating distinct Aggregation-Induced Emission (AIE) characteristic. Furthermore, combining these two CS units, without conjugation and with quasi perpendicular orientation, results in a Dual-State Emission (DSE) fluorophore showing luminescence both in solution and solid states. X-ray crystallography studies on the solid-state compounds reveal a structure-emission relationship, demonstrating that the colour emission correlates with the conformations adopted by the molecules in the solid state, which influence the type of stacking.
Collapse
Affiliation(s)
- Maelys Bonnot
- UNIV Angers, CNRS UMR 6200 MOLTECH-Anjou, 2 Boulevard Lavoisier, 49000 Angers, France
| | - Nagham Ibrahim
- UNIV Angers, CNRS UMR 6200 MOLTECH-Anjou, 2 Boulevard Lavoisier, 49000 Angers, France
| | - Magali Allain
- UNIV Angers, CNRS UMR 6200 MOLTECH-Anjou, 2 Boulevard Lavoisier, 49000 Angers, France
| | - Pierre Frère
- UNIV Angers, CNRS UMR 6200 MOLTECH-Anjou, 2 Boulevard Lavoisier, 49000 Angers, France
| |
Collapse
|
117
|
Zhang GD, Wang MM, Su Y, Fang H, Xue XL, Liu HK, Su Z. Mitochondria-targeted ruthenium complexes can be generated in vitro and in living cells to target triple-negative breast cancer cells by autophagy inhibition. J Inorg Biochem 2024; 256:112574. [PMID: 38677004 DOI: 10.1016/j.jinorgbio.2024.112574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive type of breast cancer, which owned severe resistance to platinum-based anticancer agents. Herein, we report a new metal-arene complex, Ru-TPE-PPh3, which can be synthesized in vitro and in living cells with copper catalyzed the cycloaddition reaction of Ru-azide and alkynyl (CuAAC). The complex Ru-TPE-PPh3 exhibited superior inhibition of the proliferation of TNBC MDA-MB-231 cells with an IC50 value of 4.0 μM. Ru-TPE-PPh3 could induce the over production of reactive oxygen species (ROS) to initiate the oxidative stress, and further damage the mitochondria both functionally and morphologically, as loss of mitochondrial membrane potential (MMP) and cutting the supply of adenosine triphosphate (ATP), the disappearance of cristae structure. Moreover, the damaged mitochondria evoked the occurrence of mitophagy with the autophagic flux blockage and cell death. The complex Ru-TPE-PPh3 also demonstrated excellent anti-proliferative activity in 3D MDA-MB-231 multicellular tumor spheroids (MCTSs), indicating the potential to inhibit solid tumors in living cells. This study not only provided a potent agent for the TNBC treatment, but also demonstrated the universality of the bioorthogonally catalyzed lethality (BCL) strategy through CuAAC reation.
Collapse
Affiliation(s)
- Guan-Dong Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Meng-Meng Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yan Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Department of Rheumatology and Immunology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.
| | - Hongbao Fang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xu-Ling Xue
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Hong-Ke Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
118
|
Riley L, Marshall O, Harkiss AH, Senn HM, Sutherland A. Synthesis of β-Pyridyl α-Amino Acids: Conformationally Sensitive Charge Transfer-Based Fluorophores. Org Lett 2024; 26:5391-5395. [PMID: 38865167 PMCID: PMC11217948 DOI: 10.1021/acs.orglett.4c01951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/13/2024]
Abstract
Unnatural α-amino acids with charge transfer-based poly aromatic side chains have been designed as conformationally sensitive fluorophores. These were prepared using a hetero-Diels-Alder reaction and a Knoevenagel-Stobbe process to generate a biaryl pyridyl unit, followed by iron-catalyzed bromination and a Suzuki-Miyaura cross-coupling reaction to complete the triaryl system. A photophysical study led to the discovery of a p-methoxy analogue which exhibited viscosity-sensitive fluorescence in which emission could be controlled between twisted and planar conformations.
Collapse
Affiliation(s)
- Leanne
M. Riley
- School of Chemistry, The Joseph Black
Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Olivia Marshall
- School of Chemistry, The Joseph Black
Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Alexander H. Harkiss
- School of Chemistry, The Joseph Black
Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Hans M. Senn
- School of Chemistry, The Joseph Black
Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Andrew Sutherland
- School of Chemistry, The Joseph Black
Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
119
|
Zheng H, Zhou Y, Yan B, Zhou G, Cheng X, Lin S, Duan M, Li J, Wang L, Fan C, Chen J, Shen J. DNA Framework-Guided Self-Limiting Aggregation for Highly Luminescent Metal Cluster Nanoaggregates. J Am Chem Soc 2024; 146:17094-17102. [PMID: 38867462 DOI: 10.1021/jacs.4c02401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The photoluminescent properties of atomically precise metal nanoclusters (MCs) have garnered significant attention in the fields of chemical sensing and biological imaging. However, the limited brightness of single-component nanoclusters hinders their practical applications, and the conventional ligand engineering approaches have proven insufficient in enhancing the emission efficiency of MCs. Here, we present a DNA framework-guided strategy to prepare highly luminescent metal cluster nanoaggregates. Our approach involves an amphiphilic DNA framework comprising a hydrophobic alkyl core and a rigid DNA framework shell, serving as a nucleation site and providing well-defined nanoconfinements for the self-limiting aggregation of MCs. Through this method, we successfully produced homogeneous MC nanoaggregates (10.1 ± 1.2 nm) with remarkable nanoscale precision. Notably, this strategy proves adaptable to various MCs, leading to a substantial enhancement in emission and quantum yield, up to 3011- and 87-fold, respectively. Furthermore, our investigation using total internal reflection fluorescence microscopy at the single-particle level uncovered a more uniform photon number distribution and higher photostability for MC nanoaggregates compared to template-free counterparts. This DNA-templating strategy introduces a conceptually innovative approach for studying the photoluminescent properties of aggregates with nanoscale precision and holds promise for constructing highly luminescent MC nanoparticles for diverse applications.
Collapse
Affiliation(s)
- Haoran Zheng
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Zhou
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bingjie Yan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Gaoang Zhou
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyi Cheng
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sicheng Lin
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mulin Duan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiang Li
- Institute of Materiobiology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Lihua Wang
- Institute of Materiobiology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Chen
- Institute of Materiobiology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
120
|
Qin X, Huang L, Zhan Z, Fu P, Wang Q, Zhang C, Huang J, Ding Z. Enhancing corannulene chemiluminescence, electrochemiluminescence and photoluminescence by means of an azabora-helicene to slow down its bowl inversion. Chem Sci 2024; 15:9657-9668. [PMID: 38939143 PMCID: PMC11206500 DOI: 10.1039/d4sc01524j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/03/2024] [Indexed: 06/29/2024] Open
Abstract
Aromatic system extension of corannulene (Cor) is a synthetic challenge to access non-planar polyaromatic hydrocarbons (PAHs). Herein, we report the design and synthesis of azaborahelicene corannulene 1 through hybridization of an azabora[5] helical structure and subsequent luminescence studies. Significant enhancement in chemiluminescence (CL), electroluminescence (ECL) and photoluminescence (PL) is achieved compared to those of pristine Cor. Specifically, hybrid 1 shows a notable augmentation in absolute luminescence quantum efficiencies: 25-fold for CL, up to 23-fold for ECL with BPO as a coreactant, and 30-fold for PL, respectively, compared to those of pristine Cor. Intriguingly, the blue light emission observed in all three luminescence types suggests the presence of a single excited state. As revealed by variable-temperature (VT) 1H NMR experiments, the bowl inversion frequency apparently decelerates by the steric effect of the helix motif in 1, which could contribute to the enhanced luminescent properties by reducing excited energy losses non-radiatively through fewer molecular motions; these enhanced luminescence observations could be categorized alongside the aggregation induced emission (AIE) and crystallization-induced emission (CIE) phenomena. This work not only provides fundamental insights into improved luminescence quantum efficiencies via strategic modulation of the molecular structure and geometry, but the work also reveals Cor's inherent potential to build efficient blue-light emitting materials and devices.
Collapse
Affiliation(s)
- Xiaoli Qin
- Department of Chemistry, Western University London ON N6A 5B7 Canada
- College of Chemistry and Material Science, Hunan Agricultural University Changsha 410128 China
| | - Lin Huang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University Tianjin 300072 China
- International Center of Chemical Science and Engineering Tianjin 300072 China
- International Joint Research Centre for Molecular Sciences, Tianjin University Tianjin 300072 China
| | - Ziying Zhan
- Department of Chemistry, Western University London ON N6A 5B7 Canada
| | - Peng Fu
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University Tianjin 300072 China
- International Center of Chemical Science and Engineering Tianjin 300072 China
- International Joint Research Centre for Molecular Sciences, Tianjin University Tianjin 300072 China
| | - Qing Wang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University Tianjin 300072 China
- National Institute of Biological Sciences No. 7 Science Park Road, Zhongguancun Life Science Park Beijing 102206 China
| | - Congyang Zhang
- Department of Chemistry, Western University London ON N6A 5B7 Canada
| | - Jianhui Huang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University Tianjin 300072 China
- International Center of Chemical Science and Engineering Tianjin 300072 China
- International Joint Research Centre for Molecular Sciences, Tianjin University Tianjin 300072 China
| | - Zhifeng Ding
- Department of Chemistry, Western University London ON N6A 5B7 Canada
| |
Collapse
|
121
|
Jiang N, Zhu CY, Li KX, Xu YH, Bryce MR. Recent Progress in Nonconventional Luminescent Macromolecules and their Applications. Macromolecules 2024; 57:5561-5577. [PMID: 38948183 PMCID: PMC11210344 DOI: 10.1021/acs.macromol.4c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024]
Abstract
Traditional π-conjugated luminescent macromolecules typically suffer from aggregation-caused quenching (ACQ) and high cytotoxicity, and they require complex synthetic processes. In contrast, nonconventional luminescent macromolecules (NCLMs) with nonconjugated structures possess excellent biocompatibility, ease of preparation, unique luminescence behavior, and emerging applications in optoelectronics, biology, and medicine. NCLMs are currently believed to produce inherent luminescence due to through-space conjugation of overlapping electron orbitals in solid/aggregate states. However, as experimental facts continue to exceed expectations or even overturn some previous assumptions, there is still controversy about the detailed luminous mechanism of NCLMs, and extensive studies are needed to further explore the mechanism. This Perspective highlights recent progress in NCLMs and classifies and summarizes these advances from the viewpoint of molecular design, mechanism exploration, applications, and challenges and prospects. The aim is to provide guidance and inspiration for the huge fundamental and practical potential of NCLMs.
Collapse
Affiliation(s)
- Nan Jiang
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun, 130103, China
| | - Chang-Yi Zhu
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun, 130103, China
| | - Ke-Xin Li
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun, 130103, China
| | - Yan-Hong Xu
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun, 130103, China
| | - Martin R. Bryce
- Department
of Chemistry, Durham University, Durham DH1 3LE, U.K.
| |
Collapse
|
122
|
Lin YP, Gao Y, Wu Y, Yang XD. Uncovering the Aggregation-Induced Emission Mechanisms of Phenoxazine and Phenothiazine Groups. ACS OMEGA 2024; 9:26112-26120. [PMID: 38911748 PMCID: PMC11191091 DOI: 10.1021/acsomega.4c01565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/12/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024]
Abstract
Molecules with both aggregation-induced emission (AIE) and thermally activated delayed fluorescence (TADF) properties are potential organic light-emitting diode materials; however, the AIE and TADF mechanisms are still debatable. In this work, four molecules incorporating carbazole (Cz), phenoxazine (PXZ), and phenothiazine (PTZ) as donor groups to the diphenylsulfone acceptor were investigated. The experiment results indicate that a molecule containing Cz exhibits solely TADF properties, whereas molecules containing PXZ and PTZ demonstrate both TADF and AIE characteristics. As for DPS-PTZ, the result indicates that the thin-film environment restricts molecular twisting, consequently reducing nonradiative decay, thereby attributing to the AIE property by density functional theory and molecular dynamics simulation. As for DPS-PXZ, the result suggests that the restricted access to a conical intersection in a singlet excited via an expansion in the C-S-C angle is the pivotal factor for the AIE characteristic. The C-S-C angle twist of DPS-PXZ is impeded in the aggregate state and resulted in luminescence. Understanding the mechanisms serves as a valuable guide for the development of new AIE systems, enabling their application in various practical domains.
Collapse
Affiliation(s)
- Yan-Ping Lin
- Key
Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, P. R. China
- Jilin
Provincial Key Laboratory of Straw−Based Functional Materials,
Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun 130052, China
| | - Ying Gao
- Jilin
Provincial Key Laboratory of Straw−Based Functional Materials,
Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun 130052, China
| | - Yong Wu
- Faculty
of Chemistry, Northeast Normal University, Changchun ,Jilin130024, China
| | - Xiao-Dong Yang
- Jilin
Provincial Key Laboratory of Straw−Based Functional Materials,
Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun 130052, China
| |
Collapse
|
123
|
Shahu A, Petropoulos V, Saridakis E, Petrakis VS, Ioannidis N, Mitrikas G, Schiza A, Chochos CL, Kasimati EM, Soultati A, Nika MC, Thomaidis NS, Fakis M, Maiuri M, Cerullo G, Pistolis G. Aggregation-Driven Photoinduced α-C(sp 3)-H Bond Hydroxylation/C(sp 3)-C(sp 3) Coupling of Boron Dipyrromethene Dye in Water Reported by Near-Infrared Emission. J Am Chem Soc 2024; 146:15659-15665. [PMID: 38819953 PMCID: PMC11190975 DOI: 10.1021/jacs.4c02019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Molecular aggregation is a powerful tool for tuning advanced materials' photophysical and electronic properties. Here we present a novel potential for the aqueous-solvated aggregated state of boron dipyrromethene (BODIPY) to facilitate phototransformations otherwise achievable only under harsh chemical conditions. We show that the photoinduced symmetry-breaking charge separation state can itself initiate catalyst-free redox chemistry, leading to selective α-C(sp3)-H bond activation/Csp3-Csp3 coupling on the BODIPY backbone. The photoproduction progress was tracked by monitoring the evolution of the strong Stokes-shifted near-infrared emission, resulting from selective self-assembly of the terminal heterodimeric photoproduct into well-ordered J-aggregates, as revealed by X-ray structural analysis. These findings provide a facile and green route to further explore the promising frontier of packing-triggered selective photoconversions via supramolecular engineering.
Collapse
Affiliation(s)
- Adelajda Shahu
- Department
of Chemistry, National and Kapodistrian
University of Athens, Athens 15771, Greece
- Institute
of Nanoscience & Nanotechnology, NCSR
“Demokritos”, Athens 15310, Greece
| | - Vasilis Petropoulos
- Department
of Physics, University of Patras, Patras 26504, Greece
- Department
of Physics, Politecnico di Milano, Milano 20133, Italy
| | - Emmanuel Saridakis
- Institute
of Nanoscience & Nanotechnology, NCSR
“Demokritos”, Athens 15310, Greece
| | - Vyron S. Petrakis
- Department
of Chemistry, National and Kapodistrian
University of Athens, Athens 15771, Greece
- Institute
of Nanoscience & Nanotechnology, NCSR
“Demokritos”, Athens 15310, Greece
| | - Nikolaos Ioannidis
- Institute
of Nanoscience & Nanotechnology, NCSR
“Demokritos”, Athens 15310, Greece
| | - George Mitrikas
- Institute
of Nanoscience & Nanotechnology, NCSR
“Demokritos”, Athens 15310, Greece
| | - Andriana Schiza
- Department
of Chemistry, National and Kapodistrian
University of Athens, Athens 15771, Greece
- Institute
of Chemical Biology, National Hellenic Research
Foundation, Athens 11635, Greece
| | - Christos L. Chochos
- Institute
of Chemical Biology, National Hellenic Research
Foundation, Athens 11635, Greece
| | | | - Anastasia Soultati
- Institute
of Nanoscience & Nanotechnology, NCSR
“Demokritos”, Athens 15310, Greece
| | - Maria Christina Nika
- Department
of Chemistry, National and Kapodistrian
University of Athens, Athens 15771, Greece
| | - Nikolaos S. Thomaidis
- Department
of Chemistry, National and Kapodistrian
University of Athens, Athens 15771, Greece
| | - Mihalis Fakis
- Department
of Physics, University of Patras, Patras 26504, Greece
| | | | - Giulio Cerullo
- Department
of Physics, Politecnico di Milano, Milano 20133, Italy
| | - George Pistolis
- Institute
of Nanoscience & Nanotechnology, NCSR
“Demokritos”, Athens 15310, Greece
| |
Collapse
|
124
|
Stenspil SG, Laursen BW. Photophysics of fluorescent nanoparticles based on organic dyes - challenges and design principles. Chem Sci 2024; 15:8625-8638. [PMID: 38873083 PMCID: PMC11168078 DOI: 10.1039/d4sc01352b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
Fluorescent nanoparticles have become attractive for bioanalysis and imaging, due to their high brightness and photostability. Many different optical materials have been applied in fluorescent nanoparticles with a broad range of properties and characteristics. One appealing approach is the incorporation of molecular organic fluorophores in nanoparticles with the intention of transferring their known attractive solution-state properties directly to the nanoparticles. However, as molecular dyes are packed closely together in the nanoparticles their interactions most often result in fluorescence quenching and change in spectral properties making this approach challenging. In this perspective we will first discuss the origins of quenching and spectral shifts observed in dye based nanoparticles. On this background, we will then describe various designs of dye based NPs and how they address the challenges of dye-dye interactions and quenching. Our aim is to provide a general framework for understanding the supramolecular mechanisms that determine the photophysics of dye based nanoparticles. This framework of molecular photophysics and its relation to the internal structure of dye based nanoparticles can hopefully serve to assist rational design and optimization of new and improved dye based nanoparticles.
Collapse
Affiliation(s)
- Stine G Stenspil
- Nano-Science Center & Department of Chemistry, University of Copenhagen Universitetsparken 5 2100 København Ø Denmark
| | - Bo W Laursen
- Nano-Science Center & Department of Chemistry, University of Copenhagen Universitetsparken 5 2100 København Ø Denmark
| |
Collapse
|
125
|
Shao L, Hu D, Zheng SL, Trinh TKH, Zhou W, Wang H, Zong Y, Li C, Chen CL. Hierarchical Self-Assembly of Multidimensional Functional Materials from Sequence-Defined Peptoids. Angew Chem Int Ed Engl 2024; 63:e202403263. [PMID: 38657031 DOI: 10.1002/anie.202403263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Hierarchical self-assembly represents a powerful strategy for the fabrication of functional materials across various length scales. However, achieving precise formation of functional hierarchical assemblies remains a significant challenge and requires a profound understanding of molecular assembly interactions. In this study, we present a molecular-level understanding of the hierarchical assembly of sequence-defined peptoids into multidimensional functional materials, including twisted nanotube bundles serving as a highly efficient artificial light harvesting system. By employing synchrotron-based powder X-ray diffraction and analyzing single crystal structures of model compounds, we elucidated the molecular packing and mechanisms underlying the assembly of peptoids into multidimensional nanostructures. Our findings demonstrate that incorporating aromatic functional groups, such as tetraphenyl ethylene (TPE), at the termini of assembling peptoid sequences promotes the formation of twisted bundles of nanotubes and nanosheets, thus enabling the creation of a highly efficient artificial light harvesting system. This research exemplifies the potential of leveraging sequence-defined synthetic polymers to translate microscopic molecular structures into macroscopic assemblies. It holds promise for the development of functional materials with precisely controlled hierarchical structures and designed functions.
Collapse
Affiliation(s)
- Li Shao
- Department of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Dehong Hu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Shao-Liang Zheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Thi Kim Hoang Trinh
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Wenhao Zhou
- Department of Materials Science, University of Washington, Seattle, WA 98195, USA
| | - Haoyu Wang
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Yanxu Zong
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
- Materials Science and Engineering, Binghamton University, Binghamton, NY 13902, USA
| | - Changning Li
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
126
|
Zhang Z, Xiong Z, Zhang J, Chu B, Liu X, Tu W, Wang L, Sun JZ, Zhang C, Zhang H, Zhang X, Tang BZ. Near-Infrared Emission Beyond 900 nm from Stable Radicals in Nonconjugated Poly(diphenylmethane). Angew Chem Int Ed Engl 2024; 63:e202403827. [PMID: 38589299 DOI: 10.1002/anie.202403827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/29/2024] [Accepted: 04/07/2024] [Indexed: 04/10/2024]
Abstract
Organic radicals with narrow energy gaps are highly sought-after for the production of near-infrared (NIR) fluorophores. However, the current repertoire of developed organic radicals is notably limited, facing challenges related to stability and low fluorescence efficiency. This study addresses these limitations by achieving stable radicals in nonconjugated poly(diphenylmethane) (PDPM). Notably, PDPM exhibits a well-balanced structural flexibility and rigidity, resulting in a robust intra-/inter-chain through-space conjugation (TSC). The stable radicals within PDPM, coupled with strong TSC, yield a remarkable full-spectrum emission spanning from blue to NIR beyond 900 nm. This extensive tunability is achieved through careful adjustments of concentration and excitation wavelength. The findings highlight the efficacy of polymerization in stabilizing radicals and introduce a novel approach for developing nonconjugated NIR emitters based on triphenylmethane subunits.
Collapse
Affiliation(s)
- Ziteng Zhang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Zuping Xiong
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Jianyu Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Bo Chu
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou, 310058, China
| | - Xiong Liu
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Weihao Tu
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Lei Wang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Jing Zhi Sun
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou, 310058, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China
| | - Chengjian Zhang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China
| | - Haoke Zhang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China
| | - Xinghong Zhang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China
| | - Ben Zhong Tang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
127
|
Dong Y, Wu H, Liu J, Zheng S, Liang B, Zhang C, Ling Y, Wu X, Chen J, Yu X, Feng S, Huang W. Multicolor Photochemical Printing Inside Polymer Matrices for Advanced Photonic Anticounterfeiting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401294. [PMID: 38547590 DOI: 10.1002/adma.202401294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/24/2024] [Indexed: 04/05/2024]
Abstract
Conventional security inks, generally directly printed on the data page surface, are vulnerable to counterfeiters, thereby raising the risk of chemical structural deciphering. In fact, polymer film-based data pages with customized patterns embedded within polymer matrix, rather than printed on the surface, emerge as a promising solution. Therefore, the key lies in developing fluorophores offering light dose-controlled fluorescent color inside polymer matrices. Though conventional fluorophores often suffer from photobleaching and uncontrolled photoreactions, disqualifying them for this purpose. Herein a diphenanthridinylfumaronitrile-based phototransformers (trans-D5) that undergoes photoisomerization and subsequent photocyclization during photopolymerization of the precursor, successively producing cis- and cyclo-D5 with stepwise redshifted solid-state emissions is developed. The resulting cyclo-D5 exhibits up to 172 nm emission redshift in rigidifying polymer matrices, while trans-D5 experiences a slightly blueshifted emission (≈28 nm), cis-D5 undergoes a modest redshift (≈14 nm). The markedly different rigidochromic behaviors of three D5 molecules within polymer matrices enable multicolor photochemical printing with a broad hue ranging from 38 to 10 via an anticlockwise direction in Munsell color space, yielding indecipherable fluorescent patterns in polymer films. This work provides a new method for document protection and implements advanced security features that are unattainable with conventional inks.
Collapse
Affiliation(s)
- Yu Dong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Huacan Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Jie Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Shiya Zheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Baoshuai Liang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Chuang Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Yao Ling
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Xiaosong Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Jiamao Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Xiaolan Yu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Shiyu Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Weiguo Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
128
|
Wang X, Shi G, Xu S, Sun Y, Qiu H, Wang Q, Han X, Zhang Q, Zhang T, Hu HY. Unravelling Immune-Inflammatory Responses and Lysosomal Adaptation: Insights from Two-Photon Excited Delayed Fluorescence Imaging. Adv Healthc Mater 2024; 13:e2304223. [PMID: 38407490 DOI: 10.1002/adhm.202304223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/17/2024] [Indexed: 02/27/2024]
Abstract
Two-photon excitation (TPE) microscopy with near-infrared (NIR) emission has emerged as a promising technique for deep-tissue optical imaging. Recent developments in fluorescence lifetime imaging with long-lived emission probes have further enhanced the spatial resolution and precision of fluorescence imaging, especially in complex systems with short-lived background signals. In this study, two innovative lysosome-targeting probes, Cz-NA and tCz-NA, are introduced. These probes offer a combination of advantages, including TPE (λex = 880 nm), NIR emission (λem = 650 nm), and thermally activated delayed fluorescence (TADF) with long-lived lifetimes (1.05 and 1.71 µs, respectively). These characteristics significantly improve the resolution and signal-to-noise ratio in deep-tissue imaging. By integrating an acousto-optic modulator (AOM) device with TPE microscopy, the authors successfully applied Cz-NA in two-photon excited delayed fluorescence (TPEDF) imaging to track lysosomal adaptation and immune responses to inflammation in mice. This study sheds light on the relationship between lysosome tubulation, innate immune responses, and inflammation in vivo, providing valuable insights for the development of autofluorescence-free molecular probes in the future.
Collapse
Affiliation(s)
- Xiang Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Gaona Shi
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Shengnan Xu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yuansheng Sun
- Flourescence Products, ISS, Inc., 1602 Newton Drive, Champaign, IL 61822, USA
| | - Hailin Qiu
- Department of Fluorescence Test Technology, Orient KOJI Ltd., Tianjin, 300122, China
| | - Qinghua Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xiaowan Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Qingyang Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Tiantai Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
129
|
Kim EJ, Jeon HB, Kang MJ, Lee J. Dynamic Imaging of Lipid Droplets in Cells and Tissues by Using Dioxaborine Barbiturate-Based Fluorogenic Probes. Anal Chem 2024; 96:8356-8364. [PMID: 38753674 DOI: 10.1021/acs.analchem.3c05368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Lipids are essential for various cellular functions, including energy storage, membrane flexibility, and signaling molecule production. Maintaining proper lipid levels is important to prevent health problems such as cancer, neurodegenerative disorders, cardiovascular diseases, obesity, and diabetes. Monitoring cellular lipid droplets (LDs) in real-time with high resolution can provide insights into LD-related pathways and diseases owing to the dynamic nature of LDs. Fluorescence-based imaging is widely used for tracking LDs in live cells and animal models. However, the current fluorophores have limitations such as poor photostability and high background staining. Herein, we developed a novel fluorogenic probe based on a push-pull interaction combined with aggregation-induced emission enhancement (AIEE) for dynamic imaging of LDs. Probe 1 exhibits favorable membrane permeability and spectroscopic characteristics, allowing specific imaging of cellular LDs and time-lapse imaging of LD accumulation. This probe can also be used to examine LDs in fruit fly tissues in various metabolic states, serving as a highly versatile and specific tool for dynamic LD imaging in cellular and tissue environments.
Collapse
Affiliation(s)
- Eun-Ji Kim
- Department of Next-Generation Applied Science and School of Biopharmaceutical and Medical Sciences, Sungshin University, Seoul 01133, Republic of Korea
| | - Hye-Bin Jeon
- Department of Next-Generation Applied Science and School of Biopharmaceutical and Medical Sciences, Sungshin University, Seoul 01133, Republic of Korea
| | - Min-Ji Kang
- Department of Pharmacology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Jiyoun Lee
- Department of Next-Generation Applied Science and School of Biopharmaceutical and Medical Sciences, Sungshin University, Seoul 01133, Republic of Korea
| |
Collapse
|
130
|
Veríssimo NVP, Frota EG, Teixeira JB, de Carvalho Santos-Ebinuma V, de Souza Oliveira RP. Aggregation-Induced Emission (AIE) in Polymers: Effect of Polymer size on the Fluorescence of Low Molecular Weight PEG and PPG. J Fluoresc 2024:10.1007/s10895-024-03776-9. [PMID: 38777984 DOI: 10.1007/s10895-024-03776-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Aggregation-induced emission (AIE) is a fascinating phenomenon where specific molecules exhibit enhanced fluorescence upon aggregation. This unique property has revolutionized the design and development of new fluorescent materials for different applications, from biosensors and organic light-emitting diodes (OLEDs) to biomedical imaging and diagnostics. Researchers are creating sensitive and selective sensing platforms, opening new avenues in material science and engineering by harnessing the potential of AIE. To expand the knowledge in this field, this study explored the aggregation-induced emission (AIE) properties of two polymers, namely polyethylene glycol (PEG) and polypropylene glycol (PPG) of low molecular weight (MW) using fluorescence spectroscopy and absorbance (UV). PEG-300 and PPG-725 were the most fluorescent polymers at UV of the ten investigated. Interestingly, AIE did not correlate linearly with molecular weight (MW), and monobutyl ether substitution in PEG with a similar MW substantially altered its AIE. Furthermore, fluorescence precisely quantified low polymer concentrations in water, and non-aqueous solvents suppressed AIE, suggesting potential for AIE manipulation. These findings enhance our understanding of AIE in polymers, fostering the development of novel materials for applications such as biosensors.
Collapse
Affiliation(s)
- Nathalia Vieira Porphirio Veríssimo
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Professor Doutor Zeferino Vaz, s/n, Ribeirão Preto, 14040-903, Brazil.
- Laboratory of Microbial Biomolecules, Department of Biochemical and Pharmaceutical Technology, University of São Paulo, Sao Paulo, 05508-000, Brazil.
| | - Elionio Galvão Frota
- Laboratory of Microbial Biomolecules, Department of Biochemical and Pharmaceutical Technology, University of São Paulo, Sao Paulo, 05508-000, Brazil
| | - Juliana Barone Teixeira
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Valéria de Carvalho Santos-Ebinuma
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Ricardo Pinheiro de Souza Oliveira
- Laboratory of Microbial Biomolecules, Department of Biochemical and Pharmaceutical Technology, University of São Paulo, Sao Paulo, 05508-000, Brazil.
| |
Collapse
|
131
|
Chin KLO, Ong PJ, Zhu Q, Xu J, Chua MH. Electrofluorochromic Switching of Heat-Induced Cross-Linkable Multi-Styryl-Terminated Triphenylamine and Tetraphenylethylene Derivatives. Molecules 2024; 29:2340. [PMID: 38792201 PMCID: PMC11123742 DOI: 10.3390/molecules29102340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
High-performance electrochromic (EC) and electrofluorochromic (EFC) materials have garnered considerable interest due to their diverse applications in smart windows, optoelectronics, optical displays, military camouflage, etc. While many different EC and EFC polymers have been reported, their preparation often requires multiple steps, and their polymer molecular weights are subjected to batch variation. In this work, we prepared two triphenylamine (TPA)-based and two tetraphenylethylene (TPE)-based derivatives functionalized with terminal styryl groups via direct Suzuki coupling with (4-vinylphenyl)boronic acid and vinylboronic acid pinacol ester. The two novel TPE derivatives exhibited green-yellow aggregation-induced emission (AIE). The EC and EFC properties of pre- and post-thermally treated derivatives spin-coated onto ITO-glass substrates were studied. While all four derivatives showed modest absorption changes with applied voltages up to +2.4 V, retaining a high degree of optical transparency, they exhibited obvious EFC properties with the quenching of blue to yellow fluorescence with IOFF/ON contrast ratios of up to 7.0. The findings therefore demonstrate an elegant approach to preparing optically transparent, heat-induced, cross-linkable styryl-functionalized EFC systems.
Collapse
Affiliation(s)
- Kang Le Osmund Chin
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore; (K.L.O.C.); (Q.Z.)
| | - Pin Jin Ong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore;
| | - Qiang Zhu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore; (K.L.O.C.); (Q.Z.)
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore;
| | - Jianwei Xu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore; (K.L.O.C.); (Q.Z.)
- Department of Chemistry, National University of Singapore (NUS), 3 Science Drive 3, Singapore 117543, Singapore
| | - Ming Hui Chua
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore; (K.L.O.C.); (Q.Z.)
| |
Collapse
|
132
|
Stoerkler T, Ulrich G, Retailleau P, Laurent AD, Jacquemin D, Massue J. Experimental and theoretical comprehension of ESIPT fluorophores based on a 2-(2'-hydroxyphenyl)-3,3'-dimethylindole (HDMI) scaffold. Chem Sci 2024; 15:7206-7218. [PMID: 38756821 PMCID: PMC11095508 DOI: 10.1039/d4sc01937g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
Excited-State Intramolecular Proton Transfer (ESIPT) emission is associated with intense single or multiple fluorescence in the solid-state, along with enhanced photostability and sensitivity to the close environment. As a result, ESIPT probes are attractive candidates for ratiometric sensing of a variety of substrates. A new family of ESIPT fluorophores is described herein, inspired by the well-known 2-(2'hydroxyphenyl)benzazole (HBX) organic scaffold. The connection of 3,3'-dimethylindole (or 3H-indole) derivatives with phenol rings triggers the formation of novel 2-(2'-hydroxyphenyl)-3,3'-dimethylindole (HDMI) fluorophores, capable of stimuli-responsive ESIPT emission. This brand new family of dyes displays redshifted emission, as compared to HBX, along with an unprecedented acid/base-mediated stabilization of different rotamers, owing to supramolecular interactions with methyl groups. These compounds are therefore highly sensitive to external stimuli, such as the presence of acid or base, where protonated and deprotonated species have specific optical signatures. Moreover, a new pyridine-functionalized HDMI dye displays acid-sensitive AIE properties. The photophysical properties of all compounds have also been studied using ab initio calculations to support experiments in deciphering the nature of the various radiative transitions observed and the related excited rotameric species.
Collapse
Affiliation(s)
- Timothée Stoerkler
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM) 25 Rue Becquerel 67087 Strasbourg Cedex 02 France
| | - Gilles Ulrich
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM) 25 Rue Becquerel 67087 Strasbourg Cedex 02 France
| | - Pascal Retailleau
- Service de Cristallographie Structurale, ICSN-CNRS, Université Paris-Saclay 1 Avenue de la Terrasse, Bât. 27 91198 Gif-sur-Yvette Cedex France
| | - Adèle D Laurent
- Nantes Université, CNRS CEISAM UMR 6230 F-44000 Nantes France
| | - Denis Jacquemin
- Nantes Université, CNRS CEISAM UMR 6230 F-44000 Nantes France
- Institut Universitaire de France (IUF) F-75005 Paris France
| | - Julien Massue
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM) 25 Rue Becquerel 67087 Strasbourg Cedex 02 France
| |
Collapse
|
133
|
Liu L, Gong J, Jiang G, Wang J. Anion-π + AIEgens for Fluorescence Imaging and Photodynamic Therapy. Chemistry 2024; 30:e202400378. [PMID: 38418406 DOI: 10.1002/chem.202400378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/01/2024]
Abstract
Fluorescence imaging-guided photodynamic therapy (PDT) has attracted extensive attention due to its potential of real-time monitoring the lesion locations and visualizing the treatment process with high sensitivity and resolution. Aggregation-induced emission luminogens (AIEgens) show enhanced fluorescence and reactive oxygen species (ROS) generation after cellular uptake, giving them significant advantages in bioimaging and PDT applications. However, most AIEgens are unfavorable for the application in organisms due to their severe hydrophobicity. Anion-π+ type AIEgens carry intrinsic charges that can effectively alleviate their hydrophobicity and improve their binding capability to cells, which is expected to enhance the bioimaging quality and PDT performance. This concept summarizes the applications of anion-π+ type AIEgens in fluorescence imaging, fluorescence imaging-guided photodynamic anticancer and antimicrobial therapy in recent years, hoping to provide some new ideas for the construction of robust photosensitizers. Finally, the current problems and future challenges of anion-π+ AIEgens are discussed.
Collapse
Affiliation(s)
- Lingxiu Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Institutes of Biomedical Sciences, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Jianye Gong
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Institutes of Biomedical Sciences, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Guoyu Jiang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Institutes of Biomedical Sciences, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Institutes of Biomedical Sciences, Inner Mongolia University, Hohhot, 010021, P. R. China
| |
Collapse
|
134
|
El-Sedik MS, Mohamed MBI, Abdel-Aziz MS, Aysha TS. Synthesis of New D-π-A Phenothiazine-Based Fluorescent Dyes: Aggregation Induced Emission and Antibacterial Activity. J Fluoresc 2024:10.1007/s10895-024-03708-7. [PMID: 38647963 DOI: 10.1007/s10895-024-03708-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
Highly solid-state fluorescent dyes based on phenothiazine bearing sulfa-drug derivatives were successfully prepared and fully characterized by NMR, mass spectra, and elemental analysis. The prepared phenothiazine dyes bearing sulfadiazine and sulfathiazole 4-(((10-hexyl-10 H-phenothiazin-3-yl)methylene)amino)-N-(pyrimidin-2yl) benzenesulfonamide (PTZ-1) and 4-(((10-hexyl-10 H-phenothiazin-3-yl) methylene) amino)-N-(thiazol-2-yl)benzenesulfonamide (PTZ-2), showed strong emission in polycrystalline form, and significant emission in solution was observed. The quantum yield of the prepared dyes varied and decreased by increasing the solvent polarity, with the maximum recorded value being 0.63 and 0.6 in dioxane. Aggregation-induced emission (AIE) and the effect of the solvent polarity on absorption and emission spectra were investigated. The dyeing application of polyester fabrics using the prepared phenothiazine-based dyes was studied, showing very good affinity to dyed fabrics. The antibacterial affinity against gram-positive and gram-negative bacteria for the dye powder as well as the dyed PET fabric was investigated, with PTZ-2 showing better affinity against bacteria compared to PTZ-1. This multifunctional property highlights the potential uses of PTZ-1 and PTZ-2 for advanced applications in biomedicine and optoelectronics.
Collapse
Affiliation(s)
- Mervat S El-Sedik
- Dyeing, Printing and Textile Auxiliaries Department, Textile Research and Technology Institute, National Research Centre, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt
| | | | - Mohamed S Abdel-Aziz
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt
| | - Tarek S Aysha
- Dyeing, Printing and Textile Auxiliaries Department, Textile Research and Technology Institute, National Research Centre, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt.
| |
Collapse
|
135
|
Yang L, Zhao E, Wang G, Yu X, Gu X. Solid-Emission-Tunable Squaraine with Thermal-Promoted Aggregate-State Transitions for Fast Thermal History Sensing. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38709905 DOI: 10.1021/acsami.4c02332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Determining thermal history is crucial in many industrial processes, but reliable and sensitive organic thermal history indicators are currently absent. Herein, we report on the development of a squaraine-based fluorescent molecule, DPEA-SQ, for the detection of thermal exposure histories up to 436 K. DPEA-SQ forms multiple single crystals (DPEA-SQ-I, DPEA-SQ-II, and DPEA-SQ-III) with different conformations and aggregate-state packing modes, contributing to their different fluorescence wavelengths, lifetimes, and efficiencies. Interestingly, DPEA-SQ-I and DPEA-SQ-III undergo aggregate-state structural transitions to form the thermodynamically more stable DPEA-SQ-II, which are accompanied by changes in their fluorescence. By taking advantage of similar aggregate-state structural transformations during heating, a high-temperature thermal exposure history of up to 436 K is recorded and reflected by their fluorescence. To demonstrate the potential practical applications of DPEA-SQ, a DPEA-SQ-Powder/PDMS film is prepared and coated on an electric circuit board, which enables real-time monitoring of localized overheating by the naked eye. Additionally, the fluorescence peaks of DPEA-SQ-Powder and DPEA-SQ-Powder/PDMS films remain unchanged after storage at 373 K for 52 days, demonstrating high aggregate-state stability. The fast and reliable responses of this system make it an excellent candidate for the detection of overtemperature traces in electronic components and circuit diagnosis.
Collapse
Affiliation(s)
- Liming Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Re-source Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Engui Zhao
- School of Science, Harbin Institute of Technology, Shenzhen, HIT Campus of University Town, Shenzhen 518055, China
| | - Guan Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Re-source Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaohui Yu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xinggui Gu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Re-source Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
136
|
Insuasty A, Carrara S, Xuechen J, McNeill CR, Hogan C, Langford SJ. Aggregation-Induced Emission of Naphthalene Diimides: Effect of Chain Length on Liquid and Solid-Phase Emissive Properties. Chem Asian J 2024; 19:e202400152. [PMID: 38528740 DOI: 10.1002/asia.202400152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
The aggregation-induced emission (AIE) properties of a systematic series of naphthalene diimides (NDIs) varying the chain length at the imide positions have been studied. A solvophobic collapse of NDI units through the flash injection of THF NDI solutions in sonicating water triggers the formation of stable suspensions with enhanced fluorescence emissions. Shorter chains favor the π-π stacking of NDI units through H-aggregation producing a strong AIE effect showing remarkably high quantum yields that have not been observed for non core-substitued NDIs previously. On the other hand, NDIs functionalized with longer chains lead to more disordered domains where π-π stacking between NDI units is mainly given by J-aggregation unfavoring the AIE effect.
Collapse
Affiliation(s)
- Alberto Insuasty
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- Grupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad del Valle, Calle 13 # 100-00, Cali, 760032, Colombia
| | - Serena Carrara
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Jiao Xuechen
- Department of Materials Science and Engineering, Monash University, Melbourne, VIC 3080, Australia
| | - Christopher R McNeill
- Department of Materials Science and Engineering, Monash University, Melbourne, VIC 3080, Australia
| | - Conor Hogan
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Steven J Langford
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- School of Mathematical and Physics Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
137
|
Sheikh A, Kesharwani P, Almalki WH, Almujri SS, Dai L, Chen ZS, Sahebkar A, Gao F. Understanding the Novel Approach of Nanoferroptosis for Cancer Therapy. NANO-MICRO LETTERS 2024; 16:188. [PMID: 38698113 PMCID: PMC11065855 DOI: 10.1007/s40820-024-01399-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/16/2024] [Indexed: 05/05/2024]
Abstract
As a new form of regulated cell death, ferroptosis has unraveled the unsolicited theory of intrinsic apoptosis resistance by cancer cells. The molecular mechanism of ferroptosis depends on the induction of oxidative stress through excessive reactive oxygen species accumulation and glutathione depletion to damage the structural integrity of cells. Due to their high loading and structural tunability, nanocarriers can escort the delivery of ferro-therapeutics to the desired site through enhanced permeation or retention effect or by active targeting. This review shed light on the necessity of iron in cancer cell growth and the fascinating features of ferroptosis in regulating the cell cycle and metastasis. Additionally, we discussed the effect of ferroptosis-mediated therapy using nanoplatforms and their chemical basis in overcoming the barriers to cancer therapy.
Collapse
Affiliation(s)
- Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, 61421, Asir-Abha, Saudi Arabia
| | - Linxin Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, People's Republic of China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, 11439, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fei Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, People's Republic of China.
| |
Collapse
|
138
|
Gui Z, Gong S, Feng G. Constructing Dual-State Emissive Fluorophores via Boc Protection and Discovering a High-Fidelity Imaging Probe for Lipid Droplets. Anal Chem 2024; 96:6724-6729. [PMID: 38635821 DOI: 10.1021/acs.analchem.4c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Dual-state emissive (DSE) materials exhibit fluorescence in both solid and solution states and have become an emerging material in the fields of materials science and sensing in recent years. However, due to the lack of effective and universal preparation methods, DSE materials, especially those with long emission wavelengths, are still scarce. Developing an effective method for constructing such DSE molecules is urgently needed. In this study, we constructed three DSE molecules (NRP-Boc, DCIP-Boc, and DCMP-Boc) with far-red to near-infrared fluorescence by simply modifying three traditional aggregation-caused quenching (ACQ) fluorophores with tert-butyloxycarbonyl (Boc) groups. Density functional theory (DFT) calculations and crystal data revealed the reasons for the bright fluorescence of these three molecules in solution and solid, demonstrating that this Boc protection method is a simple and effective strategy for constructing DSE molecules. We also found that these three DSE molecules have the potential to target and visualize lipid droplets (LDs). Among them, DCIP-Boc shows advantages of a large Stokes shift, long emission wavelength, low fluorescence background, and good photostability in cells, providing a powerful new molecular tool with DSE property for high-fidelity imaging of LDs.
Collapse
Affiliation(s)
- Zhisheng Gui
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Shengyi Gong
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Guoqiang Feng
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| |
Collapse
|
139
|
Li Z, Xie Y, Liu H, Wang J, Wang G, Wang H, Su X, Lei M, Wan Q, Zhou Y, Teng M. Molecular engineering to design a bright near-infrared red photosensitizer: cellular bioimaging and phototherapy. RSC Adv 2024; 14:13801-13807. [PMID: 38681838 PMCID: PMC11046288 DOI: 10.1039/d4ra00928b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024] Open
Abstract
Near-infrared red (NIR) fluorescence imaging guide phototherapeutic therapy (PDT) has the advantages of deep tissue penetration, real-time monitoring of drug treatment and disease, little damage to normal tissue, low cytotoxicity and almost no side effects, and thus, it is attracting increasing research attention and is expected to show promising potential for clinical tumor treatment. The photosensitizer (PS), light source and oxygen are the three basic and important factors to construct PDT technology, and highly efficient PSs are still being passionately pursued because they determine the PDT efficiency. Ideal PSs should have properties such as good biocompatibility, deep tissue penetration, and highly efficient reactive oxygen species (ROS) generation despite the hypoxic environment. Therefore, pure organic type I PSs with NIR fluorescence have been receiving increasing attention due to their deep penetration and hypoxia resistance. However, reported NIR-active type I PSs usually require complex synthetic procedures, which presents a challenge for mass production. In this research work, based on the molecular design ideas of introducing the heavy atom effect and intramolecular charge transfer, we prepared three NIR-active type I PSs (TNZ, TNZBr, and TNZCHO) using a very simple method with one or two synthetic steps. Clear characterizations of photophysical properties, ROS performance tests, and fluorescent imaging of human umbilical vein endothelial (HUVE) cells and PDT treatment of HepG2 cells were carried out. The results revealed that the heavy atom and intramolecular charge transfer (ICT) effects could obviously enhance the ROS efficiency, and both PSs produce only type I ROS without any type II ROS (1O2) generation. The good NIR fluorescence brightness and type I ROS efficiency ensure satisfactory bioimaging and PDT outcomes. This research provides the possibility of preparing NIR-active type I PSs via mass production.
Collapse
Affiliation(s)
- Zhiyong Li
- Vascular Surgery Department, The Second Hospital & Clinical Medical School, Lanzhou University Lanzhou 730000 China
| | - Yili Xie
- College of Ecology and Environment, Yuzhang Normal University Nanchang 330103 China
| | - Heng Liu
- The Second Hospital & Clinical Medical School, Lanzhou University Lanzhou 730000 China
| | - Jing Wang
- Healthy Examination & Management Center, The Second Hospital & Clinical Medical School, Lanzhou University Lanzhou 730000 China
| | - Gang Wang
- The Second Hospital & Clinical Medical School, Lanzhou University Lanzhou 730000 China
| | - Hengxin Wang
- The Second Hospital & Clinical Medical School, Lanzhou University Lanzhou 730000 China
| | - Xuejie Su
- The Second Hospital & Clinical Medical School, Lanzhou University Lanzhou 730000 China
| | - Meixu Lei
- The Second Hospital & Clinical Medical School, Lanzhou University Lanzhou 730000 China
| | - Qing Wan
- School of Materials Science and Engineering, Nanchang Hangkong University Nanchang 330063 China
| | - Yali Zhou
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University Lanzhou 730000 China
| | - Muzhou Teng
- The Second Hospital & Clinical Medical School, Lanzhou University Lanzhou 730000 China
| |
Collapse
|
140
|
Potopnyk MA, Mech-Piskorz J, Angulo G, Ceborska M, Luboradzki R, Andresen E, Gajek A, Wisniewska A, Resch-Genger U. Aggregation/Crystallization-Induced Emission in Naphthyridine-Based Carbazolyl-Modified Donor-Acceptor Boron Dyes Tunable by Fluorine Atoms. Chemistry 2024; 30:e202400004. [PMID: 38361470 DOI: 10.1002/chem.202400004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
Four donor-acceptor boron difluoride complexes based on the carbazole electron donor and the [1,3,5,2]oxadiazaborinino[3,4-a][1,8]naphthyridine acceptor were designed, synthesized, and systematically spectroscopically investigated in solutions, in dye-doped polymer films, and in the solid states. The dyes exhibit an intense blue to red solid-state emission with photoluminescence quantum yields of up to 59 % in pure dye samples and 86 % in poly(methyl methacrylate) films. All boron complexes show aggregation-induced emission and reversible mechanofluorochromism. The optical properties of these dyes and their solid state luminescence can be tuned by substitution pattern, i. e., the substituents at the naphthyridine unit. Exchange of CH3- for CF3-groups does not only increase the intramolecular charge transfer character, but also provides a crystallization-induced emission enhancement.
Collapse
Affiliation(s)
- Mykhaylo A Potopnyk
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Akademika Kuharya Str. 5, 02000, Kyiv, Ukraine
| | - Justyna Mech-Piskorz
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Gonzalo Angulo
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Magdalena Ceborska
- Faculty of Mathematics and Natural Sciences, Cardinal Stefan Wyszynski University in Warsaw, K. Woycickiego 1/3, 01-938, Warsaw, Poland
| | - Roman Luboradzki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Elina Andresen
- Division Biophotonics, Bundesanstalt für Materilaforschung und -prüfung (BAM), Department 1, Richard-Willstätter-Straβe 11, 12489, Berlin, Germany
| | - Arkadiusz Gajek
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Agnieszka Wisniewska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Ute Resch-Genger
- Division Biophotonics, Bundesanstalt für Materilaforschung und -prüfung (BAM), Department 1, Richard-Willstätter-Straβe 11, 12489, Berlin, Germany
| |
Collapse
|
141
|
Li C, Zhao W, He J, Zhang Y. Topology Controlled All-(Meth)acrylic Thermoplastic Elastomers by Multi-Functional Lewis Pairs-Mediated Polymerization. Angew Chem Int Ed Engl 2024; 63:e202401265. [PMID: 38390752 DOI: 10.1002/anie.202401265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
It remains challenging to synthesize all-(meth)acrylic triblock thermoplastic elastomers (TPEs), due to the drastically different reactivities between the acrylates and methacrylates and inevitable occurrence of side reactions during polymerization of acrylates. By taking advantage of the easy structural modulation features of N-heterocyclic olefins (NHOs), we design and synthesize strong nucleophilic tetraphenylethylene-based NHOs varying in the number (i.e. mono-, dual- and tetra-) of initiating functional groups. Its combination with bulky organoaluminum [iBuAl(BHT)2] (BHT=bis(2,6-di-tBu-4-methylphenoxy)) constructs Lewis pair (LP) to realize the living polymerization of both acrylates and methacrylates, furnishing polyacrylates with ultrahigh molecular weight (Mn up to 2174 kg ⋅ mol-1) within 4 min. Moreover, these NHO-based LPs enable us to not only realize the control over the polymers' topology (i.e. linear and star), but also achieve triblock star copolymers in one-step manner. Mechanical studies reveal that the star triblock TPEs exhibit better mechanical properties (elongation at break up to 1863 % and tensile strength up to 19.1 MPa) in comparison with the linear analogs. Moreover, the presence of tetraphenylethylene group in the NHOs entitled the triblock TPEs with excellent AIE properties in both solution and solid state.
Collapse
Affiliation(s)
- Chengkai Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, China, 130012
- SINOPEC Beijing Research Institute of Chemical Industry, Beijing, China, 100013
| | - Wuchao Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, China, 130012
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, China, 130012
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, China, 130012
| |
Collapse
|
142
|
Alvarez-Quesada A, Báez JE, Jiménez-Halla JOC, Ramos-Ortiz G, González-García G. Difluoroboron Complexes Based on Benzimidazole-Phenolates as Blue Emitters. Inorg Chem 2024; 63:6649-6659. [PMID: 38572737 DOI: 10.1021/acs.inorgchem.3c04504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Novel four-coordinated boron complexes (1-5) were synthesized via a reaction between BF3·CH3OH and benzimidazole-phenolate ligands (L1-L5), which are N,O-donors. These complexes exhibit intense blue emission in the solution and solid states accompanied by notable fluorescence quantum yields (ΦF). The study of the structure-property relation, through theoretical and experimental approaches, revealed a distinctive trend where compounds incorporating electron-donating substituents (methyl and ethoxy groups) in the phenolate moiety manifest shifts in emission wavelengths across the blue spectrum, concomitant with an increase in ΦF. Furthermore, the incorporation of an aromatic ring into the benzimidazole moiety considerably intensifies the rate of radiative relaxation from excited states. Notably, in the solid phase, either as a crystalline powder or loaded into polymer films, these modified complexes maintain or even surpass ΦF values observed in molecular solutions, ranging from 0.18 to 0.57, depending on the substitution. This characteristic makes these compounds attractive for applications in optoelectronics. All of the compounds were characterized using 1H, 13C, 11B, and 19F NMR, elemental analysis, and the molecular structures were corroborated through single-crystal X-ray diffraction analysis. Computational calculations via time-dependent density functional theory further elucidate the tunability of optical bandgaps through group substitution on ligands, aligning well with experimental observations.
Collapse
Affiliation(s)
- Anderson Alvarez-Quesada
- Departamento de Química, Universidad de Guanajuato, Colonia Noria Alta S/N, C.P. 36050 Guanajuato, Guanajuato, Mexico
| | - José E Báez
- Departamento de Química, Universidad de Guanajuato, Colonia Noria Alta S/N, C.P. 36050 Guanajuato, Guanajuato, Mexico
| | - J Oscar C Jiménez-Halla
- Departamento de Química, Universidad de Guanajuato, Colonia Noria Alta S/N, C.P. 36050 Guanajuato, Guanajuato, Mexico
| | - Gabriel Ramos-Ortiz
- Centro de Investigaciones en Óptica A.C., Loma del Bosque No. 115, Col. Lomas del Campestre, C.P. 37150 León, Guanajuato, Mexico
| | - Gerardo González-García
- Departamento de Química, Universidad de Guanajuato, Colonia Noria Alta S/N, C.P. 36050 Guanajuato, Guanajuato, Mexico
| |
Collapse
|
143
|
Hong SG, Oh BM, Kim JH, Lee JU. Textile-Based Adsorption Sensor via Mixed Solvent Dyeing with Aggregation-Induced Emission Dyes. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1745. [PMID: 38673102 PMCID: PMC11051475 DOI: 10.3390/ma17081745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/24/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
This study demonstrates a novel methodology for developing a textile-based adsorption sensor via mixed solvent dyeing with aggregation-induced emission (AIE) dyes on recycled fabrics. AIE dyes were incorporated into the fabrics using a mixed solvent dyeing method with a co-solvent mixture of H2O and organic solvents. This method imparted unique fluorescence properties to fabrics, altering fluorescence intensity or wavelength based on whether the AIE dye molecules were in an isolated or aggregated state on the fabrics. The precise control of the H2O fraction to organic solvent during dyeing was crucial for influencing fluorescence intensity and sensing characteristics. These dyed fabrics exhibited reactive thermochromic and vaporchromic properties, with changes in fluorescence intensity corresponding to variations in temperature and exposure to volatile organic solvents (VOCs). Their superior characteristics, including a repetitive fluorescence switching property and resistance to photo-bleaching, enhance their practicality across various applications. Consequently, the smart fabrics dyed with AIE dye not only find applications in clothing and fashion design but demonstrate versatility in various fields, extending to sensing temperature, humidity, and hazardous chemicals.
Collapse
Affiliation(s)
- Seong Gyun Hong
- Department of Advanced Materials Engineering for Information and Electronics, Integrated Education Institute for Frontier Science and Technology (BK21 Four), Kyung Hee University, 1732 De-ogyeong-daero, Giheung-gu, Yongin-si 17104, Gyeonggi-do, Republic of Korea;
| | - Byeong M. Oh
- Department of Molecular Science and Technology, Ajou University, 206, World Cup-ro, Yeongtong-gu, Suwon-si 16499, Gyeonggi-do, Republic of Korea; (B.M.O.); (J.H.K.)
| | - Jong H. Kim
- Department of Molecular Science and Technology, Ajou University, 206, World Cup-ro, Yeongtong-gu, Suwon-si 16499, Gyeonggi-do, Republic of Korea; (B.M.O.); (J.H.K.)
| | - Jea Uk Lee
- Department of Advanced Materials Engineering for Information and Electronics, Integrated Education Institute for Frontier Science and Technology (BK21 Four), Kyung Hee University, 1732 De-ogyeong-daero, Giheung-gu, Yongin-si 17104, Gyeonggi-do, Republic of Korea;
| |
Collapse
|
144
|
Bi H, Jiang J, Chen J, Kuang X, Zhang J. Machine Learning Prediction of Quantum Yields and Wavelengths of Aggregation-Induced Emission Molecules. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1664. [PMID: 38612177 PMCID: PMC11012915 DOI: 10.3390/ma17071664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
The aggregation-induced emission (AIE) effect exhibits a significant influence on the development of luminescent materials and has made remarkable progress over the past decades. The advancement of high-performance AIE materials requires fast and accurate predictions of their photophysical properties, which is impeded by the inherent limitations of quantum chemical calculations. In this work, we present an accurate machine learning approach for the fast predictions of quantum yields and wavelengths to screen out AIE molecules. A database of about 563 organic luminescent molecules with quantum yields and wavelengths in the monomeric/aggregated states was established. Individual/combined molecular fingerprints were selected and compared elaborately to attain appropriate molecular descriptors. Different machine learning algorithms combined with favorable molecular fingerprints were further screened to achieve more accurate prediction models. The simulation results indicate that combined molecular fingerprints yield more accurate predictions in the aggregated states, and random forest and gradient boosting regression algorithms show the best predictions in quantum yields and wavelengths, respectively. Given the successful applications of machine learning in quantum yields and wavelengths, it is reasonable to anticipate that machine learning can serve as a complementary strategy to traditional experimental/theoretical methods in the investigation of aggregation-induced luminescent molecules to facilitate the discovery of luminescent materials.
Collapse
Affiliation(s)
| | | | | | | | - Jinxiao Zhang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China; (H.B.)
| |
Collapse
|
145
|
Gui Y, Wang Y, Wang D, Qin Y, Song G, Yan D, Tang BZ, Wang D. Thiophene π-Bridge Manipulation of NIR-II AIEgens for Multimodal Tumor Phototheranostics. Angew Chem Int Ed Engl 2024; 63:e202318609. [PMID: 38345594 DOI: 10.1002/anie.202318609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Indexed: 03/01/2024]
Abstract
The fabrication of a multimodal phototheranostic platform on the basis of single-component theranostic agent to afford both imaging and therapy simultaneously, is attractive yet full of challenges. The emergence of aggregation-induced emission luminogens (AIEgens), particularly those emit fluorescence in the second near-infrared window (NIR-II), provides a powerful tool for cancer treatment by virtue of adjustable pathway for radiative/non-radiative energy consumption, deeper penetration depth and aggregation-enhanced theranostic performance. Although bulky thiophene π-bridges such as ortho-alkylated thiophene, 3,4-ethoxylene dioxythiophene and benzo[c]thiophene are commonly adopted to construct NIR-II AIEgens, the subtle differentiation on their theranostic behaviours has yet to be comprehensively investigated. In this work, systematical investigations discovered that AIEgen BT-NS bearing benzo[c]thiophene possesses acceptable NIR-II fluorescence emission intensity, efficient reactive oxygen species generation, and high photothermal conversion efficiency. Eventually, by using of BT-NS nanoparticles, unprecedented performance on NIR-II fluorescence/photoacoustic/photothermal imaging-guided synergistic photodynamic/photothermal elimination of tumors was demonstrated. This study thus offers useful insights into developing versatile phototheranostic systems for clinical trials.
Collapse
Affiliation(s)
- Yixiong Gui
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yuanwei Wang
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children's Hospital, Shenzhen, 518034, China
| | - Deliang Wang
- Department of Materials Chemistry, Huzhou University, Huzhou, 313000, East 2nd Ring Rd. No. 759, China
| | - Yi Qin
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Guangjie Song
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Dingyuan Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen) Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong, 518172, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
146
|
Ma F, Jia Q, Deng Z, Wang B, Zhang S, Jiang J, Xing G, Wang Z, Qiu Z, Zhao Z, Tang BZ. Boosting Luminescence Efficiency of Near-Infrared-II Aggregation-Induced Emission Luminogens via a Mash-Up Strategy of π-Extension and Deuteration for Dual-Model Image-Guided Surgery. ACS NANO 2024; 18:9431-9442. [PMID: 38507745 DOI: 10.1021/acsnano.3c11078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The simultaneous pursuit of accelerative radiative and restricted nonradiative decay is of tremendous significance to construct high-luminescence-efficiency fluorophores in the second near-infrared wavelength window (NIR-II), which is seriously hindered by the energy gap laws. Herein, a mash-up strategy of π-extension and deuteration is proposed to efficaciously ameliorate the knotty problem. By extending the π-conjugation of the aromatic fragment and introducing an isotope effect to the aggregation-induced emission luminogen (AIEgen), an improved oscillator strength (f), coupled with suppressed deformation and high-frequency oscillation in the excited state, are successively implemented. In this case, a faster rate of radiative decay (kr) and restricted nonradiative decay (knr) are simultaneously achieved. Moreover, the preeminent emissive property of AIEgen in the molecular state could be commendably inherited by the aggregates. The corresponding NIR-II emissive AIEgen-based nanoparticles display high brightness, large Stokes shift, and superior photostability simultaneously, which can be applied for image-guided cancer and sentinel lymph node (SLN) surgery. This work thus provides a rational roadmap to improve the luminescence efficiency of NIR-II fluorophores for biomedical applications.
Collapse
Affiliation(s)
- Fulong Ma
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, People's Republic of China
| | - Qian Jia
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, People's Republic of China
- Laboratory of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, People's Republic of China
| | - Ziwei Deng
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, People's Republic of China
| | - Bingzhe Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, People's Republic of China
| | - Siwei Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, People's Republic of China
| | - Jinhui Jiang
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, People's Republic of China
| | - Guichuan Xing
- Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, People's Republic of China
| | - Zhongliang Wang
- Laboratory of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, People's Republic of China
| | - Zijie Qiu
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, People's Republic of China
| | - Zheng Zhao
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, People's Republic of China
- HKUST-Shenzhen Research Institute, South Area Hi-Tech Park, Nanshan, Shenzhen, Guangdong Province 518057, People's Republic of China
| | - Ben Zhong Tang
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, People's Republic of China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, People's Republic of China
| |
Collapse
|
147
|
He X, Zheng Y, Luo Z, Wei Y, Liu Y, Xie C, Li C, Peng D, Quan Z. Bright Circularly Polarized Mechanoluminescence from 0D Hybrid Manganese Halides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309906. [PMID: 38228314 DOI: 10.1002/adma.202309906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/12/2024] [Indexed: 01/18/2024]
Abstract
Hybrid metal halides (HMHs) with efficient circularly polarized luminescence (CPL) have application prospects in many fields, due to their abundant host-guest structures and high photoluminescence quantum yield (PLQY). However, CPLs in HMHs are predominantly excited by light or electricity, limiting their use in multivariate environments. It is necessary to explore a novel excitation method to extend the application of chiral HMHs as smart stimuli-responsive optical materials. In this work, an enantiomeric pair of 0D hybrid manganese bromides, [H2(2R,4R)-(+)/(2S,4S)-(-)-2,4-bis(diphenylphosphino)pentane]MnBr4 [(R/S)-1] is presented, which exhibits efficient CPL emissions with near-unity PLQYs and high dissymmetry factors of ± 2.0 × 10-3. Notably, (R/S)-1 compounds exhibit unprecedented and bright circularly polarized mechanoluminescence (CPML) emissions under mechanical stimulation. Moreover, (R/S)-1 possess high mechanical force sensitivities with mechanoluminescence (ML) emissions detectable under 0.1 N force stimulation. Furthermore, this ML emission exhibits an extraordinary antithermal quenching effect in the temperature range of 300-380 K, which is revealed to originate from a thermal activation energy compensation mechanism from trap levels to Mn(II) 4T1 level. Based on their intriguing optical properties, these compounds as chiral force-responsive materials are demonstrated in multilevel confidential information encryption.
Collapse
Affiliation(s)
- Xin He
- Department of Chemistry, and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Yuantian Zheng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, and Guangdong Province College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Zhishan Luo
- Department of Chemistry, and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Yi Wei
- Department of Chemistry, and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Yulian Liu
- Department of Chemistry, and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Chenlong Xie
- Department of Chemistry, and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Chen Li
- Department of Chemistry, and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Dengfeng Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, and Guangdong Province College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Zewei Quan
- Department of Chemistry, and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| |
Collapse
|
148
|
Gallucci N, Appavou MS, Cowieson N, D'Errico G, Di Girolamo R, Lettieri S, Sica F, Vitiello G, Paduano L. Ordered hierarchical superlattice amplifies coated-CeO 2 nanoparticles luminescence. J Colloid Interface Sci 2024; 659:926-935. [PMID: 38219311 DOI: 10.1016/j.jcis.2024.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Achieving a controlled preparation of nanoparticle superstructures with spatially periodic arrangement, also called superlattices, is one of the most intriguing and open questions in soft matter science. The interest in such regular superlattices originates from the potentialities in tailoring the physicochemical properties of the individual constituent nanoparticles, eventually leading to emerging behaviors and/or functionalities that are not exhibited by the initial building blocks. Despite progress, it is currently difficult to obtain such ordered structures; the influence of parameters, such as size, softness, interaction potentials, and entropy, are neither fully understood yet and not sufficiently studied for 3D systems. In this work, we describe the synthesis and characterization of spatially ordered hierarchical structures of coated cerium oxide nanoparticles in water suspension prepared by a bottom-up approach. Covering the CeO2 surface with amphiphilic molecules having chains of appropriate length makes it possible to form ordered structures in which the particles occupy well-defined positions. In the present case superlattice arrangement is accompanied by an improvement in photoluminescence (PL) efficiency, as an increase in PL intensity of the superlattice structure of up to 400 % compared with that of randomly dispersed nanoparticles was observed. To the best of our knowledge, this is one of the first works in the literature in which the coexistence of 3D structures in solution, such as face-centered cubic (FCC) and Frank-Kasper (FK) phases, of semiconductor nanoparticles have been related to their optical properties.
Collapse
Affiliation(s)
- Noemi Gallucci
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy,; CSGI, Center for Colloid and Surface Science, 50019 Sesto Fiorentino, Italy
| | - Marie-Sousai Appavou
- Jülich Center for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Nathan Cowieson
- Diamond Light Source, Didcot, Oxfordshire, England, United Kingdom
| | - Gerardino D'Errico
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy,; CSGI, Center for Colloid and Surface Science, 50019 Sesto Fiorentino, Italy
| | - Rocco Di Girolamo
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Stefano Lettieri
- Department of Physics, University of Naples Federico II, Via Cupa Cintia 21, 80126 Naples, Italy
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Giuseppe Vitiello
- CSGI, Center for Colloid and Surface Science, 50019 Sesto Fiorentino, Italy; Department of Chemical, Materials and Production Engineering, University of Naples Federico II, 80125 Naples, Italy
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy,; CSGI, Center for Colloid and Surface Science, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
149
|
Lu B, Xia J, Quan H, Huang Y, Zhang Z, Zhan X. End Group Engineering for Constructing A-D-A Fused-Ring Photosensitizers with Balanced Phototheranostics Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307664. [PMID: 37972254 DOI: 10.1002/smll.202307664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Phototheranostics continues to flourish in cancer treatment. Due to the competitive relationships between these photophysical processes of fluorescence emission, photothermal conversion, and photodynamic action, it is critical to balance them through subtle photosensitizer designs. Herein, it is provided a useful guideline for constructing A-D-A photosensitizers with superior phototheranostics performance. Various cyanoacetate group-modified end groups containing ester side chains of different length are designed to construct a series of A-D-A photosensitizers (F8CA1 ∼ F8CA4) to study the structure-property relationships. It is surprising to find that the photophysical properties of A-D-A photosensitizers can be precisely regulated by these tiny structural changes. The results reveal that the increase in the steric hindrance of ester side chains has positive impacts on their photothermal conversion capabilities, but adverse impacts on the fluorescence emission and photodynamic activities. Notably, these tiny structural changes lead to their different aggregation behavior. The molecule mechanisms are detailedly explained by theoretical calculations. Finally, F8CA2 nanoparticles with more balanced photophysical properties perform well in fluorescence imaging-guided photothermal and type I&II photodynamic synergistic cancer therapy, even under hypoxic conditions. Therefore, this work provides a novel practicable construction strategy for desired A-D-A photosensitizers.
Collapse
Affiliation(s)
- Bing Lu
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, P. R. China
| | - Jiachen Xia
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, P. R. China
| | - Hui Quan
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, P. R. China
| | - Yuying Huang
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, P. R. China
| | - Zhecheng Zhang
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, P. R. China
| | - Xiaowei Zhan
- School of Materials Science and Engineering, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing, 100871, P. R. China
| |
Collapse
|
150
|
Li H, Zhang T, Liao Y, Liu C, He Y, Wang Y, Li C, Jiang C, Li C, Luo G, Xiang Z, Duo Y. Recent advances of aggregation‐induced emission in body surface organs. AGGREGATE 2024; 5. [DOI: 10.1002/agt2.470] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
AbstractThe surface organs mainly comprise the superficial layers of various parts of the mammalian body, including the skin, eyes, and ears, which provide solid protection against various threats to the entire body. Damage to surface organs could lead to many serious diseases or even death. Currently, despite significant advancements in this field, there remain numerous enigmas that necessitate expeditious resolution, particularly pertaining to diagnostic and therapeutic objectives. The advancements in nanomedicine have provided a significant impetus for the development of novel approaches in the diagnosis, bioimaging, and therapy of superficial organs. The aggregation‐induced emission (AIE) phenomenon, initially observed by Prof. Ben Zhong Tang, stands out due to its contrasting behavior to the aggregation‐caused quenching effect. This discovery has significantly revolutionized the field of nanomedicine for surface organs owing to its remarkable advantages. In this review of literature, we aim to provide a comprehensive summary of recent advances of AIE lumenogen (AIEgen)‐based nanoplatforms in the fields of detection, diagnosis, imaging, and therapeutics of surface organ‐related diseases and discuss their prospects in the domain. It is hoped that this review will help attract researchers’ attention toward the utilization of this field for the exploration of a wider range of biomedical and clinical applications.
Collapse
Affiliation(s)
- Hang Li
- Department of Laboratory Medicine The Second Xiangya Hospital Central South University Changsha China
- Department of Pharmacy The Second Xiangya Hospital Central South University Changsha China
| | - Tingting Zhang
- Department of Laboratory Medicine The Second Xiangya Hospital Central South University Changsha China
- Department of Pharmacy The Second Xiangya Hospital Central South University Changsha China
| | - Yingying Liao
- The Eighth Affiliated Hospital Sun Yat‐sen University Shenzhen China
| | - Chutong Liu
- The Eighth Affiliated Hospital Sun Yat‐sen University Shenzhen China
| | - Yisheng He
- School of Medicine The Chinese University of Hong Kong (Shenzhen) Shenzhen China
| | - Yongfei Wang
- School of Medicine The Chinese University of Hong Kong (Shenzhen) Shenzhen China
| | - Conglei Li
- School of Medicine The Chinese University of Hong Kong (Shenzhen) Shenzhen China
| | - Cheng Jiang
- School of Medicine The Chinese University of Hong Kong (Shenzhen) Shenzhen China
| | - Chenzhong Li
- School of Medicine The Chinese University of Hong Kong (Shenzhen) Shenzhen China
| | - Guanghong Luo
- Department of Radiation Oncology Shenzhen People's Hospital (The Second Clinical Medical College The First Affiliated Hospital Jinan University Southern University of Science and Technology) Shenzhen China
| | - Zhongyuan Xiang
- Department of Laboratory Medicine The Second Xiangya Hospital Central South University Changsha China
- Department of Pharmacy The Second Xiangya Hospital Central South University Changsha China
| | - Yanhong Duo
- Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Science Harvard University Boston Massachusetts USA
| |
Collapse
|