101
|
Wan Q, TruongVo T, Steele HE, Ozcelikkale A, Han B, Wang Y, Oh J, Yokota H, Na S. Subcellular domain-dependent molecular hierarchy of SFK and FAK in mechanotransduction and cytokine signaling. Sci Rep 2017; 7:9033. [PMID: 28831165 PMCID: PMC5567257 DOI: 10.1038/s41598-017-09495-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/26/2017] [Indexed: 01/23/2023] Open
Abstract
Focal adhesion kinase (FAK) and Src family kinases (SFK) are known to play critical roles in mechanotransduction and other crucial cell functions. Recent reports indicate that they reside in different microdomains of the plasma membrane. However, little is known about their subcellular domain-dependent roles and responses to extracellular stimuli. Here, we employed fluorescence resonance energy transfer (FRET)-based biosensors in conjunction with collagen-coupled agarose gels to detect subcellular activities of SFK and FAK in three-dimensional (3D) settings. We observed that SFK and FAK in the lipid rafts and nonrafts are differently regulated by fluid flow and pro-inflammatory cytokines. Inhibition of FAK in the lipid rafts blocked SFK response to fluid flow, while inhibition of SFK in the non-rafts blocked FAK activation by the cytokines. Ex-vivo FRET imaging of mouse cartilage explants showed that intermediate level of interstitial fluid flow selectively decreased cytokine-induced SFK/FAK activation. These findings suggest that SFK and FAK exert distinctive molecular hierarchy depending on their subcellular location and extracellular stimuli.
Collapse
Affiliation(s)
- Qiaoqiao Wan
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, 46202, USA
- School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - ThucNhi TruongVo
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, 46202, USA
| | - Hannah E Steele
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, 46202, USA
| | - Altug Ozcelikkale
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Bumsoo Han
- School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Yingxiao Wang
- Department of Bioengineering, University of California San Diego, La Jolla, California, 92093, USA
| | - Junghwan Oh
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, 46202, USA
- School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Sungsoo Na
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, 46202, USA.
- School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, 47907, USA.
| |
Collapse
|
102
|
Rodriguez-Fontan F, Payne KA, Chahla J, Mei-Dan O, Richards A, Uchida S, Pascual-Garrido C. Viability and Tissue Quality of Cartilage Flaps From Patients With Femoroacetabular Hip Impingement: A Matched-Control Comparison. Orthop J Sports Med 2017; 5:2325967117723608. [PMID: 28868322 PMCID: PMC5562333 DOI: 10.1177/2325967117723608] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Chondrolabral damage is commonly observed in patients with cam-type femoroacetabular impingement (FAI). Chondral flap reattachment has recently been proposed as a possible preservation technique. Purpose/Hypothesis: The purpose of this study was to determine the viability and tissue quality of chondral flaps from patients with FAI at the time of arthroscopy. It was hypothesized that chondral flaps from patients with cam lesions of the hip would exhibit less viability and greater tissue degeneration than would those of a matched control group. Study Design: Cohort study; Level of evidence, 2. Methods: Patients with cam-type FAI who were treated with hip arthroscopy between 2014 and 2016 were asked to participate in this study. The cartilage lesions were localized and classified intraoperatively according to Beck classification. A chondral flap (study group) and a cartilage sample (control group) were obtained from each patient for histologic evaluation. Cellular viability and tissue quality were examined and compared in both groups. Cellular viability was determined with live/dead staining, and tissue quality was evaluated using safranin O/fast green, hematoxylin and eosin (H&E) staining, and immunohistochemistry for collagen II. Osteoarthritis Research Society International (OARSI) grading was used for quality assessment, and Image J software was used to calculate the percentage of tissue viability and Col II stain. Results: A total of 10 male patients with a mean age of 38.4 years (range, 30-55 years) were enrolled. All chondral flaps were classified as Beck grade 4. The mean cellular viability of the chondral flaps was reduced (54.6% ± 25.6%), and they were found to be degenerated (OARSI grade, 4 ± 1.27). Control samples also had reduced viability (38.8% ± 30.3%) and were degenerative (OARSI grade, 3.5 ± 1.38). There was no statistically significant intergroup difference for viability (P = .203) or OARSI grade (P = .645), nor was there an intragroup correlation between viability and OARSI grade (P > .05). A significant negative correlation (r = −0.9, P = .035) was found between OARSI grade and collagen II percentage scale in 5 selected samples. Conclusion: Despite appearing normal macroscopically, the chondral flaps from patients with cam-type FAI displayed loss of viability and tissue degeneration. In addition, control samples obtained away from the injury area also displayed cartilage damage and degeneration. Careful consideration should be taken when attempting to reattach the chondral flap.
Collapse
Affiliation(s)
- Francisco Rodriguez-Fontan
- Regenerative Orthopedics Laboratory, Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Karin A Payne
- Regenerative Orthopedics Laboratory, Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jorge Chahla
- Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Omer Mei-Dan
- Sports Medicine, Hip Preservation, Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Abigail Richards
- Regenerative Orthopedics Laboratory, Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Soshi Uchida
- Department of Orthopaedic Surgery, Wakamatsu Hospital for the University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Cecilia Pascual-Garrido
- Adult Reconstruction, Adolescent and Young Adult Hip Service, Orthopaedics Department, Washington University, St Louis, Missouri, USA
| |
Collapse
|
103
|
Carballo CB, Nakagawa Y, Sekiya I, Rodeo SA. Basic Science of Articular Cartilage. Clin Sports Med 2017; 36:413-425. [DOI: 10.1016/j.csm.2017.02.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
104
|
Engin AB, Nikitovic D, Neagu M, Henrich-Noack P, Docea AO, Shtilman MI, Golokhvast K, Tsatsakis AM. Mechanistic understanding of nanoparticles' interactions with extracellular matrix: the cell and immune system. Part Fibre Toxicol 2017; 14:22. [PMID: 28646905 PMCID: PMC5483305 DOI: 10.1186/s12989-017-0199-z] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 06/08/2017] [Indexed: 12/12/2022] Open
Abstract
Extracellular matrix (ECM) is an extraordinarily complex and unique meshwork composed of structural proteins and glycosaminoglycans. The ECM provides essential physical scaffolding for the cellular constituents, as well as contributes to crucial biochemical signaling. Importantly, ECM is an indispensable part of all biological barriers and substantially modulates the interchange of the nanotechnology products through these barriers. The interactions of the ECM with nanoparticles (NPs) depend on the morphological characteristics of intercellular matrix and on the physical characteristics of the NPs and may be either deleterious or beneficial. Importantly, an altered expression of ECM molecules ultimately affects all biological processes including inflammation. This review critically discusses the specific behavior of NPs that are within the ECM domain, and passing through the biological barriers. Furthermore, regenerative and toxicological aspects of nanomaterials are debated in terms of the immune cells-NPs interactions.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Hipodrom, 06330 Ankara, Turkey
| | - Dragana Nikitovic
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion, Greece
| | - Monica Neagu
- “Victor Babes” National Institute of Pathology, Immunology Department, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
| | - Petra Henrich-Noack
- Institute of Medical Psychology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy, Faculty of Pharmacy, Petru Rares, 200349 Craiova, Romania
| | - Mikhail I. Shtilman
- Master School Biomaterials, D.I. Mendeleyev University of Chemical Technology, Moscow, Russia
| | - Kirill Golokhvast
- Scientific Educational Center Nanotechnology, Engineering School, Far Eastern Federal University, Vladivostok, Russian Federation
| | - Aristidis M. Tsatsakis
- Scientific Educational Center Nanotechnology, Engineering School, Far Eastern Federal University, Vladivostok, Russian Federation
- Center of Toxicology Science & Research, Medical School, University of Crete, Heraklion, Crete Greece
| |
Collapse
|
105
|
White JPM, Cibelli M, Urban L, Nilius B, McGeown JG, Nagy I. TRPV4: Molecular Conductor of a Diverse Orchestra. Physiol Rev 2017; 96:911-73. [PMID: 27252279 DOI: 10.1152/physrev.00016.2015] [Citation(s) in RCA: 279] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transient receptor potential vanilloid type 4 (TRPV4) is a calcium-permeable nonselective cation channel, originally described in 2000 by research teams led by Schultz (Nat Cell Biol 2: 695-702, 2000) and Liedtke (Cell 103: 525-535, 2000). TRPV4 is now recognized as being a polymodal ionotropic receptor that is activated by a disparate array of stimuli, ranging from hypotonicity to heat and acidic pH. Importantly, this ion channel is constitutively expressed and capable of spontaneous activity in the absence of agonist stimulation, which suggests that it serves important physiological functions, as does its widespread dissemination throughout the body and its capacity to interact with other proteins. Not surprisingly, therefore, it has emerged more recently that TRPV4 fulfills a great number of important physiological roles and that various disease states are attributable to the absence, or abnormal functioning, of this ion channel. Here, we review the known characteristics of this ion channel's structure, localization and function, including its activators, and examine its functional importance in health and disease.
Collapse
Affiliation(s)
- John P M White
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Mario Cibelli
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Laszlo Urban
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Bernd Nilius
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - J Graham McGeown
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Istvan Nagy
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
106
|
Godwin ARF, Starborg T, Sherratt MJ, Roseman AM, Baldock C. Defining the hierarchical organisation of collagen VI microfibrils at nanometre to micrometre length scales. Acta Biomater 2017; 52:21-32. [PMID: 27956360 PMCID: PMC5402720 DOI: 10.1016/j.actbio.2016.12.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/06/2016] [Accepted: 12/08/2016] [Indexed: 12/27/2022]
Abstract
Extracellular matrix microfibrils are critical components of connective tissues with a wide range of mechanical and cellular signalling functions. Collagen VI is a heteromeric network-forming collagen which is expressed in tissues such as skin, lung, blood vessels and articular cartilage where it anchors cells into the matrix allowing for transduction of biochemical and mechanical signals. It is not understood how collagen VI is arranged into microfibrils or how these microfibrils are arranged into tissues. Therefore we have characterised the hierarchical organisation of collagen VI across multiple length scales. The frozen hydrated nanostructure of purified collagen VI microfibrils was reconstructed using cryo-TEM. The bead region has a compact hollow head and flexible tail regions linked by the collagenous interbead region. Serial block face SEM imaging coupled with electron tomography of the pericellular matrix (PCM) of murine articular cartilage revealed that the PCM has a meshwork-like organisation formed from globular densities ∼30nm in diameter. These approaches can characterise structures spanning nanometer to millimeter length scales to define the nanostructure of individual collagen VI microfibrils and the micro-structural organisation of these fibrils within tissues to help in the future design of better mimetics for tissue engineering. STATEMENT OF SIGNIFICANCE Cartilage is a connective tissue rich in extracellular matrix molecules and is tough and compressive to cushion the bones of joints. However, in adults cartilage is poorly repaired after injury and so this is an important target for tissue engineering. Many connective tissues contain collagen VI, which forms microfibrils and networks but we understand very little about these assemblies or the tissue structures they form. Therefore, we have use complementary imaging techniques to image collagen VI microfibrils from the nano-scale to the micro-scale in order to understand the structure and the assemblies it forms. These findings will help to inform the future design of scaffolds to mimic connective tissues in regenerative medicine applications.
Collapse
Affiliation(s)
- Alan R F Godwin
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, UK
| | - Tobias Starborg
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, UK
| | - Michael J Sherratt
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, UK
| | - Alan M Roseman
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, UK
| | - Clair Baldock
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, UK.
| |
Collapse
|
107
|
Luo Y, Sinkeviciute D, He Y, Karsdal M, Henrotin Y, Mobasheri A, Önnerfjord P, Bay-Jensen A. The minor collagens in articular cartilage. Protein Cell 2017; 8:560-572. [PMID: 28213717 PMCID: PMC5546929 DOI: 10.1007/s13238-017-0377-7] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/25/2017] [Indexed: 02/06/2023] Open
Abstract
Articular cartilage is a connective tissue consisting of a specialized extracellular matrix (ECM) that dominates the bulk of its wet and dry weight. Type II collagen and aggrecan are the main ECM proteins in cartilage. However, little attention has been paid to less abundant molecular components, especially minor collagens, including type IV, VI, IX, X, XI, XII, XIII, and XIV, etc. Although accounting for only a small fraction of the mature matrix, these minor collagens not only play essential structural roles in the mechanical properties, organization, and shape of articular cartilage, but also fulfil specific biological functions. Genetic studies of these minor collagens have revealed that they are associated with multiple connective tissue diseases, especially degenerative joint disease. The progressive destruction of cartilage involves the degradation of matrix constituents including these minor collagens. The generation and release of fragmented molecules could generate novel biochemical markers with the capacity to monitor disease progression, facilitate drug development and add to the existing toolbox for in vitro studies, preclinical research and clinical trials.
Collapse
Affiliation(s)
- Yunyun Luo
- Biomarkers & Research, Nordic Bioscience A/S, Herlev, Denmark. .,Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Dovile Sinkeviciute
- Biomarkers & Research, Nordic Bioscience A/S, Herlev, Denmark.,Department of Clinical Sciences, Medical Faculty, Lund University, Lund, Sweden
| | - Yi He
- Biomarkers & Research, Nordic Bioscience A/S, Herlev, Denmark
| | - Morten Karsdal
- Biomarkers & Research, Nordic Bioscience A/S, Herlev, Denmark
| | - Yves Henrotin
- Bone and Cartilage Research Unit, Institute of Pathology, Level 5, Arthropole Liège, University of Liège, CHU Sart-Tilman, 4000, Liège, Belgium
| | - Ali Mobasheri
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK.,Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Arthritis Research UK Centre for Musculoskeletal Ageing Research, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Patrik Önnerfjord
- Department of Clinical Sciences, Medical Faculty, Lund University, Lund, Sweden
| | - Anne Bay-Jensen
- Biomarkers & Research, Nordic Bioscience A/S, Herlev, Denmark
| |
Collapse
|
108
|
Servin-Vences MR, Moroni M, Lewin GR, Poole K. Direct measurement of TRPV4 and PIEZO1 activity reveals multiple mechanotransduction pathways in chondrocytes. eLife 2017; 6. [PMID: 28135189 PMCID: PMC5279942 DOI: 10.7554/elife.21074] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/03/2017] [Indexed: 12/24/2022] Open
Abstract
The joints of mammals are lined with cartilage, comprised of individual chondrocytes embedded in a specialized extracellular matrix. Chondrocytes experience a complex mechanical environment and respond to changing mechanical loads in order to maintain cartilage homeostasis. It has been proposed that mechanically gated ion channels are of functional importance in chondrocyte mechanotransduction; however, direct evidence of mechanical current activation in these cells has been lacking. We have used high-speed pressure clamp and elastomeric pillar arrays to apply distinct mechanical stimuli to primary murine chondrocytes, stretch of the membrane and deflection of cell-substrate contacts points, respectively. Both TRPV4 and PIEZO1 channels contribute to currents activated by stimuli applied at cell-substrate contacts but only PIEZO1 mediates stretch-activated currents. These data demonstrate that there are separate, but overlapping, mechanoelectrical transduction pathways in chondrocytes.
Collapse
Affiliation(s)
| | - Mirko Moroni
- Department of Neuroscience, Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | - Gary R Lewin
- Department of Neuroscience, Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | - Kate Poole
- Department of Neuroscience, Max Delbruck Center for Molecular Medicine, Berlin, Germany.,Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, Australia.,EMBL Australia node for Single Molecule Sciences, School of Medical Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
109
|
Chen D, Shen J, Zhao W, Wang T, Han L, Hamilton JL, Im HJ. Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Res 2017; 5:16044. [PMID: 28149655 PMCID: PMC5240031 DOI: 10.1038/boneres.2016.44] [Citation(s) in RCA: 751] [Impact Index Per Article: 93.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/02/2016] [Accepted: 09/08/2016] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease and a major cause of pain and disability in adult individuals. The etiology of OA includes joint injury, obesity, aging, and heredity. However, the detailed molecular mechanisms of OA initiation and progression remain poorly understood and, currently, there are no interventions available to restore degraded cartilage or decelerate disease progression. The diathrodial joint is a complicated organ and its function is to bear weight, perform physical activity and exhibit a joint-specific range of motion during movement. During OA development, the entire joint organ is affected, including articular cartilage, subchondral bone, synovial tissue and meniscus. A full understanding of the pathological mechanism of OA development relies on the discovery of the interplaying mechanisms among different OA symptoms, including articular cartilage degradation, osteophyte formation, subchondral sclerosis and synovial hyperplasia, and the signaling pathway(s) controlling these pathological processes.
Collapse
Affiliation(s)
- Di Chen
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Jie Shen
- Department of Orthopaedic Surgery, Washington University, St Louis, MO, USA
| | - Weiwei Zhao
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tingyu Wang
- Department of Pharmacy, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lin Han
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - John L Hamilton
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Hee-Jeong Im
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
110
|
Salinas D, Minor CA, Carlson RP, McCutchen CN, Mumey BM, June RK. Combining Targeted Metabolomic Data with a Model of Glucose Metabolism: Toward Progress in Chondrocyte Mechanotransduction. PLoS One 2017; 12:e0168326. [PMID: 28056047 PMCID: PMC5215894 DOI: 10.1371/journal.pone.0168326] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 11/30/2016] [Indexed: 11/19/2022] Open
Abstract
Osteoarthritis is a debilitating disease likely involving altered metabolism of the chondrocytes in articular cartilage. Chondrocytes can respond metabolically to mechanical loads via cellular mechanotransduction, and metabolic changes are significant because they produce the precursors to the tissue matrix necessary for cartilage health. However, a comprehensive understanding of how energy metabolism changes with loading remains elusive. To improve our understanding of chondrocyte mechanotransduction, we developed a computational model to calculate the rate of reactions (i.e. flux) across multiple components of central energy metabolism based on experimental data. We calculated average reaction flux profiles of central metabolism for SW1353 human chondrocytes subjected to dynamic compression for 30 minutes. The profiles were obtained solving a bounded variable linear least squares problem, representing the stoichiometry of human central energy metabolism. Compression synchronized chondrocyte energy metabolism. These data are consistent with dynamic compression inducing early time changes in central energy metabolism geared towards more active protein synthesis. Furthermore, this analysis demonstrates the utility of combining targeted metabolomic data with a computational model to enable rapid analysis of cellular energy utilization.
Collapse
Affiliation(s)
- Daniel Salinas
- Computer Science, Montana State University, Bozeman, MT United States of America
| | - Cody A. Minor
- Mathematics, Montana State University, Bozeman, MT United States of America
| | - Ross P. Carlson
- Chemical & Biological Engineering, Montana State University, Bozeman, MT United States of America
| | - Carley N. McCutchen
- Mechanical & Industrial Engineering, Montana State University, Bozeman, MT United States of America
| | - Brendan M. Mumey
- Computer Science, Montana State University, Bozeman, MT United States of America
| | - Ronald K. June
- Mechanical & Industrial Engineering, Montana State University, Bozeman, MT United States of America
- Department of Cell Biology & Neurosciences, Montana State University, Bozeman, MT United States of America
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA United States of America
- * E-mail:
| |
Collapse
|
111
|
Zhang Q, Yu Y, Zhao H. The effect of matrix stiffness on biomechanical properties of chondrocytes. Acta Biochim Biophys Sin (Shanghai) 2016; 48:958-965. [PMID: 27590061 DOI: 10.1093/abbs/gmw087] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/16/2016] [Indexed: 01/14/2023] Open
Abstract
The behavior of chondrocytes is regulated by multiple mechanical microenvironmental cues. During development and degenerative disease of articular cartilage, as an external signal, the extracellular matrix stiffness of chondrocytes changes significantly, but whether and how this biophysical cue affects biomechanical properties of chondrocytes remain elusive. In the present study, we designed supporting-biomaterials as mimics of native pericellular matrix to study the effect of matrix stiffness on chondrocyte morphology and F-actin distribution. Furthermore, the active mechanical behavior of chondrocytes during sensing and responding to different matrix stiffness was quantitatively investigated using atom force microscope technique and theoretical model. Our results indicated that stiffer matrix tends to increase the cell spreading area, the percentage of irregular cell shape distribution and mechanical parameters including elastic modulus (Eelastic), instantaneous modulus (E0), relaxed modulus (ER) and apparent viscosity (μ) of chondrocytes. Knowledge of matrix stiffness-dependent biomechanical behaviors of chondrocytes has important implications for optimizing matrix material and advancing chondrocyte-based applications for functional tissue engineering.
Collapse
Affiliation(s)
- Quanyou Zhang
- Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China College of Mechanics, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yang Yu
- Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| | - Hucheng Zhao
- Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
112
|
Zhang M, Mani SB, He Y, Hall AM, Xu L, Li Y, Zurakowski D, Jay GD, Warman ML. Induced superficial chondrocyte death reduces catabolic cartilage damage in murine posttraumatic osteoarthritis. J Clin Invest 2016; 126:2893-902. [PMID: 27427985 DOI: 10.1172/jci83676] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 05/13/2016] [Indexed: 11/17/2022] Open
Abstract
Joints that have degenerated as a result of aging or injury contain dead chondrocytes and damaged cartilage. Some studies have suggested that chondrocyte death precedes cartilage damage, but how the loss of chondrocytes affects cartilage integrity is not clear. In this study, we examined whether chondrocyte death undermines cartilage integrity in aging and injury using a rapid 3D confocal cartilage imaging technique coupled with standard histology. We induced autonomous expression of diphtheria toxin to kill articular surface chondrocytes in mice and determined that chondrocyte death did not lead to cartilage damage. Moreover, cartilage damage after surgical destabilization of the medial meniscus of the knee was increased in mice with intact chondrocytes compared with animals whose chondrocytes had been killed, suggesting that chondrocyte death does not drive cartilage damage in response to injury. These data imply that chondrocyte catabolism, not death, contributes to articular cartilage damage following injury. Therefore, therapies targeted at reducing the catabolic phenotype may protect against degenerative joint disease.
Collapse
|
113
|
Abstract
Cartilage remodeling is currently among the most popular topics in osteoarthritis research. Remodeling includes removal of the existing cartilage and replacement by neo-cartilage. As a loss of balance between removal and replacement of articular cartilage develops (particularly, the rate of removal surpasses the rate of replacement), joints will begin to degrade. In the last few years, significant progress in molecular understanding of the cartilage remodeling process has been made. In this brief review, we focus on the discussion of some current "controversial" observations in articular cartilage degeneration: (1) the biological effect of transforming growth factor-beta 1 on developing and mature articular cartilages, (2) the question of whether aggrecanase 1 (ADAMTS4) and aggrecanase 2 (ADAMTS5) are key enzymes in articular cartilage destruction, and (3) chondrocytes versus chondron in the development of osteoarthritis. It is hoped that continued discussion and investigation will follow to better clarify these topics. Clarification will be critical for those in search of novel therapeutic targets for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Yefu Li
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA ; Faculty of Medicine, Harvard Medical School, Boston, MA, USA
| | - Lin Xu
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA ; Faculty of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
114
|
Cescon M, Gattazzo F, Chen P, Bonaldo P. Collagen VI at a glance. J Cell Sci 2015; 128:3525-31. [DOI: 10.1242/jcs.169748] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/10/2015] [Indexed: 12/17/2022] Open
Abstract
Collagen VI represents a remarkable extracellular matrix molecule, and in the past few years, studies of this molecule have revealed its involvement in a wide range of tissues and pathological conditions. In addition to its complex multi-step pathway of biosynthesis and assembly that leads to the formation of a characteristic and distinctive network of beaded microfilaments in the extracellular matrix, collagen VI exerts several key roles in different tissues. These range from unique biomechanical roles to cytoprotective functions in different cells, including myofibers, chondrocytes, neurons, fibroblasts and cardiomyocytes. Indeed, collagen VI has been shown to exert a surprisingly broad range of cytoprotective effects, which include counteracting apoptosis and oxidative damage, favoring tumor growth and progression, regulating autophagy and cell differentiation, and even contributing to the maintenance of stemness. In this Cell Science at a Glance article and the accompanying poster, we present the current knowledge of collagen VI, and in particular, discuss its relevance in stemness and in preserving the mechanical properties of tissues, as well as its links with human disorders.
Collapse
Affiliation(s)
- Matilde Cescon
- Department of Molecular Medicine, University of Padova, Padova 35131, Italy
| | - Francesca Gattazzo
- Department of Molecular Medicine, University of Padova, Padova 35131, Italy
| | - Peiwen Chen
- Department of Molecular Medicine, University of Padova, Padova 35131, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, Padova 35131, Italy
| |
Collapse
|