101
|
TRIM19/PML Restricts HIV Infection in a Cell Type-Dependent Manner. Viruses 2015; 8:v8010002. [PMID: 26703718 PMCID: PMC4728562 DOI: 10.3390/v8010002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/02/2015] [Accepted: 12/14/2015] [Indexed: 01/03/2023] Open
Abstract
The promyelocytic leukemia protein (PML) is the main structural component of the nuclear matrix structures termed nuclear domain 10 (ND10) or PML nuclear bodies (PML-NBs). PML and ND10 structures have been shown to mediate an intrinsic immune response against a variety of different viruses. Their role during retroviral replication, however, is still controversially discussed. In this study, we analyzed the role of PML and the ND10 components Daxx and Sp100 during retroviral replication in different cell types. Using cell lines exhibiting a shRNA-mediated knockdown, we found that PML, but not Daxx or Sp100, inhibits HIV and other retroviruses in a cell type-dependent manner. The PML-mediated block to retroviral infection was active in primary human fibroblasts and murine embryonic fibroblasts but absent from T cells and myeloid cell lines. Quantitative PCR analysis of HIV cDNA in infected cells revealed that PML restricts infection at the level of reverse transcription. Our findings shed light on the controversial role of PML during retroviral infection and show that PML contributes to the intrinsic restriction of retroviral infections in a cell type-dependent manner.
Collapse
|
102
|
Ablain J, Poirot B, Esnault C, Lehmann-Che J, de Thé H. p53 as an Effector or Inhibitor of Therapy Response. Cold Spring Harb Perspect Med 2015; 6:a026260. [PMID: 26637438 DOI: 10.1101/cshperspect.a026260] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although integrity of the p53 signaling pathway in a given tumor was expected to be a critical determinant of response to therapies, most clinical studies failed to link p53 status and treatment outcome. Here, we present two opposite situations: one in which p53 is an essential effector of cure by targeted leukemia therapies and another one in advanced breast cancers in which p53 inactivation is required for the clinical efficacy of dose-dense chemotherapy. If p53 promotes or blocks therapy response, therapies must be tailored on its status in individual tumors.
Collapse
Affiliation(s)
- Julien Ablain
- Université Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Hôpital St. Louis, 75475 Paris, France INSERM UMR 944, Equipe Labellisée par la Ligue Nationale contre le Cancer, Hôpital St. Louis, 75475 Paris, France CNRS UMR 7212, Hôpital St. Louis, 75475 Paris, France
| | - Brigitte Poirot
- Université Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Hôpital St. Louis, 75475 Paris, France INSERM UMR 944, Equipe Labellisée par la Ligue Nationale contre le Cancer, Hôpital St. Louis, 75475 Paris, France CNRS UMR 7212, Hôpital St. Louis, 75475 Paris, France Assistance Publique des Hôpitaux de Paris, Oncologie Moléculaire, Hôpital St. Louis, 75475 Paris, France
| | - Cécile Esnault
- Université Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Hôpital St. Louis, 75475 Paris, France INSERM UMR 944, Equipe Labellisée par la Ligue Nationale contre le Cancer, Hôpital St. Louis, 75475 Paris, France CNRS UMR 7212, Hôpital St. Louis, 75475 Paris, France
| | - Jacqueline Lehmann-Che
- Université Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Hôpital St. Louis, 75475 Paris, France INSERM UMR 944, Equipe Labellisée par la Ligue Nationale contre le Cancer, Hôpital St. Louis, 75475 Paris, France CNRS UMR 7212, Hôpital St. Louis, 75475 Paris, France Assistance Publique des Hôpitaux de Paris, Oncologie Moléculaire, Hôpital St. Louis, 75475 Paris, France
| | - Hugues de Thé
- Université Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Hôpital St. Louis, 75475 Paris, France INSERM UMR 944, Equipe Labellisée par la Ligue Nationale contre le Cancer, Hôpital St. Louis, 75475 Paris, France CNRS UMR 7212, Hôpital St. Louis, 75475 Paris, France Assistance Publique des Hôpitaux de Paris, Oncologie Moléculaire, Hôpital St. Louis, 75475 Paris, France Collège de France, 75005 Paris, France
| |
Collapse
|
103
|
Kaufman KL, Jenkins Y, Alomari M, Mirzaei M, Best OG, Pascovici D, Mactier S, Mulligan SP, Haynes PA, Christopherson RI. The Hsp90 inhibitor SNX-7081 is synergistic with fludarabine nucleoside via DNA damage and repair mechanisms in human, p53-negative chronic lymphocytic leukemia. Oncotarget 2015; 6:40981-97. [PMID: 26556860 PMCID: PMC4747384 DOI: 10.18632/oncotarget.5715] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 09/16/2015] [Indexed: 12/31/2022] Open
Abstract
Clinical trials of heat shock protein 90 (Hsp90) inhibitors have been limited by high toxicity. We previously showed that the Hsp90 inhibitor, SNX-7081, synergizes with and restores sensitivity to fludarabine nucleoside (2-FaraA) in human chronic lymphocytic leukemia (CLL) cells with lesions in the p53 pathway (Best OG, et al., Leukemia Lymphoma 53:1367-75, 2012). Here, we used label-free quantitative shotgun proteomics and comprehensive bioinformatic analysis to determine the mechanism of this synergy. We propose that 2-FaraA-induced DNA damage is compounded by SNX-7081-mediated inhibition of DNA repair, resulting in enhanced induction of apoptosis. DNA damage responses are impaired in part due to reductions in checkpoint regulators BRCA1 and cyclin D1, and cell death is triggered following reductions of MYC and nucleolin and an accumulation of apoptosis-inducing NFkB2 p100 subunit. Loss of nucleolin can activate Fas-mediated apoptosis, leading to the increase of pro-apoptotic proteins (BID, fas-associated factor-2) and subsequent apoptosis of p53-negative, 2-FaraA refractory CLL cells. A significant induction of DNA damage, indicated by increases in DNA damage marker γH2AX, was observed following the dual drug treatment of additional cell lines, indicating that a similar mechanism may operate in other p53-mutated human B-lymphoid cancers. These results provide valuable insight into the synergistic mechanism between SNX-7081 and 2-FaraA that may provide an alternative treatment for CLL patients with p53 mutations, for whom therapeutic options are currently limited. Moreover, this drug combination reduces the effective dose of the Hsp90 inhibitor and may therefore alleviate any toxicity encountered.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- BRCA1 Protein/metabolism
- Benzamides/pharmacology
- Blotting, Western
- Cell Line, Tumor
- Chromatography, Liquid/methods
- Cyclin D1/metabolism
- DNA Damage
- DNA Repair/drug effects
- Drug Synergism
- HSP90 Heat-Shock Proteins/antagonists & inhibitors
- HSP90 Heat-Shock Proteins/metabolism
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Mutation
- NF-kappa B p52 Subunit/metabolism
- Phosphoproteins/metabolism
- Protein Interaction Maps/drug effects
- Proteomics/methods
- Proto-Oncogene Proteins c-myc/metabolism
- RNA-Binding Proteins/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Tandem Mass Spectrometry
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Vidarabine/analogs & derivatives
- Vidarabine/pharmacology
- Nucleolin
Collapse
Affiliation(s)
- Kimberley L. Kaufman
- School of Molecular Bioscience, University of Sydney, Darlington, NSW 2006, Australia
- Molecular Neuropathology, Brain and Mind Centre, Camperdown, NSW 2050, Australia
| | - Yiping Jenkins
- School of Molecular Bioscience, University of Sydney, Darlington, NSW 2006, Australia
| | - Munther Alomari
- School of Molecular Bioscience, University of Sydney, Darlington, NSW 2006, Australia
| | - Mehdi Mirzaei
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - O. Giles Best
- Northern Blood Research Centre, Kolling Institute for Medical Research, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Dana Pascovici
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW 2109, Australia
| | - Swetlana Mactier
- School of Molecular Bioscience, University of Sydney, Darlington, NSW 2006, Australia
| | - Stephen P. Mulligan
- Northern Blood Research Centre, Kolling Institute for Medical Research, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Paul A. Haynes
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | | |
Collapse
|
104
|
Guan D, Kao HY. The function, regulation and therapeutic implications of the tumor suppressor protein, PML. Cell Biosci 2015; 5:60. [PMID: 26539288 PMCID: PMC4632682 DOI: 10.1186/s13578-015-0051-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/28/2015] [Indexed: 12/21/2022] Open
Abstract
The tumor suppressor protein, promyelocytic leukemia protein (PML), was originally identified in acute promyelocytic leukemia due to a chromosomal translocation between chromosomes 15 and 17. PML is the core component of subnuclear structures called PML nuclear bodies (PML-NBs), which are disrupted in acute promyelocytic leukemia cells. PML plays important roles in cell cycle regulation, survival and apoptosis, and inactivation or down-regulation of PML is frequently found in cancer cells. More than 120 proteins have been experimentally identified to physically associate with PML, and most of them either transiently or constitutively co-localize with PML-NBs. These interactions are associated with many cellular processes, including cell cycle arrest, apoptosis, senescence, transcriptional regulation, DNA repair and intermediary metabolism. Importantly, PML inactivation in cancer cells can occur at the transcriptional-, translational- or post-translational- levels. However, only a few somatic mutations have been found in cancer cells. A better understanding of its regulation and its role in tumor suppression will provide potential therapeutic opportunities. In this review, we discuss the role of PML in multiple tumor suppression pathways and summarize the players and stimuli that control PML protein expression or subcellular distribution.
Collapse
Affiliation(s)
- Dongyin Guan
- Department of Biochemistry, School of Medicine, Case Western Reserve University, and Comprehensive Cancer Center of Case Western Reserve University, Cleveland, 10900 Euclid Avenue, Cleveland, OH 44106 USA
| | - Hung-Ying Kao
- Department of Biochemistry, School of Medicine, Case Western Reserve University, and Comprehensive Cancer Center of Case Western Reserve University, Cleveland, 10900 Euclid Avenue, Cleveland, OH 44106 USA
| |
Collapse
|
105
|
Zhang X, Yang XR, Sun C, Hu B, Sun YF, Huang XW, Wang Z, He YF, Zeng HY, Qiu SJ, Cao Y, Fan J, Zhou J. Promyelocytic leukemia protein induces arsenic trioxide resistance through regulation of aldehyde dehydrogenase 3 family member A1 in hepatocellular carcinoma. Cancer Lett 2015; 366:112-122. [PMID: 26118777 DOI: 10.1016/j.canlet.2015.06.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/16/2015] [Accepted: 06/16/2015] [Indexed: 02/06/2023]
Abstract
Clinical response of hepatocellular carcinoma (HCC) to arsenic trioxide (ATO) has been poor. Promyelocytic leukemia protein (PML) is central to ATO treatment efficacy of acute promyelocytic leukemia. We examine impacts of PML expression on the effectiveness of ATO treatment in HCC. We show that increased PML expression predicts longer survival and lower cancer recurrence rates after HCC resection. However, high PML expression dampens the anti-tumor effects of ATO in HCC cells. Gene microarray analysis shows that reduced PML expression significantly down-regulates expression of aldehyde dehydrogenase 3 family member A1 (ALDH3A1). ALDH3A1 depression facilitates accumulation of ATO-induced reactive oxygen species. Chromatin immunoprecipitation analysis and promoter activity assays confirm that PML regulates ALDH3A1 expression through binding to the promoter region of ALDH3A1. Clinically, ATO treatment decreases the disease progression rate in advanced HCC patients with negative PML expression. In conclusion, PML confers a favorable prognosis in HCC patients, but it induces ATO resistance through ALDH3A1 up-regulation in HCC cells. ATO is effective for HCC patients with negative PML expression. Combined with an ALDH3A1 inhibitor, ATO may be efficacious in patients with positive PML expression.
Collapse
Affiliation(s)
- Xin Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Xin-Rong Yang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Chao Sun
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Bo Hu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Yun-Fan Sun
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Xiao-Wu Huang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China; Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zheng Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Yi-Feng He
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Hai-Ying Zeng
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shuang-Jian Qiu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Ya Cao
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha 410078, China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China; Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jian Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China; Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
106
|
Sahin U, de Thé H, Lallemand-Breitenbach V. PML nuclear bodies: assembly and oxidative stress-sensitive sumoylation. Nucleus 2015; 5:499-507. [PMID: 25482067 DOI: 10.4161/19491034.2014.970104] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
PML Nuclear Bodies (NBs) have fascinated cell biologists due to their exquisitely dynamic nature and their involvement in human diseases, notably acute promyelocytic leukemia. NBs, as well as their master organizer--the PML protein--exhibit multiple connections with stress responses. Initially viewed as a tumor suppressor, PML recently re-emerged as a multifaceted protein, capable of controlling numerous aspects of cellular homeostasis. NBs recruit many functionally diverse proteins and function as stress-regulated sumoylation factories. SUMO-initiated partner retention can subsequently facilitate a variety of other post-translational modifications, as well as partner degradation. With this newly elucidated central role of stress-enhanced sumoylation, it should now be possible to build a working model for the different NB-regulated cellular activities. Moreover, pharmacological manipulation of NB formation by interferons or oxidants holds the promise of clearing many undesirable proteins for clinical management of malignant, viral or neurodegenerative diseases.
Collapse
Affiliation(s)
- Umut Sahin
- a University Paris Diderot; Sorbonne Paris Cité ; Hôpital St. Louis ; Paris , France
| | | | | |
Collapse
|
107
|
Maturana JL, Niechi I, Silva E, Huerta H, Cataldo R, Härtel S, Barros LF, Galindo M, Tapia JC. Transactivation activity and nucleocytoplasmic transport of β-catenin are independently regulated by its C-terminal end. Gene 2015; 573:115-22. [PMID: 26187068 DOI: 10.1016/j.gene.2015.07.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/11/2015] [Indexed: 11/20/2022]
Abstract
The key protein in the canonical Wnt pathway is β-catenin, which is phosphorylated both in absence and presence of Wnt signals by different kinases. Upon activation in the cytoplasm, β-catenin can enter into the nucleus to transactivate target gene expression, many of which are cancer-related genes. The mechanism governing β-catenin's nucleocytoplasmic transport has been recently unvealed, although phosphorylation at its C-terminal end and its functional consequences are not completely understood. Serine 646 of β-catenin is a putative CK2 phosphorylation site and lies in a region which has been proposed to be important for its nucleocytoplasmic transport and transactivation activity. This residue was mutated to aspartic acid mimicking CK2-phosphorylation and its effects on β-catenin activity as well as localization were explored. β-Catenin S6464D did not show significant differences in both transcriptional activity and nuclear localization compared to the wild-type form, but displayed a characteristic granular nuclear pattern. Three-dimensional models of nuclei were constructed which showed differences in number and volume of granules, being those from β-catenin S646D more and smaller than the wild-type form. FRAP microscopy was used to compare nuclear export of both proteins which showed a slightly higher but not significant retention of β-catenin S646D. Altogether, these results show that C-terminal phosphorylation of β-catenin seems to be related with its nucleocytoplasmic transport but not transactivation activity.
Collapse
Affiliation(s)
- J L Maturana
- Program of Cellular and Molecular Biology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - I Niechi
- Program of Cellular and Molecular Biology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - E Silva
- Program of Cellular and Molecular Biology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - H Huerta
- Program of Cellular and Molecular Biology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - R Cataldo
- Program of Cellular and Molecular Biology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - S Härtel
- Laboratory for Scientific Image Analysis (SCIAN-Lab), ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - L F Barros
- Centro de Estudios Cientificos, Valdivia, Chile
| | - M Galindo
- Program of Cellular and Molecular Biology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - J C Tapia
- Program of Cellular and Molecular Biology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
108
|
PML is required for telomere stability in non-neoplastic human cells. Oncogene 2015; 35:1811-21. [PMID: 26119943 PMCID: PMC4830905 DOI: 10.1038/onc.2015.246] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 04/13/2015] [Accepted: 05/10/2015] [Indexed: 12/16/2022]
Abstract
Telomeres interact with numerous proteins, including components of the shelterin complex, whose alteration, similarly to proliferation-induced telomere shortening, initiates cellular senescence. In tumors, telomere length is maintained by Telomerase activity or by the Alternative Lengthening of Telomeres mechanism, whose hallmark is the telomeric localization of the promyelocytic leukemia (PML) protein. Whether PML contributes to telomeres maintenance in normal cells is unknown. We show that in normal human fibroblasts the PML protein associates with few telomeres, preferentially when they are damaged. Proliferation-induced telomere attrition or their damage due to alteration of the shelterin complex enhances the telomeric localization of PML, which is increased in human T-lymphocytes derived from patients genetically deficient in telomerase. In normal fibroblasts, PML depletion induces telomere damage, nuclear and chromosomal abnormalities, and senescence. Expression of the leukemia protein PML/RARα in hematopoietic progenitors displaces PML from telomeres and induces telomere shortening in the bone marrow of pre-leukemic mice. Our work provides a novel view of the physiologic function of PML, which participates in telomeres surveillance in normal cells. Our data further imply that a diminished PML function may contribute to cell senescence, genomic instability, and tumorigenesis.
Collapse
|
109
|
Hendriks IA, Schimmel J, Eifler K, Olsen JV, Vertegaal ACO. Ubiquitin-specific Protease 11 (USP11) Deubiquitinates Hybrid Small Ubiquitin-like Modifier (SUMO)-Ubiquitin Chains to Counteract RING Finger Protein 4 (RNF4). J Biol Chem 2015; 290:15526-15537. [PMID: 25969536 DOI: 10.1074/jbc.m114.618132] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Indexed: 11/06/2022] Open
Abstract
Ring finger protein 4 (RNF4) is a SUMO-targeted ubiquitin E3 ligase with a pivotal function in the DNA damage response (DDR). SUMO interaction motifs (SIMs) in the N-terminal part of RNF4 tightly bind to SUMO polymers, and RNF4 can ubiquitinate these polymers in vitro. Using a proteomic approach, we identified the deubiquitinating enzyme ubiquitin-specific protease 11 (USP11), a known DDR-component, as a functional interactor of RNF4. USP11 can deubiquitinate hybrid SUMO-ubiquitin chains to counteract RNF4. SUMO-enriched nuclear bodies are stabilized by USP11, which functions downstream of RNF4 as a counterbalancing factor. In response to DNA damage induced by methyl methanesulfonate, USP11 could counteract RNF4 to inhibit the dissolution of nuclear bodies. Thus, we provide novel insight into cross-talk between ubiquitin and SUMO and uncover USP11 and RNF4 as a balanced SUMO-targeted ubiquitin ligase/protease pair with a role in the DDR.
Collapse
Affiliation(s)
- Ivo A Hendriks
- Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Joost Schimmel
- Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Karolin Eifler
- Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Alfred C O Vertegaal
- Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
110
|
Cellular promyelocytic leukemia protein is an important dengue virus restriction factor. PLoS One 2015; 10:e0125690. [PMID: 25962098 PMCID: PMC4427460 DOI: 10.1371/journal.pone.0125690] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/23/2015] [Indexed: 12/29/2022] Open
Abstract
The intrinsic antiviral defense is based on cellular restriction factors that are constitutively expressed and, thus, active even before a pathogen enters the cell. The promyelocytic leukemia (PML) nuclear bodies (NBs) are discrete nuclear foci that contain several cellular proteins involved in intrinsic antiviral responses against a number of viruses. Accumulating reports have shown the importance of PML as a DNA virus restriction factor and how these pathogens evade this antiviral activity. However, very little information is available regarding the antiviral role of PML against RNA viruses. Dengue virus (DENV) is an RNA emerging mosquito-borne human pathogen affecting millions of individuals each year by causing severe and potentially fatal syndromes. Since no licensed antiviral drug against DENV infection is currently available, it is of great importance to understand the factors mediating intrinsic immunity that may lead to the development of new pharmacological agents that can boost their potency and thereby lead to treatments for this viral disease. In the present study, we investigated the in vitro antiviral role of PML in DENV-2 A549 infected cells.
Collapse
|
111
|
Shigella infection interferes with SUMOylation and increases PML-NB number. PLoS One 2015; 10:e0122585. [PMID: 25848798 PMCID: PMC4388590 DOI: 10.1371/journal.pone.0122585] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 02/20/2015] [Indexed: 01/08/2023] Open
Abstract
Shigellosis is a severe diarrheal disease that affects hundreds of thousands of individuals resulting in significant morbidity and mortality worldwide. Shigellosis is caused by Shigella spp., a gram-negative bacterium that uses a Type 3 Secretion System (T3SS) to deliver effector proteins into the cytosol of infected human cells. Shigella infection triggers multiple signaling programs that result in a robust host transcriptional response that includes the induction of multiple proinflammatory cytokines. PML nuclear bodies (PML-NBs) are dynamic subnuclear structures that coordinate immune signaling programs and have a demonstrated role in controlling viral infection. We show that PML-NB number increases upon Shigella infection. We examined the effects of Shigella infection on SUMOylation and found that upon Shigella infection the localization of SUMOylated proteins is altered and the level of SUMOylated proteins decreases. Although Shigella infection does not alter the abundance of SUMO activating enzymes SAE1 or SAE2, it dramatically decreases the level of the SUMO conjugating enzyme Ubc9. All Shigella-induced alterations to the SUMOylation system are dependent upon a T3SS. Thus, we demonstrate that Shigella uses one or more T3SS effectors to influence both PML-NB number and the SUMOylation machinery in human cells.
Collapse
|
112
|
Warren DT, Tajsic T, Porter LJ, Minaisah RM, Cobb A, Jacob A, Rajgor D, Zhang QP, Shanahan CM. Nesprin-2-dependent ERK1/2 compartmentalisation regulates the DNA damage response in vascular smooth muscle cell ageing. Cell Death Differ 2015; 22:1540-50. [PMID: 25744025 PMCID: PMC4532777 DOI: 10.1038/cdd.2015.12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 12/19/2014] [Accepted: 01/21/2015] [Indexed: 11/30/2022] Open
Abstract
Prelamin A accumulation and persistent DNA damage response (DDR) are hallmarks of vascular smooth muscle cell (VSMC) ageing and dysfunction. Although prelamin A is proposed to interfere with DNA repair, our understanding of the crosstalk between prelamin A and the repair process remains limited. The extracellular signal-regulated kinases 1 and 2 (ERK1/2) have emerged as key players in the DDR and are known to enhance ataxia telangiectasia-mutated protein (ATM) activity at DNA lesions, and in this study, we identified a novel relationship between prelamin A accumulation and ERK1/2 nuclear compartmentalisation during VSMC ageing. We show both prelamin A accumulation and increased DNA damage occur concomitantly, before VSMC replicative senescence, and induce the localisation of ERK1/2 to promyelocytic leukaemia protein nuclear bodies (PML NBs) at the sites of DNA damage via nesprin-2 and lamin A interactions. Importantly, VSMCs treated with DNA damaging agents also displayed prelamin A accumulation and ERK compartmentalisation at PML NBs, suggesting that prelamin A and nesprin-2 are novel components of the DDR. In support of this, disruption of ERK compartmentalisation at PML NBs, by either depletion of nesprin-2 or lamins A/C, resulted in the loss of ATM from DNA lesions. However, ATM signalling and DNA repair remained intact after lamins A/C depletion, whereas nesprin-2 disruption ablated downstream Chk2 activation and induced genomic instability. We conclude that lamins A/C and PML act as scaffolds to organise DNA-repair foci and compartmentalise nesprin-2/ERK signalling. However, nesprin-2/ERK signalling fidelity, but not their compartmentalisation at PML NBs, is essential for efficient DDR in VSMCs.
Collapse
Affiliation(s)
- D T Warren
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King's College London, London SE5 9NU, UK
| | - T Tajsic
- Department of Medicine, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
| | - L J Porter
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King's College London, London SE5 9NU, UK
| | - R M Minaisah
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King's College London, London SE5 9NU, UK
| | - A Cobb
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King's College London, London SE5 9NU, UK
| | - A Jacob
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King's College London, London SE5 9NU, UK
| | - D Rajgor
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King's College London, London SE5 9NU, UK
| | - Q P Zhang
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King's College London, London SE5 9NU, UK
| | - C M Shanahan
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King's College London, London SE5 9NU, UK
| |
Collapse
|
113
|
Promyelocytic Leukemia Protein Isoform II Promotes Transcription Factor Recruitment To Activate Interferon Beta and Interferon-Responsive Gene Expression. Mol Cell Biol 2015; 35:1660-72. [PMID: 25733689 PMCID: PMC4405644 DOI: 10.1128/mcb.01478-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/23/2015] [Indexed: 12/24/2022] Open
Abstract
To trigger type I interferon (IFN) responses, pattern recognition receptors activate signaling cascades that lead to transcription of IFN and IFN-stimulated genes (ISGs). The promyelocytic leukemia (PML) protein has been implicated in these responses, although its role has not been defined. Here, we show that PML isoform II (PML-II) is specifically required for efficient induction of IFN-β transcription and of numerous ISGs, acting at the point of transcriptional complex assembly on target gene promoters. PML-II associated with specific transcription factors NF-κB and STAT1, as well as the coactivator CREB-binding protein (CBP), to facilitate transcriptional complex formation. The absence of PML-II substantially reduced binding of these factors and IFN regulatory factor 3 (IRF3) to IFN-β or ISGs promoters and sharply reduced gene activation. The unique C-terminal domain of PML-II was essential for its activity, while the N-terminal RBCC motif common to all PML isoforms was dispensable. We propose a model in which PML-II contributes to the transcription of multiple genes via the association of its C-terminal domain with relevant transcription complexes, which promotes the stable assembly of these complexes at promoters/enhancers of target genes, and that in this way PML-II plays a significant role in the development of type I IFN responses.
Collapse
|
114
|
Gavrilov AA, Razin SV. Compartmentalization of the cell nucleus and spatial organization of the genome. Mol Biol 2015. [DOI: 10.1134/s0026893315010033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
115
|
The effects of SP110's associated genes on fresh cavitary pulmonary tuberculosis in Han Chinese population. Clin Exp Med 2015; 16:219-25. [PMID: 25612917 DOI: 10.1007/s10238-015-0339-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/08/2015] [Indexed: 01/18/2023]
Abstract
SP110 is a promising anti-Mycobacterium tuberculosis (MTB) gene. To investigate the effects of SP110 and its associated genes, i.e., MYBBP1A and RELA, on pathological progression of MTB infection, an association study with 424 patients of fresh pulmonary tuberculosis (PTB) and 424 healthy controls was performed. Moreover, classification and regression tree and multifactor dimensionality reduction were employed to explore the effects of gene-gene interactions on cavitary PTB. The results indicated that both the heterozygous genotype GC and homozygous genotype CC in rs3809849 had significant effects on the risk of PTB (OR 1.42, 95 % CI 1.06-1.92, p 0.019; OR 1.55, 95 % CI 1.04-2.33, p = 0.033, respectively), and heterozygous genotype CT in rs9061 also had similar effects (OR 1.43, 95 % CI 1.07-1.90, p = 0.014). The rs3809849 and rs9905742 in MYBBP1A were also significantly associated with cavitary PTB (p = 0.00046 and 0.039, respectively), while rs9061 in SP110 had no such association (p = 0.06931) except its significant association with non-cavitary PTB (p = 0.0093). The interaction of MYBBP1A and RELA had significant effect on cavitary PTB (OR 4.24, 95 % CI 1.44-12.49, p = 0.005). These suggest that MYBBP1A instead of SP110 may be a genetic risk factor for cavitary PTB and play important effects on its whole progress.
Collapse
|
116
|
Ulianov SV, Gavrilov AA, Razin SV. Nuclear Compartments, Genome Folding, and Enhancer-Promoter Communication. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 315:183-244. [DOI: 10.1016/bs.ircmb.2014.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
117
|
Jin G, Gao Y, Lin HK. Cytoplasmic PML: from molecular regulation to biological functions. J Cell Biochem 2014; 115:812-8. [PMID: 24288198 DOI: 10.1002/jcb.24727] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/19/2013] [Indexed: 01/18/2023]
Abstract
The tumor suppressor promyelocytic leukemia protein (PML) is predominantly localized in the nucleus, where it is essential for the formation and stabilization of the PML nuclear bodies (PML-NBs). PML-NBs are involved in the regulation of numerous cellular functions, such as tumorigenesis, DNA damage and antiviral responses. Despite its nuclear localization, a small portion of PML has been found in the cytoplasm. A number of studies recently demonstrated that the cytoplasmic PML (cPML) has diverse functions in many cellular processes including tumorigenesis, metabolism, antiviral responses, cell cycle regulation, and laminopothies. In this prospective, we will summarize the current viewpoints on the regulation and biological significance of cPML and discuss the important questions that still need to be further answered.
Collapse
Affiliation(s)
- Guoxiang Jin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030
| | | | | |
Collapse
|
118
|
Nitto T, Sawaki K. Molecular mechanisms of the antileukemia activities of retinoid and arsenic. J Pharmacol Sci 2014; 126:179-85. [PMID: 25319615 DOI: 10.1254/jphs.14r15cp] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Acute promyelocytic leukemia (APL) is characterized by the occurrence of translocations between chromosomes 15 and 17, resulting in generation of a fusion protein of promyelocytic leukemia (PML) and retinoid A receptor (RAR) α. APL cells are unable to differentiate into mature granulocytes since PML-RARα functions as a strong transcriptional repressor for a gene involved in granulocyte differentiation. All-trans retinoic acid (ATRA) is the first agent that has been developed to target specific disease-causing molecules, i.e., ATRA suppresses abnormal functions of oncogenic proteins. Moreover, ATRA facilitates the differentiation of APL cells toward mature granulocytes by changing epigenetic modifiers from corepressor complexes to co-activator complexes on target genes after binding to the ligand-binding domain at the RARα moiety of the PML-RARα oncoprotein. On the other hand, arsenic trioxide (ATO), another promising agent used to treat APL, directly binds to the PML moiety of the PML-RARα protein, causing oxidation and multimerization. ATO enhances the conjugation of small ubiquitin-like modifiers to PML-RARα, followed by ubiquitination and degradation, relieving the genes associated with granulocytic differentiation from suppressive restraint by the oncoprotein. Recent clinical studies have demonstrated that combination therapy with both ATRA and ATO is useful to achieve remission.
Collapse
Affiliation(s)
- Takeaki Nitto
- Laboratory of Pharmacotherapy, Yokohama College of Pharmacy, Japan
| | | |
Collapse
|
119
|
Costa FC, Saito A, Gonçalves KA, Vidigal PM, Meirelles GV, Bressan GC, Kobarg J. Ki-1/57 and CGI-55 ectopic expression impact cellular pathways involved in proliferation and stress response regulation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2944-56. [PMID: 25205453 DOI: 10.1016/j.bbamcr.2014.08.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
Abstract
Ki-1/57 (HABP4) and CGI-55 (SERBP1) are regulatory proteins and paralogs with 40.7% amino acid sequence identity and 67.4% similarity. Functionally, they have been implicated in the regulation of gene expression on both the transcriptional and mRNA metabolism levels. A link with tumorigenesis is suggested, since both paralogs show altered expression levels in tumor cells and the Ki-1/57 gene is found in a region of chromosome 9q that represents a haplotype for familiar colon cancer. However, the target genes regulated by Ki-1/57 and CGI-55 are unknown. Here, we analyzed the alterations of the global transcriptome profile after Ki-1/57 or CGI-55 overexpression in HEK293T cells by DNA microchip technology. We were able to identify 363 or 190 down-regulated and 50 or 27 up-regulated genes for Ki-1/57 and CGI-55, respectively, of which 20 were shared between both proteins. Expression levels of selected genes were confirmed by qRT-PCR both after protein overexpression and siRNA knockdown. The majority of the genes with altered expression were associated to proliferation, apoptosis and cell cycle control processes, prompting us to further explore these contexts experimentally. We observed that overexpression of Ki-1/57 or CGI-55 results in reduced cell proliferation, mainly due to a G1 phase arrest, whereas siRNA knockdown of CGI-55 caused an increase in proliferation. In the case of Ki-1/57 overexpression, we found protection from apoptosis after treatment with the ER-stress inducer thapsigargin. Together, our data give important new insights that may help to explain these proteins putative involvement in tumorigenic events.
Collapse
Affiliation(s)
- Fernanda C Costa
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brasil.
| | - Angela Saito
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brasil; Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil.
| | - Kaliandra A Gonçalves
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brasil; Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil.
| | - Pedro M Vidigal
- Laboratório de Bioinformática, Instituto de Biotecnologia Aplicada à Agropecuária-BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil.
| | - Gabriela V Meirelles
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brasil.
| | - Gustavo C Bressan
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brasil; Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil.
| | - Jörg Kobarg
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brasil; Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil; Departamento de Genética, Evolução e Bioagentes - Programa de Pós-graduação em Genética e Biologia Molecular, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil.
| |
Collapse
|
120
|
Böhm S, Bernstein KA. The role of post-translational modifications in fine-tuning BLM helicase function during DNA repair. DNA Repair (Amst) 2014; 22:123-32. [PMID: 25150915 DOI: 10.1016/j.dnarep.2014.07.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 07/14/2014] [Indexed: 12/12/2022]
Abstract
RecQ-like helicases are a highly conserved family of proteins which are critical for preserving genome integrity. Genome instability is considered a hallmark of cancer and mutations within three of the five human RECQ genes cause hereditary syndromes that are associated with cancer predisposition. The human RecQ-like helicase BLM has a central role in DNA damage signaling, repair, replication, and telomere maintenance. BLM and its budding yeast orthologue Sgs1 unwind double-stranded DNA intermediates. Intriguingly, BLM functions in both a pro- and anti-recombinogenic manner upon replicative damage, acting on similar substrates. Thus, BLM activity must be intricately controlled to prevent illegitimate recombination events that could have detrimental effects on genome integrity. In recent years it has become evident that post-translational modifications (PTMs) of BLM allow a fine-tuning of its function. To date, BLM phosphorylation, ubiquitination, and SUMOylation have been identified, in turn regulating its subcellular localization, protein-protein interactions, and protein stability. In this review, we will discuss the cellular context of when and how these different modifications of BLM occur. We will reflect on the current model of how PTMs control BLM function during DNA damage repair and compare this to what is known about post-translational regulation of the budding yeast orthologue Sgs1. Finally, we will provide an outlook toward future research, in particular to dissect the cross-talk between the individual PTMs on BLM.
Collapse
Affiliation(s)
- Stefanie Böhm
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States
| | - Kara Anne Bernstein
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States.
| |
Collapse
|
121
|
Ablain J, de Thé H. Retinoic acid signaling in cancer: The parable of acute promyelocytic leukemia. Int J Cancer 2014; 135:2262-72. [PMID: 25130873 DOI: 10.1002/ijc.29081] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/04/2014] [Accepted: 05/09/2014] [Indexed: 12/22/2022]
Abstract
Inevitably fatal some 40 years, acute promyelocytic leukemia (APL) can now be cured in more than 95% of cases. This clinical success story is tightly linked to tremendous progress in our understanding of retinoic acid (RA) signaling. The discovery of retinoic acid receptor alpha (RARA) was followed by the cloning of the chromosomal translocations driving APL, all of which involve RARA. Since then, new findings on the biology of nuclear receptors have progressively enlightened the basis for the clinical efficacy of RA in APL. Reciprocally, the disease offered a range of angles to approach the cellular and molecular mechanisms of RA action. This virtuous circle contributed to make APL one of the best-understood cancers from both clinical and biological standpoints. Yet, some important questions remain unanswered including how lessons learnt from RA-triggered APL cure can help design new therapies for other malignancies.
Collapse
Affiliation(s)
- Julien Ablain
- Université Paris Diderot, Sorbonne Paris Cité, Hôpital St. Louis, Paris Cedex 10, France; INSERM U 944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie, Hôpital St. Louis, Paris Cedex 10, France; CNRS UMR 7212, Hôpital St. Louis, Paris Cedex 10, France
| | | |
Collapse
|
122
|
Günther T, Schreiner S, Dobner T, Tessmer U, Grundhoff A. Influence of ND10 components on epigenetic determinants of early KSHV latency establishment. PLoS Pathog 2014; 10:e1004274. [PMID: 25033267 PMCID: PMC4102598 DOI: 10.1371/journal.ppat.1004274] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 06/05/2014] [Indexed: 12/15/2022] Open
Abstract
We have previously demonstrated that acquisition of intricate patterns of activating (H3K4me3, H3K9/K14ac) and repressive (H3K27me3) histone modifications is a hallmark of KSHV latency establishment. The precise molecular mechanisms that shape the latent histone modification landscape, however, remain unknown. Promyelocytic leukemia nuclear bodies (PML-NB), also called nuclear domain 10 (ND10), have emerged as mediators of innate immune responses that can limit viral gene expression via chromatin based mechanisms. Consequently, although ND10 functions thus far have been almost exclusively investigated in models of productive herpesvirus infection, it has been proposed that they also may contribute to the establishment of viral latency. Here, we report the first systematic study of the role of ND10 during KSHV latency establishment, and link alterations in the subcellular distribution of ND10 components to a temporal analysis of histone modification acquisition and host cell gene expression during the early infection phase. Our study demonstrates that KSHV infection results in a transient interferon response that leads to induction of the ND10 components PML and Sp100, but that repression by ND10 bodies is unlikely to contribute to KSHV latency establishment. Instead, we uncover an unexpected role for soluble Sp100 protein, which is efficiently and permanently relocalized from nucleoplasmic and chromatin-associated fractions into the insoluble matrix. We show that LANA expression is sufficient to induce Sp100 relocalization, likely via mediating SUMOylation of Sp100. Furthermore, we demonstrate that depletion of soluble Sp100 occurs precisely when repressive H3K27me3 marks first accumulate on viral genomes, and that knock-down of Sp100 (but not PML or Daxx) facilitates H3K27me3 acquisition. Collectively, our data support a model in which non-ND10 resident Sp100 acts as a negative regulator of polycomb repressive complex-2 (PRC2) recruitment, and suggest that KSHV may actively escape ND10 silencing mechanisms to promote establishment of latent chromatin.
Collapse
Affiliation(s)
- Thomas Günther
- Research Group Virus Genomics, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Sabrina Schreiner
- Research Unit Viral Transformation, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Thomas Dobner
- Research Unit Viral Transformation, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Uwe Tessmer
- Research Group Virus Genomics, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Adam Grundhoff
- Research Group Virus Genomics, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| |
Collapse
|
123
|
Sahin U, Ferhi O, Carnec X, Zamborlini A, Peres L, Jollivet F, Vitaliano-Prunier A, de Thé H, Lallemand-Breitenbach V. Interferon controls SUMO availability via the Lin28 and let-7 axis to impede virus replication. Nat Commun 2014; 5:4187. [PMID: 24942926 DOI: 10.1038/ncomms5187] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 05/22/2014] [Indexed: 01/12/2023] Open
Abstract
Small ubiquitin-related modifier (SUMO) protein conjugation onto target proteins regulates multiple cellular functions, including defence against pathogens, stemness and senescence. SUMO1 peptides are limiting in quantity and are thus mainly conjugated to high-affinity targets. Conjugation of SUMO2/3 paralogues is primarily stress inducible and may initiate target degradation. Here we demonstrate that the expression of SUMO1/2/3 is dramatically enhanced by interferons through an miRNA-based mechanism involving the Lin28/let-7 axis, a master regulator of stemness. Normal haematopoietic progenitors indeed display much higher SUMO contents than their differentiated progeny. Critically, SUMOs contribute to the antiviral effects of interferons against HSV1 or HIV. Promyelocytic leukemia (PML) nuclear bodies are interferon-induced domains, which facilitate sumoylation of a subset of targets. Our findings thus identify an integrated interferon-responsive PML/SUMO pathway that impedes viral replication by enhancing SUMO conjugation and possibly also modifying the repertoire of targets. Interferon-enhanced post-translational modifications may be essential for senescence or stem cell self-renewal, and initiate SUMO-dependent proteolysis.
Collapse
Affiliation(s)
- Umut Sahin
- 1] Université Paris Diderot, Sorbonne Paris Cité, Hôpital St Louis, 1 Avenue Claude Vellefaux, 75475 Paris Cedex 10, France [2] INSERM U944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie, Hôpital St Louis, 1 Avenue Claude Vellefaux, 75475 Paris Cedex 10, France [3] CNRS UMR 7212, Hôpital St Louis, 1 Avenue Claude Vellefaux, 75475 Paris Cedex 10, France
| | - Omar Ferhi
- 1] Université Paris Diderot, Sorbonne Paris Cité, Hôpital St Louis, 1 Avenue Claude Vellefaux, 75475 Paris Cedex 10, France [2] INSERM U944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie, Hôpital St Louis, 1 Avenue Claude Vellefaux, 75475 Paris Cedex 10, France [3] CNRS UMR 7212, Hôpital St Louis, 1 Avenue Claude Vellefaux, 75475 Paris Cedex 10, France
| | - Xavier Carnec
- 1] Université Paris Diderot, Sorbonne Paris Cité, Hôpital St Louis, 1 Avenue Claude Vellefaux, 75475 Paris Cedex 10, France [2] INSERM U944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie, Hôpital St Louis, 1 Avenue Claude Vellefaux, 75475 Paris Cedex 10, France [3] CNRS UMR 7212, Hôpital St Louis, 1 Avenue Claude Vellefaux, 75475 Paris Cedex 10, France
| | - Alessia Zamborlini
- 1] Université Paris Diderot, Sorbonne Paris Cité, Hôpital St Louis, 1 Avenue Claude Vellefaux, 75475 Paris Cedex 10, France [2] INSERM U944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie, Hôpital St Louis, 1 Avenue Claude Vellefaux, 75475 Paris Cedex 10, France [3] CNRS UMR 7212, Hôpital St Louis, 1 Avenue Claude Vellefaux, 75475 Paris Cedex 10, France [4] Department CASER, Conservatoire National des Arts et Métiers, Paris 75003, France
| | - Laurent Peres
- 1] Université Paris Diderot, Sorbonne Paris Cité, Hôpital St Louis, 1 Avenue Claude Vellefaux, 75475 Paris Cedex 10, France [2] INSERM U944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie, Hôpital St Louis, 1 Avenue Claude Vellefaux, 75475 Paris Cedex 10, France [3] CNRS UMR 7212, Hôpital St Louis, 1 Avenue Claude Vellefaux, 75475 Paris Cedex 10, France
| | - Florence Jollivet
- 1] Université Paris Diderot, Sorbonne Paris Cité, Hôpital St Louis, 1 Avenue Claude Vellefaux, 75475 Paris Cedex 10, France [2] INSERM U944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie, Hôpital St Louis, 1 Avenue Claude Vellefaux, 75475 Paris Cedex 10, France [3] CNRS UMR 7212, Hôpital St Louis, 1 Avenue Claude Vellefaux, 75475 Paris Cedex 10, France
| | - Adeline Vitaliano-Prunier
- 1] Université Paris Diderot, Sorbonne Paris Cité, Hôpital St Louis, 1 Avenue Claude Vellefaux, 75475 Paris Cedex 10, France [2] INSERM U944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie, Hôpital St Louis, 1 Avenue Claude Vellefaux, 75475 Paris Cedex 10, France [3] CNRS UMR 7212, Hôpital St Louis, 1 Avenue Claude Vellefaux, 75475 Paris Cedex 10, France
| | - Hugues de Thé
- 1] Université Paris Diderot, Sorbonne Paris Cité, Hôpital St Louis, 1 Avenue Claude Vellefaux, 75475 Paris Cedex 10, France [2] INSERM U944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie, Hôpital St Louis, 1 Avenue Claude Vellefaux, 75475 Paris Cedex 10, France [3] CNRS UMR 7212, Hôpital St Louis, 1 Avenue Claude Vellefaux, 75475 Paris Cedex 10, France [4]
| | - Valérie Lallemand-Breitenbach
- 1] Université Paris Diderot, Sorbonne Paris Cité, Hôpital St Louis, 1 Avenue Claude Vellefaux, 75475 Paris Cedex 10, France [2] INSERM U944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie, Hôpital St Louis, 1 Avenue Claude Vellefaux, 75475 Paris Cedex 10, France [3] CNRS UMR 7212, Hôpital St Louis, 1 Avenue Claude Vellefaux, 75475 Paris Cedex 10, France
| |
Collapse
|
124
|
Guo S, Cheng X, Lim JH, Liu Y, Kao HY. Control of antioxidative response by the tumor suppressor protein PML through regulating Nrf2 activity. Mol Biol Cell 2014; 25:2485-98. [PMID: 24943846 PMCID: PMC4142619 DOI: 10.1091/mbc.e13-11-0692] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
PML plays a critical role in the maintenance of ROS homeostasis via a unique mechanism in which PML functions as an oxidative sensor to regulate the expression of antioxidant genes through Nrf2. PML is also indispensable for sulforaphane-mediated ROS generation, Nrf2 activation, antiproliferation, antimigration, and antiangiogenesis. Oxidative stress is a consequence of an imbalance between reactive oxygen species (ROS) production and the ability of the cytoprotective system to detoxify the reactive intermediates. The tumor suppressor promyelocytic leukemia protein (PML) functions as a stress sensor. Loss of PML results in impaired mitochondrial complex II activity, increased ROS, and subsequent activation of nuclear factor erythroid 2–related factor 2 (Nrf2) antioxidative pathway. We also demonstrate that sulforaphane (SFN), an antioxidant, regulates Nrf2 activity by controlling abundance and subcellular distribution of PML and that PML is essential for SFN-mediated ROS increase, Nrf2 activation, antiproliferation, antimigration, and antiangiogenesis. Taking the results together, we have uncovered a novel antioxidative mechanism by which PML regulates cellular oxidant homeostasis by controlling complex II integrity and Nrf2 activity and identified PML as an indispensable mediator of SFN activity.
Collapse
Affiliation(s)
- Shuang Guo
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Xiwen Cheng
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Jun-Hee Lim
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Yu Liu
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Hung-Ying Kao
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106Comprehensive Cancer Center of Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH 44106
| |
Collapse
|
125
|
Sahin U, Ferhi O, Jeanne M, Benhenda S, Berthier C, Jollivet F, Niwa-Kawakita M, Faklaris O, Setterblad N, de Thé H, Lallemand-Breitenbach V. Oxidative stress-induced assembly of PML nuclear bodies controls sumoylation of partner proteins. ACTA ACUST UNITED AC 2014; 204:931-45. [PMID: 24637324 PMCID: PMC3998805 DOI: 10.1083/jcb.201305148] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PML multimerization into nuclear bodies following its oxidation promotes sumoylation and sequestration of partner proteins in these structures. The promyelocytic leukemia (PML) protein organizes PML nuclear bodies (NBs), which are stress-responsive domains where many partner proteins accumulate. Here, we clarify the basis for NB formation and identify stress-induced partner sumoylation as the primary NB function. NB nucleation does not rely primarily on intermolecular interactions between the PML SUMO-interacting motif (SIM) and SUMO, but instead results from oxidation-mediated PML multimerization. Oxidized PML spherical meshes recruit UBC9, which enhances PML sumoylation, allow partner recruitment through SIM interactions, and ultimately enhance partner sumoylation. Intermolecular SUMO–SIM interactions then enforce partner sequestration within the NB inner core. Accordingly, oxidative stress enhances NB formation and global sumoylation in vivo. Some NB-associated sumoylated partners also become polyubiquitinated by RNF4, precipitating their proteasomal degradation. As several partners are protein-modifying enzymes, NBs could act as sensors that facilitate and confer oxidative stress sensitivity not only to sumoylation but also to other post-translational modifications, thereby explaining alterations of stress response upon PML or NB loss.
Collapse
Affiliation(s)
- Umut Sahin
- Université Paris Diderot, Sorbonne Paris Cité, Hôpital St. Louis 1, 75475 Paris Cedex 10, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Münch S, Weidtkamp-Peters S, Klement K, Grigaravicius P, Monajembashi S, Salomoni P, Pandolfi PP, Weißhart K, Hemmerich P. The tumor suppressor PML specifically accumulates at RPA/Rad51-containing DNA damage repair foci but is nonessential for DNA damage-induced fibroblast senescence. Mol Cell Biol 2014; 34:1733-46. [PMID: 24615016 PMCID: PMC4019039 DOI: 10.1128/mcb.01345-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/19/2013] [Accepted: 02/14/2014] [Indexed: 12/24/2022] Open
Abstract
The PML tumor suppressor has been functionally implicated in DNA damage response and cellular senescence. Direct evidence for such a role based on PML knockdown or knockout approaches is still lacking. We have therefore analyzed the irradiation-induced DNA damage response and cellular senescence in human and mouse fibroblasts lacking PML. Our data show that PML nuclear bodies (NBs) nonrandomly associate with persistent DNA damage foci in unperturbed human skin and in high-dose-irradiated cell culture systems. PML bodies do not associate with transient γH2AX foci after low-dose gamma irradiation. Superresolution microscopy reveals that all PML bodies within a nucleus are engaged at Rad51- and RPA-containing repair foci during ongoing DNA repair. The lack of PML (i) does not majorly affect the DNA damage response, (ii) does not alter the efficiency of senescence induction after DNA damage, and (iii) does not affect the proliferative potential of primary mouse embryonic fibroblasts during serial passaging. Thus, while PML NBs specifically accumulate at Rad51/RPA-containing lesions and senescence-derived persistent DNA damage foci, they are not essential for DNA damage-induced and replicative senescence of human and murine fibroblasts.
Collapse
Affiliation(s)
- Sandra Münch
- Leibniz Institute for Age Research, Jena, Germany
| | | | | | | | | | - Paolo Salomoni
- University College London, UCL Cancer Institute, London, United Kingdom
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Klaus Weißhart
- Carl Zeiss Microscopy GmbH, BioSciences Division, Jena, Germany
| | | |
Collapse
|
127
|
Wenger B, Schwegler M, Brunner M, Daniel C, Schmidt M, Fietkau R, Distel LV. PML-nuclear bodies decrease with age and their stress response is impaired in aged individuals. BMC Geriatr 2014; 14:42. [PMID: 24694011 PMCID: PMC3992156 DOI: 10.1186/1471-2318-14-42] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 03/26/2014] [Indexed: 01/26/2023] Open
Abstract
Background Promyelocytic leukemia nuclear bodies (PML-NBs) have been depicted as structures which are involved in processing cell damages and DNA double-strand break repairs. The study was designed to evaluate differences in patients’ PML-NBs response to stress factors like a cancerous disease and ionizing radiation exposure dependent on age. Methods In order to clarify the role of PML-NBs in the aging process, we examined peripheral blood monocytes of 134 cancer patients and 41 healthy individuals between 22 and 92 years of age, both before and after in vitro irradiation. Additionally, we analyzed the samples of the cancer patients after in vivo irradiation. Cells were immunostained and about 1600 cells per individual were analyzed for the presence of PML- and γH2AX foci. Results The number of existing PML-NBs per nucleus declined with age, while the number of γH2AX foci increased with age. There was a non-significant trend that in vivo irradiation increased the number of PML-NBs in cells of young study participants, while in older individuals PML-NBs tended to decrease. It can be assumed that PML-NBs decrease in number during the process of aging. Conclusion The findings suggest that there is a dysfunctional PML-NBs stress response in aged cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Luitpold V Distel
- Department of Radiation Oncology, University Hospitals and Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsstraße 27, D-91054 Erlangen, Germany.
| |
Collapse
|
128
|
Gamell C, Jan Paul P, Haupt Y, Haupt S. PML tumour suppression and beyond: Therapeutic implications. FEBS Lett 2014; 588:2653-62. [DOI: 10.1016/j.febslet.2014.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/05/2014] [Accepted: 02/05/2014] [Indexed: 01/24/2023]
|
129
|
Bernardi R, Pandolfi PP. A Dialog on the First 20 Years of PML Research and the Next 20 Ahead. Front Oncol 2014; 4:23. [PMID: 24575390 PMCID: PMC3919016 DOI: 10.3389/fonc.2014.00023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 01/27/2014] [Indexed: 11/21/2022] Open
Abstract
This introductory article has been written in the form of a conversation between Pier Paolo Pandolfi, Director of the Cancer Center of Beth Israel Deaconess Medical Center in Boston, and Rosa Bernardi, a former post-doctoral fellow in the laboratory of Dr. Pandolfi, now principal investigator at San Raffaele Scientific Institute in Milan, Italy. We have chosen this atypical review format because we want to offer to our readers a more direct and personal perspective on the first 20 years of research over the promyelocytic leukemia gene. This article begins as an interview, but soon transforms into a dialog where we exchange our thoughts on a number of issues around the past, present, and future research over the biology of PML. We were particularly keen on emphasizing the aspects that we find most interesting or challenging, therefore, we warn our readers that this will not be a comprehensive essay but rather a very personal view of what has been, is, and will be exciting and interesting in the PML world, in our opinion.
Collapse
Affiliation(s)
- Rosa Bernardi
- Division of Molecular Oncology, San Raffaele Scientific Institute , Milano , Italy
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| |
Collapse
|
130
|
Abstract
Despite decades of research, cancer metastasis remains an incompletely understood process that is as complex as it is devastating. In recent years, there has been an increasing push to investigate the biomechanical aspects of tumorigenesis, complementing the research on genetic and biochemical changes. In contrast to the high genetic variability encountered in cancer cells, almost all metastatic cells are subject to the same physical constraints as they leave the primary tumor, invade surrounding tissues, transit through the circulatory system, and finally infiltrate new tissues. Advances in live cell imaging and other biophysical techniques, including measurements of subcellular mechanics, have yielded stunning new insights into the physics of cancer cells. While much of this research has been focused on the mechanics of the cytoskeleton and the cellular microenvironment, it is now emerging that the mechanical properties of the cell nucleus and its connection to the cytoskeleton may play a major role in cancer metastasis, as deformation of the large and stiff nucleus presents a substantial obstacle during the passage through the dense interstitial space and narrow capillaries. Here, we present an overview of the molecular components that govern the mechanical properties of the nucleus, and we discuss how changes in nuclear structure and composition observed in many cancers can modulate nuclear mechanics and promote metastatic processes. Improved insights into this interplay between nuclear mechanics and metastatic progression may have powerful implications in cancer diagnostics and therapy and may reveal novel therapeutic targets for pharmacological inhibition of cancer cell invasion.
Collapse
Affiliation(s)
- Celine Denais
- Department of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA,
| | | |
Collapse
|
131
|
Corpet A, Olbrich T, Gwerder M, Fink D, Stucki M. Dynamics of histone H3.3 deposition in proliferating and senescent cells reveals a DAXX-dependent targeting to PML-NBs important for pericentromeric heterochromatin organization. Cell Cycle 2013; 13:249-67. [PMID: 24200965 PMCID: PMC3906242 DOI: 10.4161/cc.26988] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/29/2013] [Accepted: 10/29/2013] [Indexed: 02/06/2023] Open
Abstract
Oncogene-induced senescence is a permanent cell cycle arrest characterized by extensive chromatin reorganization. Here, we investigated the specific targeting and dynamics of histone H3 variants in human primary senescent cells. We show that newly synthesized epitope-tagged H3.3 is incorporated in senescent cells but does not accumulate in senescence-associated heterochromatin foci (SAHF). Instead, we observe that new H3.3 colocalizes with its specific histone chaperones within the promyelocytic leukemia nuclear bodies (PML-NBs) and is targeted to PML-NBs in a DAXX-dependent manner both in proliferating and senescent cells. We further show that overexpression of DAXX enhances targeting of H3.3 in large PML-NBs devoid of transcriptional activity and promotes the accumulation of HP1, independently of H3K9me3. Loss of H3.3 from pericentromeric heterochromatin upon DAXX or PML depletion suggests that the targeting of H3.3 to PML-NBs is implicated in pericentromeric heterochromatin organization. Together, our results underline the importance of the replication-independent chromatin assembly pathway for histone replacement in non-dividing senescent cells and establish PML-NBs as important regulatory sites for the incorporation of new H3.3 into chromatin.
Collapse
Affiliation(s)
- Armelle Corpet
- Departement of Gynecology; University Hospital Zürich; Schlieren, Switzerland
| | - Teresa Olbrich
- Departement of Gynecology; University Hospital Zürich; Schlieren, Switzerland
| | - Myriam Gwerder
- Departement of Gynecology; University Hospital Zürich; Schlieren, Switzerland
| | - Daniel Fink
- Departement of Gynecology; University Hospital Zürich; Schlieren, Switzerland
| | - Manuel Stucki
- Departement of Gynecology; University Hospital Zürich; Schlieren, Switzerland
| |
Collapse
|
132
|
Salsman J, Pinder J, Tse B, Corkery D, Dellaire G. The translation initiation factor 3 subunit eIF3K interacts with PML and associates with PML nuclear bodies. Exp Cell Res 2013; 319:2554-65. [PMID: 24036361 DOI: 10.1016/j.yexcr.2013.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 08/08/2013] [Accepted: 09/02/2013] [Indexed: 12/17/2022]
Abstract
The promyelocytic leukemia protein (PML) is a tumor suppressor protein that regulates a variety of important cellular processes, including gene expression, DNA repair and cell fate decisions. Integral to its function is the ability of PML to form nuclear bodies (NBs) that serve as hubs for the interaction and modification of over 90 cellular proteins. There are seven canonical isoforms of PML, which encode diverse C-termini generated by alternative pre-mRNA splicing. Recruitment of specific cellular proteins to PML NBs is mediated by protein-protein interactions with individual PML isoforms. Using a yeast two-hybrid screen employing peptide sequences unique to PML isoform I (PML-I), we identified an interaction with the eukaryotic initiation factor 3 subunit K (eIF3K), and in the process identified a novel eIF3K isoform, which we term eIF3K-2. We further demonstrate that eIF3K and PML interact both in vitro via pull-down assays, as well as in vivo within human cells by co-immunoprecipitation and co-immunofluorescence. In addition, eIF3K isoform 2 (eIF3K-2) colocalizes to PML bodies, particularly those enriched in PML-I, while eIF3K isoform 1 associates poorly with PML NBs. Thus, we report eIF3K as the first known subunit of the eIF3 translation pre-initiation complex to interact directly with the PML protein, and provide data implicating alternative splicing of both PML and eIF3K as a possible regulatory mechanism for eIF3K localization at PML NBs.
Collapse
Affiliation(s)
- Jayme Salsman
- Department of Pathology, Dalhousie University, P.O. Box 15000, Halifax, Nova Scotia, Canada B3H 4R2
| | | | | | | | | |
Collapse
|
133
|
Liu Y, van den Berg A, Veenstra R, Rutgers B, Nolte I, van Imhoff G, Visser L, Diepstra A. PML nuclear bodies and SATB1 are associated with HLA class I expression in EBV+ Hodgkin lymphoma. PLoS One 2013; 8:e72930. [PMID: 24009715 PMCID: PMC3757028 DOI: 10.1371/journal.pone.0072930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 07/16/2013] [Indexed: 12/28/2022] Open
Abstract
Tumor cells of classical Hodgkin lymphoma (cHL) are characterized by a general loss of B cell phenotype, whereas antigen presenting properties are commonly retained. HLA class I is expressed in most EBV+ cHL cases, with an even enhanced expression in a proportion of the cases. Promyelocytic leukemia protein (PML) and special AT-rich region binding protein 1 (SATB1) are two global chromatin organizing proteins that have been shown to regulate HLA class I expression in Jurkat cells. We analyzed HLA class I, number of PML nuclear bodies (NBs) and SATB1 expression in tumor cells of 54 EBV+ cHL cases and used 27 EBV- cHL cases as controls. There was a significant difference in presence of HLA class I staining between EBV+ and EBV- cases (p<0.0001). We observed normal HLA class I expression in 35% of the EBV+ and in 19% of the EBV- cases. A stronger than normal HLA class I expression was observed in approximately 40% of EBV+ cHL and not in EBV- cHL cases. 36 EBV+ cHL cases contained less than 10 PML-NBs per tumor cell, whereas 16 cases contained more than 10 PML-NBs. The number of PML-NBs was positively correlated to the level of HLA class I expression (p<0.01). The percentage of SATB1 positive cells varied between 0% to 100% in tumor cells and was inversely correlated with the level of HLA class I expression, but only between normal and strong expression (p<0.05). Multivariable analysis indicated that the number of PML-NBs and the percentage of SATB1+ tumor cells are independent factors affecting HLA class I expression in EBV+ cHL. In conclusion, both PML and SATB1 are correlated to HLA class I expression levels in EBV+ cHL.
Collapse
Affiliation(s)
- Yuxuan Liu
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anke van den Berg
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rianne Veenstra
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bea Rutgers
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ilja Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gustaaf van Imhoff
- Department of Hematology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Lydia Visser
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Arjan Diepstra
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
134
|
Rivera-Molina YA, Martínez FP, Tang Q. Nuclear domain 10 of the viral aspect. World J Virol 2013; 2:110-122. [PMID: 24255882 PMCID: PMC3832855 DOI: 10.5501/wjv.v2.i3.110] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 05/31/2013] [Accepted: 07/11/2013] [Indexed: 02/05/2023] Open
Abstract
Nuclear domain 10 (ND10) are spherical bodies distributed throughout the nucleoplasm and measuring around 0.2-1.0 μm. First observed under an electron microscope, they were originally described as dense bodies found in the nucleus. They are known by a number of other names, including Promyelocytic Leukemia bodies (PML bodies), Kremer bodies, and PML oncogenic domains. ND10 are frequently associated with Cajal bodies and cleavage bodies. It has been suggested that they play a role in regulating gene transcription. ND10 were originally characterized using human autoantisera, which recognizes Speckled Protein of 100 kDa, from patients with primary biliary cirrhosis. At the immunohistochemical level, ND10 appear as nuclear punctate structures, with 10 indicating the approximate number of dots per nucleus observed. ND10 do not colocalize with kinetochores, centromeres, sites of mRNA processing, or chromosomes. Resistance of ND10 antigens to nuclease digestion and salt extraction suggest that ND10 are associated with the nuclear matrix. They are often identified by immunofluorescent assay using specific antibodies against PML, Death domain-associated protein, nuclear dot protein (NDP55), and so on. The role of ND10 has long been the subject of investigation, with the specific connection of ND10 and viral infection having been a particular focus for almost 20 years. This review summarizes the relationship of ND10 and viral infection. Some future study directions are also discussed.
Collapse
|
135
|
Soares IN, Caetano FA, Pinder J, Rodrigues BR, Beraldo FH, Ostapchenko VG, Durette C, Pereira GS, Lopes MH, Queiroz-Hazarbassanov N, Cunha IW, Sanematsu PI, Suzuki S, Bleggi-Torres LF, Schild-Poulter C, Thibault P, Dellaire G, Martins VR, Prado VF, Prado MAM. Regulation of stress-inducible phosphoprotein 1 nuclear retention by protein inhibitor of activated STAT PIAS1. Mol Cell Proteomics 2013; 12:3253-70. [PMID: 23938469 DOI: 10.1074/mcp.m113.031005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stress-inducible phosphoprotein 1 (STI1), a cochaperone for Hsp90, has been shown to regulate multiple pathways in astrocytes, but its contributions to cellular stress responses are not fully understood. We show that in response to irradiation-mediated DNA damage stress STI1 accumulates in the nucleus of astrocytes. Also, STI1 haploinsufficiency decreases astrocyte survival after irradiation. Using yeast two-hybrid screenings we identified several nuclear proteins as STI1 interactors. Overexpression of one of these interactors, PIAS1, seems to be specifically involved in STI1 nuclear retention and in directing STI1 and Hsp90 to specific sub-nuclear regions. PIAS1 and STI1 co-immunoprecipitate and PIAS1 can function as an E3 SUMO ligase for STI. Using mass spectrometry we identified five SUMOylation sites in STI1. A STI1 mutant lacking these five sites is not SUMOylated, but still accumulates in the nucleus in response to increased expression of PIAS1, suggesting the possibility that a direct interaction with PIAS1 could be responsible for STI1 nuclear retention. To test this possibility, we mapped the interaction sites between PIAS1 and STI1 using yeast-two hybrid assays and surface plasmon resonance and found that a large domain in the N-terminal region of STI1 interacts with high affinity with amino acids 450-480 of PIAS1. Knockdown of PIAS1 in astrocytes impairs the accumulation of nuclear STI1 in response to irradiation. Moreover, a PIAS1 mutant lacking the STI1 binding site is unable to increase STI1 nuclear retention. Interestingly, in human glioblastoma multiforme PIAS1 expression is increased and we found a significant correlation between increased PIAS1 expression and STI1 nuclear localization. These experiments provide evidence that direct interaction between STI1 and PIAS1 is involved in the accumulation of nuclear STI1. This retention mechanism could facilitate nuclear chaperone activity.
Collapse
Affiliation(s)
- Iaci N Soares
- Robarts Research Institute, The University of Western Ontario, London, ON, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Martin-Martin N, Sutherland JD, Carracedo A. PML: Not all about Tumor Suppression. Front Oncol 2013; 3:200. [PMID: 23936764 PMCID: PMC3732998 DOI: 10.3389/fonc.2013.00200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 07/19/2013] [Indexed: 12/21/2022] Open
|
137
|
Abstract
PML nuclear bodies and their associated functions are part of an intrinsic cellular mechanism aimed at maintaining transcriptional control over viral gene expression and preventing replication of invading viruses. To overcome these barriers, many viruses express early nonstructural, multifunctional proteins to support the viral replication cycle or modulate host immune responses. Virion proteins constituting the invading particle are traditionally investigated for their role in transport during entry or egress and in the assembly of new virions. The additional functions of virion proteins have largely been ignored, in contrast to those of their nonstructural counterparts. A number of recent reports suggest that several virion proteins may also play vital roles in gene activation processes, in particular by counteracting intrinsic immune mechanisms mediated by the PML nuclear body-associated cellular factors Daxx, ATRX, and Sp100. These virion proteins share several features with their more potent nonstructural counterparts, and they may serve to bridge the gap in the early phase of an infection until immediate early viral gene expression is established. In this review, we discuss how virion proteins are an integral part of gene regulation among several viral families and to what extent structural proteins of incoming virions may contribute to species barrier, latency, and oncogenesis.
Collapse
|
138
|
Abstract
The role of the promyelocytic leukemia (PML) protein has been widely tested in many different contexts, as attested by the hundreds of papers present in the literature. In most of these studies, PML is regarded as a tumor suppressor, a notion on the whole accepted by the scientific community. In this review, we examine how the concept of tumor-suppressor gene has evolved until now and then systematically assess whether this assumption for PML is supported by unambiguous experimental evidence.
Collapse
Affiliation(s)
- Massimiliano Mazza
- Department of Experimental Oncology, European Institute of Oncology , Milan , Italy
| | | |
Collapse
|
139
|
Ozkan-Dagliyan I, Chiou YY, Ye R, Hassan BH, Ozturk N, Sancar A. Formation of Arabidopsis Cryptochrome 2 photobodies in mammalian nuclei: application as an optogenetic DNA damage checkpoint switch. J Biol Chem 2013; 288:23244-51. [PMID: 23833191 DOI: 10.1074/jbc.m113.493361] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Nuclear bodies are discrete suborganelle structures that perform specialized functions in eukaryotic cells. In plant cells, light can induce de novo formation of nuclear bodies called photobodies (PBs) composed of the photosensory pigments, phytochrome (PHY) or cryptochrome (CRY). The mechanisms of formation, the exact compositions, and the functions of plant PBs are not known. Here, we have expressed Arabidopsis CRY2 (AtCRY2) in mammalian cells and analyzed its fate after blue light exposure to understand the requirements for PB formation, the functions of PBs, and their potential use in cell biology. We found that light efficiently induces AtCRY2-PB formation in mammalian cells, indicating that, other than AtCRY2, no plant-specific proteins or nucleic acids are required for AtCRY2-PB formation. Irradiation of AtCRY2 led to its degradation; however, degradation was not dependent upon photobody formation. Furthermore, we found that AtCRY2 photobody formation is associated with light-stimulated interaction with mammalian COP1 E3 ligase. Finally, we demonstrate that by fusing AtCRY2 to the TopBP1 DNA damage checkpoint protein, light-induced AtCRY2 PBs can be used to activate DNA damage signaling pathway in the absence of DNA damage.
Collapse
Affiliation(s)
- Irem Ozkan-Dagliyan
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|
140
|
Cho S, Park JS, Kang YK. Regulated nuclear entry of over-expressed Setdb1. Genes Cells 2013; 18:694-703. [DOI: 10.1111/gtc.12068] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 04/24/2013] [Indexed: 12/01/2022]
Affiliation(s)
| | - Jung Sun Park
- Development and Differentiation Research Center; KRIBB; 111 Gwahangno; Yuseong-gu; Daejeon; 305-806; South Korea
| | | |
Collapse
|
141
|
Ching RW, Ahmed K, Boutros PC, Penn LZ, Bazett-Jones DP. Identifying gene locus associations with promyelocytic leukemia nuclear bodies using immuno-TRAP. ACTA ACUST UNITED AC 2013; 201:325-35. [PMID: 23589495 PMCID: PMC3628506 DOI: 10.1083/jcb.201211097] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Important insights into nuclear function would arise if gene loci physically interacting with particular subnuclear domains could be readily identified. Immunofluorescence microscopy combined with fluorescence in situ hybridization (immuno-FISH), the method that would typically be used in such a study, is limited by spatial resolution and requires prior assumptions for selecting genes to probe. Our new technique, immuno-TRAP, overcomes these limitations. Using promyelocytic leukemia nuclear bodies (PML NBs) as a model, we used immuno-TRAP to determine if specific genes localize within molecular dimensions with these bodies. Although we confirmed a TP53 gene-PML NB association, immuno-TRAP allowed us to uncover novel locus-PML NB associations, including the ABCA7 and TFF1 loci and, most surprisingly, the PML locus itself. These associations were cell type specific and reflected the cell's physiological state. Combined with microarrays or deep sequencing, immuno-TRAP provides powerful opportunities for identifying gene locus associations with potentially any nuclear subcompartment.
Collapse
Affiliation(s)
- Reagan W Ching
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | |
Collapse
|
142
|
Jin G, Wang YJ, Lin HK. Emerging Cellular Functions of Cytoplasmic PML. Front Oncol 2013; 3:147. [PMID: 23761861 PMCID: PMC3674320 DOI: 10.3389/fonc.2013.00147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/21/2013] [Indexed: 11/23/2022] Open
Abstract
The tumor suppressor promyelocytic leukemia protein (PML) is located primarily in the nucleus, where it is the scaffold component of the PML nuclear bodies (PML-NBs). PML-NBs regulate multiple cellular functions, such as apoptosis, senescence, DNA damage response, and resistance to viral infection. Despite its nuclear localization, a small portion of PML has been identified in the cytoplasm. The cytoplasmic PML (cPML) could be originally derived from the retention of exported nuclear PML (nPML). In addition, bona fide cPML isoforms devoid of nuclear localization signal (NLS) have also been identified. Recently, emerging evidence showed that cPML performs its specific cellular functions in tumorigenesis, glycolysis, antiviral responses, laminopothies, and cell cycle regulation. In this review, we will summarize the emerging roles of cPML in cellular functions.
Collapse
Affiliation(s)
- Guoxiang Jin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center , Houston, TX , USA
| | | | | |
Collapse
|
143
|
Sewatanon J, Ling PD. Murine gammaherpesvirus 68 ORF75c contains ubiquitin E3 ligase activity and requires PML SUMOylation but not other known cellular PML regulators, CK2 and E6AP, to mediate PML degradation. Virology 2013; 440:140-9. [PMID: 23541081 PMCID: PMC4012299 DOI: 10.1016/j.virol.2013.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/12/2012] [Accepted: 02/15/2013] [Indexed: 01/30/2023]
Abstract
All gammaherpsviruses encode at least one gene related to the cellular formylglycinamide ribonucleotide amidotransferase (FGARAT) enzyme but their biological roles are relatively unknown. The murine gammaherpesvirus 68 (MHV68) vFGARAT, ORF75c, mediates a proteasome-dependent degradation of the antiviral promyelocytic leukemia (PML) protein by an unknown mechanism, which is addressed in this study. We found that ORF75c interacts weakly with PML and SUMO-modified forms of PML are important for its degradation by ORF75c. ORF75c-mediated PML degradation was not dependent on two known cellular regulators of PML stability, Casein kinase II (CK2) and human papilloma virus E6-associated protein (E6AP). Finally, ORF75c had self-ubiquitination activity in vitro and its expression increased levels of ubiquitinated PML in transfected cells. Taken together, the evidence accumulated in this study provides new insights into the function of a vFGARAT and is consistent with a model in which ORF75c could mediate direct ubiquitination of PML resulting in its degradation by the proteasome.
Collapse
Affiliation(s)
- Jaturong Sewatanon
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA 77030
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand 10700
| | - Paul D. Ling
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA 77030
| |
Collapse
|
144
|
Wolyniec K, Carney DA, Haupt S, Haupt Y. New Strategies to Direct Therapeutic Targeting of PML to Treat Cancers. Front Oncol 2013; 3:124. [PMID: 23730625 PMCID: PMC3656422 DOI: 10.3389/fonc.2013.00124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 05/03/2013] [Indexed: 01/16/2023] Open
Abstract
The tumor suppressor function of the promyelocytic leukemia (PML) protein was first identified as a result of its dysregulation in acute promyelocytic leukemia, however, its importance is now emerging far beyond hematological neoplasms, to an extensive range of malignancies, including solid tumors. In response to stress signals, PML coordinates the regulation of numerous proteins, which activate fundamental cellular processes that suppress tumorigenesis. Importantly, PML itself is the subject of specific post-translational modifications, including ubiquitination, phosphorylation, acetylation, and SUMOylation, which in turn control PML activity and stability and ultimately dictate cellular fate. Improved understanding of the regulation of this key tumor suppressor is uncovering potential opportunities for therapeutic intervention. Targeting the key negative regulators of PML in cancer cells such as casein kinase 2, big MAP kinase 1, and E6-associated protein, with specific inhibitors that are becoming available, provides unique and exciting avenues for restoring tumor suppression through the induction of apoptosis and senescence. These approaches could be combined with DNA damaging drugs and cytokines that are known to activate PML. Depending on the cellular context, reactivation or enhancement of tumor suppressive PML functions, or targeted elimination of aberrantly functioning PML, may provide clinical benefit.
Collapse
Affiliation(s)
- Kamil Wolyniec
- Tumour Suppression Laboratory, Peter MacCallum Cancer CentreEast Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of MelbourneParkville, VIC, Australia
| | - Dennis A. Carney
- Tumour Suppression Laboratory, Peter MacCallum Cancer CentreEast Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of MelbourneParkville, VIC, Australia
- Department of Haematology, Peter MacCallum Cancer CentreEast Melbourne, VIC, Australia
| | - Sue Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer CentreEast Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of MelbourneParkville, VIC, Australia
| | - Ygal Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer CentreEast Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of MelbourneParkville, VIC, Australia
- Department of Pathology, The University of MelbourneParkville, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash UniversityClayton, VIC, Australia
| |
Collapse
|
145
|
Selective inhibition of the NLRP3 inflammasome by targeting to promyelocytic leukemia protein in mouse and human. Blood 2013; 121:3185-94. [DOI: 10.1182/blood-2012-05-432104] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Key Points
PML selectively activates NLRP3 inflammasome. Targeting to PML could be used to attenuate NLRP3 inflammasome–associated pathogenesis.
Collapse
|
146
|
Short B. Setting an immuno-TRAP for PML nuclear bodies. J Biophys Biochem Cytol 2013. [PMCID: PMC3628505 DOI: 10.1083/jcb.2012if] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Researchers describe technique to identify genomic loci that interact with specific nuclear structures.
Collapse
|
147
|
Foltánková V, Matula P, Sorokin D, Kozubek S, Bártová E. Hybrid detectors improved time-lapse confocal microscopy of PML and 53BP1 nuclear body colocalization in DNA lesions. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2013; 19:360-369. [PMID: 23410959 DOI: 10.1017/s1431927612014353] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We used hybrid detectors (HyDs) to monitor the trajectories and interactions of promyelocytic leukemia (GFP-PML) nuclear bodies (NBs) and mCherry-53BP1-positive DNA lesions. 53BP1 protein accumulates in NBs that occur spontaneously in the genome or in γ-irradiation-induced foci. When we induced local DNA damage by ultraviolet irradiation, we also observed accumulation of 53BP1 proteins into discrete bodies, instead of the expected dispersed pattern. In comparison with photomultiplier tubes, which are used for standard analysis by confocal laser scanning microscopy, HyDs significantly eliminated photobleaching of GFP and mCherry fluorochromes during image acquisition. The low laser intensities used for HyD-based confocal analysis enabled us to observe NBs for the longer time periods, necessary for studies of the trajectories and interactions of PML and 53BP1 NBs. To further characterize protein interactions, we used resonance scanning and a novel bioinformatics approach to register and analyze the movements of individual PML and 53BP1 NBs. The combination of improved HyD-based confocal microscopy with a tailored bioinformatics approach enabled us to reveal damage-specific properties of PML and 53BP1 NBs.
Collapse
Affiliation(s)
- Veronika Foltánková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-612 65, Brno, Czech Republic
| | | | | | | | | |
Collapse
|
148
|
Pinder JB, Attwood KM, Dellaire G. Reading, writing, and repair: the role of ubiquitin and the ubiquitin-like proteins in DNA damage signaling and repair. Front Genet 2013; 4:45. [PMID: 23554604 PMCID: PMC3612592 DOI: 10.3389/fgene.2013.00045] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/13/2013] [Indexed: 12/14/2022] Open
Abstract
Genomic instability is both a hallmark of cancer and a major contributing factor to tumor development. Central to the maintenance of genome stability is the repair of DNA damage, and the most toxic form of DNA damage is the DNA double-strand break. As a consequence the eukaryotic cell harbors an impressive array of protein machinery to detect and repair DNA breaks through the initiation of a multi-branched, highly coordinated signaling cascade. This signaling cascade, known as the DNA damage response (DDR), functions to integrate DNA repair with a host of cellular processes including cell cycle checkpoint activation, transcriptional regulation, and programmed cell death. In eukaryotes, DNA is packaged in chromatin, which provides a mechanism to regulate DNA transactions including DNA repair through an equally impressive array of post-translational modifications to proteins within chromatin, and the DDR machinery itself. Histones, as the major protein component of chromatin, are subject to a host of post-translational modifications including phosphorylation, methylation, and acetylation. More recently, modification of both the histones and DDR machinery by ubiquitin and other ubiquitin-like proteins, such as the small ubiquitin-like modifiers, has been shown to play a central role in coordinating the DDR. In this review, we explore how ubiquitination and sumoylation contribute to the “writing” of key post-translational modifications within chromatin that are in turn “read” by the DDR machinery and chromatin-remodeling factors, which act together to facilitate the efficient detection and repair of DNA damage.
Collapse
Affiliation(s)
- Jordan B Pinder
- Department of Pathology, Dalhousie University Halifax, NS, Canada
| | | | | |
Collapse
|
149
|
Rabellino A, Scaglioni PP. PML Degradation: Multiple Ways to Eliminate PML. Front Oncol 2013; 3:60. [PMID: 23526763 PMCID: PMC3605509 DOI: 10.3389/fonc.2013.00060] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 03/06/2013] [Indexed: 11/26/2022] Open
Abstract
The promyelocytic leukemia tumor suppressor gene (PML) critically regulates several cellular functions that oppose tumorigenesis such as oncogene-induced senescence, apoptosis, the response to DNA damage and to viral infections. PML deficiency occurs commonly in a broad spectrum of human cancers through mechanisms that involve its aberrant ubiquitination and degradation. Furthermore, several viruses encode viral proteins that promote viral replication through degradation of PML. These observations suggest that restoration of PML should lead to potent antitumor effects or antiviral responses. In this review we will summarize the mechanisms involved in PML degradation with the intent to highlight novel therapeutic strategies to trigger PML restoration.
Collapse
Affiliation(s)
- Andrea Rabellino
- Division of Hematology and Oncology, Department of Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center Dallas, TX, USA
| | | |
Collapse
|
150
|
Dutta P, Bui T, Bauckman KA, Keyomarsi K, Mills GB, Nanjundan M. EVI1 splice variants modulate functional responses in ovarian cancer cells. Mol Oncol 2013; 7:647-68. [PMID: 23517670 DOI: 10.1016/j.molonc.2013.02.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 01/18/2013] [Accepted: 02/12/2013] [Indexed: 01/06/2023] Open
Abstract
Amplification of 3q26.2, found in many cancer lineages, is a frequent and early event in ovarian cancer. We previously defined the most frequent region of copy number increase at 3q26.2 to EVI1 (ecotropic viral integration site-1) and MDS1 (myelodysplastic syndrome 1) (aka MECOM), an observation recently confirmed by the cancer genome atlas (TCGA). MECOM is increased at the DNA, RNA, and protein level and likely contributes to patient outcome. Herein, we report that EVI1 is aberrantly spliced, generating multiple variants including a Del(190-515) variant (equivalent to previously reported) expressed in >90% of advanced stage serous epithelial ovarian cancers. Although EVI1(Del190-515) lacks ∼70% of exon 7, it binds CtBP1 as well as SMAD3, important mediators of TGFβ signaling, similar to wild type EVI1. This contrasts with EVI1 1-268 which failed to interact with CtBP1. Interestingly, the EVI1(Del190-515) splice variant preferentially localizes to PML nuclear bodies compared to wild type and EVI1(Del427-515). While wild type EVI1 efficiently repressed TGFβ-mediated AP-1 (activator protein-1) and plasminogen activator inhibitor-1 (PAI-1) promoters, EVI1(Del190-515) elicited a slight increase in both promoter activities. Expression of EVI1 and EVI1(Del427-515) (but not EVI1(Del190-515)) in OVCAR8 ovarian cancer cells increased cyclin E1 LMW expression and cell cycle progression. Furthermore, knockdown of specific EVI1 splice variants (both MDS1/EVI1 and EVI1(Del190-515)) markedly increased claudin-1 mRNA and protein expression in HEY ovarian and MDA-MB-231 breast cancer cells. Changes in claudin-1 were associated with alterations in specific epithelial-mesenchymal transition markers concurrent with reduced migratory potential. Collectively, EVI1 is frequently aberrantly spliced in ovarian cancer with specific forms eliciting altered functions which could potentially contribute to ovarian cancer pathophysiology.
Collapse
Affiliation(s)
- Punashi Dutta
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | | | | | | | | | | |
Collapse
|