101
|
de Moor CH, Richter JD. Translational control in vertebrate development. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 203:567-608. [PMID: 11131527 DOI: 10.1016/s0074-7696(01)03017-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Translational control plays a large role in vertebrate oocyte maturation and contributes to the induction of the germ layers. Translational regulation is also observed in the regulation of cell proliferation and differentiation. The features of an mRNA that mediate translational control are found both in the 5' and in the 3' untranslated regions (UTRs). In the 5' UTR, secondary structure, the binding of proteins, and the presence of upstream open reading frames can interfere with the association of initiation factors with the cap, or with scanning of the initiation complex. The 3' UTR can mediate translational activation by directing cytoplasmic polyadenylation and can confer translational repression by interference with the assembly of initiation complexes. Besides mRNA-specific translational control elements, the nonspecific RNA-binding proteins contribute to the modulation of translation in development. This review discusses examples of translational control and their relevance for developmental regulation.
Collapse
Affiliation(s)
- C H de Moor
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester 01655, USA
| | | |
Collapse
|
102
|
Frank-Vaillant M, Haccard O, Ozon R, Jessus C. Interplay between Cdc2 kinase and the c-Mos/MAPK pathway between metaphase I and metaphase II in Xenopus oocytes. Dev Biol 2001; 231:279-88. [PMID: 11180968 DOI: 10.1006/dbio.2000.0142] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Xenopus oocytes arrested in prophase I resume meiotic division in response to progesterone and arrest at metaphase II. Entry into meiosis I depends on the activation of Cdc2 kinase [M-phase promoting factor (MPF)]. To better understand the role of Cdc2, MPF activity was specifically inhibited by injection of the CDK inhibitor, Cip1. When Cip1 is injected at germinal vesicle breakdown (GVBD) time, Cdc25 and Plx1 are both dephosphorylated and Cdc2 is rephosphorylated on tyrosine. The autoamplification loop characterizing MPF is therefore not only required for MPF generation before GVBD, but also for its stability during the GVBD period. The ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C), responsible for cyclin degradation, is also under the control of Cdc2; therefore, Cdc2 activity itself induces its own inactivation through cyclin degradation, allowing the exit from the first meiotic division. In contrast, cyclin accumulation, responsible for Cdc2 activity increase allowing entry into metaphase II, is independent of Cdc2. The c-Mos/mitogen-activated protein kinase (MAPK) pathway remains active when Cdc2 activity is inhibited at GVBD time. This pathway could be responsible for the sustained cyclin neosynthesis. In contrast, during the metaphase II block, the c-Mos/MAPK pathway depends on Cdc2. Therefore, the metaphase II block depends on a dynamic interplay between MPF and CSF, the c-Mos/MAPK pathway stabilizing cyclin B, whereas in turn, MPF prevents c-Mos degradation.
Collapse
Affiliation(s)
- M Frank-Vaillant
- Laboratoire de Physiologie de la Reproduction, INRA/ESA-CNRS 7080, Université Pierre et Marie Curie, boîte 13, Paris Cedex 05, 75252, France
| | | | | | | |
Collapse
|
103
|
Ferrell JE, Xiong W. Bistability in cell signaling: How to make continuous processes discontinuous, and reversible processes irreversible. CHAOS (WOODBURY, N.Y.) 2001; 11:227-236. [PMID: 12779456 DOI: 10.1063/1.1349894] [Citation(s) in RCA: 248] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Xenopus oocyte maturation is an example of an all-or-none, irreversible cell fate induction process. In response to a submaximal concentration of the steroid hormone progesterone, a given oocyte may either mature or not mature, but it can exist in intermediate states only transiently. Moreover, once an oocyte has matured, it will remain arrested in the mature state even after the progesterone is removed. It has been hypothesized that the all-or-none character of oocyte maturation, and some aspects of the irreversibility of maturation, arise out of the bistability of the signal transduction system that triggers maturation. The bistability, in turn, is hypothesized to arise from the way the signal transducers are organized into a signaling circuit that includes positive feedback (which makes it so that the system cannot rest in intermediate states) and ultrasensitivity (which filters small stimuli out of the feedback loop, allowing the system to have a stable off-state). Here we review two simple graphical methods that are commonly used to analyze bistable systems, discuss the experimental evidence for bistability in oocyte maturation, and suggest that bistability may be a common means of producing all-or-none responses and a type of biochemical memory. (c) 2001 American Institute of Physics.
Collapse
Affiliation(s)
- James E. Ferrell
- Department of Molecular Pharmacology, Stanford University School of Medicine, Stanford, California 94305-5174
| | | |
Collapse
|
104
|
Tanaka M, Hennebold JD, Macfarlane J, Adashi EY. A mammalian oocyte-specific linker histone gene H1oo: homology with the genes for the oocyte-specific cleavage stage histone (cs-H1) of sea urchin and the B4/H1M histone of the frog. Development 2001; 128:655-64. [PMID: 11171391 DOI: 10.1242/dev.128.5.655] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Oocytes and early embryos of multiple (non-mammalian) species lack the somatic form of the linker histone H1. To the best of our knowledge, a mammalian oocyte-specific linker (H1) histone(s) has not, as yet, been reported. We have uncovered the cDNA in question in the course of a differential screening (suppression subtractive hybridization (SSH)) project. Elucidation of the full-length sequence of this novel 1.2 kb cDNA led to the identification of a 912 bp open reading frame. The latter encoded a novel 34 kDa linker histone protein comprised of 304 amino acids, tentatively named H1oo. Amino acid BLAST analysis revealed that H1oo displayed the highest sequence homology to the oocyte-specific B4 histone of the frog, the respective central globular (putative DNA binding) domains displaying 54% identity. Substantial homology to the cs-H1 protein of the sea urchin oocyte was also apparent. While most oocytic mRNAs corresponding to somatic linker histones are not polyadenylated (and remain untranslated), the mRNAs of (non-mammalian) oocyte-specific linker histones and of mammalian H1oo, are polyadenylated, a process driven by the consensus signal sequence, AAUAAA, detected in the 3′-untranslated region of the H1oo cDNA. Our data suggest that the mouse oocyte-specific linker histone H1oo (1) constitutes a novel mammalian homolog of the oocyte-specific linker histone B4 of the frog and of the cs-H1 linker histone of the sea urchin; (2) is expressed as early as the GV (PI) stage oocyte, persisting into the MII stage oocyte, the oocytic polar bodies, and the two-cell embryo, extinction becoming apparent at the four- to eight-cell embryonic stage; and (3) may play a key role in the control of gene expression during oogenesis and early embryogenesis, presumably through the perturbation of chromatin structure.
Collapse
Affiliation(s)
- M Tanaka
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA
| | | | | | | |
Collapse
|
105
|
Abrieu A, Dorée M, Fisher D. The interplay between cyclin-B-Cdc2 kinase (MPF) and MAP kinase during maturation of oocytes. J Cell Sci 2001; 114:257-67. [PMID: 11148128 DOI: 10.1242/jcs.114.2.257] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Throughout oocyte maturation, and subsequently during the first mitotic cell cycle, the MAP kinase cascade and cyclin-B-Cdc2 kinase are associated with the control of cell cycle progression. Many roles have been directly or indirectly attributed to MAP kinase and its influence on cyclin-B-Cdc2 kinase in different model systems; yet a principle theme does not emerge from the published literature, some of which is apparently contradictory. Interplay between these two kinases affects the major events of meiotic maturation throughout the animal kingdom, including the suppression of DNA replication, the segregation of meiotic chromosomes, and the prevention of parthenogenetic activation. Central to many of these events appears to be the control by MAP kinase of cyclin translation and degradation.
Collapse
Affiliation(s)
- A Abrieu
- Ludwig Institute for Cancer Research, UCSD, La Jolla, California 92093-0660, USA
| | | | | |
Collapse
|
106
|
Takahashi T, Koshimizu U, Abe H, Obinata T, Nakamura T. Functional involvement of Xenopus LIM kinases in progression of oocyte maturation. Dev Biol 2001; 229:554-67. [PMID: 11150247 DOI: 10.1006/dbio.2000.9999] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
LIM kinases (LIMK), including LIMK1 and LIMK2, are unique LIM-family proteins containing a catalytic (kinase) domain. These kinases phosphorylate an actin-depolymerizing factor, cofilin, involved in the regulation of actin-filament dynamics. An unanswered question is the in vivo function of LIMK and how they contribute to development. When we cloned Xenopus homologues of mammalian LIMK, Xlimk1 and Xlimk2, we found that their mRNA and products were abundantly expressed in oocytes. In addition, we obtained evidence for the functional involvement of Xlimk1/2 during oocyte maturation. The microinjection of Xlimk1/2 mRNA into progesterone-treated oocytes significantly inhibited the appearance of a white maturation spot (WMS), an indicator of entry into meiosis. In oocytes lacking a WMS, the organization and/or migration of the microtubule-derived precursor of the meiotic spindle was predominantly affected. We also found that the ectopic expression of Xlimk1/2 clearly prevented dephosphorylation (activation) of Xenopus cofilin (XAC) during oocyte maturation. Furthermore, co-injection of Xlimk1/2 with the constitutively active type of XAC overcame the inhibitory effects by Xlimk1/2, suggesting that XLIMK-induced abnormality in oocyte maturation was mediated by XAC inactivation. Based on these findings, we propose that XLIMK is a putative regulator of cytoskeletal rearrangements during oocyte maturation, and the interaction between XLIMK activity and microtubule dynamics seems highly likely.
Collapse
Affiliation(s)
- T Takahashi
- Division of Biochemistry, Department of Oncology, Biomedical Research Center B7, Osaka University Medical School, Suita, Osaka, 565-0871, Japan
| | | | | | | | | |
Collapse
|
107
|
Lutz LB, Kim B, Jahani D, Hammes SR. G protein beta gamma subunits inhibit nongenomic progesterone-induced signaling and maturation in Xenopus laevis oocytes. Evidence for a release of inhibition mechanism for cell cycle progression. J Biol Chem 2000; 275:41512-20. [PMID: 11018039 DOI: 10.1074/jbc.m006757200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Progesterone-induced maturation of Xenopus oocytes is a well known example of nongenomic signaling by steroids; however, little is known about the early signaling events involved in this process. Previous work has suggested that G proteins and G protein-coupled receptors may be involved in progesterone-mediated oocyte maturation as well as in other nongenomic steroid-induced signaling events. To investigate the role of G proteins in nongenomic signaling by progesterone, the effects of modulating Galpha and Gbetagamma levels in Xenopus oocytes on progesterone-induced signaling and maturation were examined. Our results demonstrate that Gbetagamma subunits, rather than Galpha, are the principal mediators of progesterone action in this system. We show that overexpression of Gbetagamma inhibits both progesterone-induced maturation and activation of the MAPK pathway, whereas sequestration of endogenous Gbetagamma subunits enhances progesterone-mediated signaling and maturation. These data are consistent with a model whereby endogenous free Xenopus Gbetagamma subunits constitutively inhibit oocyte maturation. Progesterone may induce maturation by antagonizing this inhibition and therefore allowing cell cycle progression to occur. These studies offer new insight into the early signaling events mediated by progesterone and may be useful in characterizing and identifying the membrane progesterone receptor in oocytes.
Collapse
Affiliation(s)
- L B Lutz
- Department of Internal Medicine, University of Texas Southwestern Medical School, Dallas, Texas 75390-8857, USA
| | | | | | | |
Collapse
|
108
|
Tian J, Kim S, Heilig E, Ruderman JV. Identification of XPR-1, a progesterone receptor required for Xenopus oocyte activation. Proc Natl Acad Sci U S A 2000; 97:14358-63. [PMID: 11114187 PMCID: PMC18923 DOI: 10.1073/pnas.250492197] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Quiescent full-grown Xenopus oocytes remain arrested at the G(2)/M border of meiosis I until exposed to progesterone, their natural mitogen. Progesterone triggers rapid, nontranscriptional responses that lead to the translational activation of stored mRNAs, resumption of the meiotic cell cycles, and maturation of the oocyte into a fertilizable egg. It has long been presumed that progesterone activates the oocyte through a novel nontranscriptional signaling receptor. Here, we provide evidence that a conventional transcriptional progesterone receptor cloned from Xenopus oocytes, XPR-1, is required for oocyte activation. Overexpression of XPR-1 through mRNA injection increases sensitivity to progesterone and accelerates progesterone-activated cell cycle reentry. Injection of XPR-1 antisense oligonucleotides blocks the ability of oocytes to respond to progesterone; these oocytes are rescued by subsequent injection of XPR-1 or the human progesterone receptor PR-B. Antisense-treated oocytes can be activated in response to inhibition of protein kinase A, one of the earliest known changes occurring downstream of progesterone stimulation. These results argue that the conventional progesterone receptor also functions as the signaling receptor that is responsible for the rapid nontranscriptional activation of frog oocytes.
Collapse
Affiliation(s)
- J Tian
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
109
|
Tachibana K, Tanaka D, Isobe T, Kishimoto T. c-Mos forces the mitotic cell cycle to undergo meiosis II to produce haploid gametes. Proc Natl Acad Sci U S A 2000; 97:14301-6. [PMID: 11121036 PMCID: PMC18913 DOI: 10.1073/pnas.97.26.14301] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The meiotic cycle reduces ploidy through two consecutive M phases, meiosis I and meiosis II, without an intervening S phase. To maintain ploidy through successive generations, meiosis must be followed by mitosis after the recovery of diploidy by fertilization. However, the coordination from meiotic to mitotic cycle is still unclear. Mos, the c-mos protooncogene product, is a key regulator of meiosis in vertebrates. In contrast to the previous observation that Mos functions only in vertebrate oocytes that arrest at meiotic metaphase II, here we isolate the first invertebrate mos from starfish and show that Mos functions also in starfish oocytes that arrest after the completion of meiosis II but not at metaphase II. In the absence of Mos, meiosis I is followed directly by repeated embryonic mitotic cycles, and its reinstatement restores meiosis II and subsequent cell cycle arrest. These observations imply that after meiosis I, oocytes have a competence to progress through the embryonic mitotic cycle, but that Mos diverts the cell cycle to execute meiosis II and remains to restrain the return to the mitotic cycle. We propose that a role of Mos that is conserved in invertebrate and vertebrate oocytes is not to support metaphase II arrest but to prevent the meiotic/mitotic conversion after meiosis I until fertilization, directing meiosis II to ensure the reduction of ploidy.
Collapse
Affiliation(s)
- K Tachibana
- Laboratory of Cell and Developmental Biology, Graduate School of Bioscience, Tokyo Institute of Technology, Japan
| | | | | | | |
Collapse
|
110
|
Abstract
The mitotic and meiotic cell cycle share many regulators, but there are also important differences between the two processes. The meiotic maturation of Xenopus oocytes has proved useful for understanding the regulation of Cdc2-cyclin-B, a key activator of G2/M progression. New insights have been made recently into the signalling mechanisms that induce G2-arrested oocytes to resume and complete the meiotic cell cycle.
Collapse
Affiliation(s)
- A R Nebreda
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany.
| | | |
Collapse
|
111
|
Nakaya M, Fukui A, Izumi Y, Akimoto K, Asashima M, Ohno S. Meiotic maturation induces animal-vegetal asymmetric distribution of aPKC and ASIP/PAR-3 in Xenopus oocytes. Development 2000; 127:5021-31. [PMID: 11060229 DOI: 10.1242/dev.127.23.5021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The asymmetric distribution of cellular components is an important clue for understanding cell fate decision during embryonic patterning and cell functioning after differentiation. In C. elegans embryos, PAR-3 and aPKC form a complex that colocalizes to the anterior periphery of the one-cell embryo, and are indispensable for anterior-posterior polarity that is formed prior to asymmetric cell division. In mammals, ASIP (PAR-3 homologue) and aPKCgamma form a complex and colocalize to the epithelial tight junctions, which play critical roles in epithelial cell polarity. Although the mechanism by which PAR-3/ASIP and aPKC regulate cell polarization remains to be clarified, evolutionary conservation of the PAR-3/ASIP-aPKC complex suggests their general role in cell polarity organization. Here, we show the presence of the protein complex in Xenopus laevis. In epithelial cells, XASIP and XaPKC colocalize to the cell-cell contact region. To our surprise, they also colocalize to the animal hemisphere of mature oocytes, whereas they localize uniformly in immature oocytes. Moreover, hormonal stimulation of immature oocytes results in a change in the distribution of XaPKC 2–3 hours after the completion of germinal vesicle breakdown, which requires the kinase activity of aPKC. These results suggest that meiotic maturation induces the animal-vegetal asymmetry of aPKC.
Collapse
Affiliation(s)
- M Nakaya
- Department of Molecular Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | | | | | | | | | | |
Collapse
|
112
|
Abstract
While animal eggs await fertilization, their cell cycle needs to be halted. The molecule responsible for this arrest--the cytostatic factor--was first described in 1971. But its identity was not revealed until 1989, and even now questions remain about this elusive factor.
Collapse
Affiliation(s)
- Y Masui
- Department of Zoology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5.
| |
Collapse
|
113
|
Fenger DD, Carminati JL, Burney-Sigman DL, Kashevsky H, Dines JL, Elfring LK, Orr-Weaver TL. PAN GU: a protein kinase that inhibits S phase and promotes mitosis in early Drosophila development. Development 2000; 127:4763-74. [PMID: 11044392 DOI: 10.1242/dev.127.22.4763] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Following completion of meiosis, DNA replication must be repressed until fertilization. In Drosophila, this replication block requires the products of the pan gu (png), plutonium (plu) and giant nuclei (gnu) genes. These genes also ensure that S phase oscillates with mitosis in the early division cycles of the embryo. We have identified the png gene and shown that it encodes a Ser/Thr protein kinase expressed only in ovaries and early embryos, and that the predicted extent of kinase activity in png mutants inversely correlates with the severity of the mutant phenotypes. The PLU and PNG proteins form a complex that has PNG-dependent kinase activity, and this activity is necessary for normal levels of mitotic cyclins. Our results reveal a novel protein kinase complex that controls S phase at the onset of development apparently by stabilizing mitotic cyclins.
Collapse
Affiliation(s)
- D D Fenger
- Department of Biology, Massachusetts Institute of Technology and Whitehead Institute, Nine Cambridge Center, Cambridge, MA 02142, USA.
| | | | | | | | | | | | | |
Collapse
|
114
|
Bhatt RR, Ferrell JE. Cloning and characterization of Xenopus Rsk2, the predominant p90 Rsk isozyme in oocytes and eggs. J Biol Chem 2000; 275:32983-90. [PMID: 10934212 DOI: 10.1074/jbc.m006386200] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 90-kDa ribosomal S6 kinases, the p90 Rsks, are a family of intracellular serine/threonine protein kinases distinguished by two distinct kinase domains. Rsks are activated downstream of the ERK1 (p44) and ERK2 (p42) mitogen-activated protein (MAP) kinases in diverse biological contexts, including progression through meiotic and mitotic M phases in Xenopus oocytes and cycling Xenopus egg extracts, and are critical for the M phase functions of Xenopus p42 MAPK. Here we report the cloning and biochemical characterization of Xenopus Rsk2. Xenopus Rsk1 and Rsk2 are specifically recognized by commercially available RSK1 and RSK2 antisera on immunoblots, but both Rsk1 and Rsk2 are immunoprecipitated by RSK1, RSK2, and RSK3 sera. Rsk2 is about 20-fold more abundant than the previously described Xenopus Rsk1 protein; their concentrations are approximately 120 and 5 nm, respectively. Rsk2, like Rsk1, forms a heteromeric complex with p42 MAP kinase. This interaction depends on sequences at the extreme C terminus of Rsk2 and can be disrupted by a synthetic peptide derived from the C-terminal 20 amino acids of Rsk2. Finally, we demonstrate that p42 MAP kinase can activate recombinant Rsk2 in vitro to a specific activity comparable to that found in Rsk2 that has been activated maximally in vivo. These findings underscore the importance of the Rsk2 isozyme in the M phase functions of p42 MAP kinase and provide tools for further examining Rsk2 function.
Collapse
Affiliation(s)
- R R Bhatt
- Department of Molecular Pharmacology, Stanford University School of Medicine, Stanford, California 94305-5174, USA
| | | |
Collapse
|
115
|
Luitjens C, Gallegos M, Kraemer B, Kimble J, Wickens M. CPEB proteins control two key steps in spermatogenesis in C. elegans. Genes Dev 2000; 14:2596-609. [PMID: 11040214 PMCID: PMC316992 DOI: 10.1101/gad.831700] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cytoplasmic polyadenylation element binding (CPEB) proteins bind to and regulate the translation of specific mRNAs. CPEBs from Xenopus, Drosophila, and Spisula participate in oogenesis. In this report, we examine the biological roles of all identifiable CPEB homologs in a single organism, Caenorhabditis elegans. We find four homologs in the C. elegans genome: cbp-1, cpb-2, cpb-3, and fog-1. Surprisingly, two homologs, CPB-1 and FOG-1, have key functions in spermatogenesis and are dispensable for oogenesis. CPB-2 and CPB-3 also appear not to be required for oogenesis. CPB-1 is essential for progression through meiosis: cpb-1(RNAi) spermatocytes fail to undergo the meiotic cell divisions. CPB-1 protein is present in the germ line just prior to overt spermatogenesis; once sperm differentiation begins, CPB-1 disappears. CPB-1 physically interacts with FBF, another RNA-binding protein and 3' UTR regulator. In addition to its role in controlling the sperm/oocyte switch, we find that FBF also appears to be required for spermatogenesis, consistent with its interaction with CPEB. A second CPEB homolog, FOG-1, is required for specification of the sperm fate. The fog-1 gene produces fog-1(L) and fog-1(S) transcripts. The fog-1(L) RNA is enriched in animals making sperm and is predicted to encode a larger protein; fog-1(S) RNA is enriched in animals making oocytes and is predicted to encode a smaller protein. The relative abundance of the two mRNAs is controlled temporally during germ-line development and by the sex determination pathway in a fashion that suggests that the fog-1(L) species encodes the active form. In sum, our results demonstrate that, in C. elegans, two CPEB proteins have distinct functions in the germ line, both in spermatogenesis: FOG-1 specifies the sperm cell fate and CPB-1 executes that decision.
Collapse
Affiliation(s)
- C Luitjens
- Program in Cell and Molecular Biology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
116
|
Lovette IJ, Bermingham E. c-mos variation in songbirds: molecular evolution, phylogenetic implications, and comparisons with mitochondrial differentiation. Mol Biol Evol 2000; 17:1569-77. [PMID: 11018162 DOI: 10.1093/oxfordjournals.molbev.a026255] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nucleotide sequences from the c-mos proto-oncogene have previously been used to reconstruct the phylogenetic relationships between distantly related vertebrate taxa. To explore c-mos variation at shallower levels of avian divergence, we compared c-mos sequences from representative passerine taxa that span a range of evolutionary differentiation, from basal passerine lineages to closely allied genera. Phylogenetic reconstructions based on these c-mos sequences recovered topologies congruent with previous DNA-DNA hybridization-based reconstructions, with many nodes receiving high support, as indicated by bootstrap and reliability values. One exception was the relationship of Acanthisitta to the remaining passerines, where the c-mos-based searches indicated a three-way polytomy involving the Acanthisitta lineage and the suboscine and oscine passerine clades. We also compared levels of c-mos and mitochondrial differentiation across eight oscine passerine taxa and found that c-mos nucleotide substitutions accumulate at a rate similar to that of transversion substitutions in mitochondrial protein-coding genes. These comparisons suggest that nuclear-encoded loci such as c-mos provide a temporal window of phylogenetic resolution that overlaps the temporal range where mitochondrial protein-coding sequences have their greatest utility and that c-mos substitutions and mtDNA transversions can serve as complementary, informative, and independent phylogenetic markers for the study of avian relationships.
Collapse
Affiliation(s)
- I J Lovette
- Smithsonian Tropical Research Institute, Panamà.
| | | |
Collapse
|
117
|
Svoboda P, Stein P, Hayashi H, Schultz RM. Selective reduction of dormant maternal mRNAs in mouse oocytes by RNA interference. Development 2000; 127:4147-56. [PMID: 10976047 DOI: 10.1242/dev.127.19.4147] [Citation(s) in RCA: 284] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Specific mRNA degradation mediated by double-stranded RNA (dsRNA), which is termed RNA interference (RNAi), is a useful tool with which to study gene function in several systems. We report here that in mouse oocytes, RNAi provides a suitable and robust approach to study the function of dormant maternal mRNAs. Mos (originally known as c-mos) and tissue plasminogen activator (tPA, Plat) mRNAs are dormant maternal mRNAs that are recruited during oocyte maturation; translation of Mos mRNA results in the activation of MAP kinase. dsRNA directed towards Mos or Plat mRNAs in mouse oocytes effectively results in the specific reduction of the targeted mRNA in both a time- and concentration-dependent manner. Moreover, dsRNA is more potent than either sense or antisense RNAs. Targeting the Mos mRNA results in inhibiting the appearance of MAP kinase activity and can result in parthenogenetic activation. Mos dsRNA, therefore, faithfully phenocopies the Mos null mutant. Targeting the Plat mRNA with Plat dsRNA results in inhibiting production of tPA activity. Finally, effective reduction of the Mos and Plat mRNA is observed with stoichiometric amounts of Mos and Plat dsRNA, respectively.
Collapse
Affiliation(s)
- P Svoboda
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA
| | | | | | | |
Collapse
|
118
|
Wakiyama M, Imataka H, Sonenberg N. Interaction of eIF4G with poly(A)-binding protein stimulates translation and is critical for Xenopus oocyte maturation. Curr Biol 2000; 10:1147-50. [PMID: 10996799 DOI: 10.1016/s0960-9822(00)00701-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The poly(A)-binding protein Pab1p interacts directly with the eukaryotic translation initiation factor 4G (eIF4G) to facilitate translation initiation of polyadenylated mRNAs in yeast [1,2]. Although the eIF4G-PABP interaction has also been demonstrated in a mammalian system [3,4], its biological significance in vertebrates is unknown. In Xenopus oocytes, cytoplasmic polyadenylation of several mRNAs coincides with their translational activation and is critical for maturation [5-7]. Because the amount of PABP is very low in oocytes [8], it has been argued that the eIF4G-PABP interaction does not play a major role in translational activation during oocyte maturation. Also, overexpression of PABP in Xenopus oocytes has only a modest stimulatory effect on translation of polyadenylated mRNA and does not alter either the efficiency or the kinetics of progesterone-induced maturation [9]. Here, we report that the expression of an eIF4GI mutant defective in PABP binding in Xenopus oocytes reduces translation of polyadenylated mRNA and dramatically inhibits progesterone-induced maturation. Our results show that the eIF4G-PABP interaction is critical for translational control of maternal mRNAs during Xenopus development.
Collapse
Affiliation(s)
- M Wakiyama
- Department of Biochemistry and McGill Cancer Center, McGill University, Montreal, H3G 1Y6, Quebec, Canada
| | | | | |
Collapse
|
119
|
Yoshida N, Mita K, Yamashita M. Function of the Mos/MAPK pathway during oocyte maturation in the Japanese brown frog Rana japonica. Mol Reprod Dev 2000; 57:88-98. [PMID: 10954860 DOI: 10.1002/1098-2795(200009)57:1<88::aid-mrd12>3.0.co;2-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Fully grown immature oocytes acquire the ability to be fertilized with sperm after meiotic maturation, which is finally accomplished by the formation and activation of the maturation-promoting factor (MPF). MPF is the complex of Cdc2 and cyclin B, and its function in promoting metaphase is common among species. The Mos/mitogen-activated protein kinase (MAPK) pathway is also commonly activated during vertebrate oocyte maturation, but its function seems to be different among species. We investigated the function of the Mos/MAPK pathway during oocyte maturation of the frog Rana japonica. Although MAPK was activated in accordance with MPF activation during oocyte maturation, MPF activation and germinal vesicle breakdown (GVBD) was not initiated when the Mos/MAPK pathway was activated in immature oocytes by the injection of c-mos mRNA. Inhibition of Mos synthesis by c-mos antisense RNA and inactivation of MAPK by CL100 phosphatase did not prevent progesterone-induced MPF activation and GVBD. However, continuous MAPK activation and MAPK inhibition through oocyte maturation accelerated and delayed MPF activation, respectively. Furthermore, Mos induced a low level of cyclin B protein synthesis in immature oocytes without the aid of MAPK. These results suggest that the general function of the Mos/MAPK pathway, which is not essential for MPF activation and GVBD in Rana oocytes, is to enhance cyclin B translation by Mos itself and to stabilize cyclin B protein by MAPK during oocyte maturation.
Collapse
Affiliation(s)
- N Yoshida
- Laboratory of Molecular and Cellular Interactions, Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
120
|
Murakami H, Nurse P. DNA replication and damage checkpoints and meiotic cell cycle controls in the fission and budding yeasts. Biochem J 2000; 349:1-12. [PMID: 10861204 PMCID: PMC1221113 DOI: 10.1042/0264-6021:3490001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cell cycle checkpoint mechanisms ensure the order of cell cycle events to preserve genomic integrity. Among these, the DNA-replication and DNA-damage checkpoints prevent chromosome segregation when DNA replication is inhibited or DNA is damaged. Recent studies have identified an outline of the regulatory networks for both of these controls, which apparently operate in all eukaryotes. In addition, it appears that these checkpoints have two arrest points, one is just before entry into mitosis and the other is prior to chromosome separation. The former point requires the central cell-cycle regulator Cdc2 kinase, whereas the latter involves several key regulators and substrates of the ubiquitin ligase called the anaphase promoting complex. Linkages between these cell-cycle regulators and several key checkpoint proteins are beginning to emerge. Recent findings on post-translational modifications and protein-protein interactions of the checkpoint proteins provide new insights into the checkpoint responses, although the functional significance of these biochemical properties often remains unclear. We have reviewed the molecular mechanisms acting at the DNA-replication and DNA-damage checkpoints in the fission yeast Schizosaccharomyces pombe, and the modifications of these controls during the meiotic cell cycle. We have made comparisons with the controls in fission yeast and other organisms, mainly the distantly related budding yeast.
Collapse
Affiliation(s)
- H Murakami
- Imperial Cancer Research Fund, Cell Cycle Laboratory, 44 Lincoln's Inn Fields, London WC2A 3PX, UK.
| | | |
Collapse
|
121
|
Athanasiou A, Gorgoulis VG, Zacharatos P, Mariatos G, Kotsinas A, Liloglou T, Karameris A, Foukas P, Manolis EN, Field JK, Kittas C. c-mos immunoreactivity is an indicator of good prognosis in lung cancer. Histopathology 2000; 37:45-54. [PMID: 10931218 DOI: 10.1046/j.1365-2559.2000.00898.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS Reports concerning the expression of cytoplasmic components of the mitogen-activating protein kinase (MAPK) pathway in lung cancer are limited. One of the molecules participating in this pathway is the product of the c-mos proto-oncogene. In vitro investigations, in somatic cells, have shown that c-mos expression has opposing effects on cell cycle progression suggesting that it may represent an important determinant of aberrant cell function. In this study we analysed, by immunohistochemical means, its status in a series of lung carcinomas and correlated the findings with clinicopathological parameters and survival of the patients. METHODS AND RESULTS Sixty cases of lung carcinomas were included in the study. These comprised 52 non-small (NSCLCs) and eight small cell lung carcinomas (SCLCs). Sections from the carcinomas were immunostained with the polyclonal anti-c-mos antibody P-19. Specificity was tested by using the appropriate control peptide and control cell lines. Expression was observed in 63% of the cases, with NSCLCs showing higher reactivity (67%) than SCLCs (37.5%). Staining was observed mainly to the cytoplasm and membranes of the cancerous cells, but some nuclei reacted as well. An intratumour heterogeneous immunoreactivity was noticed. The most interesting and unexpected finding was that c-mos positive staining was associated with better recurrence-free survival in our series, regardless of histological type (P = 0.035). Furthermore, favourable disease-related and recurrence-free survival was observed in the SqC group with c-mos immunoreactivity (P < 0. 001). CONCLUSIONS c-mos proto-oncogene is expressed in a significant proportion of lung carcinomas and may play a role in its development. The fact that its expression is associated with a relatively good prognosis may be indicative of a negative impact on tumour growth.
Collapse
Affiliation(s)
- A Athanasiou
- Department of Histology and Embryology, School of Medicine, University of Athens, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Abstract
We reported previously that inhibition of MAP kinase during meiosis in Urechis caupo eggs caused premature sperm aster formation and we reviewed indirect evidence that the suppression of sperm asters by MAPK during meiosis might be a universal mechanism (M. C. Gould and J. L. Stephano, 1999, Dev. Biol. 216, 348-358). We tested this proposition with oyster (Crassostrea gigas) and starfish (Asterina miniata) eggs, utilizing the MEK inhibitors U0126 and PD98059. Centrosomes, asters, and meiotic spindles were visualized by normal epifluorescence and confocal microscopy following indirect immunocytochemical staining for anti-beta-tubulin. When MAPK activation was inhibited, sperm asters in both species developed prematurely and tended to move toward the egg centrosomes, sometimes even fusing with the egg spindle or centrosomes. Meiotic spindles and polar body formation were also abnormal when MAPK was inhibited.
Collapse
Affiliation(s)
- J L Stephano
- Instituto de Biología Celular y Molecular, Universidad Autónoma de Baja California, Ensenada, Baja California, 22800, Mexico
| | | |
Collapse
|
123
|
Sato K, Tokmakov AA, Fukami Y. Fertilization signalling and protein-tyrosine kinases. Comp Biochem Physiol B Biochem Mol Biol 2000; 126:129-48. [PMID: 10874161 DOI: 10.1016/s0305-0491(00)00192-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fertilization is initiated by species-specific gamete cell recognition, i.e. sperm-egg interaction, followed by a rapid and sustained activation of multiple cellular and biochemical events, collectively called 'egg activation', which is indispensable for successful formation of zygotic nucleus and later embryogenesis. It is well known that sperm-induced egg activation is mediated by a transient release of calcium ions that originates from the sperm entry point and propagates through the entire egg cytoplasm. It is unclear, however, what kind of upstream events prelude to the calcium transient after sperm-egg interaction. Recently, much attention has been paid to the role of protein-tyrosine phosphorylation in egg activation process by a number of studies on some well-established model organisms. These includes marine invertebrates, frogs, and mammals. In this review, we will summarize the recent findings that begin to uncover a 'missing link' between sperm-egg interaction and egg activation with emphasis on the role of egg protein-tyrosine kinases (PTKs) in Xenopus egg fertilization.
Collapse
Affiliation(s)
- K Sato
- Laboratory of Molecular Biology, Biosignal Research Center, Kobe University, Nada, Japan.
| | | | | |
Collapse
|
124
|
Yoshida N, Mita K, Yamashita M. Comparative study of the molecular mechanisms of oocyte maturation in amphibians. Comp Biochem Physiol B Biochem Mol Biol 2000; 126:189-97. [PMID: 10874166 DOI: 10.1016/s0305-0491(00)00197-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Maturation-promoting factor (MPF), a complex of Cdc2 and cyclin B, is the final inducer of oocyte maturation. Its activity is controlled by inhibitory phosphorylation of Cdc2 on Tyr15/Thr14 and activating phosphorylation on Thr161. Full-grown immature oocytes of the African clawed frog Xenopus laevis contain inactive MPF (pre-MPF) that comprises cyclin B-bound Cdc2 phosphorylated on Tyr15/Thr14 and Thr161. The synthesis of Mos, but not cyclin B, after stimulation by the maturation-inducing steroid progesterone, is believed to be necessary for initiating Xenopus oocyte maturation through Tyr15/Thr14 dephosphorylation of pre-MPF. In contrast, amphibians other than Xenopus (and also fishes) employ a different mechanism. Full-grown immature oocytes of these species contain monomeric Cdc2 but not cyclin B. MPF is formed after hormonal stimulation by binding of the newly produced cyclin B to the pre-existing Cdc2 and is immediately activated through Thr161 phosphorylation. Mos/MAP kinase is neither necessary nor sufficient for initiating maturation in fishes and amphibians except for Xenopus. We propose a new model of MPF formation and activation during oocyte maturation that is applicable to all amphibians (as well as fishes), based on a novel concept that pre-MPF is an artificial molecule that is not essential for inducing oocyte maturation.
Collapse
Affiliation(s)
- N Yoshida
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
125
|
Gross SD, Schwab MS, Taieb FE, Lewellyn AL, Qian YW, Maller JL. The critical role of the MAP kinase pathway in meiosis II in Xenopus oocytes is mediated by p90(Rsk). Curr Biol 2000; 10:430-8. [PMID: 10801413 DOI: 10.1016/s0960-9822(00)00425-5] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
BACKGROUND During oocyte maturation in Xenopus, progesterone induces entry into meiosis I, and the M phases of meiosis I and II occur consecutively without an intervening S phase. The mitogen-activated protein (MAP) kinase is activated during meiotic entry, and it has been suggested that the linkage of M phases reflects activation of the MAP kinase pathway and the failure to fully degrade cyclin B during anaphase I. To analyze the function of the MAP kinase pathway in oocyte maturation, we used U0126, a potent inhibitor of MAP kinase kinase, and a constitutively active mutant of the protein kinase p90(Rsk), a MAP kinase target. RESULTS Even with complete inhibition of the MAP kinase pathway by U0126, up to 90% of oocytes were able to enter meiosis I after progesterone treatment, most likely through activation of the phosphatase Cdc25C by the polo-like kinase Plx1. Subsequently, however, U0126-treated oocytes failed to form metaphase I spindles, failed to reaccumulate cyclin B to a high level and failed to hyperphosphorylate Cdc27, a component of the anaphase-promoting complex (APC) that controls cyclin B degradation. Such oocytes entered S phase rather than meiosis II. U0126-treated oocytes expressing a constitutively active form of p90(Rsk) were able to reaccumulate cyclin B, hyperphosphorylate Cdc27 and form metaphase spindles in the absence of detectable MAP kinase activity. CONCLUSIONS The MAP kinase pathway is not essential for entry into meiosis I in Xenopus but is required during the onset of meiosis II to suppress entry into S phase, to regulate the APC so as to support cyclin B accumulation, and to support spindle formation. Moreover, one substrate of MAP kinase, p90(Rsk), is sufficient to mediate these effects during oocyte maturation.
Collapse
Affiliation(s)
- S D Gross
- Department of Pharmacology, Howard Hughes Medical Institute, University of Colorado School of Medicine, Denver, CO 80262-0236, USA
| | | | | | | | | | | |
Collapse
|
126
|
Fisher DL, Mandart E, Dorée M. Hsp90 is required for c-Mos activation and biphasic MAP kinase activation in Xenopus oocytes. EMBO J 2000; 19:1516-24. [PMID: 10747020 PMCID: PMC310221 DOI: 10.1093/emboj/19.7.1516] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
During Xenopus oocyte maturation, the Mos protein kinase is synthesized and activates the MAP kinase cascade. In this report, we demonstrate that the synthesis and activation of Mos are two separable processes. We find that Hsp90 function is required for activation and phosphorylation of Mos and full activation of the MAP kinase cascade. Once Mos is activated, Hsp90 function is no longer required. We show that Mos interacts with both Hsp90 and Hsp70, and that there is an inverse relationship between association of Mos with these two chaperones. We propose that Mos protein kinase is activated by a novel mechanism involving sequential association with Hsp70 and Hsp90 as well as phosphorylation. We also present evidence for a two-phase activation of MAP kinase in Xenopus oocytes.
Collapse
Affiliation(s)
- D L Fisher
- CNRS-CRBM, 1919 Route de Mende, 34293 Montpellier, Cedex 05, France
| | | | | |
Collapse
|
127
|
Alberio R, Kubelka M, Zakhartchenko V, Hajdúch M, Wolf E, Motlik J. Activation of bovine oocytes by specific inhibition of cyclin-dependent kinases. Mol Reprod Dev 2000; 55:422-32. [PMID: 10694750 DOI: 10.1002/(sici)1098-2795(200004)55:4<422::aid-mrd10>3.0.co;2-c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Activation of bovine oocytes by experimental procedures that closely mimic normal fertilization and allow to obtain haploid oocytes is essential both for intracytoplasmic sperm injection (ICSI) and for nuclear transfer. Therefore, with the goal of producing haploid activated oocytes, this study evaluated whether bohemine, either alone or in combination with ionomycin, is able to activate young matured bovine oocytes. Furthermore, the effect of bohemine on the patterns of DNA synthesis after pronuclear formation as well as changes in histone H1 kinase and MAP kinase activities during the process of activation were studied. Our results with bohemine show that the specific inhibition of CDKs in metaphase II bovine oocytes induces parthenogenetic activation in a dose-dependent manner (25, 50, and 100 microM, respectively), either alone (3%, 30%, and 50%) or in combination with ionomycin (30%, 70%, and 87.5%). A single pronucleus and extrusion of the second polar body was observed (97%) when Ca(2+) influx was stimulated in the presence of bohemine, although pronuclear formation without polar body extrusion was observed when bohemine was used alone. Bohemine-activated oocytes started to synthesize DNA in the first hour (37%) after their removal from bohemine-supplemented medium (6-7 hr post-activation; hpa). A high synchrony in the S-phase was registered with more than 85% of parthenotes actively synthesizing DNA 8 hpa. By contrast, DNA synthesis was absent in oocytes cultured for 4, 6, and 8 hpa in the presence of bohemine and a low rate was observed by those cultured for 18 hr (30%) in bohemine-supplemented medium. This confirms the ability of the inhibitor to arrest the cell cycle in the G1/S boundary for at least 8 hr. A drop in histone H1 kinase activity was observed in bohemine-activated oocytes. The activity of MBP kinase decreased later than histone H1 kinase and even 4 hr after inomycin-bohemine treatment at least half of this activity was still detectable. Then, the MBP kinase activity decreased and the lowest level could be seen 6-8 hpa. In summary, our study shows that in vitro matured bovine oocytes can be successfully activated by a synthetic inhibitor of CDKs. This effect can be improved by combination with ionomycin. The targeting of CDKs in the way to activate bovine oocytes can be an approach to improve the efficiency of mammalian oocyte activation.
Collapse
Affiliation(s)
- R Alberio
- Department of Molecular Animal Breeding and Genetics, University of Munich, Oberschleissheim, Germany.
| | | | | | | | | | | |
Collapse
|
128
|
Frank-Vaillant M, Haccard O, Thibier C, Ozon R, Arlot-Bonnemains Y, Prigent C, Jessus C. Progesterone regulates the accumulation and the activation of Eg2 kinase in Xenopus oocytes. J Cell Sci 2000; 113 ( Pt 7):1127-38. [PMID: 10704364 DOI: 10.1242/jcs.113.7.1127] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xenopus prophase oocytes reenter meiotic division in response to progesterone. The signaling pathway leading to Cdc2 activation depends on neosynthesized proteins and a decrease in PKA activity. We demonstrate that Eg2 protein, a Xenopus member of the Aurora/Ipl1 family of protein kinases, accumulates in response to progesterone and is degraded after parthenogenetic activation. The polyadenylation and cap ribose methylation of Eg2 mRNA are not needed for the protein accumulation. Eg2 protein accumulation is induced by progesterone through a decrease in PKA activity, upstream of Cdc2 activation. Eg2 kinase activity is undetectable in prophase and is raised in parallel with Cdc2 activation. In contrast to Eg2 protein accumulation, Eg2 kinase activation is under Cdc2 control. Furthermore, by using an anti-sense strategy, we show that Eg2 accumulation is not required in the transduction pathway leading to Cdc2 activation. Altogether, our results strongly suggest that Eg2 is not necessary for Cdc2 activation, though it could participate in the organization of the meiotic spindles, in agreement with the well-conserved roles of the members of the Aurora family, from yeast to man.
Collapse
Affiliation(s)
- M Frank-Vaillant
- Laboratoire de Physiologie de la Reproduction, INRA/ESA-CNRS 7080, Université Pierre et Marie Curie, boîte 13, 75252 Paris Cédex 05, France
| | | | | | | | | | | | | |
Collapse
|
129
|
Chen B, Harms E, Chu T, Henrion G, Strickland S. Completion of meiosis in Drosophila oocytes requires transcriptional control by grauzone, a new zinc finger protein. Development 2000; 127:1243-51. [PMID: 10683177 DOI: 10.1242/dev.127.6.1243] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutations in grauzone or cortex cause abnormal arrest in Drosophila female meiosis. We cloned grauzone and identified it as a C2H2-type zinc finger transcription factor. The grauzone transcript is present in ovaries and at later developmental stages. A Grauzone-GFP fusion protein is functional and localizes to nuclei of both nurse cells and follicle cells during oogenesis. Three lines of evidence indicate that grauzone and cortex interact: reducing cortex function enhanced the grauzone mutant phenotype; cortex transcript abundance is reduced in the absence of grauzone function and Grauzone protein binds to the cortex promoter. These results demonstrate that activation of cortex transcription by grauzone is necessary for the completion of meiosis in Drosophila oocytes, and establish a new pathway that specifically regulates the female meiotic cell cycle.
Collapse
Affiliation(s)
- B Chen
- Department of Pharmacology, Programs in Genetics and Molecular & Cellular Biology, University at Stony Brook, Stony Brook, NY 11794-8651, USA
| | | | | | | | | |
Collapse
|
130
|
Tsai MY, Chang SY, Lo HY, Chen IH, Huang FJ, Kung FT, Lu YJ. The expression of DAZL1 in the ovary of the human female fetus. Fertil Steril 2000; 73:627-30. [PMID: 10689024 DOI: 10.1016/s0015-0282(99)00544-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVE To determine whether DAZL1 is expressed in human fetal ovarian tissue. DESIGN The presence of DAZL1 expression was determined by reverse transcriptase polymerase chain reaction (RT-PCR). SETTING Academic tertiary care medical center and research unit of university. PATIENT(S) Five female abortuses between the 19th and 22nd week of gestational age. INTERVENTION(S) Fetal ovarian tissues were collected immediately after the cessation of the heart beat. MAIN OUTCOME MEASURE(S) The product of RT-PCR. RESULT(S) DAZL1 expression was detected in all five samples. CONCLUSION(S) DAZL1 is not only expressed in human testes but also in ovaries. It may play a role in germ cell survival and gonad development in both sexes.
Collapse
Affiliation(s)
- M Y Tsai
- Kaohsiung Chang-Gung Memorial Hospital, Kaohsiung County, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
131
|
Nakajo N, Yoshitome S, Iwashita J, Iida M, Uto K, Ueno S, Okamoto K, Sagata N. Absence of Wee1 ensures the meiotic cell cycle in Xenopus oocytes. Genes Dev 2000. [DOI: 10.1101/gad.14.3.328] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Meiotic cells undergo two successive divisions without an intervening S phase. However, the mechanism of S-phase omission between the two meiotic divisions is largely unknown. Here we show that Wee1, a universal mitotic inhibitor, is absent in immature (but not mature)Xenopus oocytes, being down-regulated specifically during oogenesis; this down-regulation is most likely due to a translational repression. Even the modest ectopic expression of Wee1 in immature (meiosis I) oocytes can induce interphase nucleus reformation and DNA replication just after meiosis I. Thus, the presence of Wee1 during meiosis I converts the meiotic cell cycle into a mitotic-like cell cycle having S phase. In contrast, Myt1, a Wee1-related kinase, is present and directly involved in G2 arrest of immature oocytes, but its ectopic expression has little effect on the meiotic cell cycle. These results strongly indicate that the absence of Wee1 in meiosis I ensures the meiotic cell cycle in Xenopus oocytes. Based on these results and the data published previously in other organisms, we suggest that absence of Wee1 may be a well-conserved mechanism for omitting interphase or S phase between the two meiotic divisions.
Collapse
|
132
|
Saavedra HI, Fukasawa K, Conn CW, Stambrook PJ. MAPK mediates RAS-induced chromosome instability. J Biol Chem 1999; 274:38083-90. [PMID: 10608877 DOI: 10.1074/jbc.274.53.38083] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The generation of micronuclei is a reflection of DNA damage, defective mitosis, and loss of genetic material. The involvement of the MAPK pathway in mediating v-ras-induced micronuclei in NIH 3T3 cells was examined by inhibiting MAPK activation. Conversely, the MAPK pathway was constitutively activated by infecting cells with a v-mos retrovirus. Micronucleus formation was inhibited by the MAPK kinase inhibitors PD98059 and U0126, but not by wortmannin, an inhibitor of the Ras/phosphatidylinositol 3-kinase pathway. Transduction of cells with v-mos resulted in an increase in micronucleus formation, also consistent with the involvement of the MAPK pathway. Staining with the anti-centromeric CREST antibody revealed that instability induced by constitutive activation of MAPK is due predominantly to aberrant mitotic segregation, since most of the micronuclei were CREST-positive, reflective of lost chromosomes. A significant fraction of the micronuclei were CREST-negative, reflective of lost acentric chromosome fragments. Some of the instability observed was due to mitotic events, consistent with the increased formation of bi-nucleated cells, which result from perturbations of the mitotic spindle and failure to undergo cytokinesis. This chromosome instability, therefore, is a consequence of mitotic aberrations, mediated by the MAPK pathway, including centrosome amplification and formation of mitotic chromosome bridges.
Collapse
Affiliation(s)
- H I Saavedra
- Department of Cell Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0521, USA
| | | | | | | |
Collapse
|
133
|
Lin HB, Jurk M, Gulick T, Cooper GM. Identification of COUP-TF as a transcriptional repressor of the c-mos proto-oncogene. J Biol Chem 1999; 274:36796-800. [PMID: 10593989 DOI: 10.1074/jbc.274.51.36796] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The c-mos proto-oncogene is specifically expressed in the male and female germ cells of the mouse and other vertebrates. We previously identified a 15-base pair sequence element (B2) as the binding site of a candidate repressor of c-mos transcription in somatic cells. In the present study, we used the yeast one-hybrid system to isolate HeLa cell cDNAs encoding proteins that specifically bound to the c-mos B2 element. Nucleotide sequencing identified several of the clones isolated in this screen as the orphan nuclear receptors COUP-TFI and COUP-TFII. A COUP-TF-binding site was then identified within the B2 sequence. Complexes formed between purified COUP-TFs and the c-mos B2 probe comigrated in electrophoretic mobility shift assays with those formed using whole nuclear extracts of NIH 3T3 or HeLa cells. Moreover, the complexes formed with NIH 3T3 nuclear extracts and B2 probe were supershifted with antibody against COUP-TF, identifying COUP-TF as the candidate repressor previously detected in these somatic cell extracts. Substitution of a consensus COUP-TF-binding site for the c-mos negative regulatory element suppressed expression from the c-mos promoter in transfected somatic cells, demonstrating the functional activity of COUP-TF as a repressor of c-mos transcription.
Collapse
Affiliation(s)
- H B Lin
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
134
|
Abstract
Although MAP kinase is an important regulatory enzyme in many somatic cells, almost nothing is known about its functions during meiosis, except in frog and mouse oocytes. We investigated MAPK activation and function in oocytes of the marine worm Urechis caupo that are fertilized at meiotic prophase. Activity was first detected at 4-6 min after fertilization in immunoblots with anti-active MAPK, prior to germinal vesicle breakdown (GVBD). MAPK activation did not require new protein synthesis and was dependent on the increases in both intracellular pH and intracellular Ca(2+) that normally occur during activation. When MAPK activation was inhibited with PD98059 or U0126, GVBD still occurred, but meiosis was abnormal and there was a dramatic premature enlargement of sperm asters, which normally do not appear until second polar body formation. Failure of polar body formation and premature sperm aster enlargement also occurred when MAPK activation was inhibited by an entirely different treatment which involved lowering the pH of external seawater to interrupt the normal cytoplasmic pH increase. Thus, in Urechis, active MAPK appears to be required for (1) normal meiotic divisions and (2) suppressing the paternal centrosome until after the egg completes meiosis, a general phenomenon whose mechanism has been unknown.
Collapse
Affiliation(s)
- M C Gould
- Facultad de Ciencias, Universidad Autónoma de Baja California, Ensenada, B.C., 22800, Mexico
| | | |
Collapse
|
135
|
Stebbins-Boaz B, Cao Q, de Moor CH, Mendez R, Richter JD. Maskin is a CPEB-associated factor that transiently interacts with elF-4E. Mol Cell 1999; 4:1017-27. [PMID: 10635326 DOI: 10.1016/s1097-2765(00)80230-0] [Citation(s) in RCA: 285] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In Xenopus, the CPE is a bifunctional 3' UTR sequence that maintains maternal mRNA in a dormant state in oocytes and activates polyadenylation-induced translation during oocyte maturation. Here, we report that CPEB, which binds the CPE and stimulates polyadenylation, interacts with a new factor we term maskin. Maskin contains a peptide sequence that is conserved among elF-4E-binding proteins. Affinity chromatography demonstrates that CPEB, maskin, and elF-4E reside in a complex in oocytes, and yeast two-hybrid analyses indicate that CPEB and maskin bind directly, as do maskin and elF-4E. While CPEB and maskin remain together during oocyte maturation, the maskin-elF-4E interaction is substantially reduced. The dissolution of this complex may result in the binding of elF-4E to elF-4G and the translational activation of CPE-containing mRNAs.
Collapse
Affiliation(s)
- B Stebbins-Boaz
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester 01655, USA
| | | | | | | | | |
Collapse
|
136
|
Sette C, Barchi M, Bianchini A, Conti M, Rossi P, Geremia R. Activation of the mitogen-activated protein kinase ERK1 during meiotic progression of mouse pachytene spermatocytes. J Biol Chem 1999; 274:33571-9. [PMID: 10559244 DOI: 10.1074/jbc.274.47.33571] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Okadaic acid (OA) causes meiotic progression and chromosome condensation in cultured pachytene spermatocytes and an increase in maturation promoting factor (cyclin B1/cdc2 kinase) activity, as evaluated by H1 phosphorylative activity in anti-cyclin B1 immunoprecipitates. OA also induces a strong increase of phosphorylative activity toward the mitogen-activated protein kinase substrate myelin basic protein (MBP). Immunoprecipitation experiments with anti-extracellular signal-regulated kinase 1 (ERK1) or anti-ERK2 antibodies followed by MBP kinase assays, and direct in-gel kinase assays for MBP, show that p44/ERK1 but not p42/ERK2 is stimulated in OA-treated spermatocytes. OA treatment stimulates phosphorylation of ERK1, but not of ERK2, on a tyrosine residue involved in activation of the enzyme. ERK1 immunoprecipitated from extracts of OA-stimulated spermatocytes induces a stimulation of H1 kinase activity in extracts from control pachytene spermatocytes, whereas immunoprecipitated ERK2 is uneffective. We also show that natural G(2)/M transition in spermatocytes is associated to intracellular redistribution of ERKs, and their association with microtubules of the metaphase spindle. Preincubation of cultured pachytene spermatocytes with PD98059 (a selective inhibitor of ERK-activating kinases MEK1/2) completely blocks the ability of OA to induce chromosome condensation and progression to meiotic metaphases. These results suggest that ERK1 is specifically activated during G(2)/M transition in mouse spermatocytes, that it contributes to the mechanisms of maturation promoting factor activation, and that it is essential for chromosome condensation associated with progression to meiotic metaphases.
Collapse
Affiliation(s)
- C Sette
- Dipartimento di Sanità Pubblica e Biologia Cellulare, Sezione di Anatomia, Università di Roma "Tor Vergata," Via O. Raimondo 8, 00173, Rome, Italy
| | | | | | | | | | | |
Collapse
|
137
|
Abstract
Persistent activation of p42 mitogen-activated protein kinase (p42 MAPK) during mitosis induces a "cytostatic factor" arrest, the arrest responsible for preventing the parthenogenetic activation of unfertilized eggs. The protein kinase p90 Rsk is a substrate of p42 MAPK; thus, the role of p90 Rsk in p42 MAPK-induced mitotic arrest was examined. Xenopus laevis egg extracts immunodepleted of Rsk lost their capacity to undergo mitotic arrest in response to activation of the Mos-MEK-1-p42 MAPK cascade of protein kinases. Replenishing Rsk-depleted extracts with catalytically competent Rsk protein restored the ability of the extracts to undergo mitotic arrest. Rsk appears to be essential for cytostatic factor arrest.
Collapse
Affiliation(s)
- R R Bhatt
- Department of Molecular Pharmacology, Stanford University School of Medicine, Stanford, CA 94305-5332, USA
| | | |
Collapse
|
138
|
|
139
|
Abstract
Fully grown Xenopus oocytes can remain in their immature state essentially indefinitely, or, in response to the steroid hormone progesterone, can be induced to develop into fertilizable eggs. This process is termed oocyte maturation. Oocyte maturation is initiated by a novel plasma membrane steroid hormone receptor. Progesterone brings about inhibition of adenylate cyclase and activation of the Mos/MEK1/p42 MAP kinase cascade, which ultimately brings about the activation of the universal M phase trigger Cdc2/cyclin B. Oocyte maturation provides an interesting example of how signaling cascades entrain the cell cycle clock to environmental changes.
Collapse
Affiliation(s)
- J E Ferrell
- Department of Molecular Pharmacology, Stanford University School of Medicine, Stanford, California 94305-5332, USA.
| |
Collapse
|
140
|
Abstract
Although maturation or M-phase-promoting factor (MPF) was originally identified as a cytoplasmic activity responsible for induction of maturation or meiosis reinitiation in oocytes, MPF is now thought to be the universal trigger of G2/M-phase transition in all eukaryotic cells, and its activity is ascribed to cyclin B. Cdc2 kinase. Here, the activation process of cyclin B. Cdc2 at meiosis reinitiation in starfish oocytes is compared with that at G2/M-phase transition in mitotic somatic cells. Based on this comparison, the role of cyclin B. Cdc2 in the original cytoplasmic MPF activity is reexamined.
Collapse
Affiliation(s)
- T Kishimoto
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta 4259, Yokohama, Midoriku, 226-8501, Japan.
| |
Collapse
|
141
|
Wright JH, Munar E, Jameson DR, Andreassen PR, Margolis RL, Seger R, Krebs EG. Mitogen-activated protein kinase kinase activity is required for the G(2)/M transition of the cell cycle in mammalian fibroblasts. Proc Natl Acad Sci U S A 1999; 96:11335-40. [PMID: 10500177 PMCID: PMC18034 DOI: 10.1073/pnas.96.20.11335] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/1999] [Indexed: 12/31/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) cascade is required for mitogenesis in somatic mammalian cells and is activated by a wide variety of oncogenic stimuli. Specific roles for this signaling module in growth were dissected by inhibiting MAPK kinase 1 (MAPKK1) activity in highly synchronized NIH 3T3 cells. In addition to the known role of this kinase in cell-cycle entry from G(0), the level of MAPKK activity was observed to affect the kinetics of progression through both the G(1) and G(2) phases of the cell cycle in NIH 3T3 cells. Ectopic expression of dominant-negative forms of MAPKK1, which was previously shown to inhibit G(0)/G(1) progression, was found to also delay progression of cells through G(2). In addition, treatment of cells with the specific MAPKK inhibitor PD 98059 during a synchronous S phase arrested the cells in the following G(2) phase. These data demonstrate a novel role for the MAPK cascade in progression from G(2) into mitosis in NIH 3T3 cells.
Collapse
Affiliation(s)
- J H Wright
- Department of Pharmacology, University of Washington, Seattle, WA 98103, USA.
| | | | | | | | | | | | | |
Collapse
|
142
|
|
143
|
Stojkovic M, Motlik J, Kölle S, Zakhartchenko V, Alberio R, Sinowatz F, Wolf E. Cell-Cycle Control and Oocyte Maturation: Review of Literature. Reprod Domest Anim 1999. [DOI: 10.1111/j.1439-0531.1999.tb01261.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
144
|
Ohan N, Agazie Y, Cummings C, Booth R, Bayaa M, Liu XJ. RHO-associated protein kinase alpha potentiates insulin-induced MAP kinase activation in Xenopus oocytes. J Cell Sci 1999; 112 ( Pt 13):2177-84. [PMID: 10362547 DOI: 10.1242/jcs.112.13.2177] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently identified Xenopus Rho-associated protein kinase alpha (xROKalpha) as a Xenopus insulin receptor substrate-1 binding protein and demonstrated that the non-catalytic carboxyl terminus of xROKalpha binds Xenopus insulin receptor substrate-1 and blocks insulin-induced MAP kinase activation and germinal vesicle breakdown in Xenopus oocytes. In the current study we further examined the role of xROKalpha in insulin signal transduction in Xenopus oocytes. We demonstrate that injection of mRNA encoding the xROKalpha kinase domain or full length xROKalpha enhanced insulin-induced MAP kinase activation and germinal vesicle breakdown. In contrast, injection of a kinase-dead mutant of xROKalpha or pre-incubation of oocytes with an xROKalpha inhibitor significantly reduced insulin-induced MAP kinase activation. To further dissect the mechanism by which xROKalpha may participate in insulin signalling, we explored a potential function of xROKalpha in regulating cellular Ras function, since insulin-induced MAP kinase activation and germinal vesicle breakdown is known to be a Ras-dependent process. We demonstrate that whereas injection of mRNA encoding c-H-Ras alone induced xMAP kinase activation and GVBD in a very low percentage (about 10%) of injected oocytes, co-injection of mRNA encoding xROKalpha and c-H-Ras induced xMAP kinase activation and germinal vesicle breakdown in a significantly higher percentage (50-60%) of injected oocytes. These results suggest a novel function for xROKalpha in insulin signal transduction upstream of cellular Ras function.
Collapse
Affiliation(s)
- N Ohan
- Loeb Health Research Institute, Ottawa Hospital, Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, K1Y 4E9, Canada
| | | | | | | | | | | |
Collapse
|
145
|
Jouannic S, Hamal A, Leprince AS, Tregear JW, Kreis M, Henry Y. Plant MAP kinase kinase kinases structure, classification and evolution. Gene X 1999; 233:1-11. [PMID: 10375615 DOI: 10.1016/s0378-1119(99)00152-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
The increasing number of reports describing plant MAP kinase signalling components reflects the cardinal role that MAP kinase pathways are likely to play during plant growth and development. Relationship and structural analyses of plant MAP kinase kinase kinase related cDNAs and genes established, on one hand, the PMEKKs, which may be distinguished into the alpha, beta, gamma, and zeta groups, and, on the other hand, the PRAFs that consist of the delta, eta and theta groups. Plant MAP3Ks are characterized by different primary structures, but conserved within a single group. A relationship analysis, which included animal, fungal and plant MAP3Ks, revealed a high degree of diversity among this biochemically established set of proteins, thus suggesting a range of biological functions. Four major families emerged, namely the MEKK/STE11, including the PMEKKs, the RAF, including the PRAFs, as well as the MLK and CDC7 families. These four families showed phylum-dependent distributions. Signature sequences characterizing the RAF family and the RAF subfamilies have been evidenced. However, no equivalent sequence motifs were identified for the MEKK/STE11 family, which is highly heterogeneous.
Collapse
Affiliation(s)
- S Jouannic
- Institut de Biotechnologie des Plantes (IBP), Laboratoire de Biologie du Développement des Plantes, Bâtiment 630, UMR 6818, Université de Paris-Sud, F-91405, Orsay Cedex, France
| | | | | | | | | | | |
Collapse
|
146
|
Abstract
Maternal mRNA translation is regulated in large part by cytoplasmic polyadenylation. This process, which occurs in both vertebrates and invertebrates, is essential for meiosis and body patterning. In spite of the evolutionary conservation of cytoplasmic polyadenylation, many of the cis elements and trans-acting factors appear to have some species specificity. With the recent isolation and cloning of factors involved in both poly(A) elongation and deadenylation, the underlying biochemistry of these reactions is beginning to be elucidated. In addition to early development, cytoplasmic polyadenylation is now known to occur in the adult brain, and there is circumstantial evidence that this process occurs at synapses, where it could mediate the long-lasting phase of long-term potentiation, which is probably the basis of learning and memory. Finally, there may be multiple mechanisms by which polyadenylation promotes translation. Important questions yet to be answered in the field of cytoplasmic polyadenylation are addressed.
Collapse
Affiliation(s)
- J D Richter
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA.
| |
Collapse
|
147
|
Huang CY, Chang CP, Huang CL, Ferrell JE. M phase phosphorylation of cytoplasmic dynein intermediate chain and p150(Glued). J Biol Chem 1999; 274:14262-9. [PMID: 10318847 DOI: 10.1074/jbc.274.20.14262] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To understand how the dramatic cell biological changes of oocyte maturation are brought about, we have begun to identify proteins whose phosphorylation state changes during Xenopus oocyte maturation. Here we have focused on one such protein, p83. We partially purified p83, obtained peptide sequence, and identified it as the intermediate chain of cytoplasmic dynein. During oocyte maturation, dynein intermediate chain became hyperphosphorylated at the time of germinal vesicle breakdown and remained hyperphosphorylated throughout the rest of meiosis and early embryogenesis. p150(Glued), a subunit of dynactin that has been shown to bind to dynein intermediate chain, underwent similar changes in its phosphorylation. Both dynein intermediate chain and p150(Glued) also became hyperphosphorylated during M phase in XTC-2 cells and HeLa cells. Thus, two components of the dynein-dynactin complex undergo coordinated phosphorylation changes at two G2/M transitions (maturation in oocytes and mitosis in cells in culture) but remain constitutively in their M phase forms during early embryogenesis. Dynein intermediate chain and p150(Glued) phosphorylation may positively regulate mitotic processes, such as spindle assembly or orientation, or negatively regulate interphase processes such as minus-end-directed organelle trafficking.
Collapse
Affiliation(s)
- C Y Huang
- Department of Molecular Pharmacology, Stanford University School of Medicine, Stanford, California 94305-5332, USA
| | | | | | | |
Collapse
|
148
|
Katsu Y, Minshall N, Nagahama Y, Standart N. Ca2+ is required for phosphorylation of clam p82/CPEB in vitro: implications for dual and independent roles of MAP and Cdc2 kinases. Dev Biol 1999; 209:186-99. [PMID: 10208752 DOI: 10.1006/dbio.1999.9247] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During early development gene expression is controlled principally at the translational level. Oocytes of the surf clam Spisula solidissima contain large stockpiles of maternal mRNAs which are translationally dormant or masked until meiotic maturation. Fertilisation of the oocyte leads to rapid polysomal recruitment of the abundant cyclin and ribonucleotide reductase mRNAs at about the time they undergo cytoplasmic polyadenylation. Clam p82, a 3' UTR RNA-binding protein, and a member of the CPEB (cytoplasmic polyadenylation element binding protein) family, functions as a translational masking factor in oocytes and as a polyadenylation factor in fertilised eggs. In meiotically maturing clam oocytes, p82/CPEB is rapidly phosphorylated on multiple residues to a 92-kDa apparent size, prior to its degradation during the first cell cleavage. Here we examine the protein kinase(s) that phosphorylates clam p82/CPEB using a clam oocyte activation cell-free system that responds to elevated pH, mirroring the pH rise that accompanies fertilisation. We show that p82/CPEB phosphorylation requires Ca2+ (<100 microM) in addition to raised pH. Examination of the calcium dependency combined with the use of specific inhibitors implicates the combined and independent actions of cdc2 and MAP kinases in p82/CPEB phosphorylation. Calcium is necessary for both the activation and the maintenance of MAP kinase, whose activity is transient in vitro, as in vivo. While cdc2 kinase plays a role in the maintenance of MAP kinase activity, it is not required for the activation of MAP kinase. We propose a model of clam p82/CPEB phosphorylation in which MAP kinase initially phosphorylates clam p82/CPEB, at a minor subset of sites that does not alter its migration, and cdc2 kinase is necessary for the second wave of phosphorylation that results in the large mobility size shift of clam p82/CPEB. The possible roles of phosphorylation for the function and regulation of p82/CPEB are discussed.
Collapse
Affiliation(s)
- Y Katsu
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, England
| | | | | | | |
Collapse
|
149
|
Lenormand JL, Dellinger RW, Knudsen KE, Subramani S, Donoghue DJ. Speedy: a novel cell cycle regulator of the G2/M transition. EMBO J 1999; 18:1869-77. [PMID: 10202150 PMCID: PMC1171272 DOI: 10.1093/emboj/18.7.1869] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Stage VI Xenopus oocytes are suspended at the G2/M transition of meiosis I, and represent an excellent system for the identification and examination of cell cycle regulatory proteins. Essential cell cycle regulators such as MAPK, cyclins and mos have the ability to induce oocyte maturation, causing the resumption of the cell cycle from its arrested state. We have identified the product of a novel Xenopus gene, Speedy or Spy1, which is able to induce rapid maturation of Xenopus oocytes, resulting in the induction of germinal vesicle breakdown (GVBD) and activation of M-phasepromoting factor (MPF). Spy1 activates the MAPK pathway in oocytes, and its ability to induce maturation is dependent upon this pathway. Spy1-induced maturation occurs much more rapidly than maturation induced by other cell cycle regulators including progesterone, mos or Ras, and does not require any of these proteins or hormones, indicating that Spy1-induced maturation proceeds through a novel regulatory pathway. In addition, we have shown that Spy1 physically interacts with cdk2, and prematurely activates cdk2 kinase activity. Spy1 therefore represents a novel cell cycle regulatory protein, inducing maturation through the activation of MAPK and MPF, and also leading to the premature activation of cdk2.
Collapse
Affiliation(s)
- J L Lenormand
- Department of Chemistry and Biochemistry, Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093-0367, USA
| | | | | | | | | |
Collapse
|
150
|
Schwab MS, Kim SH, Terada N, Edfjäll C, Kozma SC, Thomas G, Maller JL. p70(S6K) controls selective mRNA translation during oocyte maturation and early embryogenesis in Xenopus laevis. Mol Cell Biol 1999; 19:2485-94. [PMID: 10082514 PMCID: PMC84041 DOI: 10.1128/mcb.19.4.2485] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/1998] [Accepted: 12/28/1998] [Indexed: 11/20/2022] Open
Abstract
In mammalian cells, p70(S6K) plays a key role in translational control of cell proliferation in response to growth factors. Because of the reliance on translational control in early vertebrate development, we cloned a Xenopus homolog of p70(S6K) and investigated the activity profile of p70(S6K) during Xenopus oocyte maturation and early embryogenesis. p70(S6K) activity is high in resting oocytes and decreases to background levels upon stimulation of maturation with progesterone. During embryonic development, three peaks of activity were observed: immediately after fertilization, shortly before the midblastula transition, and during gastrulation. Rapamycin, an inhibitor of p70(S6K) activation, caused oocytes to undergo germinal vesicle breakdown earlier than control oocytes, and sensitivity to progesterone was increased. Injection of a rapamycin-insensitive, constitutively active mutant of p70(S6K) reversed the effects of rapamycin. However, increases in S6 phosphorylation were not significantly affected by rapamycin during maturation. mos mRNA, which does not contain a 5'-terminal oligopyrimidine tract (5'-TOP), was translated earlier, and a larger amount of Mos protein was produced in rapamycin-treated oocytes. In fertilized eggs rapamycin treatment increased the translation of the Cdc25A phosphatase, which lacks a 5'-TOP. Translation assays in vivo using both DNA and RNA reporter constructs with the 5'-TOP from elongation factor 2 showed decreased translational activity with rapamycin, whereas constructs without a 5'-TOP or with an internal ribosome entry site were translated more efficiently upon rapamycin treatment. These results suggest that changes in p70(S6K) activity during oocyte maturation and early embryogenesis selectively alter the translational capacity available for mRNAs lacking a 5'-TOP region.
Collapse
Affiliation(s)
- M S Schwab
- Howard Hughes Medical Institute and Department of Pharmacology, University of Colorado School of Medicine, Denver, Colorado 80262, USA
| | | | | | | | | | | | | |
Collapse
|