101
|
Liang H, Chen A, Lai X, Liu J, Wu J, Kang Y, Wang X, Shao L. Neuroinflammation is induced by tongue-instilled ZnO nanoparticles via the Ca 2+-dependent NF-κB and MAPK pathways. Part Fibre Toxicol 2018; 15:39. [PMID: 30340606 PMCID: PMC6194560 DOI: 10.1186/s12989-018-0274-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 09/05/2018] [Indexed: 12/29/2022] Open
Abstract
Background The extensive biological applications of zinc oxide nanoparticles (ZnO NPs) in stomatology have created serious concerns about their biotoxicity. In our previous study, ZnO NPs were confirmed to transfer to the central nervous system (CNS) via the taste nerve pathway and cause neurodegeneration after 30 days of tongue instillation. However, the potential adverse effects on the brain caused by tongue-instilled ZnO NPs are not fully known. Methods In this study, the biodistribution of Zn, cerebral histopathology and inflammatory responses were analysed after 30 days of ZnO NPs tongue instillation. Moreover, the molecular mechanisms underlying neuroinflammation in vivo were further elucidated by treating BV2 and PC12 cells with ZnO NPs in vitro. Results This analysis indicated that ZnO NPs can transfer into the CNS, activate glial cells and cause neuroinflammation after tongue instillation. Furthermore, exposure to ZnO NPs led to a reduction in cell viability and induction of inflammatory response and calcium influx in BV2 and PC12 cells. The mechanism underlying how ZnO NPs induce neuroinflammation via the Ca2+-dependent NF-κB, ERK and p38 activation pathways was verified at the cytological level. Conclusion This study provided a new way how NPs, such as ZnO NPs, induce neuroinflammation via the taste nerve translocation pathway, a new mechanism for ZnO NPs-induced neuroinflammation and a new direction for nanomaterial toxicity analysis. Electronic supplementary material The online version of this article (10.1186/s12989-018-0274-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huimin Liang
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China
| | - Aijie Chen
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xuan Lai
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jia Liu
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Junrong Wu
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yiyuan Kang
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xinying Wang
- Zhujiang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Longquan Shao
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China.
| |
Collapse
|
102
|
Aguilera G, Colín-González AL, Rangel-López E, Chavarría A, Santamaría A. Redox Signaling, Neuroinflammation, and Neurodegeneration. Antioxid Redox Signal 2018; 28:1626-1651. [PMID: 28467722 DOI: 10.1089/ars.2017.7099] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Production of pro-inflammatory and anti-inflammatory cytokines is part of the defense system that mostly microglia and macrophages display to induce normal signaling to counteract the deleterious actions of invading pathogens in the brain. Also, redox activity in the central nervous system (CNS) constitutes an integral part of the metabolic processes needed by cells to exert their normal molecular and biochemical functions. Under normal conditions, the formation of reactive oxygen and nitrogen species, and the following oxidative activity encounter a healthy balance with immunological responses to preserve cell functions in the brain. However, under different pathological conditions, inflammatory responses recruit pro-oxidant signals and vice versa. The aim of this article is to review the basic concepts about the triggering of inflammatory and oxidative responses in the CNS. Recent Advances: Diverse concurrent toxic pathways are described to provide a solid mechanistic scope for considering intervention at the experimental and clinical levels that are aimed at diminishing the harmful actions of these two contributing factors to nerve cell damage. Critical Issues and Future Directions: The main conclusion supports the existence of a narrow cross-talk between pro-inflammatory and oxidative signals that can lead to neuronal damage and subsequent neurodegeneration. Further investigation about critical pathways crosslinking oxidative stress and inflammation will strength our knowlegde on this topic. Antioxid. Redox Signal. 28, 1626-1651.
Collapse
Affiliation(s)
- Gabriela Aguilera
- 1 Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía , Mexico City, Mexico
| | - Ana Laura Colín-González
- 1 Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía , Mexico City, Mexico
| | - Edgar Rangel-López
- 1 Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía , Mexico City, Mexico
| | - Anahí Chavarría
- 2 Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México , Mexico City, Mexico
| | - Abel Santamaría
- 1 Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía , Mexico City, Mexico
| |
Collapse
|
103
|
Gargouri B, Yousif NM, Bouchard M, Fetoui H, Fiebich BL. Inflammatory and cytotoxic effects of bifenthrin in primary microglia and organotypic hippocampal slice cultures. J Neuroinflammation 2018; 15:159. [PMID: 29793499 PMCID: PMC5968622 DOI: 10.1186/s12974-018-1198-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/10/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Pyrethroids, such as bifenthrin (BF), are among the most widely used class of insecticides that pose serious risks to human and wildlife health. Pyrethroids are proposed to affect astrocytic functions and to cause neuron injury in the central nervous system (CNS). Microglia are key cells involved in innate immune responses in the CNS, and microglia activation has been linked to inflammation and neurotoxicity. However, little information is known about the effects of BF-induced toxicity in primary microglial cells as well as in organotypic hippocampal slice cultures (OHSCs). METHODS Oxidative stress and inflammatory responses induced by BF were evaluated in primary microglial cells and OHSCs incubated with different concentrations of BF (1-20 μM) for 4 and 24 h. mRNA and protein synthesis of cyclooxygenase-2 (COX-2), tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), nuclear erythroid-2 like factor-2 (Nrf-2), and microsomal prostaglandin synthase-1 (mPGES-1) was also studied by qPCR and Western blot. Cell viability was analyzed by MTT-tetrazolio (MTT) and lactate dehydrogenase (LDH) assays. Neurotoxicity in OHSCs was analyzed by propidium iodide (PI) staining and confocal microscopy. RESULTS Exposure of microglial cells to BF for 24 h resulted in a dose-dependent reduction in the number of viable cells. At sub-cytotoxic concentrations, BF increased reactive oxygen species (ROS), TNF-alpha synthesis, and prostaglandin E2 (PGE2) production, at both 4- and 24-h time points, respectively. Furthermore, BF incubation decreased superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities and increased lipid peroxidation, protein oxidation, and H2O2 formation. In addition, BF significantly induced protein synthesis and mRNA expression of oxidative and inflammatory mediators after 4 and 24 h, including Nrf-2, COX-2, mPGES-1, and nuclear factor kappaB (NF-kappaB). A 24-h exposure of OHSCs to BF also increased neuronal death compared to untreated controls. Furthermore, depletion of microglia from OHSCs potently enhanced neuronal death induced by BF. CONCLUSIONS Overall, BF exhibited cytotoxic effects in primary microglial cells, accompanied by the induction of various inflammatory and oxidative stress markers including the Nrf-2/COX-2/mPGES-1/NF-kappaB pathways. Moreover, the study provided evidence that BF induced neuronal death in OHSCs and suggests that microglia exert a protective function against BF toxicity.
Collapse
Affiliation(s)
- Brahim Gargouri
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Sciences Faculty of Sfax, University of Sfax, BP1171, 3000 Sfax, Tunisia
- Laboratory of Translational Psychiatry, Department of Psychiatry and Psychotherapy, Medical Center Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104 Freiburg, Germany
| | - Nizar M. Yousif
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Michèle Bouchard
- Department of Environmental and Occupational Health, Toxicological Risk Assessment and Management, University of Montreal, Roger-Gaudry Building, U424, Main Station, Montreal, P.O. Box 6128, Montreal, Quebec H3C 3J7 Canada
| | - Hamadi Fetoui
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Sciences Faculty of Sfax, University of Sfax, BP1171, 3000 Sfax, Tunisia
| | - Bernd L. Fiebich
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
104
|
Gülke E, Gelderblom M, Magnus T. Danger signals in stroke and their role on microglia activation after ischemia. Ther Adv Neurol Disord 2018; 11:1756286418774254. [PMID: 29854002 PMCID: PMC5968660 DOI: 10.1177/1756286418774254] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/10/2018] [Indexed: 12/26/2022] Open
Abstract
Ischemic stroke is a major cause of death. Besides the direct damage resulting from oxygen and glucose deprivation, sterile inflammation plays a pivotal role in increasing cellular death. Damaged-associated molecular patterns (DAMPs) are passively released from dying cells and activate the innate immune system. Thus, they take part in the direct and rapid activation of the inflammatory response after stroke onset. In this review the role of the most important DAMPs, high mobility group box 1, heat and cold shock proteins, purines, and peroxiredoxins, are addressed. Moreover, intracellular pathways activated by DAMPs in microglia are illuminated.
Collapse
Affiliation(s)
- Eileen Gülke
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mathias Gelderblom
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | | |
Collapse
|
105
|
New Insights into Microglia-Neuron Interactions: A Neuron's Perspective. Neuroscience 2018; 405:103-117. [PMID: 29753862 DOI: 10.1016/j.neuroscience.2018.04.046] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/26/2018] [Accepted: 04/28/2018] [Indexed: 01/16/2023]
Abstract
Microglia are the primary immune cells of the central nervous system. However, recent data indicate that microglia also contribute to diverse physiological and pathophysiological processes that extend beyond immune-related functions and there is a growing interest to understand the mechanisms through which microglia interact with other cells in the brain. In particular, the molecular processes that contribute to microglia-neuron communication in the healthy brain and their role in common brain diseases have been intensively studied during the last decade. In line with this, fate-mapping studies, genetic models and novel pharmacological approaches have revealed the origin of microglial progenitors, demonstrated the role of self-maintaining microglial populations during brain development or in adulthood, and identified the unexpectedly long lifespan of microglia that may profoundly change our view about senescence and age-related human diseases. Despite the exponentially increasing knowledge about microglia, the role of these cells in health and disease is still extremely controversial and the precise molecular targets for intervention are not well defined. This is in part due to the lack of microglia-specific manipulation approaches until very recently and to the high level of complexity of the interactions between microglia and other cells in the brain that occur at different temporal and spatial scales. In this review, we briefly summarize the known physiological roles of microglia-neuron interactions in brain homeostasis and attempt to outline some major directions and challenges of future microglia research.
Collapse
|
106
|
Wei L, Syed Mortadza SA, Yan J, Zhang L, Wang L, Yin Y, Li C, Chalon S, Emond P, Belzung C, Li D, Lu C, Roger S, Jiang LH. ATP-activated P2X7 receptor in the pathophysiology of mood disorders and as an emerging target for the development of novel antidepressant therapeutics. Neurosci Biobehav Rev 2018; 87:192-205. [PMID: 29453990 DOI: 10.1016/j.neubiorev.2018.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/01/2018] [Accepted: 02/08/2018] [Indexed: 12/11/2022]
Abstract
Mood disorders are a group of psychiatric conditions that represent leading global disease burdens. Increasing evidence from clinical and preclinical studies supports that innate immune system dysfunction plays an important part in the pathophysiology of mood disorders. P2X7 receptor, belonging to the ligand-gated ion channel P2X subfamily of purinergic P2 receptors for extracellular ATP, is highly expressed in immune cells including microglia in the central nervous system (CNS) and has a vital role in mediating innate immune response. The P2X7 receptor is also important in neuron-glia signalling in the CNS. The gene encoding human P2X7 receptor is located in a locus of susceptibility to mood disorders. In this review, we will discuss the recent progress in understanding the role of the P2X7 receptor in the pathogenesis and development of mood disorders and in discovering CNS-penetrable P2X7 antagonists for potential uses in in vivo imaging to monitor brain inflammation and antidepressant therapeutics.
Collapse
Affiliation(s)
- Linyu Wei
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, China; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, United Kingdom
| | - Sharifah A Syed Mortadza
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, United Kingdom; Faculty of Medicine and Health Science, University Putra Malaysia, Selangor, Malaysia
| | - Jing Yan
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, China
| | - Libin Zhang
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, China
| | - Lu Wang
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, China
| | - Yaling Yin
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, China
| | - Chaokun Li
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, China
| | - Sylvie Chalon
- Inserm UMR 1253, iBrain, Université de Tours, Tours, France
| | - Patrick Emond
- Inserm UMR 1253, iBrain, Université de Tours, Tours, France; CHRU de Tours, Service de Médecine Nucléaire In Vitro, Tours, France
| | | | - Dongliang Li
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, China; Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, China
| | - Chengbiao Lu
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, China; Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, China
| | - Sebastien Roger
- Inserm UMR1069, Nutrition, Croissance et Cancer, Université de Tours, France; Institut Universitaire de France, Paris Cedex 05, France
| | - Lin-Hua Jiang
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, China; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, United Kingdom; Institut Universitaire de France, Paris Cedex 05, France.
| |
Collapse
|
107
|
Savio LEB, de Andrade Mello P, da Silva CG, Coutinho-Silva R. The P2X7 Receptor in Inflammatory Diseases: Angel or Demon? Front Pharmacol 2018; 9:52. [PMID: 29467654 PMCID: PMC5808178 DOI: 10.3389/fphar.2018.00052] [Citation(s) in RCA: 311] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/15/2018] [Indexed: 12/13/2022] Open
Abstract
Under physiological conditions, adenosine triphosphate (ATP) is present at low levels in the extracellular milieu, being massively released by stressed or dying cells. Once outside the cells, ATP and related nucleotides/nucleoside generated by ectonucleotidases mediate a high evolutionary conserved signaling system: the purinergic signaling, which is involved in a variety of pathological conditions, including inflammatory diseases. Extracellular ATP has been considered an endogenous adjuvant that can initiate inflammation by acting as a danger signal through the activation of purinergic type 2 receptors-P2 receptors (P2Y G-protein coupled receptors and P2X ligand-gated ion channels). Among the P2 receptors, the P2X7 receptor is the most extensively studied from an immunological perspective, being involved in both innate and adaptive immune responses. P2X7 receptor activation induces large-scale ATP release via its intrinsic ability to form a membrane pore or in association with pannexin hemichannels, boosting purinergic signaling. ATP acting via P2X7 receptor is the second signal to the inflammasome activation, inducing both maturation and release of pro-inflammatory cytokines, such as IL-1β and IL-18, and the production of reactive nitrogen and oxygen species. Furthermore, the P2X7 receptor is involved in caspases activation, as well as in apoptosis induction. During adaptive immune response, P2X7 receptor modulates the balance between the generation of T helper type 17 (Th17) and T regulatory (Treg) lymphocytes. Therefore, this receptor is involved in several inflammatory pathological conditions. In infectious diseases and cancer, P2X7 receptor can have different and contrasting effects, being an angel or a demon depending on its level of activation, cell studied, type of pathogen, and severity of infection. In neuroinflammatory and neurodegenerative diseases, P2X7 upregulation and function appears to contribute to disease progression. In this review, we deeply discuss P2X7 receptor dual function and its pharmacological modulation in the context of different pathologies, and we also highlight the P2X7 receptor as a potential target to treat inflammatory related diseases.
Collapse
Affiliation(s)
- Luiz E B Savio
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paola de Andrade Mello
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Cleide Gonçalves da Silva
- Division of Vascular Surgery, Department of Surgery, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Robson Coutinho-Silva
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
108
|
Pietrogrande G, Mabotuwana N, Zhao Z, Abdolhoseini M, Johnson SJ, Nilsson M, Walker FR. Chronic stress induced disturbances in Laminin: A significant contributor to modulating microglial pro-inflammatory tone? Brain Behav Immun 2018; 68:23-33. [PMID: 28943293 DOI: 10.1016/j.bbi.2017.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/10/2017] [Accepted: 09/21/2017] [Indexed: 12/22/2022] Open
Abstract
Over the last decade, evidence supporting a link between microglia enhanced neuro-inflammatory signalling and mood disturbance has continued to build. One issue that has not been well addressed yet are the factors that drive microglia to enter into a higher pro-inflammatory state. The current study addressed the potential role of the extracellular matrix protein Laminin. C57BL6 adult mice were either exposed to chronic stress or handled for 6 consecutive weeks. Changes in Laminin, microglial morphology and pro-inflammatory cytokine expression were examined in tissue obtained from mice exposed to a chronic restraint stress procedure. These in vivo investigations were complemented by an extensive set of in vitro experiments utilising both a primary microglia and BV2 cell line to examine how Laminin influenced microglial pro-inflammatory tone. Chronic stress enhanced the expression of Laminin, microglial de-ramification and pro-inflammatory cytokine signalling. We further identified that microglia when cultured in the presence of Laminin produced and released significantly greater levels of pro-inflammatory cytokines; took longer to return to baseline following stimulation and exhibited enhanced phagocytic activity. These results suggest that chronic restraint stress is capable of modulating Laminin within the CNS, an effect that has implications for understanding environmental mediated disturbances of microglial function.
Collapse
Affiliation(s)
- Giovanni Pietrogrande
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan 2308, NSW, Australia; Hunter Medical Research Institute, Newcastle 2305, NSW, Australia
| | | | - Zidan Zhao
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan 2308, NSW, Australia; Hunter Medical Research Institute, Newcastle 2305, NSW, Australia
| | - Mahmoud Abdolhoseini
- School of Electrical Engineering and Computer Science, University of Newcastle Callaghan 2308, NSW, Australia
| | - Sarah J Johnson
- School of Electrical Engineering and Computer Science, University of Newcastle Callaghan 2308, NSW, Australia
| | - Michael Nilsson
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan 2308, NSW, Australia; Hunter Medical Research Institute, Newcastle 2305, NSW, Australia
| | - Frederick R Walker
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan 2308, NSW, Australia; Hunter Medical Research Institute, Newcastle 2305, NSW, Australia.
| |
Collapse
|
109
|
ATP-mediated Events in Peritubular Cells Contribute to Sterile Testicular Inflammation. Sci Rep 2018; 8:1431. [PMID: 29362497 PMCID: PMC5780482 DOI: 10.1038/s41598-018-19624-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/03/2018] [Indexed: 12/19/2022] Open
Abstract
Peritubular myoid cells, which form the walls of seminiferous tubules in the testis, are functionally unexplored. While they transport sperm and contribute to the spermatogonial stem cell niche, specifically their emerging role in the immune surveillance of the testis and in male infertility remains to be studied. Recently, cytokine production and activation of Toll-like receptors (TLRs) were uncovered in cultured peritubular cells. We now show that human peritubular cells express purinergic receptors P2RX4 and P2RX7, which are functionally linked to TLRs, with P2RX4 being the prevalent ATP-gated ion channel. Subsequent ATP treatment of cultured peritubular cells resulted in up-regulated (pro-)inflammatory cytokine expression and secretion, while characteristic peritubular proteins, that is smooth muscle cell markers and extracellular matrix molecules, decreased. These findings indicate that extracellular ATP may act as danger molecule on peritubular cells, able to promote inflammatory responses in the testicular environment.
Collapse
|
110
|
Purinergic P2X7 receptor functional genetic polymorphisms are associated with the susceptibility to obesity in Chinese postmenopausal women. Menopause 2017; 25:329-335. [PMID: 29088017 DOI: 10.1097/gme.0000000000000991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE We conducted a case-control study to investigate the associations of functional single-nucleotide polymorphisms in the purinergic P2X7 receptor (P2X7R) gene (rs2393799, rs7958311, rs1718119, rs2230911, and rs3751143) with obesity and overweight in a population of Chinese postmenopausal women. METHODS Our study included 180 obese women, 179 overweight women, and 204 controls. All participants were genotyped at the P2X7R rs2393799, rs7958311, rs1718119, rs2230911, and rs3751143 loci via allele-specific polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism procedures. The relationships between P2X7R genetic polymorphisms and their associated haplotypes with obesity (body mass index [BMI] ≥30 kg/m] and overweight (25 kg/m ≤ BMI < 30 kg/m) were evaluated. RESULTS Our results showed that P2X7R rs2230911G and rs1718119A were associated with an increased risk of obesity; in particular, both carriers of the rs2230911G allele and GG/(CG + GG) genotypes (G vs C, P < 0.001, odds ratio [OR] 2.87, 95% confidence interval [CI] 1.98-4.16; GG vs CC, P < 0.001, OR 8.76, 95% CI 3.29-23.35; CG + GG vs CC, P < 0.001, OR 2.54, 95% CI 1.63-3.95) and carriers of the rs17181191A allele and GA/(GA + AA) genotypes (A vs G, P < 0.001, OR 2.97, 95% CI 1.86-4.74; GA vs GG, P = 0.001, OR 2.72, 95% CI 1.55-4.79; GA + AA vs GG, P < 0.001, OR 3.05, 95% CI 1.79-5.19) were at a higher risk of obesity. No association with obesity or overweight was observed for the other three P2X7R polymorphisms (rs2393799, rs7958311, and rs3751143). Haplotype analysis indicated that P2X7R rs1718119A-rs2230911G-rs3751143C appeared to be a significant risk haplotype with obesity (P = 0.0005, OR 2.37, 95% CI 1.45-3.90). CONCLUSIONS P2X7R functional genetic polymorphisms and their estimated haplotypes are associated with obesity in Chinese postmenopausal women.
Collapse
|
111
|
Di Virgilio F, Dal Ben D, Sarti AC, Giuliani AL, Falzoni S. The P2X7 Receptor in Infection and Inflammation. Immunity 2017; 47:15-31. [PMID: 28723547 DOI: 10.1016/j.immuni.2017.06.020] [Citation(s) in RCA: 880] [Impact Index Per Article: 110.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/14/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022]
Abstract
Adenosine triphosphate (ATP) accumulates at sites of tissue injury and inflammation. Effects of extracellular ATP are mediated by plasma membrane receptors named P2 receptors (P2Rs). The P2R most involved in inflammation and immunity is the P2X7 receptor (P2X7R), expressed by virtually all cells of innate and adaptive immunity. P2X7R mediates NLRP3 inflammasome activation, cytokine and chemokine release, T lymphocyte survival and differentiation, transcription factor activation, and cell death. Ten human P2RX7 gene splice variants and several SNPs that produce complex haplotypes are known. The P2X7R is a potent stimulant of inflammation and immunity and a promoter of cancer cell growth. This makes P2X7R an appealing target for anti-inflammatory and anti-cancer therapy. However, an in-depth knowledge of its structure and of the associated signal transduction mechanisms is needed for an effective therapeutic development.
Collapse
Affiliation(s)
- Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.
| | - Diego Dal Ben
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Alba Clara Sarti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Anna Lisa Giuliani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Simonetta Falzoni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
112
|
Puentes-Mestril C, Aton SJ. Linking Network Activity to Synaptic Plasticity during Sleep: Hypotheses and Recent Data. Front Neural Circuits 2017; 11:61. [PMID: 28932187 PMCID: PMC5592216 DOI: 10.3389/fncir.2017.00061] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/23/2017] [Indexed: 12/22/2022] Open
Abstract
Research findings over the past two decades have supported a link between sleep states and synaptic plasticity. Numerous mechanistic hypotheses have been put forth to explain this relationship. For example, multiple studies have shown structural alterations to synapses (including changes in synaptic volume, spine density, and receptor composition) indicative of synaptic weakening after a period of sleep. Direct measures of neuronal activity and synaptic strength support the idea that a period of sleep can reduce synaptic strength. This has led to the synaptic homeostasis hypothesis (SHY), which asserts that during slow wave sleep, synapses are downscaled throughout the brain to counteract net strengthening of network synapses during waking experience (e.g., during learning). However, neither the cellular mechanisms mediating these synaptic changes, nor the sleep-dependent activity changes driving those cellular events are well-defined. Here we discuss potential cellular and network dynamic mechanisms which could underlie reductions in synaptic strength during sleep. We also discuss recent findings demonstrating circuit-specific synaptic strengthening (rather than weakening) during sleep. Based on these data, we explore the hypothetical role of sleep-associated network activity patterns in driving synaptic strengthening. We propose an alternative to SHY—namely that depending on experience during prior wake, a variety of plasticity mechanisms may operate in the brain during sleep. We conclude that either synaptic strengthening or synaptic weakening can occur across sleep, depending on changes to specific neural circuits (such as gene expression and protein translation) induced by experiences in wake. Clarifying the mechanisms underlying these different forms of sleep-dependent plasticity will significantly advance our understanding of how sleep benefits various cognitive functions.
Collapse
Affiliation(s)
- Carlos Puentes-Mestril
- Neuroscience Graduate Program, Department of Molecular, Cellular, and Developmental Biology, University of MichiganAnn Arbor, MI, United States
| | - Sara J Aton
- Neuroscience Graduate Program, Department of Molecular, Cellular, and Developmental Biology, University of MichiganAnn Arbor, MI, United States
| |
Collapse
|
113
|
Martín-Estebané M, Navascués J, Sierra-Martín A, Martín-Guerrero SM, Cuadros MA, Carrasco MC, Marín-Teva JL. Onset of microglial entry into developing quail retina coincides with increased expression of active caspase-3 and is mediated by extracellular ATP and UDP. PLoS One 2017; 12:e0182450. [PMID: 28763502 PMCID: PMC5538646 DOI: 10.1371/journal.pone.0182450] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 07/18/2017] [Indexed: 12/31/2022] Open
Abstract
Microglial cell precursors located in the area of the base of the pecten and the optic nerve head (BP/ONH) start to enter the retina of quail embryos at the 7th day of incubation (E7), subsequently colonizing the entire retina by central-to-peripheral tangential migration, as previously shown by our group. The present study demonstrates a precise chronological coincidence of the onset of microglial cell entry into the retina with a striking increase in death of retinal cells, as revealed by their active caspase-3 expression and TUNEL staining, in regions dorsal to the BP/ONH area, suggesting that dying retinal cells would contribute to the microglial cell inflow into the retina. However, the molecular mechanisms involved in this inflow are currently unclear. Extracellular nucleotides, such as ATP and UDP, have previously been shown to favor migration of microglia towards brain injuries because they are released by apoptotic cells and stimulate both chemotaxis and chemokinesis in microglial cells via signaling through purinergic receptors. Hence, we tested here the hypothesis that ATP and UDP play a role in the entry and migration of microglial precursors into the developing retina. For this purpose, we used an experimental model system based on organotypic cultures of E6.5 quail embryo retina explants, which mimics the entry and migration of microglial precursors in the in situ developing retina. Inhibition of purinergic signaling by treating retina explants with either apyrase, a nucleotide-hydrolyzing enzyme, or suramin, a broad spectrum antagonist of purinergic receptors, significantly prevents the entry of microglial cells into the retina. In addition, treatment of retina explants with either exogenous ATP or UDP results in significantly increased numbers of microglial cells entering the retina. In light of these findings, we conclude that purinergic signaling by extracellular ATP and UDP is necessary for the entry and migration of microglial cells into the embryonic retina by inducing chemokinesis in these cells.
Collapse
Affiliation(s)
- María Martín-Estebané
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Julio Navascués
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Ana Sierra-Martín
- Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Biociencias, Universidad Autónoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | - Miguel A. Cuadros
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - María-Carmen Carrasco
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - José L. Marín-Teva
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
- * E-mail:
| |
Collapse
|
114
|
Liu PW, Yue MX, Zhou R, Niu J, Huang DJ, Xu T, Luo P, Liu XH, Zeng JW. P2Y 12 and P2Y 13 receptors involved in ADPβs induced the release of IL-1β, IL-6 and TNF-α from cultured dorsal horn microglia. J Pain Res 2017; 10:1755-1767. [PMID: 28794655 PMCID: PMC5536317 DOI: 10.2147/jpr.s137131] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objective P2 receptors have been implicated in the release of neurotransmitter and pro-inflammatory cytokines due to their response to neuroexcitatory substances in the microglia. Dorsal horn P2Y12 and P2Y13 receptors are involved in the development of pain behavior induced by peripheral nerve injury. However, it is not known whether P2Y12 and P2Y13 receptors activation is associated with the expression and the release of interleukin-1B (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) in cultured dorsal spinal cord microglia. For this reason, we examined the effects of ADPβs (ADP analog) on the expression and the release of IL-1β, IL-6, and TNF-α. Methods and results In this study, we observed the effect of P2Y receptor agonist ADPβs on the expression and release of IL-1β, IL-6 and TNF-α by using real-time fluorescence quantitative polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA). ADPβs induced the increased expression of Iba-1, IL-1β, IL-6 and TNF-α at the level of messenger RNA (mRNA). ADPβs-evoked increase in Iba-1, IL-1β, IL-6 and TNF-α mRNA expression was inhibited only partially by P2Y12 receptor antagonist MRS2395 or P2Y13 receptor antagonist MRS2211, respectively. Similarly, ADPβs-evoked release of IL-1β, IL-6 and TNF-α was inhibited only partially by MRS2395 or MRS2211. Furthermore, ADPβs-evoked increased expression of Iba-1, IL-1β, IL-6 and TNF-α mRNA, and release of IL-1β, IL-6 and TNF-α were nearly all blocked after co-administration of MRS2395 plus MRS2179. Further evidence indicated that P2Y12 and P2Y13 receptor-evoked increased gene expression of IL-1β, IL-6 and TNF-α were inhibited by Y-27632 (ROCK inhibitor), SB203580 (P38MAPK inhibitor) and PDTC (NF-κb inhibitor), respectively. Subsequently, P2Y12 and P2Y13 receptor-evoked release of IL-1β, IL-6 and TNF-α, were also inhibited by Y-27632, SB203580 and PDTC, respectively. Conclusion These observations suggest that P2Y12 and P2Y13 receptor-evoked gene expression and release of IL-1β, IL-6 and TNF-α are associated with ROCK/P38MAPK/NF-κb signaling pathway.
Collapse
Affiliation(s)
- Pei-Wen Liu
- Department of Physiology, Zunyi Medical College, Guizhou, China
| | - Ming-Xia Yue
- Department of Physiology, Zunyi Medical College, Guizhou, China
| | - Rui Zhou
- Department of Physiology, Zunyi Medical College, Guizhou, China
| | - Juan Niu
- Department of Physiology, Zunyi Medical College, Guizhou, China
| | - Du-Juan Huang
- Department of Physiology, Zunyi Medical College, Guizhou, China
| | - Tao Xu
- Department of Physiology, Zunyi Medical College, Guizhou, China
| | - Pei Luo
- Department of Physiology, Zunyi Medical College, Guizhou, China
| | - Xiao-Hong Liu
- Department of Physiology, Zunyi Medical College, Guizhou, China
| | - Jun-Wei Zeng
- Department of Physiology, Zunyi Medical College, Guizhou, China
| |
Collapse
|
115
|
Barberà-Cremades M, Gómez AI, Baroja-Mazo A, Martínez-Alarcón L, Martínez CM, de Torre-Minguela C, Pelegrín P. P2X7 Receptor Induces Tumor Necrosis Factor-α Converting Enzyme Activation and Release to Boost TNF-α Production. Front Immunol 2017; 8:862. [PMID: 28791020 PMCID: PMC5523084 DOI: 10.3389/fimmu.2017.00862] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 07/07/2017] [Indexed: 01/15/2023] Open
Abstract
Tumor necrosis factor (TNF)-α is a major pro-inflammatory cytokine produced in response to toll-like receptor stimulation. TNF-α release is controlled by the activity of TNF-α converting enzyme (TACE) that cut membrane-bound TNF-α to shed its ectodomain as a soluble cytokine. The purinergic receptor P2X ligand-gated ion channel 7 (P2X7) is activated in response to elevated concentrations of extracellular ATP and induces different pro-inflammatory pathways in macrophages to establish an inflammatory response. P2X7 receptor promotes the activation of the inflammasome and the release of interleukin-1β, the production of inflammatory lipids, and the generation of reactive oxygen species. In this study, we analyzed the mechanism of P2X7 receptor responsible of TNF-α release after priming macrophages with LPS doses ≤100 ng/ml. We found that P2X7 receptor increases the extracellular activity of TACE through the release of the mature form of TACE in exosomes. This effect was blocked using P2X7 receptor inhibitors or in macrophages obtained from P2X7 receptor-deficient mice. Elevation of intracellular Ca2+ and p38 mitogen-activated protein kinase after P2X7 receptor activation were involved in the release of TACE, which was able to process TNF-α on nearby expressing cells. Finally, we observed an increase of TNF-α in the peritoneal lavage of mice treated with LPS and ATP. In conclusion, P2X7 receptor induces the release of TACE in exosomes to the extracellular compartment that could amplify the pro-inflammatory signal associated to this receptor. These results are important for the development of therapeutics targeting P2X7 receptor.
Collapse
Affiliation(s)
- Maria Barberà-Cremades
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Clinical University Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Ana I Gómez
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Clinical University Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Alberto Baroja-Mazo
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Clinical University Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Laura Martínez-Alarcón
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Clinical University Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Carlos M Martínez
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Clinical University Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Carlos de Torre-Minguela
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Clinical University Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Pablo Pelegrín
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Clinical University Hospital Virgen de la Arrixaca, Murcia, Spain
| |
Collapse
|
116
|
Nie J, Huang GL, Deng SZ, Bao Y, Liu YW, Feng ZP, Wang CH, Chen M, Qi ST, Pan J. The purine receptor P2X7R regulates the release of pro-inflammatory cytokines in human craniopharyngioma. Endocr Relat Cancer 2017; 24:287-296. [PMID: 28389503 PMCID: PMC5457505 DOI: 10.1530/erc-16-0338] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 04/07/2017] [Indexed: 12/22/2022]
Abstract
Craniopharyngiomas (CPs) are usually benign, non-metastasizing embryonic malformations originating from the sellar area. They are, however, locally invasive and generate adherent interfaces with the surrounding brain parenchyma. Previous studies have shown the tumor microenvironment is characterized by a local abundance of adenosine triphosphate (ATP), infiltration of leukocytes and elevated levels of pro-inflammatory cytokines that are thought to be responsible, at least in part, for the local invasion. Here, we examine whether ATP, via the P2X7R, participates in the regulation of cytokine expression in CPs. The expression of P2X7R and pro-inflammatory cytokines were measured at the RNA and protein levels both in tumor samples and in primary cultured tumor cells. Furthermore, cytokine modulation was measured after manipulating P2X7R in cultured tumor cells by siRNA-mediated knockdown, as well as pharmacologically by using selective agonists and antagonists. The following results were observed. A number of cytokines, in particular IL-6, IL-8 and MCP-1, were elevated in patient plasma, tumor tissue and cultured tumor cells. P2X7R was expressed in tumor tissue as well as in cultured tumor cells. RNA expression as measured in 48 resected tumors was positively correlated with the RNA levels of IL-6, IL-8 and MCP-1 in tumors. Furthermore, knockdown of P2X7R in primary tumor cultures reduced, and stimulation of P2XR7 by a specific agonist enhanced the expression of these cytokines. This latter stimulation involved a Ca2+-dependent mechanism and could be counteracted by the addition of an antagonist. In conclusion, the results suggest that P2X7R may promote IL-6, IL-8 and MCP-1 production and secretion and contribute to the invasion and adhesion of CPs to the surrounding tissue.
Collapse
Affiliation(s)
- Jing Nie
- Department of NeurosurgeryNanfang Hospital, Southern Medical University, Guangzhou, China
- Nanfang Neurosurgery Research InstitutionNanfang hospital, Southern Medical University, Guangzhou, China
| | - Guang-Long Huang
- Department of NeurosurgeryNanfang Hospital, Southern Medical University, Guangzhou, China
- Nanfang Neurosurgery Research InstitutionNanfang hospital, Southern Medical University, Guangzhou, China
| | - Sheng-Ze Deng
- Department of NeurosurgeryNanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yun Bao
- Department of NeurosurgeryNanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ya-Wei Liu
- Department of NeurosurgeryNanfang Hospital, Southern Medical University, Guangzhou, China
- Nanfang Neurosurgery Research InstitutionNanfang hospital, Southern Medical University, Guangzhou, China
| | - Zhan-Peng Feng
- Department of NeurosurgeryNanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chao-Hu Wang
- Department of NeurosurgeryNanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ming Chen
- Department of NeurosurgeryNanfang Hospital, Southern Medical University, Guangzhou, China
| | - Song-Tao Qi
- Department of NeurosurgeryNanfang Hospital, Southern Medical University, Guangzhou, China
- Nanfang Neurosurgery Research InstitutionNanfang hospital, Southern Medical University, Guangzhou, China
| | - Jun Pan
- Department of NeurosurgeryNanfang Hospital, Southern Medical University, Guangzhou, China
- Nanfang Neurosurgery Research InstitutionNanfang hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
117
|
Brawek B, Garaschuk O. Monitoring in vivo function of cortical microglia. Cell Calcium 2017; 64:109-117. [DOI: 10.1016/j.ceca.2017.02.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 02/01/2023]
|
118
|
Lu W, Albalawi F, Beckel JM, Lim JC, Laties AM, Mitchell CH. The P2X7 receptor links mechanical strain to cytokine IL-6 up-regulation and release in neurons and astrocytes. J Neurochem 2017; 141:436-448. [PMID: 28244110 DOI: 10.1111/jnc.13998] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 01/11/2017] [Accepted: 02/09/2017] [Indexed: 12/15/2022]
Abstract
Mechanical strain in neural tissues can lead to the up-regulation and release of multiple cytokines including interleukin 6 (IL-6). In the retina, the mechanosensitive release of ATP can autostimulate P2X7 receptors on both retinal ganglion cell neurons and optic nerve head astrocytes. Here, we asked whether the purinergic signaling contributed to the IL-6 response to increased intraocular pressure (IOP) in vivo, and stretch or swelling in vitro. Rat and mouse eyes were exposed to non-ischemic elevations in IOP to 50-60 mmHg for 4 h. A PCR array was used to screen cytokine changes, with quantitative (q)PCR used to confirm mRNA elevations and immunoblots used for protein levels. P2X7 antagonist Brilliant Blue G (BBG) and agonist (4-benzoyl-benzoyl)-ATP (BzATP) were injected intravitreally. ELISA was used to quantify IL-6 release from optic nerve head astrocytes or retinal ganglion cells. Receptor identity was confirmed pharmacologically and in P2X7-/- mice, acute elevation of IOP altered retinal expression of multiple cytokine genes. Elevation of IL-6 was greatest, with expression of IL1rn, IL24, Tnf, Csf1, and Lif also increased more than twofold, while expression of Tnfsf11, Gdf9, and Tnfsf4 were reduced. qPCR confirmed the rise in IL-6 and extracellular ATP marker ENTPD1, but not pro-apoptotic genes. Intravitreal injection of P2X7 receptor antagonist BBG prevented the pressure-dependent rise in IL-6 mRNA and protein in the rat retina, while injection of P2X7 receptor agonist BzATP was sufficient to elevate IL-6 expression. IOP elevation increased IL-6 in wild-type but not P2X7R knockout mice. Application of mechanical strain to isolated optic nerve head astrocytes increased IL-6 levels. This response was mimicked by agonist BzATP, but blocked by antagonists BBG and A839977. Stretch or BzATP led to IL-6 release from both astrocytes and isolated retinal ganglion cells. The mechanosensitive up-regulation and release of cytokine IL-6 from the retina involves the P2X7 receptor, with both astrocytes and neurons contributing to the response.
Collapse
Affiliation(s)
- Wennan Lu
- Department of Anatomy and Cell Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Farraj Albalawi
- Department of Anatomy and Cell Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Orthodontics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jonathan M Beckel
- Department of Anatomy and Cell Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pennsylvania, USA
| | - Jason C Lim
- Department of Anatomy and Cell Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alan M Laties
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Claire H Mitchell
- Department of Anatomy and Cell Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
119
|
Menzies RI, Booth JWR, Mullins JJ, Bailey MA, Tam FWK, Norman JT, Unwin RJ. Hyperglycemia-induced Renal P2X7 Receptor Activation Enhances Diabetes-related Injury. EBioMedicine 2017; 19:73-83. [PMID: 28434946 PMCID: PMC5440600 DOI: 10.1016/j.ebiom.2017.04.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 03/31/2017] [Accepted: 04/06/2017] [Indexed: 12/22/2022] Open
Abstract
Diabetes is a leading cause of renal disease. Glomerular mesangial expansion and fibrosis are hallmarks of diabetic nephropathy and this is thought to be promoted by infiltration of circulating macrophages. Monocyte chemoattractant protein-1 (MCP-1) has been shown to attract macrophages in kidney diseases. P2X7 receptors (P2X7R) are highly expressed on macrophages and are essential components of pro-inflammatory signaling in multiple tissues. Here we show that in diabetic patients, renal P2X7R expression is associated with severe mesangial expansion, impaired glomerular filtration (≤40ml/min/1.73sq.m.), and increased interstitial fibrosis. P2X7R activation enhanced the release of MCP-1 in human mesangial cells cultured under high glucose conditions. In mice, P2X7R-deficiency prevented glomerular macrophage attraction and collagen IV deposition; however, the more severe interstitial inflammation and fibrosis often seen in human diabetic kidney diseases was not modelled. Finally, we demonstrate that a P2X7R inhibitor (AZ11657312) can reduce renal macrophage accrual following the establishment of hyperglycemia in a model of diabetic nephropathy. Collectively these data suggest that P2X7R activation may contribute to the high prevalence of kidney disease found in diabetics.
Collapse
Affiliation(s)
- Robert I Menzies
- British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK.
| | - John W R Booth
- UCL Centre for Nephrology, University College London, London, UK
| | - John J Mullins
- British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Matthew A Bailey
- British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Frederick W K Tam
- Imperial College Renal and Transplant Centre, Department of Medicine, Imperial College London, London, UK
| | - Jill T Norman
- UCL Centre for Nephrology, University College London, London, UK
| | - Robert J Unwin
- UCL Centre for Nephrology, University College London, London, UK; Cardiovascular and Metabolic Diseases (CVMD) iMed, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
120
|
Zadka Ł, Dzięgiel P, Kulus M, Olajossy M. Clinical Phenotype of Depression Affects Interleukin-6 Synthesis. J Interferon Cytokine Res 2017; 37:231-245. [PMID: 28418766 DOI: 10.1089/jir.2016.0074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Major depressive disorder (MDD) is not a single disease, but a number of various ailments that form one entity. Psychomotor retardation, anhedonia, sleep disorders, an increased suicide risk, and anxiety are the main symptoms that often define the clinical diagnosis of depression. Interleukin-6 (IL-6), as one of the proinflammatory cytokines, seems to be overexpressed during certain mental disorders, including MDD. Overexpression of IL-6 in depression is thought to be a factor associated with bad prognosis and worse disease course. IL-6 may directly affect brain functioning and production of neurotransmitters; moreover, its concentration is correlated with certain clinical symptoms within the wide range of depressive symptomatology. Furthermore, there is a strong correlation between IL-6 synthesis and psychosomatic functioning of the patient. This article discusses potential sources and significance of IL-6 in the pathogenesis of depression.
Collapse
Affiliation(s)
- Łukasz Zadka
- 1 Department of Histology and Embryology, Wroclaw Medical University , Wrocław, Poland .,2 II Department of Psychiatry and Psychiatric Rehabilitation, Independent Public Teaching Hospital No 1 in Lublin, Medical University of Lublin , Lublin, Poland
| | - Piotr Dzięgiel
- 1 Department of Histology and Embryology, Wroclaw Medical University , Wrocław, Poland
| | - Michał Kulus
- 1 Department of Histology and Embryology, Wroclaw Medical University , Wrocław, Poland
| | - Marcin Olajossy
- 2 II Department of Psychiatry and Psychiatric Rehabilitation, Independent Public Teaching Hospital No 1 in Lublin, Medical University of Lublin , Lublin, Poland
| |
Collapse
|
121
|
Greve AS, Skals M, Fagerberg SK, Tonnus W, Ellermann-Eriksen S, Evans RJ, Linkermann A, Praetorius HA. P2X 1, P2X 4, and P2X 7 Receptor Knock Out Mice Expose Differential Outcome of Sepsis Induced by α-Haemolysin Producing Escherichia coli. Front Cell Infect Microbiol 2017; 7:113. [PMID: 28428949 PMCID: PMC5382212 DOI: 10.3389/fcimb.2017.00113] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/21/2017] [Indexed: 11/13/2022] Open
Abstract
α-haemolysin (HlyA)-producing Escherichia coli commonly inflict severe urinary tract infections, including pyelonephritis, which comprises substantial risk for sepsis. In vitro, the cytolytic effect of HlyA is mainly mediated by ATP release through the HlyA pore and subsequent P2X1/P2X7 receptor activation. This amplification of the lytic process is not unique to HlyA but is observed by many other pore-forming proteins including complement-induced haemolysis. Since free hemoglobin in the blood is known to be associated with a worse outcome in sepsis one could speculate that inhibition of P2X receptors would ameliorate the course of sepsis. Surprisingly, this study demonstrates that [Formula: see text] and [Formula: see text] mice are exceedingly sensitive to sepsis with uropathogenic E. coli. These mice have markedly lower survival, higher cytokine levels and activated intravascular coagulation. Quite the reverse is seen in [Formula: see text] mice, which had markedly lower cytokine levels and less coagulation activation compared to controls after exposure to uropathogenic E. coli. The high cytokine levels in the [Formula: see text] mouse are unexpected, since P2X7 is implicated in caspase-1-dependent IL-1β production. Here, we demonstrate that IL-1β production during sepsis with uropathogenic E. coli is mediated by caspase-8, since caspase-8 and RIPK3 double knock out mice show substantially lower cytokine during sepsis and increased survival after injection of TNFα. These data support that P2X7 and P2X4 receptor activation has a protective effect during severe E. coli infection.
Collapse
Affiliation(s)
| | - Marianne Skals
- Department of Biomedicine, Aarhus UniversityAarhus, Denmark.,Department of Clinical Microbiology, Aarhus University HospitalAarhus, Denmark
| | | | - Wulf Tonnus
- Division of Nephrology, Medical Clinic III, University Hospital Carl Gustav Carus DresdenDresden, Germany
| | | | - Richard J Evans
- Department of Molecular and Cell Biology, University of LeicesterLeicester, UK
| | - Andreas Linkermann
- Division of Nephrology, Medical Clinic III, University Hospital Carl Gustav Carus DresdenDresden, Germany
| | | |
Collapse
|
122
|
Stachon P, Heidenreich A, Merz J, Hilgendorf I, Wolf D, Willecke F, von Garlen S, Albrecht P, Härdtner C, Ehrat N, Hoppe N, Reinöhl J, von Zur Mühlen C, Bode C, Idzko M, Zirlik A. P2X 7 Deficiency Blocks Lesional Inflammasome Activity and Ameliorates Atherosclerosis in Mice. Circulation 2017; 135:2524-2533. [PMID: 28377486 DOI: 10.1161/circulationaha.117.027400] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/24/2017] [Indexed: 01/25/2023]
Abstract
BACKGROUND Extracellular adenosine triphosphate (ATP) binds as a danger signal to purinergic receptor P2X7 and promotes inflammasome assembly and interleukin-1β expression. We hypothesized a functional role of the signal axis ATP-P2X7 in inflammasome activation and the chronic inflammation driving atherosclerosis. METHODS P2X7-competent and P2X7-deficient macrophages were isolated and stimulated with lipopolysaccharide, ATP, or both. To assess whether P2X7 may have a role in atherosclerosis, P2X7 expression was analyzed in aortic arches from low density lipoprotein receptor-/- mice consuming a high-cholesterol or chow diet. P2X7+/+ and P2X7-/- low density lipoprotein receptor-/- mice were fed a high-cholesterol diet to investigate the functional role of P2X7 knockout in atherosclerosis. Human plaques were derived from carotid endarterectomy and stained against P2X7. RESULTS Lipopolysaccharide or ATP stimulation alone did not activate caspase 1 in isolated macrophages. However, priming with lipopolysaccharide, followed by stimulation with ATP, led to an activation of caspase 1 and interleukin-1β in P2X7-competent macrophages. In contrast, P2X7-deficient macrophages showed no activation of caspase 1 after sequential stimulation while still expressing a basal amount of interleukin-1β. P2X7 receptor was higher expressed in murine atherosclerotic lesions, particularly by lesional macrophages. After 16 weeks of a high-cholesterol diet, P2X7-deficient mice showed smaller atherosclerotic lesions than P2X7-competent mice (0.162 cm2±0.023 [n=9], P2X7-/- low density lipoprotein receptor-/- : 0.084 cm2±0.01 [n=11], P=0.004) with a reduced amount of lesional macrophages. In accord with our in vitro findings, lesional caspase 1 activity was abolished in P2X7-/- mice. In addition, intravital microscopy revealed reduced leukocyte rolling and adhesion in P2X7-deficient mice. Last, we observe increased P2X7 expression in human atherosclerotic lesions, suggesting that our findings in mice are relevant for human disease. CONCLUSIONS P2X7 deficiency resolved plaque inflammation by inhibition of lesional inflammasome activation and reduced experimental atherosclerosis. Therefore, P2X7 represents an interesting potential new target to combat atherosclerosis.
Collapse
Affiliation(s)
- Peter Stachon
- From Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., A.Z.); and Faculty of Medicine (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., M.I., A.Z.) and Faculty of Biology (J.M.) and Department of Pneumology (N.E., M.I.), University of Freiburg, Germany.
| | - Adrian Heidenreich
- From Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., A.Z.); and Faculty of Medicine (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., M.I., A.Z.) and Faculty of Biology (J.M.) and Department of Pneumology (N.E., M.I.), University of Freiburg, Germany
| | - Julian Merz
- From Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., A.Z.); and Faculty of Medicine (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., M.I., A.Z.) and Faculty of Biology (J.M.) and Department of Pneumology (N.E., M.I.), University of Freiburg, Germany
| | - Ingo Hilgendorf
- From Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., A.Z.); and Faculty of Medicine (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., M.I., A.Z.) and Faculty of Biology (J.M.) and Department of Pneumology (N.E., M.I.), University of Freiburg, Germany
| | - Dennis Wolf
- From Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., A.Z.); and Faculty of Medicine (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., M.I., A.Z.) and Faculty of Biology (J.M.) and Department of Pneumology (N.E., M.I.), University of Freiburg, Germany
| | - Florian Willecke
- From Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., A.Z.); and Faculty of Medicine (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., M.I., A.Z.) and Faculty of Biology (J.M.) and Department of Pneumology (N.E., M.I.), University of Freiburg, Germany
| | - Sunaina von Garlen
- From Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., A.Z.); and Faculty of Medicine (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., M.I., A.Z.) and Faculty of Biology (J.M.) and Department of Pneumology (N.E., M.I.), University of Freiburg, Germany
| | - Philipp Albrecht
- From Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., A.Z.); and Faculty of Medicine (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., M.I., A.Z.) and Faculty of Biology (J.M.) and Department of Pneumology (N.E., M.I.), University of Freiburg, Germany
| | - Carmen Härdtner
- From Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., A.Z.); and Faculty of Medicine (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., M.I., A.Z.) and Faculty of Biology (J.M.) and Department of Pneumology (N.E., M.I.), University of Freiburg, Germany
| | - Nicolas Ehrat
- From Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., A.Z.); and Faculty of Medicine (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., M.I., A.Z.) and Faculty of Biology (J.M.) and Department of Pneumology (N.E., M.I.), University of Freiburg, Germany
| | - Natalie Hoppe
- From Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., A.Z.); and Faculty of Medicine (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., M.I., A.Z.) and Faculty of Biology (J.M.) and Department of Pneumology (N.E., M.I.), University of Freiburg, Germany
| | - Jochen Reinöhl
- From Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., A.Z.); and Faculty of Medicine (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., M.I., A.Z.) and Faculty of Biology (J.M.) and Department of Pneumology (N.E., M.I.), University of Freiburg, Germany
| | - Constantin von Zur Mühlen
- From Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., A.Z.); and Faculty of Medicine (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., M.I., A.Z.) and Faculty of Biology (J.M.) and Department of Pneumology (N.E., M.I.), University of Freiburg, Germany
| | - Christoph Bode
- From Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., A.Z.); and Faculty of Medicine (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., M.I., A.Z.) and Faculty of Biology (J.M.) and Department of Pneumology (N.E., M.I.), University of Freiburg, Germany
| | - Marco Idzko
- From Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., A.Z.); and Faculty of Medicine (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., M.I., A.Z.) and Faculty of Biology (J.M.) and Department of Pneumology (N.E., M.I.), University of Freiburg, Germany
| | - Andreas Zirlik
- From Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., A.Z.); and Faculty of Medicine (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., M.I., A.Z.) and Faculty of Biology (J.M.) and Department of Pneumology (N.E., M.I.), University of Freiburg, Germany
| |
Collapse
|
123
|
Bartlett R, Sluyter V, Watson D, Sluyter R, Yerbury JJ. P2X7 antagonism using Brilliant Blue G reduces body weight loss and prolongs survival in female SOD1 G93A amyotrophic lateral sclerosis mice. PeerJ 2017; 5:e3064. [PMID: 28265522 PMCID: PMC5335685 DOI: 10.7717/peerj.3064] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 02/04/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disease characterised by the accumulation of aggregated proteins, microglia activation and motor neuron loss. The mechanisms underlying neurodegeneration and disease progression in ALS are unknown, but the ATP-gated P2X7 receptor channel is implicated in this disease. Therefore, the current study aimed to examine P2X7 in the context of neurodegeneration, and investigate whether the P2X7 antagonist, Brilliant Blue G (BBG), could alter disease progression in a murine model of ALS. METHODS Human SOD1G93A transgenic mice, which normally develop ALS, were injected with BBG or saline, three times per week, from pre-onset of clinical disease (62-64 days of age) until end-stage. During the course of treatment mice were assessed for weight, clinical score and survival, and motor coordination, which was assessed by rotarod performance. Various parameters from end-stage mice were assessed as follows. Motor neuron loss and microgliosis were assessed by immunohistochemistry. Relative amounts of lumbar spinal cord SOD1 and P2X7 were quantified by immunoblotting. Serum monocyte chemoattractant protein-1 was measured by ELISA. Splenic leukocyte populations were assessed by flow cytometry. Relative expression of splenic and hepatic P2X7 mRNA was measured by quantitative real-time PCR. Lumbar spinal cord SOD1 and P2X7 were also quantified by immunoblotting in untreated female SOD1G93A mice during the course of disease. RESULTS BBG treatment reduced body weight loss in SOD1G93A mice of combined sex, but had no effect on clinical score, survival or motor coordination. BBG treatment reduced body weight loss in female, but not male, SOD1G93A mice. BBG treatment also prolonged survival in female, but not male, SOD1G93A mice, extending the mean survival time by 4.3% in female mice compared to female mice treated with saline. BBG treatment had no effect on clinical score or motor coordination in either sex. BBG treatment had no major effect on any end-stage parameters. Total amounts of lumbar spinal cord SOD1 and P2X7 in untreated female SOD1G93A mice did not change over time. DISCUSSION Collectively, this data suggests P2X7 may have a partial role in ALS progression in mice, but additional research is required to fully elucidate the contribution of this receptor in this disease.
Collapse
Affiliation(s)
- Rachael Bartlett
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia
- Centre for Medical and Molecular Biosciences, Wollongong, NSW, Australia
| | - Vanessa Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia
- Centre for Medical and Molecular Biosciences, Wollongong, NSW, Australia
| | - Debbie Watson
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia
- Centre for Medical and Molecular Biosciences, Wollongong, NSW, Australia
| | - Ronald Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia
- Centre for Medical and Molecular Biosciences, Wollongong, NSW, Australia
| | - Justin J. Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia
- Centre for Medical and Molecular Biosciences, Wollongong, NSW, Australia
| |
Collapse
|
124
|
Presenilin 2 deficiency facilitates Aβ-induced neuroinflammation and injury by upregulating P2X7 expression. SCIENCE CHINA-LIFE SCIENCES 2017; 60:189-201. [DOI: 10.1007/s11427-016-0347-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 12/16/2016] [Indexed: 12/12/2022]
|
125
|
Shiozaki Y, Sato M, Kimura M, Sato T, Tazaki M, Shibukawa Y. Ionotropic P2X ATP Receptor Channels Mediate Purinergic Signaling in Mouse Odontoblasts. Front Physiol 2017; 8:3. [PMID: 28163685 PMCID: PMC5247440 DOI: 10.3389/fphys.2017.00003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/04/2017] [Indexed: 11/29/2022] Open
Abstract
ATP modulates various functions in the dental pulp cells, such as intercellular communication and neurotransmission between odontoblasts and neurons, proliferation of dental pulp cells, and odontoblast differentiation. However, functional expression patterns and their biophysical properties of ionotropic ATP (P2X) receptors (P2X1–P2X7) in odontoblasts were still unclear. We examined these properties of P2X receptors in mouse odontoblasts by patch-clamp recordings. K+-ATP, nonselective P2X receptor agonist, induced inward currents in odontoblasts in a concentration-dependent manner. K+-ATP-induced currents were inhibited by P2X4 and P2X7 selective inhibitors (5-BDBD and KN62, respectively), while P2X1 and P2X3 inhibitors had no effects. P2X7 selective agonist (BzATP) induced inward currents dose-dependently. We could not observe P2X1, 2/3, 3 selective agonist (αβ-MeATP) induced currents. Amplitudes of K+-ATP-induced current were increased in solution without extracellular Ca2+, but decreased in Na+-free extracellular solution. In the absence of both of extracellular Na+ and Ca2+, K+-ATP-induced currents were completely abolished. K+-ATP-induced Na+ currents were inhibited by P2X7 inhibitor, while the Ca2+ currents were sensitive to P2X4 inhibitor. These results indicated that odontoblasts functionally expressed P2X4 and P2X7 receptors, which might play an important role in detecting extracellular ATP following local dental pulp injury.
Collapse
Affiliation(s)
- Yuta Shiozaki
- Department of Physiology, Tokyo Dental CollegeTokyo, Japan; Department of Crown and Bridge Prosthodontics, Tokyo Dental CollegeTokyo, Japan
| | - Masaki Sato
- Department of Physiology, Tokyo Dental College Tokyo, Japan
| | - Maki Kimura
- Department of Physiology, Tokyo Dental College Tokyo, Japan
| | - Toru Sato
- Department of Crown and Bridge Prosthodontics, Tokyo Dental College Tokyo, Japan
| | | | | |
Collapse
|
126
|
Involvement of P2X7 receptor signaling on regulating the differentiation of Th17 cells and type II collagen-induced arthritis in mice. Sci Rep 2016; 6:35804. [PMID: 27775097 PMCID: PMC5075966 DOI: 10.1038/srep35804] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/03/2016] [Indexed: 12/29/2022] Open
Abstract
Interleukin (IL)-17 producing T helper (Th17) cells are major effector cells in the pathogenesis of rheumatoid arthritis (RA). The P2X7 receptor (P2X7R) has emerged as a potential site in the regulation of inflammation in RA but little is known of its functional role on the differentiation of Th17 cells. This study investigates the in vitro and in vivo effects of P2X7R on Th17 cell differentiation during type II collagen (CII) induced experimental arthritis model. In CII-treated dendritic cells (DCs) and DC/CD4+ T coculture system, pretreatment with pharmacological antagonists of P2X7R (Suramin and A-438079) caused strong inhibition of production of Th17-promoting cytokines (IL-1β, TGF-β1, IL-23p19 and IL-6). Exposure to CII induced the elevation of mRNAs encoding retinoic acid receptor-related orphan receptor α and γt, which were abolished by pretreatment with P2X7R antagonists. Furthermore, blocking P2X7R signaling abolished the CII-mediated increase in IL-17A. Blockade of P2X7R remarkably inhibited hind paw swelling and ameliorated pathological changes in ankle joint of the collagen-induced arthritis mice. Thus, we demonstrated a novel function for P2X7R signaling in regulating CII-induced differentiation of Th17 cells. P2X7R signaling facilitates the development of the sophisticated network of DC-derived cytokines that favors a Th17 phenotype.
Collapse
|
127
|
Savio LEB, Andrade MGJ, de Andrade Mello P, Santana PT, Moreira-Souza ACA, Kolling J, Longoni A, Feldbrügge L, Wu Y, Wyse ATS, Robson SC, Coutinho-Silva R. P2X7 Receptor Signaling Contributes to Sepsis-Associated Brain Dysfunction. Mol Neurobiol 2016; 54:6459-6470. [PMID: 27730511 DOI: 10.1007/s12035-016-0168-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 09/27/2016] [Indexed: 12/11/2022]
Abstract
Sepsis results in unfettered inflammation, tissue damage, and multiple organ failure. Diffuse brain dysfunction and neurological manifestations secondary to sepsis are termed sepsis-associated encephalopathy (SAE). Extracellular nucleotides, proinflammatory cytokines, and oxidative stress reactions are associated with delirium and brain injury, and might be linked to the pathophysiology of SAE. P2X7 receptor activation by extracellular ATP leads to maturation and release of IL-1β by immune cells, which stimulates the production of oxygen reactive species. Hence, we sought to investigate the role of purinergic signaling by P2X7 in a model of sepsis. We also determined how this process is regulated by the ectonucleotidase CD39, a scavenger of extracellular nucleotides. Wild type (WT), P2X7 receptor (P2X7-/-), or CD39 (CD39-/-) deficient mice underwent sham laparotomy or CLP induced by ligation and puncture of the cecum. We noted that genetic deletion of P2X7 receptor decreased markers of oxidative stress in murine brains 24 h after sepsis induction. The pharmacological inhibition or genetic ablation of the P2X7 receptor attenuated the IL-1β and IL-6 production in the brain from septic mice. Furthermore, our results suggest a crucial role for the enzyme CD39 in limiting P2X7 receptor proinflammatory responses since CD39-/- septic mice exhibited higher levels of IL-1β in the brain. We have also demonstrated that P2X7 receptor blockade diminished STAT3 activation in cerebral cortex and hippocampus from septic mice, indicating association of ATP-P2X7-STAT3 signaling axis in SAE during sepsis. Our findings suggest that P2X7 receptor might serve as a suitable therapeutic target to ameliorate brain damage in sepsis.
Collapse
Affiliation(s)
- Luiz Eduardo Baggio Savio
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Mariana G Juste Andrade
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paola de Andrade Mello
- Department of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA, USA.,Laboratory of Biochemical and Cytological Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Patrícia Teixeira Santana
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Janaína Kolling
- Laboratory of Neuroprotection and Metabolic Diseases, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Aline Longoni
- Laboratory of Neuroprotection and Metabolic Diseases, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Linda Feldbrügge
- Department of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Yan Wu
- Department of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Angela T S Wyse
- Laboratory of Neuroprotection and Metabolic Diseases, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Simon C Robson
- Department of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Robson Coutinho-Silva
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. .,Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Edifício do Centro de Ciências da Saúde, Bloco G. Av. Carlos Chagas Filho, 373, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
128
|
Li J, Li X, Jiang X, Yang M, Yang R, Burnstock G, Xiang Z, Yuan H. Microvesicles shed from microglia activated by the P2X7-p38 pathway are involved in neuropathic pain induced by spinal nerve ligation in rats. Purinergic Signal 2016; 13:13-26. [PMID: 27683228 DOI: 10.1007/s11302-016-9537-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/12/2016] [Indexed: 12/30/2022] Open
Abstract
Microglia are critical in the pathogenesis of neuropathic pain. In this study, we investigated the role of microvesicles (MVs) in neuropathic pain induced by spinal nerve ligation (SNL) in rats. First, we found that MVs shed from microglia were increased in the cerebrospinal fluid and dorsal horn of the spinal cord after SNL. Next, MVs significantly reduced paw withdrawal threshold (PWT) and paw withdrawal latency (PWL). In addition, the P2X7-p38 pathway was related to the bleb of MVs after SNL. Interleukin (IL)-1β was found to be significantly upregulated in the package of MVs, and PWT and PWL increased following inhibition with shRNA-IL-1β. Finally, the amplitude and frequency of spontaneous excitatory postsynaptic currents increased following stimulation with MVs. Our results indicate that the P2X7-p38 pathway is closely correlated with the shedding of MVs from microglia in neuropathic pain, and MVs had a significant effect on neuropathic pain by participating in the interaction between microglia and neurons.
Collapse
Affiliation(s)
- Jian Li
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Xiangnan Li
- Department of Anesthesiology, The Third People's Hospital of Yancheng, Yancheng, 224001, China
| | - Xin Jiang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Mei Yang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Rui Yang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, London, UK.,Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Australia
| | - Zhenghua Xiang
- Department of Neurobiology, MOE Key Laboratory of Molecular Neurobiology, Ministry of Education, Second Military Medical University, Shanghai, 200433, China.
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China.
| |
Collapse
|
129
|
Dodds KN, Beckett EAH, Evans SF, Grace PM, Watkins LR, Hutchinson MR. Glial contributions to visceral pain: implications for disease etiology and the female predominance of persistent pain. Transl Psychiatry 2016; 6:e888. [PMID: 27622932 PMCID: PMC5048206 DOI: 10.1038/tp.2016.168] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/14/2016] [Accepted: 07/22/2016] [Indexed: 12/27/2022] Open
Abstract
In the central nervous system, bidirectional signaling between glial cells and neurons ('neuroimmune communication') facilitates the development of persistent pain. Spinal glia can contribute to heightened pain states by a prolonged release of neurokine signals that sensitize adjacent centrally projecting neurons. Although many persistent pain conditions are disproportionately common in females, whether specific neuroimmune mechanisms lead to this increased susceptibility remains unclear. This review summarizes the major known contributions of glia and neuroimmune interactions in pain, which has been determined principally in male rodents and in the context of somatic pain conditions. It is then postulated that studying neuroimmune interactions involved in pain attributed to visceral diseases common to females may offer a more suitable avenue for investigating unique mechanisms involved in female pain. Further, we discuss the potential for primed spinal glia and subsequent neurogenic inflammation as a contributing factor in the development of peripheral inflammation, therefore, representing a predisposing factor for females in developing a high percentage of such persistent pain conditions.
Collapse
Affiliation(s)
- K N Dodds
- Discipline of Physiology, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - E A H Beckett
- Discipline of Physiology, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - S F Evans
- Discipline of Pharmacology, School of Medicine, University of Adelaide, Adelaide, SA, Australia
- Pelvic Pain SA, Norwood, SA, Australia
| | - P M Grace
- Discipline of Pharmacology, School of Medicine, University of Adelaide, Adelaide, SA, Australia
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - L R Watkins
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - M R Hutchinson
- Discipline of Physiology, School of Medicine, University of Adelaide, Adelaide, SA, Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
130
|
Infiltrating monocytes promote brain inflammation and exacerbate neuronal damage after status epilepticus. Proc Natl Acad Sci U S A 2016; 113:E5665-74. [PMID: 27601660 DOI: 10.1073/pnas.1604263113] [Citation(s) in RCA: 260] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The generalized seizures of status epilepticus (SE) trigger a series of molecular and cellular events that produce cognitive deficits and can culminate in the development of epilepsy. Known early events include opening of the blood-brain barrier (BBB) and astrocytosis accompanied by activation of brain microglia. Whereas circulating monocytes do not infiltrate the healthy CNS, monocytes can enter the brain in response to injury and contribute to the immune response. We examined the cellular components of innate immune inflammation in the days following SE by discriminating microglia vs. brain-infiltrating monocytes. Chemokine receptor 2 (CCR2(+)) monocytes invade the hippocampus between 1 and 3 d after SE. In contrast, only an occasional CD3(+) T lymphocyte was encountered 3 d after SE. The initial cellular sources of the chemokine CCL2, a ligand for CCR2, included perivascular macrophages and microglia. The induction of the proinflammatory cytokine IL-1β was greater in FACS-isolated microglia than in brain-invading monocytes. However, Ccr2 knockout mice displayed greatly reduced monocyte recruitment into brain and reduced levels of the proinflammatory cytokine IL-1β in hippocampus after SE, which was explained by higher expression of the cytokine in circulating and brain monocytes in wild-type mice. Importantly, preventing monocyte recruitment accelerated weight regain, reduced BBB degradation, and attenuated neuronal damage. Our findings identify brain-infiltrating monocytes as a myeloid-cell subclass that contributes to neuroinflammation and morbidity after SE. Inhibiting brain invasion of CCR2(+) monocytes could represent a viable method for alleviating the deleterious consequences of SE.
Collapse
|
131
|
Li B, Qi S, Sun G, Yang L, Han J, Zhu Y, Xia M. Leptin suppresses adenosine triphosphate-induced impairment of spinal cord astrocytes. J Neurosci Res 2016; 94:924-35. [PMID: 27316329 DOI: 10.1002/jnr.23795] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 12/20/2022]
Abstract
Spinal cord injury (SCI) causes long-term disability and has no clinically effective treatment. After SCI, adenosine triphosphate (ATP) may be released from neuronal cells and astrocytes in large amounts. Our previous studies have shown that the extracellular release of ATP increases the phosphorylation of cytosolic phospholipase A2 (cPLA2 ) and triggers the rapid release of arachidonic acid (AA) and prostaglandin E2 (PGE2) via the stimulation of epidermal growth factor receptor (EGFR) and the downstream phosphorylation of extracellular-regulated protein kinases 1 and 2. Leptin, a glycoprotein, induces the activation of the Janus kinase (JAK2)/signal transducers and activators of transcription-3 (Stat3) pathway via the leptin receptor. In this study, we found that 1) prolonged leptin treatment suppressed the ATP-stimulated release of AA and PGE2 from cultured spinal cord astrocytes; 2) leptin elevated the expression of caveolin-1 (Cav-1) via the JAK2/Stat3 signaling pathway; 3) Cav-1 blocked the interaction between Src and EGFR, thereby inhibiting the phosphorylation of EGFR and cPLA2 and attenuating the release of AA or PGE2; 4) pretreatment with leptin decreased ;he level of apoptosis and the release of interleukin-6 from cocultured neurons and astrocytes; and 5) leptin improved the recovery of locomotion in mice after SCI. Our results highlight leptin as a promising therapeutic agent for SCI. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Baoman Li
- Department of Orthopaedics, First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China.,Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, People's Republic of China
| | - Shuang Qi
- Department of Orthopaedics, First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | - Guangfeng Sun
- Department of Orthopaedics, First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | - Li Yang
- Department of Orthopaedics, First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China.,Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, People's Republic of China
| | - Jidong Han
- Department of Orthopaedics, First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | - Yue Zhu
- Department of Orthopaedics, First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | - Maosheng Xia
- Department of Orthopaedics, First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China.,Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
132
|
Bhattacharya A, Biber K. The microglial ATP-gated ion channel P2X7 as a CNS drug target. Glia 2016; 64:1772-87. [PMID: 27219534 DOI: 10.1002/glia.23001] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/17/2016] [Accepted: 04/18/2016] [Indexed: 12/14/2022]
Abstract
Based on promising preclinical evidence, microglial P2X7 has increasingly being recognized as a target for therapeutic intervention in neurological and psychiatric diseases. However, despite this knowledge no P2X7-related drug has yet entered clinical trials with respect to CNS diseases. We here discuss the current literature on P2X7 being a drug target and identify unsolved issues and still open questions that have hampered the development of P2X7 dependent therapeutic approaches for CNS diseases. It is concluded here that the lack of brain penetrating P2X7 antagonists is a major obstacle in the field and that central P2X7 is a yet untested clinical drug target. In the CNS, microglial P2X7 activation causes neuroinflammation, which in turn plays a role in various CNS disorders. This has resulted in a surge of brain penetrant P2X7 antagonists. P2X7 is a viable, clinically untested CNS drug target. GLIA 2016;64:1772-1787.
Collapse
Affiliation(s)
- Anindya Bhattacharya
- LLC. Neuroscience Drug Discovery, Janssen Research & Development, 3210 Merryfield Row, San Diego, California
| | - Knut Biber
- Department of Psychiatry and Psychotherapy, University Hospital Freiburg, Hauptstrasse 5, Freiburg, Germany.,Department of Neuroscience, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, AV Groningen, The Netherlands
| |
Collapse
|
133
|
Ferrari D, McNamee EN, Idzko M, Gambari R, Eltzschig HK. Purinergic Signaling During Immune Cell Trafficking. Trends Immunol 2016; 37:399-411. [PMID: 27142306 DOI: 10.1016/j.it.2016.04.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/05/2016] [Accepted: 04/07/2016] [Indexed: 12/24/2022]
Abstract
Migration and positioning of immune cells is fundamental for their differentiation and recruitment at sites of infection. Besides the fundamental role played by chemokines and their receptors, recent studies demonstrate that a complex network of purinergic signaling events plays a key role in these trafficking events. This process includes the release of nucleotides (such as ATP and ADP) and subsequent autocrine and paracrine signaling events through nucleotide receptors. At the same time, surface-expressed ectoapyrases and nucleotidases convert extracellular nucleotides to adenosine, and adenosine signaling events play additional functional roles in leucocyte trafficking. In this review we revisit classical paradigms of inflammatory cell trafficking in the context of recent studies implicating purinergic signaling events in this process.
Collapse
Affiliation(s)
- Davide Ferrari
- Department of Life Science and Biotechnology, University of Ferrara, I-44100 Ferrara, Italy.
| | - Eóin N McNamee
- Organ Protection Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Marco Idzko
- Department of Pulmonary Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Roberto Gambari
- Department of Life Science and Biotechnology, University of Ferrara, I-44100 Ferrara, Italy
| | - Holger K Eltzschig
- Organ Protection Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
134
|
Abstract
Purine receptors are located on immune and somatic cells of animal and human organisms. Summation of signals from purine and TOLL-like receptors takes place on the level of inflammasome formation and results in summation of the first and second signals of innate immunity. The first signal - from PAMPs (pathogen associated molecular patterns), the second - from DAMPs (danger associated molecular patterns). Adenosine triphosphate (ATP) is the most studied DAMP. ATP connects with purine receptors, which include P2 (P2X7 receptors are the best described), that results in opening of channels of these receptors and transit of ATP into the cell. In parallel exit of K+ from cells and entrance of Ca2+ and Na+ into the cells is observed, that is associated with activation of the immune competent cell. Damaged cells dying via necrosis or apoptosis are the source of extracellular ATP, as well as activated immunocytes. Signals from P2 and TOLL-like receptors are summarized in effectors of immune response, and activation of P2 receptors in lymphocytes makes a contribution into activation of cells, mediated by T-cell receptor. Negative side of purine receptor activation is a stimulating effect on proliferation and metastasis of malignant cells. The practical output of knowledge on functioning of purine receptors for clinical immunology is the application of agonists and antagonists of purine receptors, as well as explanation of effect of immune modulators from the position of launch of K+/Na+-pump, resulting in prolonged activation of immune competent cells.
Collapse
|
135
|
Fernandes NC, Sriram U, Gofman L, Cenna JM, Ramirez SH, Potula R. Methamphetamine alters microglial immune function through P2X7R signaling. J Neuroinflammation 2016; 13:91. [PMID: 27117066 PMCID: PMC4847215 DOI: 10.1186/s12974-016-0553-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 04/17/2016] [Indexed: 01/22/2023] Open
Abstract
Background Purinoceptors have emerged as mediators of chronic inflammation and neurodegenerative processes. The ionotropic purinoceptor P2X7 (P2X7R) is known to modulate proinflammatory signaling and integrate neuronal-glial circuits. Evidence of P2X7R involvement in neurodegeneration, chronic pain, and chronic inflammation suggests that purinergic signaling plays a major role in microglial activation during neuroinflammation. In this study, we investigated the effects of methamphetamine (METH) on microglial P2X7R. Methods ESdMs were used to evaluate changes in METH-induced P2X7R gene expression via Taqman PCR and protein expression via western blot analysis. Migration and phagocytosis assays were used to evaluate functional changes in ESdMs in response to METH treatment. METH-induced proinflammatory cytokine production following siRNA silencing of P2X7R in ESdMs measured P2X7R-dependent functional changes. In vivo expression of P2X7R and tyrosine hydroxylase (TH) was visualized in an escalating METH dose mouse model via immunohistochemical analysis. Results Stimulation of ESdMs with METH for 48 h significantly increased P2X7R mRNA (*p < 0.0336) and protein expression (*p < 0.022). Further analysis of P2X7R protein in cellular fractionations revealed increases in membrane P2X7R (*p < 0.05) but decreased cytoplasmic expression after 48 h METH treatment, suggesting protein mobilization from the cytoplasm to the membrane which occurs upon microglial stimulation with METH. Forty-eight hour METH treatment increased microglial migration towards Fractalkine (CX3CL1) compared to control (****p < 0.0001). Migration toward CX3CL1 was confirmed to be P2X7R-dependent through the use of A 438079, a P2X7R-competitive antagonist, which reversed the METH effects (****p < 0.0001). Similarly, 48 h METH treatment increased microglial phagocytosis compared to control (****p < 0.0001), and pretreatment of P2X7R antagonist reduced METH-induced phagocytosis (****p < 0.0001). Silencing the microglial P2X7R decreased TNF-α (*p < 0.0363) and IL-10 production after 48 h of METH treatment. Additionally, our studies demonstrate increased P2X7R and decreased TH expression in the striata of escalating dose METH animal model compared to controls. Conclusions This study sheds new light on the functional role of P2X7R in the regulation of microglial effector functions during substance abuse. Our findings suggest that P2X7R plays an important role in METH-induced microglial activation responses. P2X7R antagonists may thus constitute a novel target of therapeutic utility in neuroinflammatory conditions by regulating pathologically activated glial cells in stimulant abuse. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0553-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicole C Fernandes
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, MERB 845A, 3500 N. Broad Street, Philadelphia, 19140, PA, USA
| | - Uma Sriram
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, MERB 845A, 3500 N. Broad Street, Philadelphia, 19140, PA, USA
| | - Larisa Gofman
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, MERB 845A, 3500 N. Broad Street, Philadelphia, 19140, PA, USA
| | - Jonathan M Cenna
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, MERB 845A, 3500 N. Broad Street, Philadelphia, 19140, PA, USA
| | - Servio H Ramirez
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, MERB 845A, 3500 N. Broad Street, Philadelphia, 19140, PA, USA.,Center for Substance Abuse Research, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Raghava Potula
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, MERB 845A, 3500 N. Broad Street, Philadelphia, 19140, PA, USA. .,Center for Substance Abuse Research, Lewis Katz School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
136
|
Cruz LN, Wu Y, Ulrich H, Craig AG, Garcia CRS. Tumor necrosis factor reduces Plasmodium falciparum growth and activates calcium signaling in human malaria parasites. Biochim Biophys Acta Gen Subj 2016; 1860:1489-97. [PMID: 27080559 PMCID: PMC4876768 DOI: 10.1016/j.bbagen.2016.04.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/08/2016] [Accepted: 04/04/2016] [Indexed: 12/29/2022]
Abstract
Background Plasmodium has a complex biology including the ability to interact with host signals modulating their function through cellular machinery. Tumor necrosis factor (TNF) elicits diverse cellular responses including effects in malarial pathology and increased infected erythrocyte cytoadherence. As TNF levels are raised during Plasmodium falciparum infection we have investigated whether it has an effect on the parasite asexual stage. Methods Flow cytometry, spectrofluorimetric determinations, confocal microscopy and PCR real time quantifications were employed for characterizing TNF induced effects and membrane integrity verified by wheat germ agglutinin staining. Results TNF is able to decrease intracellular parasitemia, involving calcium as a second messenger of the pathway. Parasites incubated for 48 h with TNF showed reduced erythrocyte invasion. Thus, TNF induced rises in intracellular calcium concentration, which were blocked by prior addition of the purinergic receptor agonists KN62 and A438079, or interfering with intra- or extracellular calcium release by thapsigargin or EGTA (ethylene glycol tetraacetic acid). Importantly, expression of PfPCNA1 which encodes the Plasmodium falciparum Proliferating-Cell Nuclear Antigen 1, decreased after P. falciparum treatment of TNF (tumor necrosis factor) or 6-Bnz cAMP (N6-benzoyladenosine-3′,5′-cyclic monophosphate sodium salt). Conclusions This is potentially interesting data showing the relevance of calcium in downregulating a gene involved in cellular proliferation, triggered by TNF. General significance The data show that Plasmodium may subvert the immunological system and use TNF for the control of its proliferation within the vertebrate host. TNF is able to decrease parasitemia in P. falciparum‐infected RBCs. TNF induced rises in intracellular calcium concentration, which were blocked by the purinergic receptor agonists KN62 and A438079. Interfering with intra‐ or extracellular calcium release by thapsigargin or EGTA also block TNF‐induce calcium release in P. falciparum. Expression of the P. falciparum Proliferating‐Cell Nuclear Antigen 1 (PfPCNA1) decreased after P. falciparum treatment with TNF or 6‐Bnz cAMP. The data show that Plasmodium may subvert the immunological system and use TNF for the control of its proliferation within the vertebrate host.
Collapse
Affiliation(s)
- Laura N Cruz
- Department of Physiology, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, travessa 14, n321, CEP 05508-900 São Paulo, SP, Brazil
| | - Yang Wu
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Henning Ulrich
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Alister G Craig
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Célia R S Garcia
- Department of Physiology, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, travessa 14, n321, CEP 05508-900 São Paulo, SP, Brazil.
| |
Collapse
|
137
|
Aprile-Garcia F, Metzger MW, Paez-Pereda M, Stadler H, Acuña M, Liberman AC, Senin SA, Gerez J, Hoijman E, Refojo D, Mitkovski M, Panhuysen M, Stühmer W, Holsboer F, Deussing JM, Arzt E. Co-Expression of Wild-Type P2X7R with Gln460Arg Variant Alters Receptor Function. PLoS One 2016; 11:e0151862. [PMID: 26986975 PMCID: PMC4795689 DOI: 10.1371/journal.pone.0151862] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/04/2016] [Indexed: 01/04/2023] Open
Abstract
The P2X7 receptor is a member of the P2X family of ligand-gated ion channels. A single-nucleotide polymorphism leading to a glutamine (Gln) by arginine (Arg) substitution at codon 460 of the purinergic P2X7 receptor (P2X7R) has been associated with mood disorders. No change in function (loss or gain) has been described for this SNP so far. Here we show that although the P2X7R-Gln460Arg variant per se is not compromised in its function, co-expression of wild-type P2X7R with P2X7R-Gln460Arg impairs receptor function with respect to calcium influx, channel currents and intracellular signaling in vitro. Moreover, co-immunoprecipitation and FRET studies show that the P2X7R-Gln460Arg variant physically interacts with P2X7R-WT. Specific silencing of either the normal or polymorphic variant rescues the heterozygous loss of function phenotype and restores normal function. The described loss of function due to co-expression, unique for mutations in the P2RX7 gene so far, explains the mechanism by which the P2X7R-Gln460Arg variant affects the normal function of the channel and may represent a mechanism of action for other mutations.
Collapse
Affiliation(s)
- Fernando Aprile-Garcia
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET- Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | - Matías Acuña
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET- Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Ana C. Liberman
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET- Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Sergio A. Senin
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET- Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Juan Gerez
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET- Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Esteban Hoijman
- Centro de Microscopías Avanzadas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Damian Refojo
- Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Mišo Mitkovski
- Max Planck Institute of Experimental Medicine, 37075, Göttingen, Germany
| | | | - Walter Stühmer
- Max Planck Institute of Experimental Medicine, 37075, Göttingen, Germany
| | - Florian Holsboer
- Max Planck Institute of Psychiatry, 80804, Munich, Germany
- HMNC Brain Health, Munich, Germany
| | | | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET- Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Max Planck Institute of Psychiatry, 80804, Munich, Germany
- * E-mail:
| |
Collapse
|
138
|
Mizutani T, Fowler BJ, Kim Y, Yasuma R, Krueger LA, Gelfand BD, Ambati J. Nucleoside Reverse Transcriptase Inhibitors Suppress Laser-Induced Choroidal Neovascularization in Mice. Invest Ophthalmol Vis Sci 2016; 56:7122-9. [PMID: 26529046 DOI: 10.1167/iovs.15-17440] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
PURPOSE To evaluate the efficacy of nucleoside reverse transcriptase inhibitors (NRTIs) in the laser-induced mouse model of choroidal neovascularization (CNV). METHODS We evaluated the NRTIs lamivudine (3TC), zidovudine (AZT), and abacavir (ABC) and the P2X7 antagonist A438079. Choroidal neovascularization was induced by laser injury in C57BL/6J wild-type, Nlrp3-/-, and P2rx7-/- mice, and CNV volume was measured after 7 days by confocal microscopy. Drugs were administered by intravitreous injection immediately after the laser injury. Vascular endothelial growth factor-A in RPE-choroid lysates was measured 3 days after laser injury by ELISA. HEK293 cells expressing human and mouse P2X7 were exposed to the selective P2X7 receptor agonist 2', 3'-(benzoyl-4-benzoyl)-ATP (Bz-ATP) with or without 3TC, and VEGF-A levels in media were measured by ELISA. RESULTS Intravitreous injection of 3TC, AZT, and ABC significantly suppressed laser-induced CNV in C57BL/6J wild-type and Nlrp3-/- mice (P < 0.05) but not in P2rx7-/- mice. Intravitreous injection of A438079 also suppressed the laser-induced CNV (P < 0.05). The NRTIs 3TC, AZT, and ABC blocked VEGF-A levels in the RPE/choroid after laser injury in wild-type (P < 0.05) but not P2rx7-/- mice. Moreover, there was no additive effect of 3TC on CNV inhibition when coadministered with a neutralizing VEGF-A antibody. Stimulation of human and mouse P2X7-expressing HEK293 cells with Bz-ATP increased VEGF secretion (P < 0.001), which was abrogated by 3TC (P < 0.001). Stimulation of primary human RPE cells with Bz-ATP increased VEGFA and IL6 mRNA levels, which were abrogated by 3TC. CONCLUSIONS Multiple clinically relevant NRTIs suppressed laser-induced CNV and downregulated VEGF-A, via P2X7.
Collapse
Affiliation(s)
- Takeshi Mizutani
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Benjamin J Fowler
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Younghee Kim
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Reo Yasuma
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Laura A Krueger
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Bradley D Gelfand
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, Kentucky, United States 2Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky, United States 3Department of Microbiology, Immunology, and Mole
| | - Jayakrishna Ambati
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, Kentucky, United States 4Department of Physiology, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
139
|
de Torre-Minguela C, Barberà-Cremades M, Gómez AI, Martín-Sánchez F, Pelegrín P. Macrophage activation and polarization modify P2X7 receptor secretome influencing the inflammatory process. Sci Rep 2016; 6:22586. [PMID: 26935289 PMCID: PMC4776275 DOI: 10.1038/srep22586] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/17/2016] [Indexed: 12/20/2022] Open
Abstract
The activation of P2X7 receptor (P2X7R) on M1 polarized macrophages induces the assembly of the NLRP3 inflammasome leading to the release of pro-inflammatory cytokines and the establishment of the inflammatory response. However, P2X7R signaling to the NLRP3 inflammasome is uncoupled on M2 macrophages without changes on receptor activation. In this study, we analyzed P2X7R secretome in wild-type and P2X7R-deficient macrophages polarized either to M1 or M2 and proved that proteins released after P2X7R stimulation goes beyond caspase-1 secretome. The characterization of P2X7R-secretome reveals a new function of this receptor through a fine-tuning of protein release. We found that P2X7R stimulation in macrophages is able to release potent anti-inflammatory proteins, such as Annexin A1, independently of their polarization state suggesting for first time a potential role for P2X7R during resolution of the inflammation and not linked to the release of pro-inflammatory cytokines. These results are of prime importance for the development of therapeutics targeting P2X7R.
Collapse
Affiliation(s)
- Carlos de Torre-Minguela
- Inflammation and Experimental Surgery Unit, CIBERehd, Murcia's BioHealth Research Institute IMIB-Arrixaca, Clinical University Hospital Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Maria Barberà-Cremades
- Inflammation and Experimental Surgery Unit, CIBERehd, Murcia's BioHealth Research Institute IMIB-Arrixaca, Clinical University Hospital Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Ana I Gómez
- Inflammation and Experimental Surgery Unit, CIBERehd, Murcia's BioHealth Research Institute IMIB-Arrixaca, Clinical University Hospital Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Fátima Martín-Sánchez
- Inflammation and Experimental Surgery Unit, CIBERehd, Murcia's BioHealth Research Institute IMIB-Arrixaca, Clinical University Hospital Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Pablo Pelegrín
- Inflammation and Experimental Surgery Unit, CIBERehd, Murcia's BioHealth Research Institute IMIB-Arrixaca, Clinical University Hospital Virgen de la Arrixaca, 30120 Murcia, Spain
| |
Collapse
|
140
|
Deng Y, Guo XL, Yuan X, Shang J, Zhu D, Liu HG. P2X7 Receptor Antagonism Attenuates the Intermittent Hypoxia-induced Spatial Deficits in a Murine Model of Sleep Apnea Via Inhibiting Neuroinflammation and Oxidative Stress. Chin Med J (Engl) 2016; 128:2168-75. [PMID: 26265609 PMCID: PMC4717977 DOI: 10.4103/0366-6999.162495] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: The mechanism of the neural injury caused by chronic intermittent hypoxia (CIH) that characterizes obstructive sleep apnea syndrome (OSAS) is not clearly known. The purpose of this study was to investigate whether P2X7 receptor (P2X7R) is responsible for the CIH-induced neural injury and the possible pathway it involves. Methods: Eight-week-old male C57BL/6 mice were used. For each exposure time point, eight mice divided in room air (RA) and IH group were assigned to the study of P2X7R expression. Whereas in the 21 days-Brilliant Blue G (BBG, a selective P2X7R antagonist) study, 48 mice were randomly divided into CIH group, BBG-treated CIH group, RA group and BBG-treated RA group. The hippocampus P2X7R expression was determined by Western blotting and real-time polymerase chain reaction (PCR). The spatial learning was analyzed by Morris water maze. The nuclear factor kappa B (NFκB) and NADPH oxidase 2 (NOX2) expressions were analyzed by Western blotting. The expressions of tumor necrosis factor α, interleukin 1β (IL-β), IL-18, and IL-6 were measured by real-time PCR. The malondialdehyde and superoxide dismutase levels were detected by colorimetric method. Cell damage was evaluated by Hematoxylin and Eosin staining and Terminal Transferase dUTP Nick-end Labeling method. Results: The P2X7R mRNA was elevated and sustained after 3-day IH exposure and the P2X7R protein was elevated and sustained after 7-day IH exposure. In the BBG study, the CIH mice showed severer neuronal cell damage and poorer performance in the behavior test. The increased NFκB and NOX2 expressions along with the inflammation injury and oxidative stress were also observed in the CIH group. BBG alleviated CIH-induced neural injury and consequent functional deficits. Conclusions: The P2X7R antagonism attenuates the CIH-induced neuroinflammation, oxidative stress, and spatial deficits, demonstrating that the P2X7R is an important therapeutic target in the cognition deficits accompanied OSAS.
Collapse
Affiliation(s)
| | | | | | | | | | - Hui-Guo Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
141
|
Crain JM, Watters JJ. Microglial P2 Purinergic Receptor and Immunomodulatory Gene Transcripts Vary By Region, Sex, and Age in the Healthy Mouse CNS. ACTA ACUST UNITED AC 2015; 3. [PMID: 26949719 DOI: 10.4172/2329-8936.1000124] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Inflammatory damage in many neurodegenerative diseases is restricted to certain regions of the CNS, and while microglia have long been implicated in the pathology of many of these disorders, information comparing their gene expression in different CNS regions is lacking. Here we tested the hypothesis that the expression of purinergic receptors, estrogen receptors and other neuroprotective and pro-inflammatory genes differed among CNS regions in healthy mice. Because neurodegenerative diseases vary in incidence by sex and age, we also examined the regional distribution of these genes in male and female mice of four different ages between 21 days and 12 months. We postulated that pro-inflammatory gene expression would be higher in older animals, and lower in young adult females. We found that microglial gene expression differed across the CNS. Estrogen receptor alpha (Esr1) mRNA levels were often lower in microglia from the brainstem/spinal cord than from the cortex, whereas tumor necrosis factor alpha (Tnfα) expression was several times higher. In addition, the regional pattern of gene expression often changed with animal age; for example, no regional differences in P2X7 mRNA levels were detected in 21 day-old animals, but at 7 weeks and older, expression was highest in cerebellar microglia. Lastly, the expression of some genes was sexually dimorphic. In microglia from 12 month-old animals, mRNA levels of inducible nitric oxide synthase, but not Tnfα, were higher in females than males. These data suggest that microglial gene expression is not uniformly more pro-inflammatory in males or older animals. Moreover, microglia from CNS regions in which neuronal damage predominates in neurodegenerative disease do not generally express more pro-inflammatory genes than microglia from regions less frequently affected. This study provides an in-depth assessment of regional-, sex- and age-dependent differences in key microglial transcripts from the healthy mouse CNS.
Collapse
Affiliation(s)
- Jessica M Crain
- Program in Cellular and Molecular Biology, University of Wisconsin, Madison, WI 53706; Center for Women's Health Research, University of Wisconsin, Madison, WI 53706
| | - Jyoti J Watters
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706; Program in Cellular and Molecular Biology, University of Wisconsin, Madison, WI 53706; Center for Women's Health Research, University of Wisconsin, Madison, WI 53706
| |
Collapse
|
142
|
Zimmermann H. Extracellular ATP and other nucleotides-ubiquitous triggers of intercellular messenger release. Purinergic Signal 2015; 12:25-57. [PMID: 26545760 DOI: 10.1007/s11302-015-9483-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/29/2015] [Indexed: 12/21/2022] Open
Abstract
Extracellular nucleotides, and ATP in particular, are cellular signal substances involved in the control of numerous (patho)physiological mechanisms. They provoke nucleotide receptor-mediated mechanisms in select target cells. But nucleotides can considerably expand their range of action. They function as primary messengers in intercellular communication by stimulating the release of other extracellular messenger substances. These in turn activate additional cellular mechanisms through their own receptors. While this applies also to other extracellular messengers, its omnipresence in the vertebrate organism is an outstanding feature of nucleotide signaling. Intercellular messenger substances released by nucleotides include neurotransmitters, hormones, growth factors, a considerable variety of other proteins including enzymes, numerous cytokines, lipid mediators, nitric oxide, and reactive oxygen species. Moreover, nucleotides activate or co-activate growth factor receptors. In the case of hormone release, the initially paracrine or autocrine nucleotide-mediated signal spreads through to the entire organism. The examples highlighted in this commentary suggest that acting as ubiquitous triggers of intercellular messenger release is one of the major functional roles of extracellular nucleotides. While initiation of messenger release by nucleotides has been unraveled in many contexts, it may have been overlooked in others. It can be anticipated that additional nucleotide-driven messenger functions will be uncovered with relevance for both understanding physiology and development of therapy.
Collapse
Affiliation(s)
- Herbert Zimmermann
- Institute of Cell Biology and Neuroscience, Molecular and Cellular Neurobiology, Goethe University, Max-von-Laue-Str. 13, Frankfurt am Main, Germany.
| |
Collapse
|
143
|
The azetidine derivative, KHG26792 protects against ATP-induced activation of NFAT and MAPK pathways through P2X7 receptor in microglia. Neurotoxicology 2015; 51:198-206. [PMID: 26522449 DOI: 10.1016/j.neuro.2015.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/21/2015] [Accepted: 10/26/2015] [Indexed: 01/01/2023]
Abstract
Azetidine derivatives are of interest for drug development because they may be useful therapeutic agents. However, their mechanisms of action remain to be completely elucidated. Here, we have investigated the effects of 3-(naphthalen-2-yl(propoxy)methyl)azetidine hydrochloride (KHG26792) on ATP-induced activation of NFAT and MAPK through P2X7 receptor in the BV-2 mouse microglial cell line. KHG26792 decreased ATP-induced TNF-α release from BV-2 microglia by suppressing, at least partly, P2X7 receptor stimulation. KHG26792 also inhibited the ATP-induced increase in IL-6, PGE2, NO, ROS, CXCL2, and CCL3. ATP induced NFAT activation through P2X7 receptor, with KHG26792 reducing the ATP-induced NFAT activation. KHG26792 inhibited an ATP-induced increase in iNOS protein and ERK phosphorylation. KHG26792 prevented an ATP-induced increase in MMP-9 activity through the P2X7 receptor as a result of degradation of TIMP-1 by cathepsin B. Our data provide mechanistic insights into the role of KHG26792 in the inhibition of TNF-α produced via P2X7 receptor-mediated activation of NFAT and MAPK pathways in ATP-treated BV-2 cells. This study highlights the potential use of KHG26792 as a therapeutic agent for the many diseases of the CNS related to activated microglia.
Collapse
|
144
|
Woods LT, Ajit D, Camden JM, Erb L, Weisman GA. Purinergic receptors as potential therapeutic targets in Alzheimer's disease. Neuropharmacology 2015; 104:169-79. [PMID: 26519903 DOI: 10.1016/j.neuropharm.2015.10.031] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 01/06/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive loss of memory and cognitive ability and is a serious cause of mortality. Many of the pathological characteristics associated with AD are revealed post-mortem, including amyloid-β plaque deposition, neurofibrillary tangles containing hyperphosphorylated tau proteins and neuronal loss in the hippocampus and cortex. Although several genetic mutations and risk factors have been associated with the disease, the causes remain poorly understood. Study of disease-initiating mechanisms and AD progression in humans is inherently difficult as most available tissue specimens are from late-stages of disease. Therefore, AD researchers rely on in vitro studies and the use of AD animal models where neuroinflammation has been shown to be a major characteristic of AD. Purinergic receptors are a diverse family of proteins consisting of P1 adenosine receptors and P2 nucleotide receptors for ATP, UTP and their metabolites. This family of receptors has been shown to regulate a wide range of physiological and pathophysiological processes, including neuroinflammation, and may contribute to the pathogenesis of neurodegenerative diseases like Parkinson's disease, multiple sclerosis and AD. Experimental evidence from human AD tissue has suggested that purinergic receptors may play a role in AD progression and studies using selective purinergic receptor agonists and antagonists in vitro and in AD animal models have demonstrated that purinergic receptors represent novel therapeutic targets for the treatment of AD. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Lucas T Woods
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Deepa Ajit
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Jean M Camden
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Laurie Erb
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Gary A Weisman
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
145
|
Stebbing MJ, Cottee JM, Rana I. The Role of Ion Channels in Microglial Activation and Proliferation - A Complex Interplay between Ligand-Gated Ion Channels, K(+) Channels, and Intracellular Ca(2.). Front Immunol 2015; 6:497. [PMID: 26557116 PMCID: PMC4617059 DOI: 10.3389/fimmu.2015.00497] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/14/2015] [Indexed: 12/17/2022] Open
Abstract
Microglia are often referred to as the immune cells of the brain. They are most definitely involved in immune responses to invading pathogens and inflammatory responses to tissue damage. However, recent results suggest microglia are vital for normal functioning of the brain. Neuroinflammation, as well as more subtle changes, in microglial function has been implicated in the pathogenesis of many brain diseases and disorders. Upon sensing alterations in their local environment, microglia change their shape and release factors that can modify the excitability of surrounding neurons. During neuroinflammation, microglia proliferate and release NO, reactive oxygen species, cytokines and chemokines. If inflammation resolves then their numbers normalize again via apoptosis. Microglia express a wide array of ion channels and different types are implicated in all of the cellular processes listed above. Modulation of microglial ion channels has shown great promise as a therapeutic strategy in several brain disorders. In this review, we discuss recent advances in our knowledge of microglial ion channels and their roles in responses of microglia to changes in the extracellular milieu.
Collapse
Affiliation(s)
- Martin James Stebbing
- Health Innovations Research Institute and School of Medical Sciences, RMIT University , Bundoora, VIC , Australia
| | - Jennifer Marie Cottee
- Health Innovations Research Institute and School of Medical Sciences, RMIT University , Bundoora, VIC , Australia
| | - Indrajeetsinh Rana
- Health Innovations Research Institute and School of Medical Sciences, RMIT University , Bundoora, VIC , Australia ; School of Health Sciences, Federation University Australia , Ballarat, VIC , Australia
| |
Collapse
|
146
|
Neuronal Regulation of Neuroprotective Microglial Apolipoprotein E Secretion in Rat In Vitro Models of Brain Pathophysiology. J Neuropathol Exp Neurol 2015; 74:818-34. [PMID: 26185969 DOI: 10.1097/nen.0000000000000222] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Apolipoprotein E (ApoE) is mainly secreted by glial cells and is involved in many brain functions, including neuronal plasticity, β-amyloid clearance, and neuroprotection. Microglia--the main immune cells of the brain--are one source of ApoE, but little is known about the physiologic regulation of microglial ApoE secretion by neurons and whether this release changes under inflammatory or neurodegenerative conditions. Using rat primary neural cell cultures, we show that microglia release ApoE through a Golgi-mediated secretion pathway and that ApoE progressively accumulates in neuroprotective microglia-conditioned medium. This constitutive ApoE release is negatively affected by microglial activation both with lipopolysaccharide and with ATP. Microglial ApoE release is stimulated by neuron-conditioned media and under coculture conditions. Neuron-stimulated microglial ApoE release is mediated by serine and glutamate through N-methyl-D-aspartate receptors and is differently regulated by activation states (i.e. lipopolysaccharide vs ATP) and by 6-hydroxydopamine. Microglial ApoE silencing abrogated protection of cerebellar granule neurons against 6-hydroxydopamine toxicity in cocultures, indicating that microglial ApoE release is neuroprotective. Our findings shed light on the reciprocal cross-talk between neurons and microglia that is crucial for normal brain functions. They also open the way for the identification of possible pharmacologic targets that can modulate neuroprotective microglial ApoE release under pathologic conditions.
Collapse
|
147
|
Masuch A, Shieh CH, van Rooijen N, van Calker D, Biber K. Mechanism of microglia neuroprotection: Involvement of P2X7, TNFα, and valproic acid. Glia 2015; 64:76-89. [PMID: 26295445 DOI: 10.1002/glia.22904] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/03/2015] [Accepted: 08/05/2015] [Indexed: 11/05/2022]
Abstract
Recently, we have demonstrated that ramified microglia are neuroprotective in N-methyl-D-aspartate (NMDA)-induced excitotoxicity in organotypic hippocampal slice cultures (OHSCs). The present study aimed to elucidate the underlying neuron-glia communication mechanism. It is shown here that pretreatment of OHSC with high concentrations of adenosine 5'-triphosphate (ATP) reduced NMDA-induced neuronal death only in presence of microglia. Specific agonists and antagonists identified the P2X7 receptor as neuroprotective receptor which was confirmed by absence of ATP-dependent neuroprotection in P2X7-deficient OHSC. Microglia replenished chimeric OHSC consisting of wild-type tissue replenished with P2X7-deficient microglia confirmed the involvement of microglial P2X7 receptor in neuroprotection. Stimulation of P2X7 in primary microglia induced tumor necrosis factor α (TNFα) release and blocking TNFα by a neutralizing antibody in OHSC abolished neuroprotection by ATP. OHSC from TNFα-deficient mice show increased exicitoxicity and activation of P2X7 did not rescue neuronal survival in the absence of TNFα. The neuroprotective effect of valproic acid (VPA) was strictly dependent on the presence of microglia and was mediated by upregulation of P2X7 in the cells. The present study demonstrates that microglia-mediated neuroprotection depends on ATP-activated purine receptor P2X7 and induction of TNFα release. This neuroprotective pathway was strengthened by VPA elucidating a novel mechanism for the neuroprotective function of VPA.
Collapse
Affiliation(s)
- Annette Masuch
- Department of Psychiatry and Psychotherapy, University Hospital Freiburg, Freiburg, Germany
| | - Chu-Hsin Shieh
- Department of Psychiatry and Psychotherapy, University Hospital Freiburg, Freiburg, Germany
| | - Nico van Rooijen
- Department of Molecular Cell Biology, Free University Medical Center (VUMC), Amsterdam, the Netherlands
| | - Dietrich van Calker
- Department of Psychiatry and Psychotherapy, University Hospital Freiburg, Freiburg, Germany
| | - Knut Biber
- Department of Psychiatry and Psychotherapy, University Hospital Freiburg, Freiburg, Germany.,Department of Neuroscience, University Medical Center Groningen (UMCG), University of Groningen, the Netherlands
| |
Collapse
|
148
|
Stokes L, Spencer SJ, Jenkins TA. Understanding the role of P2X7 in affective disorders-are glial cells the major players? Front Cell Neurosci 2015; 9:258. [PMID: 26217184 PMCID: PMC4495333 DOI: 10.3389/fncel.2015.00258] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/22/2015] [Indexed: 12/11/2022] Open
Abstract
Pathophysiology associated with several psychiatric disorders has been linked to inflammatory biomarkers. This has generated a theory of major depressive disorders as an inflammatory disease. The idea of pro-inflammatory cytokines altering behavior is now well accepted however many questions remain. Microglia can produce a plethora of inflammatory cytokines and these cells appear to be critical in the link between inflammatory changes and depressive disorders. Microglia play a known role in sickness behavior which has many components of depressive-like behavior such as social withdrawal, sleep alterations, and anorexia. Numerous candidate genes have been identified for psychiatric disorders in the last decade. Single nucleotide polymorphisms (SNPs) in the human P2X7 gene have been linked to bipolar disorder, depression, and to the severity of depressive symptoms. P2X7 is a ligand-gated cation channel expressed on microglia with lower levels found on astrocytes and on some neuronal populations. In microglia P2X7 is a major regulator of pro-inflammatory cytokines of the interleukin-1 family. Genetic deletion of P2X7 in mice is protective for depressive behavior in addition to inflammatory responses. P2X7(-/-) mice have been shown to demonstrate anti-depressive-like behavior in forced swim and tail suspension behavioral tests and stressor-induced behavioral responses were blunted. Both neurochemical (norepinephrine, serotonin, and dopamine) and inflammatory changes have been observed in the brains of P2X7(-/-) mice. This review will discuss the recent evidence for involvement of P2X7 in the pathophysiology of depressive disorders and propose mechanisms by which altered signaling through this ion channel may affect the inflammatory state of the brain.
Collapse
Affiliation(s)
- Leanne Stokes
- School of Medical Sciences, Health Innovations Research Institute, RMIT UniversityMelbourne, VIC, Australia
- School of Pharmacy, University of East AngliaNorwich, UK
| | - Sarah J. Spencer
- School of Health Sciences, Health Innovations Research Institute, RMIT UniversityMelbourne, VIC, Australia
| | - Trisha A. Jenkins
- School of Medical Sciences, Health Innovations Research Institute, RMIT UniversityMelbourne, VIC, Australia
| |
Collapse
|
149
|
Tewari M, Varghse RK, Menon M, Seth P. Astrocytes mediate HIV-1 Tat-induced neuronal damage via ligand-gated ion channel P2X7R. J Neurochem 2015; 132:464-76. [PMID: 25272052 DOI: 10.1111/jnc.12953] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/17/2014] [Accepted: 09/22/2014] [Indexed: 01/21/2023]
Abstract
During human immunodeficiency virus (HIV)-1 infection, perturbations in neuron–glia interactions may culminate in neuronal damage. Recently, purinergic receptors have been implicated in the promotion of virus-induced neurotoxicity and supporting the viral life cycle at multiple stages. The astrocytes robustly express purinergic receptors. We therefore sought to examine if P2X7R, a P2X receptor subtype, can mediate HIV-1 Tat-induced neuronal apoptosis. Tat augmented the expression of P2X7R in astrocytes. Our data reveal the involvement of P2X7R in Tat-mediated release of monocyte chemoattractant protein (MCP-1) /chemokine (C-C motif) ligand 2 (CCL2) from the astrocytes. P2X7R antagonists, such as the oxidized ATP, A438079, brilliant blue G, and broad spectrum P2 receptor antagonist suramin, attenuated Tat-induced CCL2 release in a calcium- and extracellular signal-regulated kinase (ERK)1/2-dependent manner. Calcium chelators, (1,2-bis(o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid) acetoxymethyl ester and EGTA, and ERK1/2 inhibitor U0126 abolished chemokine (C-C motif) ligand 2 release from astrocytes. Furthermore, in human neuronal cultures, we demonstrated P2X7R involvement in Tat-mediated neuronal death. Importantly, in the TUNEL assay, the application of P2X7R-specific antagonists or the knockdown of P2X7R in human astrocytes reduced HIV-Tat-induced neuronal death significantly, underlining the critical role of P2X7R in Tat-mediated neurotoxicity. Our study provides novel insights into astrocyte-mediated neuropathogenesis in HIV-1 infection and a novel target for therapeutic management of neuroAIDS. We investigated the role of P2X7R in Tat-mediated neuroinflammation and neuronal damage. We proposed the following cascade for Tat-mediated CCL2 release from astrocytes: Tat mediates increase in P2X7R expression, which on activation evokes increase in intracellular calcium, which further leads to phosphorylation of ERK1/2 followed by the release of CCL2 from astrocytes. Tat also leads to direct and indirect (mediated via astrocytes) neuronal death that can be abrogated by inhibiting P2X7R. We believe that these finding should provide new insights into the role of astrocytes in HIV-1 Tat-mediated neurotoxicity.
Collapse
|
150
|
Doorn KJ, Brevé JJP, Drukarch B, Boddeke HW, Huitinga I, Lucassen PJ, van Dam AM. Brain region-specific gene expression profiles in freshly isolated rat microglia. Front Cell Neurosci 2015; 9:84. [PMID: 25814934 PMCID: PMC4357261 DOI: 10.3389/fncel.2015.00084] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/23/2015] [Indexed: 12/30/2022] Open
Abstract
Microglia are important cells in the brain that can acquire different morphological and functional phenotypes dependent on the local situation they encounter. Knowledge on the region-specific gene signature of microglia may hold valuable clues for microglial functioning in health and disease, e.g., Parkinson's disease (PD) in which microglial phenotypes differ between affected brain regions. Therefore, we here investigated whether regional differences exist in gene expression profiles of microglia that are isolated from healthy rat brain regions relevant for PD. We used an optimized isolation protocol based on a rapid isolation of microglia from discrete rat gray matter regions using density gradients and fluorescent-activated cell sorting. Application of the present protocol followed by gene expression analysis enabled us to identify subtle differences in region-specific microglial expression profiles and show that the genetic profile of microglia already differs between different brain regions when studied under control conditions. As such, these novel findings imply that brain region-specific microglial gene expression profiles exist that may contribute to the region-specific differences in microglia responsivity during disease conditions, such as seen in, e.g., PD.
Collapse
Affiliation(s)
- Karlijn J Doorn
- Department Structural and Functional Plasticity of the Nervous System, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands ; Neuroscience Campus Amsterdam, Department Anatomy and Neurosciences, VU University Medical Center Amsterdam, Netherlands
| | - John J P Brevé
- Neuroscience Campus Amsterdam, Department Anatomy and Neurosciences, VU University Medical Center Amsterdam, Netherlands
| | - Benjamin Drukarch
- Neuroscience Campus Amsterdam, Department Anatomy and Neurosciences, VU University Medical Center Amsterdam, Netherlands
| | - Hendrikus W Boddeke
- Section Medical Physiology, Department of Neuroscience, University Medical Centre Groningen Groningen, Netherlands
| | - Inge Huitinga
- Neuroimmunology Group, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences Amsterdam, Netherlands
| | - Paul J Lucassen
- Department Structural and Functional Plasticity of the Nervous System, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | - Anne-Marie van Dam
- Department Structural and Functional Plasticity of the Nervous System, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|