101
|
Shen Z, Xie G, Yu B, Zhang Y, Shao K, Gong Y, Gao G, Tang X. Eutrophication diminishes bacterioplankton functional dissimilarity and network complexity while enhancing stability: Implications for the management of eutrophic lakes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120119. [PMID: 38244411 DOI: 10.1016/j.jenvman.2024.120119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/13/2024] [Accepted: 01/13/2024] [Indexed: 01/22/2024]
Abstract
Eutrophication is a growing environmental concern in lake ecosystems globally, significantly impacting the structures and ecological functions of bacterioplankton communities and posing a substantial threat to the stability of lake ecosystems. However, the patterns of functional dissimilarity, network complexity, and stability within bacterioplankton communities across different trophic states, along with the underlying mechanisms through which eutrophication influences these aspects, are not well-understood. To bridge this knowledge gap, we collected 88 samples from 34 lakes spanning trophic gradients and investigated bacterioplankton communities using network analysis and multiple statistical methods. Our results reveal that eutrophication, progressing from mesotrophic to hyper-eutrophic states, reduces the putative functional dissimilarity of bacterioplankton, particularly affecting the relative proportions of functional groups such as oxygenic photoautotrophy, phototrophy, and photoautotrophy. Network complexity exhibited a unimodal pattern across increasing trophic states, peaking at mesotrophic states and then decreasing towards hyper-eutrophic conditions, while stability exhibited the opposite pattern (U-shaped), indicating a variation in response to trophic state changes. In essence, eutrophication diminishes network complexity but enhances network stability. Collectively, these findings shed light on the ecological impact of eutrophication on bacterioplankton communities and elucidate the potential mechanisms by which eutrophication drives functional dissimilarity, network complexity and stability within bacterioplankton communities. These insights carry significant implications for the ecological management of eutrophic lakes.
Collapse
Affiliation(s)
- Zhen Shen
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guijuan Xie
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China
| | - Bobing Yu
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqing Zhang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Keqiang Shao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yi Gong
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Guang Gao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiangming Tang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
102
|
Feng Z, Li N, Deng Y, Yu Y, Gao Q, Wang J, Chen S, Xing R. Biogeography and assembly processes of abundant and rare soil microbial taxa in the southern part of the Qilian Mountain National Park, China. Ecol Evol 2024; 14:e11001. [PMID: 38352203 PMCID: PMC10862184 DOI: 10.1002/ece3.11001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 01/08/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
Soil microorganisms play vital roles in regulating multiple ecosystem functions. Recent studies have revealed that the rare microbial taxa (with extremely low relative abundances, which are still largely ignored) are also crucial in maintaining the health and biodiversity of the soil and may respond differently to environmental pressure. However, little is known about the soil community structures of abundant and rare taxa and their assembly processes in different soil layers on the Qinghai-Tibet Plateau (QTP). The present study investigated the community structure and assembly processes of soil abundant and rare microbial taxa on the northeastern edge of the QTP. Soil microbial abundance was defined by abundant taxa, whereas rare taxa contributed to soil microbial diversity. The results of null model show that the stochastic process ruled the assembly processes of all sub-communities. Dispersal limitation contributed more to the assembly of abundant microbial taxa in the different soil layers. In contrast, drift played a more critical role in the assembly processes of the rare microbial taxa. In addition, in contrast to previous studies, the abundant taxa played more important roles in co-occurrence networks, most likely because of the heterogeneity of the soil, the sparsity of amplicon sequencing, the sampling strategy, and the limited samples in the present study. The results of this study improve our understanding of soil microbiome assemblies on the QTP and highlight the role of abundant taxa in sustaining the stability of microbial co-occurrence networks in different soil layers.
Collapse
Affiliation(s)
- Zhilin Feng
- Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghaiChina
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijingChina
| | - Na Li
- Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghaiChina
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijingChina
| | - Yanfang Deng
- Service Center of Qilian Mountain National Park in Qinghai ProvinceXiningQinghaiChina
| | - Yao Yu
- Service Center of Qilian Mountain National Park in Qinghai ProvinceXiningQinghaiChina
| | - Qingbo Gao
- Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghaiChina
- Qinghai Provincial Key Laboratory of Crop Molecular BreedingXiningQinghaiChina
| | - Jiuli Wang
- Qinghai Nationalities UniversityXiningQinghaiChina
| | - Shi‐long Chen
- Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghaiChina
- Qinghai Provincial Key Laboratory of Crop Molecular BreedingXiningQinghaiChina
| | - Rui Xing
- Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghaiChina
- Qinghai Provincial Key Laboratory of Crop Molecular BreedingXiningQinghaiChina
| |
Collapse
|
103
|
Leite G, Rezaie A, Mathur R, Barlow GM, Rashid M, Hosseini A, Wang J, Parodi G, Villanueva-Millan MJ, Sanchez M, Morales W, Weitsman S, Pimentel M. Defining Small Intestinal Bacterial Overgrowth by Culture and High Throughput Sequencing. Clin Gastroenterol Hepatol 2024; 22:259-270. [PMID: 37315761 DOI: 10.1016/j.cgh.2023.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND& AIMS Despite accelerated research in small intestinal bacterial overgrowth (SIBO), questions remain regarding optimal diagnostic approaches and definitions. Here, we aim to define SIBO using small bowel culture and sequencing, identifying specific contributory microbes, in the context of gastrointestinal symptoms. METHODS Subjects undergoing esophagogastroduodenoscopy (without colonoscopy) were recruited and completed symptom severity questionnaires. Duodenal aspirates were plated on MacConkey and blood agar. Aspirate DNA was analyzed by 16S ribosomal RNA and shotgun sequencing. Microbial network connectivity for different SIBO thresholds and predicted microbial metabolic functions were also assessed. RESULTS A total of 385 subjects with <103 colony forming units (CFU)/mL on MacConkey agar and 98 subjects with ≥103 CFU/mL, including ≥103 to <105 CFU/mL (N = 66) and ≥105 CFU/mL (N = 32), were identified. Duodenal microbial α-diversity progressively decreased, and relative abundance of Escherichia/Shigella and Klebsiella increased, in subjects with ≥103 to <105 CFU/mL and ≥105 CFU/mL. Microbial network connectivity also progressively decreased in these subjects, driven by the increased relative abundance of Escherichia (P < .0001) and Klebsiella (P = .0018). Microbial metabolic pathways for carbohydrate fermentation, hydrogen production, and hydrogen sulfide production were enhanced in subjects with ≥103 CFU/mL and correlated with symptoms. Shotgun sequencing (N = 38) identified 2 main Escherichia coli strains and 2 Klebsiella species representing 40.24% of all duodenal bacteria in subjects with ≥103 CFU/mL. CONCLUSIONS Our findings confirm ≥103 CFU/mL is the optimal SIBO threshold, associated with gastrointestinal symptoms, significantly decreased microbial diversity, and network disruption. Microbial hydrogen- and hydrogen sulfide-related pathways were enhanced in SIBO subjects, supporting past studies. Remarkably few specific E coli and Klebsiella strains/species appear to dominate the microbiome in SIBO, and correlate with abdominal pain, diarrhea, and bloating severities.
Collapse
Affiliation(s)
- Gabriela Leite
- Medically Associated Science and Technology Program, Cedars-Sinai, Los Angeles, California
| | - Ali Rezaie
- Medically Associated Science and Technology Program, Cedars-Sinai, Los Angeles, California; Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, California
| | - Ruchi Mathur
- Medically Associated Science and Technology Program, Cedars-Sinai, Los Angeles, California; Division of Endocrinology, Diabetes, and Metabolism, Cedars-Sinai, Los Angeles, California
| | - Gillian M Barlow
- Medically Associated Science and Technology Program, Cedars-Sinai, Los Angeles, California
| | - Mohamad Rashid
- Medically Associated Science and Technology Program, Cedars-Sinai, Los Angeles, California
| | - Ava Hosseini
- Medically Associated Science and Technology Program, Cedars-Sinai, Los Angeles, California
| | - Jiajing Wang
- Medically Associated Science and Technology Program, Cedars-Sinai, Los Angeles, California
| | - Gonzalo Parodi
- Medically Associated Science and Technology Program, Cedars-Sinai, Los Angeles, California
| | | | - Maritza Sanchez
- Medically Associated Science and Technology Program, Cedars-Sinai, Los Angeles, California
| | - Walter Morales
- Medically Associated Science and Technology Program, Cedars-Sinai, Los Angeles, California
| | - Stacy Weitsman
- Medically Associated Science and Technology Program, Cedars-Sinai, Los Angeles, California
| | - Mark Pimentel
- Medically Associated Science and Technology Program, Cedars-Sinai, Los Angeles, California; Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, California.
| |
Collapse
|
104
|
Wu C, Zhang X, Fan Y, Ye J, Dong L, Wang Y, Ren Y, Yong H, Liu R, Wang A. Vertical transfer and functional characterization of cotton seed core microbiome. Front Microbiol 2024; 14:1323342. [PMID: 38264479 PMCID: PMC10803423 DOI: 10.3389/fmicb.2023.1323342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/22/2023] [Indexed: 01/25/2024] Open
Abstract
Introduction Microbiome within plant tissues is pivotal for co-evolution with host plants. This microbiome can colonize the plant, with potential transmission via seeds between parents and offspring, affecting seedling growth and host plant adaptability to the environment. Methods We employed 16S rRNA gene amplicon analysis to investigate the vertical distribution of core microbiome in cotton seeds across ecological niches [rhizosphere, root, stem, leaf, seed and seed-P (parental seed)] of the three cotton genotypes. Results The findings demonstrated a significant decrease in microbiome diversity and network complexity from roots, stems, and leaves to seeds. The microenvironment exerted a more substantial influence on the microbiome structure of cotton than the genotypes. The core endophytic microorganisms in cotton seeds comprised 29 amplicon sequence variants (ASVs) affiliated with Acidimicrobiia, Alphaproteobacteria, Bacilli, Bacteroidia, Clostridia, Gammaproteobacteria, and unclassified_Proteobacteria. These vertically transmitted taxa are widely distributed in cotton plants. Through 16S rRNA gene-based function prediction analysis of the cotton microbiome, we preliminarily understood that there are potential differences in metabolic capabilities and phenotypic traits among microbiomes in different microhabitats. Discussion In conclusion, this study demonstrated the crucial role of the microenvironment in influencing the cotton microbiome and offered insights into the structures and functions of the cotton seed microbiome, facilitating future crop yield enhancement through core seed microbiome regulation.
Collapse
Affiliation(s)
- Chongdie Wu
- College of Life Sciences, Shihezi University, Shihezi, China
- Xinjiang Production and Construction Corps, Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi, China
| | - Xin Zhang
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Yongbin Fan
- College of Life Sciences, Shihezi University, Shihezi, China
- Xinjiang Production and Construction Corps, Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi, China
| | - Jingyi Ye
- College of Life Sciences, Shihezi University, Shihezi, China
- Xinjiang Production and Construction Corps, Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi, China
| | - Lingjun Dong
- College of Life Sciences, Shihezi University, Shihezi, China
| | - YuXiang Wang
- College of Life Sciences, Shihezi University, Shihezi, China
| | - YinZheng Ren
- College of Life Sciences, Shihezi University, Shihezi, China
| | - HongHong Yong
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Ruina Liu
- College of Life Sciences, Shihezi University, Shihezi, China
- Xinjiang Production and Construction Corps, Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi, China
| | - Aiying Wang
- College of Life Sciences, Shihezi University, Shihezi, China
- Xinjiang Production and Construction Corps, Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi, China
| |
Collapse
|
105
|
Li X, Cheng X, Cheng K, Cai Z, Feng S, Zhou J. The influence of tide-brought nutrients on microbial carbon metabolic profiles of mangrove sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167732. [PMID: 37827311 DOI: 10.1016/j.scitotenv.2023.167732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
Mangrove ecosystems in the intertidal zone are continually affected by tidal inundation, but the impact of tidal-driven nutrient inputs upon bacterial communities and carbon metabolic features in mangrove surface sediments remains underexplored, and the differences in such impacts across backgrounds are not known. Here, two mangrove habitats with contrasting nutrient backgrounds in Shenzhen Bay and Daya Bay in Shenzhen City, China, respectively, were studied to investigate the effects of varying tidal nutrient inputs (especially dissolved inorganic nitrogen and PO43--P) on bacterial community composition and functioning in sediment via field sampling, 16S rDNA amplicon sequencing, and the quantitative potential of microbial element cycling. Results showed that tidal input increased Shenzhen Bay mangrove's eutrophication level whereas it maintained the Daya Bay mangrove's relatively oligotrophic status. Dissolved inorganic nitrogen and PO43--P levels in Shenzhen Bay were respectively 12.6-39.6 and 7.3-29.1 times higher than those in Daya Bay (p < 0.05). In terms of microbial features, Desulfobacteraceae was the dominant family in Shenzhen Bay, while the Anaerolineaceae family dominated in Daya Bay. Co-occurrence network analysis revealed more interconnected and complex microbial networks in Shenzhen Bay. The quantitative gene-chip analysis uncovered more carbon-related functional genes (including carbon degradation and fixation) enriched in Shenzhen Bay's sediment microbial communities than Daya Bay's. Partial least squares path modeling indicated that tidal behavior directly affected mangrove sediments' physicochemical characteristics, with cascading effects shaping microbial diversity and C-cycling function. Altogether, these findings demonstrate that how tides influence the microbial carbon cycle in mangrove sediments is co-correlated with the concentration of nutrient inputs and background status of sediment. This work offers an insightful lens for better understanding bacterial community structure and carbon metabolic features in mangrove sediments under their tidal influences. It provides a theoretical basis to better evaluate and protect mangroves in the context of global change.
Collapse
Affiliation(s)
- Xinyang Li
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Xueyu Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan 450056, PR China.
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
106
|
Ma L, Zhang L, Zhang S, Zhou M, Huang W, Zou X, He Z, Shu L. Soil protists are more resilient to the combined effect of microplastics and heavy metals than bacterial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167645. [PMID: 37806593 DOI: 10.1016/j.scitotenv.2023.167645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Heavy metals and micro-/nanoplastic pollution seriously threaten the environment and ecosystems. While many studies investigated their effects on diverse microbes, few studies have focused on soil protists, and it is unclear how soil protists respond to the combined effect of micro-/nanoplastics and heavy metals. This study investigated how soil protistan and bacterial communities respond to single or combined copper and micro-/nanoplastics. The bacterial community exhibited an instantaneous response to single copper pollution, whereas the combined pollution resulted in a hysteresis effect on the protistan community. Single and combined pollution inhibited the predation of protists and changed the construction of ecological networks. Though single and combined pollution did not significantly affect the overall community structure, the exposure experiment indicated that combined pollution harmed soil amoeba's fitness. These findings offer valuable new insights into the toxic effects of single and combined pollution of copper and plastics on soil protistan and bacterial communities. Additionally, this study shows that sequencing-based analyses cannot fully reflect pollutants' adverse effects, and both culture-independent and dependent methods are needed to reveal the impact of pollutants on soil microbes.
Collapse
Affiliation(s)
- Lu Ma
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Lin Zhang
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Siyi Zhang
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Min Zhou
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Wei Huang
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinyue Zou
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Longfei Shu
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
107
|
Yu Y, Zhou Y, Janssens IA, Deng Y, He X, Liu L, Yi Y, Xiao N, Wang X, Li C, Xiao C. Divergent rhizosphere and non-rhizosphere soil microbial structure and function in long-term warmed steppe due to altered root exudation. GLOBAL CHANGE BIOLOGY 2024; 30:e17111. [PMID: 38273581 DOI: 10.1111/gcb.17111] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/12/2023] [Accepted: 12/01/2023] [Indexed: 01/27/2024]
Abstract
While there is an extensive body of research on the influence of climate warming on total soil microbial communities, our understanding of how rhizosphere and non-rhizosphere soil microorganisms respond to warming remains limited. To address this knowledge gap, we investigated the impact of 4 years of soil warming on the diversity and composition of microbial communities in the rhizosphere and non-rhizosphere soil of a temperate steppe, focusing on changes in root exudation rates and exudate compositions. We used open top chambers to simulate warming conditions, resulting in an average soil temperature increase of 1.1°C over a span of 4 years. Our results showed that, in the non-rhizosphere soil, warming had no significant impact on dissolved organic carbon concentrations, compositions, or the abundance of soil microbial functional genes related to carbon and nitrogen cycling. Moreover, soil microbial diversity and community composition remained largely unaffected, although warming resulted in increased complexity of soil bacteria and fungi in the non-rhizosphere soil. In contrast, warming resulted in a substantial decrease in root exudate carbon (by 19%) and nitrogen (by 12%) concentrations and induced changes in root exudate compositions, primarily characterized by a reduction in the abundance in alcohols, coenzymes and vitamins, and phenylpropanoids and polyketides. These changes in root exudation rates and exudate compositions resulted in significant shifts in rhizosphere soil microbial diversity and community composition, ultimately leading to a reduction in the complexity of rhizosphere bacterial and fungal community networks. Altered root exudation and rhizosphere microbial community composition therefore decreased the expression of functional genes related to soil carbon and nitrogen cycling. Interestingly, we found that changes in soil carbon-related genes were primarily driven by the fungal communities and their responses to warming, both in the rhizosphere and non-rhizosphere soil. The study of soil microbial structure and function in rhizosphere and non-rhizosphere soil provides an ideal setting for understanding mechanisms for governing rhizosphere and non-rhizosphere soil carbon and nitrogen cycles. Our results highlight the distinctly varied responses of soil microorganisms in the rhizosphere and non-rhizosphere soil to climate warming. This suggests the need for models to address these processes individually, enabling more accurate predictions of the impacts of climate change on terrestrial carbon cycling.
Collapse
Affiliation(s)
- Yang Yu
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yong Zhou
- Department of Wildland Resources, Utah State University, Logan, Utah, USA
- Ecology Center, Utah State University, Logan, Utah, USA
| | - Ivan A Janssens
- Research Group of Plant and Vegetation Ecology, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Xiaojia He
- The Administrative Center for China's Agenda 21, Beijing, China
| | - Lingli Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yin Yi
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Nengwen Xiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xiaodong Wang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Chao Li
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Chunwang Xiao
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| |
Collapse
|
108
|
Li K, Xu L, Bai X, Zhang G, Zhang M, Huang Y. Differential fungal assemblages and functions between the plastisphere of biodegradable and conventional microplastics in farmland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167478. [PMID: 37804989 DOI: 10.1016/j.scitotenv.2023.167478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023]
Abstract
The heterogeneity of plastisphere and soil can lead to variation in microbiome, potentially impacting soil functions. Current studies of the plastisphere have mainly focused on bacterial communities, and fungal communities are poorly understood. Biodegradable and conventional microplastics may recruit specific microbial taxa due to their different biodegradability. Herein, we collected polyethylene (PE) and polybutylene adipate terephthalate/polylactide (PBAT/PLA) microplastics in farmland (Hebei, China) and characterized the fungal community in PE and PBAT/PLA plastisphere. Results from high-throughput sequencing showed significantly lower alpha diversity and distinct composition of fungal community in PBAT/PLA plastisphere compared to PE plastisphere. Additionally, the PBAT/PLA plastisphere demonstrated a significant enrichment of fungal taxa with potential plastic-degrading capability such as Nectriaceae, Pleosporaceae and Didymellaceae. The stochasticity of drift (28.7-43.5 %) and dispersal limitation (38.6-39.4 %) were dominant in the assembly of PE and PBAT/PLA plastisphere fungal community. Higher stable and more complex network in PBAT/PLA plastispheres were observed as compared to PE plastisphere. Besides, the total relative abundance of plant and animal pathogens were higher in PBAT/PLA plastisphere than that in PE plastisphere, suggesting that biodegradable microplastics may pose a higher threat to soil health. This study contributes to our understanding of the characteristics of plastisphere fungal communities in soil environments and the associated risks to terrestrial ecosystems resulting from microplastic accumulation.
Collapse
Affiliation(s)
- Kang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Libo Xu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xinyi Bai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Guangbao Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Mengjun Zhang
- Marine Institute for Bioresources and Environment, Peking University Shenzhen Institute, Shenzhen, Guangdong 518057, China
| | - Yi Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Marine Institute for Bioresources and Environment, Peking University Shenzhen Institute, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
109
|
Zhang G, Lou M, Xu J, Li Y, Zhou J, Guo H, Qu G, Wang T, Jia H, Zhu L. Molecular insights into microbial transformation of bioaerosol-derived dissolved organic matter discharged from wastewater treatment plant. ENVIRONMENT INTERNATIONAL 2024; 183:108404. [PMID: 38154320 DOI: 10.1016/j.envint.2023.108404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Wastewater treatment plants (WWTP) are important sources of aerosol-derived dissolved organic matter (ADOM) which may threaten human health via the respiratory system. In this study, aerosols were sampled from a typical WWTP to explore the chemical molecular diversity, molecular ecological network, and potential toxicities of the ADOM in the aerosols. The high fluorescence index (>1.9) and biological index (0.66-1.17) indicated the strong autogenous microbial source characteristics of the ADOM in the WWTP. DOM and microbes in the wastewater were aerosolized due to strong agitation and bubbling in the treatment processes, and contributed to 74 % and 75 %, respectively, of the ADOM and microbes in the aerosols. The ADOM was mainly composed of CHO and CHOS accounting for 35 % and 29 % of the total number of molecules, respectively, with lignin-like (69 %) as the major constituent. 49 % of the ADOM transformations were thermodynamically limited, and intragroup transformations were easier than intergroup transformations. Bacteria in the aerosols involved in ADOM transformations exhibited both cooperative and divergent behaviors and tended to transform carbohydrate-like and amino sugar/protein-like into recalcitrant lignin-like. The microbial compositions were affected by atmosphere temperature and humidity indirectly by modulating the properties of ADOM. Tannin-like, lignin-like, and unsaturated hydrocarbon-like molecules in the ADOM were primary toxicity contributors, facilitating the expression of inflammatory factors IL-β (2.2-5.4 folds), TNF-α (3.5-7.0 folds), and IL-6 (3.5-11.2 folds), respectively.
Collapse
Affiliation(s)
- Guodong Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Mingxuan Lou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Jiamin Xu
- State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Yutong Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - He Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Guangzhou Qu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China; College of Environmental Science and Engineering, Nankai University, Tianjin 300385, China.
| |
Collapse
|
110
|
Fang W, Fan T, Wang S, Yu X, Lu A, Wang X, Zhou W, Yuan H, Zhang L. Seasonal changes driving shifts in microbial community assembly and species coexistence in an urban river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167027. [PMID: 37717779 DOI: 10.1016/j.scitotenv.2023.167027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 09/19/2023]
Abstract
Microbial communities play a vital role in urban river biogeochemical cycles. However, the seasonal variations in microbial community characteristics, particularly phylogenetic group-based community assembly and species coexistence, have not been extensively investigated. Here, we systematically explored the microbiome characteristics and assembly mechanisms of urban rivers in different seasons using 16S rRNA gene sequencing and multivariate statistical methods. The results indicated that the microbial community presented significant temporal heterogeneity in different seasons, and the diversity decreased from spring to winter. The phylogenetic group-based microbial community assembly was governed by dispersal limitation and drift in spring, summer, and autumn but was structured by homogeneous selection in winter. Moreover, the main functions of nitrification, denitrification, and methanol oxidation were susceptible to dispersal limitation and drift processes, whereas sulfate respiration and aromatic compound degradation were controlled by dispersal limitation and homogeneous selection. Network analyses indicated that network complexity decreased and then increased with seasonal changes, while network stability showed the opposite trend, suggesting that higher complexity and diversity reduced community stability. Temperature was determined to be the primary driver of microbial community structure and assembly processes in different seasons based on canonical correspondence analysis and linear regression analysis. In conclusion, seasonal variation drives the dynamics of microbial community assembly and species coexistence patterns in urban rivers. This study provides new insights into the generation and maintenance of microbial community diversity in urban rivers under seasonal change conditions.
Collapse
Affiliation(s)
- Wangkai Fang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources & Ecological Protection in Mining Area With High Groundwater Level, Huainan 232001, China
| | - Tingyu Fan
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources & Ecological Protection in Mining Area With High Groundwater Level, Huainan 232001, China.
| | - Shun Wang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources & Ecological Protection in Mining Area With High Groundwater Level, Huainan 232001, China
| | - Xiaokun Yu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources & Ecological Protection in Mining Area With High Groundwater Level, Huainan 232001, China
| | - Akang Lu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources & Ecological Protection in Mining Area With High Groundwater Level, Huainan 232001, China
| | - Xingming Wang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources & Ecological Protection in Mining Area With High Groundwater Level, Huainan 232001, China
| | - Weimin Zhou
- Anhui Shuiyun Environmental Protection Co., Ltd, Wuhu 241000, China
| | - Hongjun Yuan
- Anhui Shuiyun Environmental Protection Co., Ltd, Wuhu 241000, China
| | - Lei Zhang
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China
| |
Collapse
|
111
|
Yang Y, Qiu K, Xie Y, Li X, Zhang S, Liu W, Huang Y, Cui L, Wang S, Bao P. Geographical, climatic, and soil factors control the altitudinal pattern of rhizosphere microbial diversity and its driving effect on root zone soil multifunctionality in mountain ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166932. [PMID: 37690759 DOI: 10.1016/j.scitotenv.2023.166932] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
Shifts in rhizosphere soil microorganisms of dominant plants' response to climate change profoundly impact mountain soil ecosystem multifunctionality; relatively little is known about the relationship between them and how they depend on long-term environmental drivers. Here, we conducted analyses of rhizosphere microbial altitudinal pattern, community assembly, and co-occurrence network of 6 dominant plants in six typical vegetation zones ranging from 1350 to 2900 m (a.s.l.) in Helan Mountains by absolute quantitative sequencing technology, and finally related the microbiomes to root zone soil multifunctionality ('soil multifunctionality' hereafter), the environmental dependence of the relationship was explored. It was found that the altitudinal pattern of rhizosphere soil bacterial and fungal diversities differed significantly. Higher co-occurrence and more potential interactions of Stipa breviflora and Carex coninux were found at the lowest and highest altitudes. Bacterial α diversity, the identity of some dominant bacterial and fungal taxa, had significant positive or negative effects on soil multifunctionality. The effect sizes of positive effects of microbial diversity on soil multifunctionality were greater than those of negative effects. These results indicated that the balance of positive and negative effects of microbes determines the impact of microbial diversity on soil multifunctionality. As the number of microbes at the phylum level increases, there will be a net gain in soil multifunctionality. Our study reveals that geographical and climatic factors can directly or modulate the effects of soil properties on rhizosphere microbial diversity, thereby affecting the driving effect of microbial diversity on soil multifunctionality, and points to the rhizosphere bacterial diversity rather than the fungi being strongly associated with soil multifunctionality. This work has important ecological implications for predicting how multiple environment-plant-soil-microorganisms interactions in mountain ecosystems will respond to future climate change.
Collapse
Affiliation(s)
- Yi Yang
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China; Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, China; Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of Northwest China, Yinchuan, China; Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Ningxia University, Yinchuan, China
| | - Kaiyang Qiu
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China; Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, China; Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of Northwest China, Yinchuan, China; Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Ningxia University, Yinchuan, China.
| | - Yingzhong Xie
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China; Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, China; Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of Northwest China, Yinchuan, China; Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Ningxia University, Yinchuan, China
| | - Xiaocong Li
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China; Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, China; Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of Northwest China, Yinchuan, China; Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Ningxia University, Yinchuan, China
| | - Shuo Zhang
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China; Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, China; Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of Northwest China, Yinchuan, China; Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Ningxia University, Yinchuan, China
| | - Wangsuo Liu
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China; Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, China; Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of Northwest China, Yinchuan, China; Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Ningxia University, Yinchuan, China
| | - Yeyun Huang
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China; Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, China; Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of Northwest China, Yinchuan, China; Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Ningxia University, Yinchuan, China
| | - Luyao Cui
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China; Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, China; Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of Northwest China, Yinchuan, China; Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Ningxia University, Yinchuan, China
| | - Siyao Wang
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China; Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, China; Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of Northwest China, Yinchuan, China; Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Ningxia University, Yinchuan, China
| | - Pingan Bao
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China; Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, China; Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of Northwest China, Yinchuan, China; Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Ningxia University, Yinchuan, China
| |
Collapse
|
112
|
Sun Y, Ye F, Huang Q, Du F, Song T, Yuan H, Liu X, Yao D. Linking ecological niches to bacterial community structure and assembly in polluted urban aquatic ecosystems. Front Microbiol 2023; 14:1288304. [PMID: 38163078 PMCID: PMC10754954 DOI: 10.3389/fmicb.2023.1288304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Bacterial communities play crucial roles in the functioning and resilience of aquatic ecosystems, and their responses to water pollution may be assessed from ecological niches. However, our understanding of such response patterns and the underlying ecological mechanisms remains limited. Methods In this study, we comprehensively investigated the effects of water pollution on the bacterial structure and assembly within different ecological niches, including water, sediment, submerged plant leaf surfaces, and leaf surfaces, using a 16S high-throughput sequencing approach. Results Ecological niches had a greater impact on bacterial community diversity than pollution, with a distinct enrichment of unique dominant phyla in different niches. This disparity in diversity extends to the bacterial responses to water pollution, with a general reduction in α-diversity observed in the niches, excluding leaf surfaces. Additionally, the distinct changes in bacterial composition in response to pollution should be correlated with their predicted functions, given the enrichment of functions related to biogeochemical cycling in plant surface niches. Moreover, our study revealed diverse interaction patterns among bacterial communities in different niches, characterized by relatively simply associations in sediments and intricate or interconnected networks in water and plant surfaces. Furthermore, stochastic processes dominated bacterial community assembly in the water column, whereas selective screening of roots and pollution events increased the impact of deterministic processes. Discussion Overall, our study emphasizes the importance of ecological niches in shaping bacterial responses to water pollution. These findings improve our understanding of the complicated microbial response patterns to water pollution and have ecological implications for aquatic ecosystem health.
Collapse
Affiliation(s)
- Yuming Sun
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Fei Ye
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, China
| | - Qianhao Huang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Fengfeng Du
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Tao Song
- Jiangsu Geological Bureau, Nanjing, China
| | - Haiyan Yuan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Xiaojing Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Dongrui Yao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
113
|
Shen Z, Yu B, Shao K, Gao G, Tang X. Warming reduces microeukaryotic diversity, network complexity and stability. ENVIRONMENTAL RESEARCH 2023; 238:117235. [PMID: 37775010 DOI: 10.1016/j.envres.2023.117235] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Unraveling how climate warming affects microorganisms and the underlying mechanisms has been a hot topic in climate change and microbial ecology. To date, many studies have reported microbial responses to climate warming, especially in soil ecosystems, however, knowledge of how warming influences microeukaryotic diversity, network complexity and stability in lake ecosystems, in particular the possible underlying mechanisms, is largely unknown. To address this gap, we conducted 20 mesocosms spanning five temperature scenarios (26 °C, 27.5 °C, 29 °C, 30.5 °C, and 32 °C) in Lake Bosten, a hotspot for studying climate change, and investigated microeukaryotic communities using 18S rRNA gene sequencing. Our results demonstrated that warming, time, and their interactions significantly reduced microeukaryotic α-diversity (two-way ANOVA: P<0.01). Although warming did not significantly affect microeukaryotic community structure (ANOSIM: P>0.05), it enhanced species turnover. Microeukaryotic networks exhibited distinct co-occurrence patterns and topological properties across temperature scenarios. Warming reduced network complexity and stability, as well as altered species interactions. Collectively, these findings are likely to have implications for ecological management of lake ecosystems, in particular semi-arid and arid regions, and for predicting ecological consequences of climate change.
Collapse
Affiliation(s)
- Zhen Shen
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bobing Yu
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Keqiang Shao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guang Gao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangming Tang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
114
|
Xu CCY, Lemoine J, Albert A, Whirter ÉM, Barrett RDH. Community assembly of the human piercing microbiome. Proc Biol Sci 2023; 290:20231174. [PMID: 38018103 PMCID: PMC10685111 DOI: 10.1098/rspb.2023.1174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/03/2023] [Indexed: 11/30/2023] Open
Abstract
Predicting how biological communities respond to disturbance requires understanding the forces that govern their assembly. We propose using human skin piercings as a model system for studying community assembly after rapid environmental change. Local skin sterilization provides a 'clean slate' within the novel ecological niche created by the piercing. Stochastic assembly processes can dominate skin microbiomes due to the influence of environmental exposure on local dispersal, but deterministic processes might play a greater role within occluded skin piercings if piercing habitats impose strong selection pressures on colonizing species. Here we explore the human ear-piercing microbiome and demonstrate that community assembly is predominantly stochastic but becomes significantly more deterministic with time, producing increasingly diverse and ecologically complex communities. We also observed changes in two dominant and medically relevant antagonists (Cutibacterium acnes and Staphylococcus epidermidis), consistent with competitive exclusion induced by a transition from sebaceous to moist environments. By exploiting this common yet uniquely human practice, we show that skin piercings are not just culturally significant but also represent ecosystem engineering on the human body. The novel habitats and communities that skin piercings produce may provide general insights into biological responses to environmental disturbances with implications for both ecosystem and human health.
Collapse
Affiliation(s)
- Charles C. Y. Xu
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0C4
- Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1
| | - Juliette Lemoine
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0C4
- Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | - Avery Albert
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0C4
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada H9X 3V9
- Trottier Space Institute, McGill University, Montreal, Quebec, Canada H3A 2A7
| | | | - Rowan D. H. Barrett
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0C4
- Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1
| |
Collapse
|
115
|
Chen J, Xiao Q, Xu D, Li Z, Chao L, Li X, Liu H, Wang P, Zheng Y, Liu X, Qu H, Bao Y. Soil microbial community composition and co-occurrence network responses to mild and severe disturbances in volcanic areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165889. [PMID: 37524180 DOI: 10.1016/j.scitotenv.2023.165889] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
Soil physicochemical properties and vegetation types are the main factors affecting soil microorganisms, but there are few studies on the effects of the disturbance following volcanic eruption. To make up for this lack of knowledge, we used Illumina Miseq high-throughput sequencing to study the characteristics of soil microorganisms on both shores of a volcanically disturbed lake. Soil microorganisms in the two sites were subjected to different degrees of volcanic disturbance and showed significant heterogeneity. Mild volcanic disturbance area had higher enrichment of prokaryotic community. Co-occurrence network analysis showed that a total of 12 keystone taxa (9 prokaryotes and 3 fungi) were identified, suggesting that soil prokaryote may play a more significant role than fungi in overall community structure and function. Compared with severe volcanic disturbance area, the soil microbial community in mild volcanic disturbance area had the higher modular network (0.327 vs 0.291). The competition was stronger (positive/negative link ratio, P/N: 1.422 vs 1.159). Random forest analysis showed that soil superoxide dismutase was the most significant variable associated with soil microbial community. Structural equation model (SEM) results showed that keystone had a directly positive effect on prokaryotic (λ = 0.867, P < 0.001) and fungal (λ = 0.990, P < 0.001) multifunctionality while had also a directly positive effect on fungal diversity (λ = 0.553, P < 0.001), suggesting that keystone taxa played a key role in maintaining ecosystem stability. These results were important for understanding the effects of different levels of volcanic disturbance on soil ecosystems.
Collapse
Affiliation(s)
- Jin Chen
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, PR China
| | - Qingchen Xiao
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, PR China
| | - Daolong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Zishan Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, PR China
| | - Lumeng Chao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China
| | - Xiaoyu Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, PR China
| | - Haijing Liu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China
| | - Pengfei Wang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China
| | - Yaxin Zheng
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China
| | - Xinyan Liu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China
| | - Hanting Qu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China
| | - Yuying Bao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China.
| |
Collapse
|
116
|
Jiang X, Zhong X, Yu G, Zhang X, Liu J. Different effects of taproot and fibrous root crops on pore structure and microbial network in reclaimed soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165996. [PMID: 37536594 DOI: 10.1016/j.scitotenv.2023.165996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Understanding the effects of plant roots on the pore structure and microbial community of soil is crucial to recovery and improve soil productivity in mining areas. This study aims to assess the impact of taproot (TR) and fibrous root (FR) crops on the physicochemical properties, pore structure, and microbial communities and networks in reclaimed mine soil. Results showed that reclamation positively influenced pore structure and microbial diversity. Tillage with TR and FR crops significantly increased porosity, total pore volume, and area of mining soil (p < 0.05). Compared with TR, FR produced more macropores, mesopores, and micropores. In addition, the module group, average degree, density, and connectivity of microbial network in FR cultivated soil were higher than those in TR cultivated soil. The microbial network map showed that FR had more keystone taxa than TR, and mainly consisted of Acidobacteria and Proteobacteria. In the FR microbial network, Rhizobiales, Betaproteobacteria, and Acidobacteria_Gp11 play critical roles as module hubs and Noviherbaspirillum and Zavarzinella as connectors. Furthermore, most of the key microbes were significantly correlated (p < 0.05) with the total pore area and probably tended to live in pores >75 μm and 0.1-5 μm in size. Therefore, FR crops were more effective than TR crops in improving pore structure and enhancing the development of microbial network in reclaimed soil.
Collapse
Affiliation(s)
- Xusheng Jiang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China.
| | - Xuemei Zhong
- College of Earth Sciences, Guilin University of Technology, Guilin 540001, China.
| | - Guo Yu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China.
| | - Xuehong Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China.
| | - Jie Liu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China; Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, MNR, Guilin 541004, China.
| |
Collapse
|
117
|
Zheng X, Yan Z, Zhao C, He L, Lin Z, Liu M. Homogeneous environmental selection mainly determines the denitrifying bacterial community in intensive aquaculture water. Front Microbiol 2023; 14:1280450. [PMID: 38029183 PMCID: PMC10653326 DOI: 10.3389/fmicb.2023.1280450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Nitrate reduction by napA (encodes periplasmic nitrate reductase) bacteria and nitrous oxide reduction by nosZ (encodes nitrous oxide reductase) bacteria play important roles in nitrogen cycling and removal in intensive aquaculture systems. This study investigated the diversity, dynamics, drivers, and assembly mechanisms of total bacteria as well as napA and nosZ denitrifiers in intensive shrimp aquaculture ponds over a 100-day period. Alpha diversity of the total bacterial community increased significantly over time. In contrast, the alpha diversity of napA and nosZ bacteria remained relatively stable throughout the aquaculture process. The community structure changed markedly across all groups over the culture period. Total nitrogen, phosphate, total phosphorus, and silicate were identified as significant drivers of the denitrifying bacterial communities. Network analysis revealed complex co-occurrence patterns between total, napA, and nosZ bacteria which fluctuated over time. A null model approach showed that, unlike the total community dominated by stochastic factors, napA and nosZ bacteria were primarily governed by deterministic processes. The level of determinism increased with nutrient loading, suggesting the denitrifying community can be manipulated by bioaugmentation. The dominant genus Ruegeria may be a promising candidate for introducing targeted denitrifiers into aquaculture systems to improve nitrogen removal. Overall, this study provides important ecological insights into aerobic and nitrous oxide-reducing denitrifiers in intensive aquaculture, supporting strategies to optimize microbial community structure and function.
Collapse
Affiliation(s)
- Xiafei Zheng
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Zhongneng Yan
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Chenxi Zhao
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Lin He
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Zhihua Lin
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Minhai Liu
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| |
Collapse
|
118
|
Tian Z, Li G, Xiong Y, Cao X, Pang H, Tang W, Liu Y, Bai M, Zhu Q, Du C, Li M, Zhang L. Step-feeding food waste fermentation liquid as supplementary carbon source for low C/N municipal wastewater treatment: Bench scale performance and response of microbial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118434. [PMID: 37385198 DOI: 10.1016/j.jenvman.2023.118434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/05/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Municipal wastewater treatment often lacks carbon source, while carbon-rich organics in food waste are deficiently utilized. In this study, the food waste fermentation liquid (FWFL) was step-fed into a bench-scale step-feed three-stage anoxic/aerobic system (SFTS-A/O), to investigate its performance in nutrients removal and the response of microbial community as a supplementary carbon source. The results showed that the total nitrogen (TN) removal rate increased by 21.8-109.3% after step-feeding FWFL. However, the biomass of the SFTS-A/O system was increased by 14.6% and 11.9% in the two phases of the experiment, respectively. Proteobacteria was found to be the dominant functional phyla induced by FWFL, and the increase of its abundance attributed to the enrichment of denitrifying bacteria and carbohydrate-metabolizing bacteria was responsible for the biomass increase. Azospira belonged to Proteobacteria phylum was the dominant denitrifying genera when step-fed with FWFL, its abundance was increased from 2.7% in series 1 (S1) to 18.6% in series 2 (S2) and became the keystone species in the microbial networks. Metagenomics analysis revealed that step-feeding FWFL enhanced the abundance of denitrification and carbohydrates-metabolism genes, which were encode mainly by Proteobacteria. This study constitutes a key step towards the application of FWFL as a supplementary carbon source for low C/N municipal wastewater treatment.
Collapse
Affiliation(s)
- Zhenjun Tian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Guowen Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ying Xiong
- Beijing Water Science and Technology Institute, Beijing, 100048, China
| | - Xiaoxin Cao
- China Water Environment Group Co. Ltd., Beijing, 101101, China
| | - Hongtao Pang
- China Water Environment Group Co. Ltd., Beijing, 101101, China
| | - Wenzhong Tang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yongli Liu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Miaoxin Bai
- Inner Mongolia Enterprise Key Laboratory of Damaged Environment Appraisal, Evaluation and Restoration, Hohhot, 010020, China
| | - Qiuheng Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Caili Du
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Maotong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Lieyu Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
119
|
Zheng Y, Cao X, Zhou Y, Li Z, Yang Y, Zhao D, Li Y, Xu Z, Zhang CS. Effect of planting salt-tolerant legumes on coastal saline soil nutrient availability and microbial communities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118574. [PMID: 37423189 DOI: 10.1016/j.jenvman.2023.118574] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
Soil salinization is a serious global environmental problem affecting sustainable development of agriculture. Legumes are excellent candidates for the phytoremediation of saline soils; however, how soil microbes mediate the amelioration of coastal saline ecosystems is unknown. In this study, two salt-tolerant legumes, Glycine soja and Sesbania cannabina were planted in coastal saline soil for three years. Soil nutrient availability and microbiota structure (including bacteria, fungi, and diazotrophs) were compared between the phytoremediated soils and control soil (barren land). Planting legumes reduced soil salinity, and increased total carbon, total nitrogen, and NO3--N contents. Among the soil microbiota, some nitrogen-fixing bacteria (e.g., Azotobacter) were enriched in legumes, which were probably responsible for soil nitrogen accumulation. The complexity of the bacterial, fungal, and diazotrophic networks increased significantly from the control to the phytoremediated soils, suggesting that the soil microbial community formed closer ecological interactions during remediation. Furthermore, the dominant microbial functions were chemoheterotrophy (24.75%) and aerobic chemoheterotrophy (21.97%) involved in the carbon cycle, followed by nitrification (13.68%) and aerobic ammonia oxidation (13.34%) involved in the nitrogen cycle. Overall, our findings suggested that G. soja and S. cannabina legumes were suitable for ameliorating saline soils as they decreased soil salinity and increased soil nutrient content, with microorganisms especially nitrogen-fixing bacteria, playing an important role in this remediation process.
Collapse
Affiliation(s)
- Yanfen Zheng
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Xuwen Cao
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266200, China
| | - Yanan Zhou
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Zhe Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Yanzhe Yang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Donglin Zhao
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Zongchang Xu
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China.
| | - Cheng-Sheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China.
| |
Collapse
|
120
|
Zhang L, Yang B, Wang H, Wang S, He F, Xu W. Unveiling the nitrogen removal performance from microbial network establishment in vertical flow constructed wetlands. BIORESOURCE TECHNOLOGY 2023; 388:129749. [PMID: 37690488 DOI: 10.1016/j.biortech.2023.129749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/18/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
The combined effects of substrate types (natural zeolite or shale ceramsite) and hydraulic retention time (HRT, 3-day or 6-day) on nutrient removal and microbial co-occurrence networks in vertical flow constructed wetlands (VFCWs) remains to be elucidated. In this study, zeolite-packed VFCWs demonstrated superior removal rates, achieving 93.65% removal of NH4+-N and 83.84% removal of COD at 6-day HRT. The activity and establishment of microbial community were influenced by combined operating conditions. The abundances of Amx, amoA, nxrA, and nosZ genes increased with longer HRTs in zeolite-packed VFCWs. Additionally, a 6-day HRT significantly increased the relative abundances of Proteobacteria and Nitrospirae. At the species level, zeolite-packed VFCWs exhibited ecological niche sharing as a coping strategy in response to environment changes, while ceramsite-packed VFCWs displayed ecological niche differentiation. Both zeolite-packed and ceramsite-packed VFCWs established functional networks of nitrogen-transforming genera that utilized ecological niche differentiation strategies.
Collapse
Affiliation(s)
- Liandong Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Baoshan Yang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan 250022, China.
| | - Hui Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan 250022, China.
| | - Shuzhi Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Fei He
- Jinan Environmental Research Academy, Jinan 250000, China
| | - Wenxue Xu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| |
Collapse
|
121
|
Gao K, Li W, Gan E, Li J, Jiang L, Liu Y. Impacts of 10 Years of Elevated CO 2 and Warming on Soil Fungal Diversity and Network Complexity in a Chinese Paddy Field. MICROBIAL ECOLOGY 2023; 86:2386-2399. [PMID: 37247028 DOI: 10.1007/s00248-023-02248-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/20/2023] [Indexed: 05/30/2023]
Abstract
Climatic change conditions (elevated CO2 and warming) have been known to threaten agricultural sustainability and grain yield. Soil fungi play an important role in maintaining agroecosystem functions. However, little is known about the responses of fungal community in paddy field to elevated CO2 and warming. Herein, using internal transcribed spacer (ITS) gene amplicon sequencing and co-occurrence network methods, the responses of soil fungal community to factorial combinations of elevated CO2 (550 ppm), and canopy warming (+2 °C) were explored in an open-air field experiment for 10 years. Elevated CO2 significantly increased the operational taxonomic unit (OTU) richness and Shannon diversity of fungal communities in both rice rhizosphere and bulk soils, whereas the relative abundances of Ascomycota and Basidiomycota were significantly decreased and increased under elevated CO2, respectively. Co-occurrence network analysis showed that elevated CO2, warming, and their combination increased the network complexity and negative correlation of the fungal community in rhizosphere and bulk soils, suggesting that these factors enhanced the competition of microbial species. Warming resulted in a more complex network structure by altering topological roles and increasing the numbers of key fungal nodes. Principal coordinate analysis indicated that rice growth stages rather than elevated CO2 and warming altered soil fungal communities. Specifically, the changes in diversity and network complexity were greater at the heading and ripening stages than at the tillering stage. Furthermore, elevated CO2 and warming significantly increased the relative abundances of pathotrophic fungi and reduced those of symbiotrophic fungi in both rhizosphere and bulk soils. Overall, the results indicate that long-term CO2 exposure and warming enhance the complexity and stability of soil fungal community, potentially threatening crop health and soil functions through adverse effects on fungal community functions.
Collapse
Affiliation(s)
- Ke Gao
- Department of Bioengineering, College of Life Science, Huaibei Normal University, Huaibei, 235000, Anhui, People's Republic of China
| | - Weijie Li
- Department of Bioengineering, College of Life Science, Huaibei Normal University, Huaibei, 235000, Anhui, People's Republic of China
| | - Enze Gan
- Department of Bioengineering, College of Life Science, Huaibei Normal University, Huaibei, 235000, Anhui, People's Republic of China
| | - Jiahui Li
- Department of Bioengineering, College of Life Science, Huaibei Normal University, Huaibei, 235000, Anhui, People's Republic of China
| | - Li Jiang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi, 830011, People's Republic of China.
| | - Yuan Liu
- Department of Bioengineering, College of Life Science, Huaibei Normal University, Huaibei, 235000, Anhui, People's Republic of China.
| |
Collapse
|
122
|
Si H, Zhou K, Zhao T, Cui B, Liu F, Zhao M. The bacterial succession and its role in flavor compounds formation during the fermentation of cigar tobacco leaves. BIORESOUR BIOPROCESS 2023; 10:74. [PMID: 38647588 PMCID: PMC10992852 DOI: 10.1186/s40643-023-00694-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/03/2023] [Indexed: 04/25/2024] Open
Abstract
Fermentation is the key process required for developing the characteristic properties of cigar tobacco leaves, complex microorganisms are involved in this process. However, the microbial fermentation mechanisms during the fermentation process have not been well-characterized. This study investigated the dynamic changes in conventional chemical composition, flavor compounds, and bacterial community during the fermentation of cigar tobacco leaves from Hainan and Sichuan provinces in China, as well as the potential roles of bacteria. Fermentation resulted in a reduction of conventional chemical components in tobacco leaves, with the exception of a noteworthy increase in insoluble protein content. Furthermore, the levels of 10 organic acids and 19 amino acids showed a significant decrease, whereas the concentration of 30 aromatic substances exhibited a unimodal trend. Before fermentation, the bacterial community structures and dominant bacteria in Hainan and Sichuan tobacco leaves differed significantly. As fermentation progressed, the community structures in the two regions became relatively similar, with Delftia, Ochrobactrum, Rhodococcus, and Stenotrophomonas being dominant. Furthermore, a total of 12 functional bacterial genera were identified in Hainan and Sichuan tobacco leaves using bidirectional orthogonal partial least squares (O2PLS) analysis. Delftia, Ochrobactrum, and Rhodococcus demonstrated a significant negative correlation with oleic acid and linoleic acid, while Stenotrophomonas and Delftia showed a significant negative correlation with undesirable amino acids, such as Ala and Glu. In addition, Bacillus showed a positive correlation with benzaldehyde, while Kocuria displayed a positive correlation with 2-acetylfuran, isophorone, 2, 6-nonadienal, and β-damascenone. The co-occurrence network analysis of microorganisms revealed a prevalence of positive correlations within the bacterial network, with non-abundant bacteria potentially contributing to the stabilization of the bacterial community. These findings can improve the overall tobacco quality and provide a novel perspective on the utilization of microorganisms in the fermentation of cigar tobacco leaves.
Collapse
Affiliation(s)
- Hongyang Si
- College of Tobacco Science, Flavors and Fragrance Engineering & Technology Research Center of Henan Province, Henan Agricultural University, No.218 Ping An Avenue, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Kun Zhou
- College of Tobacco Science, Flavors and Fragrance Engineering & Technology Research Center of Henan Province, Henan Agricultural University, No.218 Ping An Avenue, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Tingyi Zhao
- College of Tobacco Science, Flavors and Fragrance Engineering & Technology Research Center of Henan Province, Henan Agricultural University, No.218 Ping An Avenue, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Bing Cui
- College of Tobacco Science, Flavors and Fragrance Engineering & Technology Research Center of Henan Province, Henan Agricultural University, No.218 Ping An Avenue, Zhengdong New District, Zhengzhou, 450046, Henan, China.
| | - Fang Liu
- College of Tobacco Science, Flavors and Fragrance Engineering & Technology Research Center of Henan Province, Henan Agricultural University, No.218 Ping An Avenue, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Mingqin Zhao
- College of Tobacco Science, Flavors and Fragrance Engineering & Technology Research Center of Henan Province, Henan Agricultural University, No.218 Ping An Avenue, Zhengdong New District, Zhengzhou, 450046, Henan, China.
| |
Collapse
|
123
|
Pei S, Feng L, Zhang Y, Liu J, Li J, Zheng Q, Liu X, Luo B, Ruan Y, Li H, Hu W, Niu J, Tian T. Effects of long-term metal exposure on the structure and co-occurrence patterns of the oral microbiota of residents around a mining area. Front Microbiol 2023; 14:1264619. [PMID: 37928665 PMCID: PMC10620801 DOI: 10.3389/fmicb.2023.1264619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Objectives The aim of our study was to investigate the impact of long-term exposure to heavy metals on the microbiome of the buccal mucosa, to unveil the link between environmental contamination and the oral microbial ecosystem, and to comprehend its potential health implications. Methods Subjects were divided into two groups: the exposure group and the control group. We collected samples of buccal mucosa, soil, and blood, and conducted microbial diversity analysis on both groups of oral samples using 16S rRNA gene sequencing. The concentrations of heavy metals in blood and soil samples were also determined. Additionally, microbial networks were constructed for the purpose of topological analysis. Results Due to long-term exposure to heavy metals, the relative abundance of Rhodococcus, Delftia, Fusobacterium, and Peptostreptococcus increased, while the abundance of Streptococcus, Gemella, Prevotella, Granulicatella, and Porphyromonas decreased. The concentrations of heavy metals in the blood (Pb, Cd, Hg, and Mo) were associated with the growth of Rhodococcus, Delftia, Porphyromonas, and Gemella. In addition, the relative abundances of some pathogenic bacteria, such as Streptococcus anginosus, S. gordonii, and S. mutans, were found to be enriched in the exposure group. Compared to the exposure group network, the control group network had a greater number of nodes, modules, interactive species, and keystone taxa. Module hubs and connectors in the control group converted into peripherals in the exposure group, indicating that keystone taxa changed. Metals in the blood (Pb, Cd, Hg, and Mo) were drivers of the microbial network of the buccal mucosa, which can have adverse effects on the network, thus providing conditions for the occurrence of certain diseases. Conclusion Long-term exposure to multiple metals perturbs normal bacterial communities in the buccal mucosa of residents in contaminated areas. This exposure reduces the complexity and stability of the microbial network and increases the risk of developing various diseases.
Collapse
Affiliation(s)
- Shuwei Pei
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Lu Feng
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, China
| | - Yonghua Zhang
- Child Health Department, Lanzhou Maternal and Child Health Care Hospital, Lanzhou, Gansu, China
| | - Jiangyun Liu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Jia Li
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Qiwen Zheng
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Xingrong Liu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Bin Luo
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Ye Ruan
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Weigang Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Jingping Niu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Tian Tian
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
124
|
Li Z, Sun L, Liu S, Lei P, Wang R, Li S, Gu Y. Interkingdom network analyses reveal microalgae and protostomes as keystone taxa involved in nutrient cycling in large freshwater lake sediment. FEMS Microbiol Ecol 2023; 99:fiad111. [PMID: 37715306 DOI: 10.1093/femsec/fiad111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/26/2023] [Accepted: 09/14/2023] [Indexed: 09/17/2023] Open
Abstract
Few studies have explored the role of interkingdom interactions between bacteria and microeukaryotes in nutrient cycling in lake ecosystems. We conducted sediment sampling from 40 locations covering Hongze Lake and analyzed their chemical properties. Intra- and interkingdom networks were constructed using 16S and 18S rRNA gene amplicon sequencing. Microeukaryotic intranetworks were more complex in spring than in autumn, while no clear variation in the complexity of bacterial intranetworks was found between autumn and spring. Larger and more complex bacterial-microeukaryotic bipartite networks emerged in spring than in autumn, correlated with lower carbon, nitrogen, and phosphorus levels in spring, likely resulting in intense microbial competition. Bacteria and microeukaryotes played different topological roles in interkingdom networks, with microeukaryotes contributing to the networks' greater complexity. Seven keystone modules were identified in spring and autumn nutrient cycling. Importantly, keystone taxa in these modules belonged to photoautotrophic microalgae or predatory protostomes, indicating that these organisms are key drivers in lake sediment nutrient cycling. Our results suggested that nutrient content variation in autumn and spring changes interkingdom networks' topological structure between bacteria and microeukaryotes. Microalgae and protostomes are essential in freshwater lake nutrient cycling and may be targeted to modulate nutrient cycling in large freshwater ecosystems.
Collapse
Affiliation(s)
- Zhidan Li
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Liang Sun
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Sijie Liu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Peng Lei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Rui Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Sha Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Yian Gu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P.R. China
| |
Collapse
|
125
|
Ma Z, Feng H, Yang C, Ma X, Li P, Feng Z, Zhang Y, Zhao L, Zhou J, Xu X, Zhu H, Wei F. Integrated microbiology and metabolomics analysis reveal responses of cotton rhizosphere microbiome and metabolite spectrum to conventional seed coating agents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122058. [PMID: 37330187 DOI: 10.1016/j.envpol.2023.122058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Fludioxonil (FL) and metalaxyl-M·fludioxonil·azoxystrobin (MFA) are conventional seed coating agents for controlling cotton seedling diseases. However, their effects on seed endophytic and rhizosphere microecology are still poorly understood. This study aimed to assess the effects of FL and MFA on cotton seed endophytes, rhizosphere soil enzymatic activities, microbiome and metabolites. Both seed coating agents significantly changed seed endophytic bacterial and fungal communities. Growing coated seeds in the soils originating from the Alar (AL) and Shihezi (SH) region inhibited soil catalase activity and decreased both bacterial and fungal biomass. Seed coating agents increased rhizosphere bacterial alpha diversity for the first 21 days but decreased fungal alpha diversity after day 21 in the AL soil. Seed coating reduced the abundance of a number of beneficial microorganisms but enriched some potential pollutant-degrading microorganisms. Seed coating agents may have affected the complexity of the co-occurrence network of the microbiome in the AL soil, reducing connectivity, opposite to what was observed in the SH soil. MFA had more pronounced effects on soil metabolic activities than FL. Furthermore, there were strong links between soil microbial communities, metabolites and enzymatic activities. These findings provide valuable information for future research and development on application of seed coatings for disease management.
Collapse
Affiliation(s)
- Zheng Ma
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Hongjie Feng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
| | - Chuanzhen Yang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xiaojie Ma
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Peng Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Zili Feng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
| | - Yalin Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
| | - Lihong Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
| | - Jinglong Zhou
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
| | - Xiangming Xu
- NIAB, East Malling, West Malling, ME19 6BJ, Kent, UK
| | - Heqin Zhu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
| | - Feng Wei
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China.
| |
Collapse
|
126
|
Li P, Gu S, Zhu Y, Xu T, Yang Y, Wang Z, Deng X, Wang B, Li W, Mei W, Hu Q. Soil microbiota plays a key regulatory role in the outbreak of tobacco root rot. Front Microbiol 2023; 14:1214167. [PMID: 37779693 PMCID: PMC10540700 DOI: 10.3389/fmicb.2023.1214167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Root rot caused by the fungal pathogen Fusarium sp. poses significant challenges to tobacco cultivation in China, leading to major economic setbacks. The interplay between this pathogen and the wider soil microbial community remains poorly understood. Methods High-throughput sequencing technology was utilized to evaluate soil prokaryotic, fungal, and protistan communities. We compared microbial communities in infected soils to those in healthy soils from the same field. Additionally, the influence of pH on the microbial communities was assessed. Results Infected soils displayed elevated levels of soil nutrients but diminished observed richness across prokaryotic, fungal, and protistan groups. The pathogenic fungi Fusarium solani f sp. eumartii's abundance was notably increased in infected soils. Infection with F. solani significantly altered the soil's microbial community structure and interactions, manifested as a decrease in network scale and the number of keystone species. An evaluation of prokaryotes' role in F. solani's invasion revealed an increased number of connecting nodes in infected soils. Additionally, relationships between predatory protists and fungi were augmented, whereas predation on F. solani declined. Discussion The study underscores the significance of comprehending the interactions among soil microorganisms and brings to light the susceptibility of soil microbial communities to pathogen invasion. It offers insights into the multifaceted relationships and potential vulnerabilities within the soil ecosystem in the context of Fusarium sp. invasion.
Collapse
Affiliation(s)
- Pengfei Li
- Wenshan Tobacco Company of Yunnan Province, Wenshan, Yunnan, China
| | - Songsong Gu
- Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yanmei Zhu
- Wenshan Tobacco Company of Yunnan Province, Wenshan, Yunnan, China
| | - Tianyang Xu
- Wenshan Tobacco Company of Yunnan Province, Wenshan, Yunnan, China
| | - Yishuai Yang
- College of Horticulture and Landscape Architecture, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhengqiang Wang
- College of Horticulture and Landscape Architecture, Hunan Agricultural University, Changsha, Hunan, China
| | - Xiangdong Deng
- College of Horticulture and Landscape Architecture, Hunan Agricultural University, Changsha, Hunan, China
| | - Bin Wang
- Wenshan Tobacco Company of Yunnan Province, Wenshan, Yunnan, China
| | - Wei Li
- Wenshan Tobacco Company of Yunnan Province, Wenshan, Yunnan, China
| | - Wenqiang Mei
- Wenshan Tobacco Company of Yunnan Province, Wenshan, Yunnan, China
| | - Qiulong Hu
- College of Horticulture and Landscape Architecture, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
127
|
Zhao Y, Liu Z, Zhang B, Cai J, Yao X, Zhang M, Deng Y, Hu B. Inter-bacterial mutualism promoted by public goods in a system characterized by deterministic temperature variation. Nat Commun 2023; 14:5394. [PMID: 37669961 PMCID: PMC10480208 DOI: 10.1038/s41467-023-41224-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/25/2023] [Indexed: 09/07/2023] Open
Abstract
Mutualism is commonly observed in nature but not often reported for bacterial communities. Although abiotic stress is thought to promote microbial mutualism, there is a paucity of research in this area. Here, we monitor microbial communities in a quasi-natural composting system, where temperature variation (20 °C-70 °C) is the main abiotic stress. Genomic analyses and culturing experiments provide evidence that temperature selects for slow-growing and stress-tolerant strains (i.e., Thermobifida fusca and Saccharomonospora viridis), and mutualistic interactions emerge between them and the remaining strains through the sharing of cobalamin. Comparison of 3000 bacterial pairings reveals that mutualism is common (~39.1%) and competition is rare (~13.9%) in pairs involving T. fusca and S. viridis. Overall, our work provides insights into how high temperature can favour mutualism and reduce competition at both the community and species levels.
Collapse
Affiliation(s)
- Yuxiang Zhao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Zishu Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Baofeng Zhang
- Hangzhou Ecological and Environmental Monitoring Center, Hangzhou, China
| | - Jingjie Cai
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Xiangwu Yao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Meng Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Baolan Hu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China.
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
128
|
Guo Y, Gu S, Wu K, Tanentzap AJ, Yu J, Liu X, Li Q, He P, Qiu D, Deng Y, Wang P, Wu Z, Zhou Q. Temperature-mediated microbial carbon utilization in China's lakes. GLOBAL CHANGE BIOLOGY 2023; 29:5044-5061. [PMID: 37427534 DOI: 10.1111/gcb.16840] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/05/2023] [Indexed: 07/11/2023]
Abstract
Microbes play an important role in aquatic carbon cycling but we have a limited understanding of their functional responses to changes in temperature across large geographic areas. Here, we explored how microbial communities utilized different carbon substrates and the underlying ecological mechanisms along a space-for-time substitution temperature gradient of future climate change. The gradient included 47 lakes from five major lake regions in China spanning a difference of nearly 15°C in mean annual temperatures (MAT). Our results indicated that lakes from warmer regions generally had lower values of variables related to carbon concentrations and greater carbon utilization than those from colder regions. The greater utilization of carbon substrates under higher temperatures could be attributed to changes in bacterial community composition, with a greater abundance of Cyanobacteria and Actinobacteriota and less Proteobacteria in warmer lake regions. We also found that the core species in microbial networks changed with increasing temperature, from Hydrogenophaga and Rhodobacteraceae, which inhibited the utilization of amino acids and carbohydrates, to the CL500-29-marine-group, which promoted the utilization of all almost carbon substrates. Overall, our findings suggest that temperature can mediate aquatic carbon utilization by changing the interactions between bacteria and individual carbon substrates, and the discovery of core species that affect carbon utilization provides insight into potential carbon sequestration within inland water bodies under future climate warming.
Collapse
Affiliation(s)
- Yao Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, the People's Republic of China
- University of Chinese Academy of Sciences, Beijing, the People's Republic of China
| | - Songsong Gu
- University of Chinese Academy of Sciences, Beijing, the People's Republic of China
- Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, the People's Republic of China
| | - Kaixuan Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, the People's Republic of China
- University of Chinese Academy of Sciences, Beijing, the People's Republic of China
| | - Andrew J Tanentzap
- Ecosystems and Global Change Group, School of the Environment, Trent University, Peterborough, Ontario, Canada
- Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Junqi Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, the People's Republic of China
| | - Xiangfen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, the People's Republic of China
- University of Chinese Academy of Sciences, Beijing, the People's Republic of China
| | - Qianzheng Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, the People's Republic of China
- University of Chinese Academy of Sciences, Beijing, the People's Republic of China
| | - Peng He
- School of Environmental Studies, China University of Geosciences, Wuhan, the People's Republic of China
| | - Dongru Qiu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, the People's Republic of China
| | - Ye Deng
- Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, the People's Republic of China
| | - Pei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, the People's Republic of China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, the People's Republic of China
- School of Environmental Studies, China University of Geosciences, Wuhan, the People's Republic of China
| | - Qiaohong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, the People's Republic of China
| |
Collapse
|
129
|
Teng F, Tan G, Liu T, Zhang T, Liu Y, Li S, Lei C, Peng X, Yin H, Meng D. Inoculation with thermophiles enhanced the food waste bio-drying and complicated interdomain ecological networks between bacterial and fungal communities. ENVIRONMENTAL RESEARCH 2023; 231:116299. [PMID: 37268211 DOI: 10.1016/j.envres.2023.116299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/23/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2023]
Abstract
Bio-drying is a practical approach for treating food waste (FW). However, microbial ecological processes during treatment are essential for improving the dry efficiency, and have not been stressed enough. This study analyzed the microbial community succession and two critical periods of interdomain ecological networks (IDENs) during FW bio-drying inoculated with thermophiles (TB), to determine how TB affects FW bio-drying efficiency. The results showed that TB could rapidly colonize in the FW bio-drying, with the highest relative abundance of 5.13%. Inoculating TB increased the maximum temperature, temperature integrated index and moisture removal rate of FW bio-drying (55.7 °C, 219.5 °C, and 86.11% vs. 52.1 °C, 159.1 °C, and 56.02%), thereby accelerating the FW bio-drying efficiency by altering the succession of microbial communities. The structural equation model and IDEN analysis demonstrated that TB inoculation complicated the IDENs between bacterial and fungal communities by significantly and positively affecting bacterial communities (b = 0.39, p < 0.001) and fungal communities (b = 0.32, p < 0.01), thereby enhancing interdomain interactions between bacteria and fungi. Additionally, inoculation TB significantly increased the relative abundance of keystone taxa, including Clostridium sensu stricto, Ochrobactrum, Phenylobacterium, Microvirga and Candida. In conclusion, the inoculation of TB could effectively improve FW bio-drying, which is a promising technology for rapidly reducing FW with high moisture content and recovering resources from it.
Collapse
Affiliation(s)
- Fucheng Teng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Ge Tan
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; China Tobacco Hunan Industrial Co., Ltd., Changsha, 410014, China
| | - Tianbo Liu
- China Tobacco Research Institute of Hunan Province, Changsha, 410004, China
| | - Teng Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Hunan Urban and Rural Environmental Construction Co., Ltd, Changsha, 410118, China
| | - Yongjun Liu
- China Tobacco Research Institute of Hunan Province, Changsha, 410004, China
| | - Sheng Li
- College of Resources & Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Can Lei
- Changsha Leibang Environmental Protection Technology Co., Ltd, Changsha, 410199, China
| | - Xing Peng
- Hunan Renhe Environment Co., Ltd, Changsha, 410022, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China.
| |
Collapse
|
130
|
Ma JW, Wu YQ, Xu CL, Luo ZX, Yu RL, Hu GR, Yan Y. Inhibitory effect of polyethylene microplastics on roxarsone degradation in soils. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131483. [PMID: 37116328 DOI: 10.1016/j.jhazmat.2023.131483] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/19/2023]
Abstract
Roxarsone (3-nitro-4-hydroxyphenylarsonic acid, Rox(V)), an extensively used organoarsenical feed additive, enters soils through the application of Rox(V)-containing manure and further degrades to highly toxic arsenicals. Microplastics, as emerging contaminants, are also frequently detected in soils. However, the effects of microplastics on soil Rox(V) degradation are unknown. A microcosm experiment was conducted to investigate soil Rox(V) degradation responses to polyethylene (PE) microplastics and the underlying mechanisms. PE microplastics inhibited soil Rox(V) degradation, with the main products being 3-amino-4-hydroxyphenylarsonic acid [3-AHPAA(V)], N-acetyl-4-hydroxy-m-arsanilic acid [N-AHPAA(V)], arsenate [As(V)], and arsenite [As(III)]. This inhibition was likely driven by the decline in soil pH by PE microplastic addition, which may directly enhance Rox(V) sorption in soils. The decreased soil pH further suppressed the nfnB gene related to nitroreduction of Rox(V) to 3-AHPAA(V) and nhoA gene associated with acetylation of 3-AHPAA(V) to N-AHPAA(V), accompanied by a decrease in the relative abundance of possible Rox(V)-degrading bacteria (e.g., Pseudomonadales), although the diversity, composition, network complexity, and assembly of soil bacterial communities were largely influenced by Rox(V) rather than PE microplastics. Our study emphasizes microplastic-induced inhibition of Rox(V) degradation in soils and the need to consider the role of microplastics in better risk assessment and remediation of Rox(V)-contaminated soils.
Collapse
Affiliation(s)
- Jie-Wen Ma
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Ya-Qing Wu
- Instrumental Analysis Center of Huaqiao University, Huaqiao University, Xiamen 361021, China
| | - Chen-Lu Xu
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Zhuan-Xi Luo
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Rui-Lian Yu
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Gong-Ren Hu
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Yu Yan
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China.
| |
Collapse
|
131
|
Zhang H, Zhao D, Ma M, Huang T, Li H, Ni T, Liu X, Ma B, Zhang Y, Li X, Lei X, Jin Y. Actinobacteria produce taste and odor in drinking water reservoir: Community composition dynamics, co-occurrence and inactivation models. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131429. [PMID: 37099929 DOI: 10.1016/j.jhazmat.2023.131429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/19/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Taste and odor (T&O) has become a significant concern for drinking water safety. Actinobacteria are believed to produce T&O during the non-algal bloom period; however, this has not been widely investigated. In this study, the seasonal dynamics of the actinobacterial community structure and inactivation of odor-producing actinobacteria were explored. The results indicated that the diversity and community composition of actinobacteria exhibited significant spatiotemporal distribution. Network analysis and structural equation modeling showed that the actinobacterial community occupied a similar environmental niche, and the major environmental attributes exhibited spatiotemporal dynamics, which affected the actinobacterial community. Furthermore, the two genera of odorous actinobacteria were inactivated in drinking water sources using chlorine. Amycolatopsis spp. have a stronger chlorine resistance ability than Streptomyces spp., indicating that chlorine inactivates actinobacteria by first destroying cell membranes and causing the release of intracellular compounds. Finally, we integrated the observed variability in the inactivation rate of actinobacteria into an expanded Chick-Watson model to estimate its effect on inactivation. These findings will deepen our understanding of the seasonal dynamics of actinobacterial community structure in drinking water reservoirs and provide a foundation for reservoir water quality management strategies.
Collapse
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Daijuan Zhao
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Manli Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haiyun Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tongchao Ni
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yinbin Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xiaohui Lei
- Department of Rehabilitation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yaofeng Jin
- Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
132
|
Pan Q, Huang J, Zhang S, Qin H, Dong Y, Wang X, Mu Y, Tang H, Zhou R. Synergistic effect of biotic and abiotic factors drives microbiota succession and assembly in medium-temperature Daqu. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4392-4400. [PMID: 36891660 DOI: 10.1002/jsfa.12543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/08/2023] [Accepted: 03/09/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND The feasibility of fortification techniques to improve the quality of medium-temperature Daqu (MTD) by inoculation functional isolates has been demonstrated. However, it is unclear what is the effect of inoculation on the controllability during the MTD fermentation process. Here, inoculated a single strain of Bacillus licheniformis, and the microbiota composed of Bacillus velezensis and Bacillus subtilis, were used to investigate the synergistic effect of biotic and abiotic factors on the succession and assembly of the MTD microbiota during the process. RESULTS The biotic factors promoted the proliferation of microorganisms that arrived early at the MTD. Subsequently, this alteration might inhibit microorganisms that colonized later in the MTD microecosystem, thereby assembling a different but more stable microbial community. Moreover, the biotic factors making bacterial community assembly were dominated by variable selection earlier, whereas the fungal community assembly was dominated mainly by extreme abiotic factors rather than biotic factors. Interestingly, fermentation temperature and moisture were significantly associated with the succession and assembly of the fortified MTD community. Meanwhile, the effect of the environmental variables on endogenous variables was also significant. Thus, changes in endogenous variables could be mitigated by adjusting environmental variables to regulate the process of MTD fermentation. CONCLUSION Biotic factors cause rapid changes of the microbiota during the MTD fermentation process, which could be controlled indirectly by regulating environmental variables. Meanwhile, a more stable MTD ecological network might be beneficial for enhancing the stability of MTD quality. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qianglin Pan
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | | | - Hui Qin
- Luzhou Lao Jiao Co., Ltd, Luzhou, China
| | - Yi Dong
- Luzhou Lao Jiao Co., Ltd, Luzhou, China
| | | | - Yu Mu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Huifang Tang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
133
|
Mohapatra M, Manu S, Kim JY, Rastogi G. Distinct community assembly processes and habitat specialization driving the biogeographic patterns of abundant and rare bacterioplankton in a brackish coastal lagoon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163109. [PMID: 36996988 DOI: 10.1016/j.scitotenv.2023.163109] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/07/2023] [Accepted: 03/23/2023] [Indexed: 05/17/2023]
Abstract
The ecological diversity patterns and community assembly processes along spatio-temporal scales are least studied in the bacterioplankton sub-communities of brackish coastal lagoons. We examined the biogeographic patterns and relative influences of different assembly processes in structuring the abundant and rare bacterioplankton sub-communities of Chilika, the largest brackish water coastal lagoon of India. Rare taxa demonstrated significantly higher α- and β-diversity and biogeochemical functions than abundant taxa in the high-throughput 16S rRNA gene sequence dataset. The majority of the abundant taxa (91.4 %) were habitat generalists with a wider niche breadth (niche breadth index, B = 11.5), whereas most of the rare taxa (95.2 %) were habitat specialists with a narrow niche breadth (B = 8.9). Abundant taxa exhibited a stronger distance-decay relationship and higher spatial turnover rate than rare taxa. β-diversity partitioning revealed that the contribution of species turnover (72.2-97.8 %) was greater than nestedness (2.2-27.8 %) in causing the spatial variation in both abundant and rare taxa. Null model analyses revealed that the distribution of abundant taxa was mostly structured by stochastic processes (62.8 %), whereas deterministic processes (54.1 %) played a greater role in the rare taxa. However, the balance of these two processes varied across spatio-temporal scales in the lagoon. Salinity was the key deterministic factor controlling the variation of both abundant and rare taxa. Potential interaction networks showed a higher influence of negative interactions, indicating that species exclusion and top-down processes played a greater role in the community assembly. Notably, abundant taxa emerged as keystone taxa across spatio-temporal scales, suggesting their greater influences on other bacterial co-occurrences and network stability. Overall, this study provided detailed mechanistic insights into biogeographic patterns and underlying community assembly processes of the abundant and rare bacterioplankton over spatio-temporal scales in a brackish lagoon.
Collapse
Affiliation(s)
- Madhusmita Mohapatra
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon 752030, Odisha, India
| | - Shivakumara Manu
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500048, India
| | - Ji Yoon Kim
- Department of Biological Science, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Gurdeep Rastogi
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon 752030, Odisha, India.
| |
Collapse
|
134
|
Yao Y, Shen X, Wang L, Zhao J, Gong L, Wang S, Wu L, Li G, Xiu W, Zhang G. Effects of tillage management on cbbL-carrying bacteria and soil organic carbon dynamics across aggregate size classes in the farmland of North China Plain. ECOLOGICAL INDICATORS 2023; 150:110213. [DOI: 10.1016/j.ecolind.2023.110213] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
|
135
|
Wen T, Ding Z, Thomashow LS, Hale L, Yang S, Xie P, Liu X, Wang H, Shen Q, Yuan J. Deciphering the mechanism of fungal pathogen-induced disease-suppressive soil. THE NEW PHYTOLOGIST 2023; 238:2634-2650. [PMID: 36932631 DOI: 10.1111/nph.18886] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/14/2023] [Indexed: 05/19/2023]
Abstract
One model of a disease-suppressive soil predicts that the confrontation of plant with a phytopathogen can lead to the recruitment and accumulation of beneficial microorganisms. However, more information needs to be deciphered regarding which beneficial microbes become enriched, and how the disease suppression is achieved. Here, we conditioned soil by continuously growing eight generations of cucumber inoculated with Fusarium oxysporum f.sp. cucumerinum in a split-root system. Disease incidence was found to decrease gradually upon pathogen infection accompanied with higher quantity of reactive oxygen species (ROS mainly OH• ) in roots and accumulation of Bacillus and Sphingomonas. These key microbes were proven to protect the cucumber from pathogen infection by inducing high ROS level in the roots through enrichment of pathways, including a two-component system, a bacterial secretion system, and flagellar assembly revealed by metagenomics sequencing. Untargeted metabolomics analysis combined with in vitro application assays suggested that threonic acid and lysine were pivotal to recruit Bacillus and Sphingomonas. Collectively, our study deciphered a 'cry for help' case, wherein cucumber releases particular compounds to enrich beneficial microbes that raise the ROS level of host to prevent pathogen attack. More importantly, this may be one of the fundamental mechanisms underpinning disease-suppressive soil formation.
Collapse
Affiliation(s)
- Tao Wen
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhexu Ding
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Linda S Thomashow
- US Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, WA, 99164, USA
| | - Lauren Hale
- US Department of Agriculture, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 S. Riverbend Avenue, Parlier, CA, 93648, USA
| | - Shengdie Yang
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Penghao Xie
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoyu Liu
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Heqi Wang
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qirong Shen
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jun Yuan
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
136
|
Lu Y, Wang M, Yu C, Wu Q, Mao Z, Li H, Ren L, Zeng J, Xing P, Zhou LJ, Wan S, Wu QL. Unexpected enrichment of antibiotic resistance genes and organic remediation genes in high-altitude lakes at Eastern Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162554. [PMID: 36870490 DOI: 10.1016/j.scitotenv.2023.162554] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/07/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Elevation has a strong effect on aquatic microbiome. However, we know little about the effects of elevation on functional genes, especially antibiotic resistance genes (ARGs) and organic remediation genes (ORGs) in freshwater ecosystems. In this study, we analyzed five classes of functional genes including ARGs, metal resistance genes (MRGs), ORGs, bacteriophages, and virulence genes between two high-altitude lakes (HALs) and two low-altitude lakes (LALs) in Mountain Siguniang at Eastern Tibetan Plateau by means of GeoChip 5.0. No differences (Student's t-test, p > 0.05) of gene richness including ARGs, MRGs, ORGs, bacteriophages, and virulence genes in HALs and LALs were found. The abundance of most ARGs and ORGs was higher in HALs than in LALs. For MRGs, the abundance of macro metal resistance genes of potassium, calcium, and aluminum was higher in HALs than in LALs (Student's t-test, p < 0.05; all Cohen's d > 0.8). The abundance of some heavy metal resistance genes of lead and mercury was lower in HALs than in LALs (Student's t-test, p < 0.05; all Cohen's d < -0.8). The composition of these functional genes in HALs differed significantly from in LALs. The functional gene network in HALs was also more complex than that in LALs. We speculate that enrichment of ARGs and ORGs in HALs is related to different microbial communities, exogenous ARGs, and enriched persistent organic pollutants through long-range atmospheric transport driven by the Indian monsoon. This study highlights the unexpected enrichment of ARGs, MRGs, and ORGs in remote lakes at high elevations.
Collapse
Affiliation(s)
- Yiwei Lu
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Man Wang
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Chunyan Yu
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qiong Wu
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhendu Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Huabing Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lijuan Ren
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Jin Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Peng Xing
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Li-Jun Zhou
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Shiqiang Wan
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Qinglong L Wu
- Center for Evolution and Conservation Biology, Southern Marine Sciences and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
137
|
Sun K, Cai J, Liu X, Yang L, Li H, Wang G, Xu X, Yu F. Effects of nitrogen and phosphorus supply levels and ratios on soil microbial diversity-ecosystem multifunctionality relationships in a coastal nontidal wetland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162472. [PMID: 36842587 DOI: 10.1016/j.scitotenv.2023.162472] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/03/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Human activities have changed the levels and ratios of nitrogen (N) and phosphorus (P) in wetland ecosystems. However, the effects of N and P levels and ratios on wetland soil microbial community and ecosystem multifunctionality remain unclear, especially on the relationships between soil microbial diversity and ecosystem multifunctionality. In this study, the effects of a 7-year experimental nutrient addition on the soil microbial community and ecosystem multifunctionality (12 function variables related to carbon, N, and P cycling) were assessed by combining three N and P supply levels with three N:P supply ratios in a coastal nontidal wetland ecosystem. According to the obtained results, the N and P supply levels significantly affected soil bacterial community composition, as well as ecosystem multifunctionality, while no significant effects of N:P supply ratios were observed. Although N and P supply levels did not significantly affect bacterial and fungal diversity, they both changed the complexity of bacterial and fungal networks. Soil ecosystem multifunctionality was significantly and positively correlated with bacterial diversity rather than fungal diversity. Moreover, the correlation coefficient between bacterial diversity and ecosystem multifunctionality showed an increasing-decreasing trend with increasing N and P supply levels and an increasing trend with increasing N:P supply ratios. However, the correlation coefficient between bacterial diversity and ecosystem multifunctionality was not significantly correlated with bacterial network complexity. The current study provides new insights into the impacts of N and P levels and ratios on soil microbial community and ecosystem multifunctionality in a coastal nontidal wetland. In particular, the present study highlighted that changes in N and P supply levels and ratios lead to changes in the relationship between soil bacterial diversity and ecosystem multifunctionality, which should be considered in related studies to accurately predict the responses of ecosystem multifunctionality to N and P inputs in coastal nontidal wetlands.
Collapse
Affiliation(s)
- Kai Sun
- Key Laboratory of Ecological Protection in the Yellow River Basin of National Forestry and Grassland Administration, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Jingfang Cai
- Key Laboratory of Ecological Protection in the Yellow River Basin of National Forestry and Grassland Administration, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Xiaoling Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, China
| | - Lijuan Yang
- Key Laboratory of Ecological Protection in the Yellow River Basin of National Forestry and Grassland Administration, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Hongli Li
- Key Laboratory of Ecological Protection in the Yellow River Basin of National Forestry and Grassland Administration, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China.
| | - Guangmei Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, China.
| | - Xingliang Xu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Feihai Yu
- Key Laboratory of Ecological Protection in the Yellow River Basin of National Forestry and Grassland Administration, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; Institute of Wetland Ecology & Clone Ecology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
| |
Collapse
|
138
|
Xu S, Jia K, Zheng Y, Chen W, Wang Z, Wei D, Sun B, Cheng M, Fan B, Li J, Wei Y. Phosphorus transformation behavior and phosphorus cycling genes expression in food waste composting with hydroxyapatite enhanced by phosphate-solubilizing bacteria. BIORESOURCE TECHNOLOGY 2023; 376:128882. [PMID: 36925077 DOI: 10.1016/j.biortech.2023.128882] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
This study aimed to explore the effect of phosphate-solubilizing bacteria (PSB) Bacillus inoculation in the cooling stage on hydroxyapatite dissolution, phosphorus (P) forms transformation, and bacterial P cycling genes in food waste composting with hydroxyapatite. Results indicated that PSB inoculation promoted the dissolution of hydroxyapatite, increased P availability of compost by 8.1% and decreased the ratio of organic P to inorganic P by 10.2% based on sequential fractionation and 31P nuclear magnetic resonance spectroscopy. Illumina sequencing indicated Bacillus relative abundance after inoculation increased up to one time higher than control after the cooling stage. Network analysis and metabolic function of bacterial community analysis suggested inorganic P solubilizing genes of Bacillus and organic P mineralization genes of other genera were improved after inoculation in the core module. Therefore, bioaugmentation of PSB in the cooling stage may be a potential way to improve P bioavailability of bone and food waste in composting.
Collapse
Affiliation(s)
- Shaoqi Xu
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Kaixue Jia
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yi Zheng
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou 215100, China
| | - Wenjie Chen
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou 215100, China
| | - Zhigang Wang
- Beijing DBN Agriculture Science and Technology Group CO., Ltd., DBN Pig Academy, Beijing 102629, China
| | - Dan Wei
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Baoru Sun
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Meidi Cheng
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Beibei Fan
- Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou 215100, China
| | - Ji Li
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou 215100, China
| | - Yuquan Wei
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou 215100, China.
| |
Collapse
|
139
|
Zhao Z, Wu H, Jin T, Liu H, Men J, Cai G, Cernava T, Duan G, Jin D. Biodegradable mulch films significantly affected rhizosphere microbial communities and increased peanut yield. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162034. [PMID: 36754316 DOI: 10.1016/j.scitotenv.2023.162034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Biodegradable mulch films are widely used to replace conventional plastic films in agricultural fields. However, their ecological effects on different microbial communities that naturally inhabit agricultural fields are scarcely explored. Herein, differences in bacterial communities recovered from biofilms, bulk soil, and rhizosphere soil were comparatively assessed for polyethylene film (PE) and biodegradable mulch film (BDM) application in peanut planted fields. The results showed that the plastic film type significantly influenced the bacterial community in different ecological niches of agricultural fields (P < 0.001). Specifically, BDMs significantly increased the diversity and abundance of bacteria in the rhizosphere soil. The bacterial communities in each ecological niche were distinguishable from each other; bacterial communities in the rhizosphere soil showed the most pronounced response among different treatments. Acidobacteria and Pseudomonas were significantly enriched in the rhizosphere soil when BDMs were used. BDMs also increased the rhizosphere soil bacterial network complexity and stability. The enrichment of beneficial bacteria in the rhizosphere soil under BDMs may also have implications for the observed increase in peanut yield. Deepening analyses indicated that Pseudoxanthomonas and Glutamicibacter are biomarkers in biofilms of PE and BDMs respectively. Our study provides new insights into the consequences of the application of different types of plastic films on microbial communities in different ecological niches of agricultural fields.
Collapse
Affiliation(s)
- Zhirui Zhao
- Hebei Province Key Laboratory of Sustained Utilization and Development of Water Recourse, School of Water Resources and Environment, Hebei GEO University, Shijiazhuang 050031, China
| | - Haimiao Wu
- Hebei Province Key Laboratory of Sustained Utilization and Development of Water Recourse, School of Water Resources and Environment, Hebei GEO University, Shijiazhuang 050031, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tuo Jin
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Huiying Liu
- Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Jianan Men
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangxing Cai
- Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria
| | - Guilan Duan
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Decai Jin
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
140
|
Wang X, Zhang Q, Zhang Z, Li W, Liu W, Xiao N, Liu H, Wang L, Li Z, Ma J, Liu Q, Ren C, Yang G, Zhong Z, Han X. Decreased soil multifunctionality is associated with altered microbial network properties under precipitation reduction in a semiarid grassland. IMETA 2023; 2:e106. [PMID: 38868425 PMCID: PMC10989785 DOI: 10.1002/imt2.106] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/20/2023] [Accepted: 04/06/2023] [Indexed: 06/14/2024]
Abstract
Our results reveal different responses of soil multifunctionality to increased and decreased precipitation. By linking microbial network properties to soil functions, we also show that network complexity and potentially competitive interactions are key drivers of soil multifunctionality.
Collapse
Affiliation(s)
- Xing Wang
- College of AgronomyNorthwest A&F UniversityYanglingChina
- Shaanxi Engineering Research Center of Circular AgricultureYanglingChina
| | - Qi Zhang
- College of AgronomyNorthwest A&F UniversityYanglingChina
- Shaanxi Engineering Research Center of Circular AgricultureYanglingChina
| | - Zhenjiao Zhang
- College of AgronomyNorthwest A&F UniversityYanglingChina
- Shaanxi Engineering Research Center of Circular AgricultureYanglingChina
| | - Wenjie Li
- College of AgronomyNorthwest A&F UniversityYanglingChina
- Shaanxi Engineering Research Center of Circular AgricultureYanglingChina
| | - Weichao Liu
- College of AgronomyNorthwest A&F UniversityYanglingChina
- Shaanxi Engineering Research Center of Circular AgricultureYanglingChina
| | - Naijia Xiao
- Institute for Environmental Genomics and Department of Microbiology and Plant BiologyUniversity of OklahomaNormanOklahomaUSA
| | - Hanyu Liu
- College of AgronomyNorthwest A&F UniversityYanglingChina
- Shaanxi Engineering Research Center of Circular AgricultureYanglingChina
| | - Leyin Wang
- College of AgronomyNorthwest A&F UniversityYanglingChina
- Shaanxi Engineering Research Center of Circular AgricultureYanglingChina
| | - Zhenxia Li
- College of AgronomyNorthwest A&F UniversityYanglingChina
- Shaanxi Engineering Research Center of Circular AgricultureYanglingChina
| | - Jing Ma
- College of AgronomyNorthwest A&F UniversityYanglingChina
- Shaanxi Engineering Research Center of Circular AgricultureYanglingChina
| | - Quanyong Liu
- College of AgronomyNorthwest A&F UniversityYanglingChina
- Shaanxi Engineering Research Center of Circular AgricultureYanglingChina
| | - Chengjie Ren
- College of AgronomyNorthwest A&F UniversityYanglingChina
- Shaanxi Engineering Research Center of Circular AgricultureYanglingChina
| | - Gaihe Yang
- College of AgronomyNorthwest A&F UniversityYanglingChina
- Shaanxi Engineering Research Center of Circular AgricultureYanglingChina
| | - Zekun Zhong
- Institute of Soil and Water ConservationNorthwest A&F UniversityYanglingChina
| | - Xinhui Han
- College of AgronomyNorthwest A&F UniversityYanglingChina
- Shaanxi Engineering Research Center of Circular AgricultureYanglingChina
| |
Collapse
|
141
|
Hu X, Li Y, Wu J, Zhang H, Huang Y, Tan X, Wen L, Zhou X, Xie P, Olasunkanmi OI, Zhou J, Sun Z, Liu M, Zhang G, Yang J, Zheng P, Xie P. Changes of gut microbiota reflect the severity of major depressive disorder: a cross sectional study. Transl Psychiatry 2023; 13:137. [PMID: 37117202 PMCID: PMC10147706 DOI: 10.1038/s41398-023-02436-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023] Open
Abstract
Disturbed gut microbiota is a potential factor in the pathogenesis of major depressive disorder (MDD), yet whether gut microbiota dysbiosis is associated with the severity of MDD remains unclear. Here, we performed shotgun metagenomic profiling of cross-sectional stool samples from MDD (n = 138) and healthy controls (n = 155). The patients with MDD were divided into three groups according to Hamilton Depression Rating Scale 17 (HAMD-17), including mild (n = 24), moderate (n = 72) and severe (n = 42) individuals, respectively. We found that microbial diversity was closely related to the severity of MDD. Compared to HCs, the abundance of Bacteroides was significantly increased in both moderate and severe MDD, while Ruminococcus and Eubacterium depleted mainly in severe group. In addition, we identified 99 bacteria species specific to severity of depression. Furthermore, a panel of microbiota marker comprising of 37 bacteria species enabled to effectively distinguish MDD patients with different severity. Together, we identified different perturbation patterns of gut microbiota in mild-to-severe depression, and identified potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Xi Hu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yifan Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Wu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hanping Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Huang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xunmin Tan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lu Wen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xingyu Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peijun Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | - Jingjing Zhou
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Zuoli Sun
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Min Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Guofu Zhang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jian Yang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
142
|
Dong F, Zhu Y, Zhu X, Zhang C, Tao Y, Shao T, Wang Y, Luo X. Fungal community remediate quartz tailings soil under plant combined with urban sludge treatments. Front Microbiol 2023; 14:1160960. [PMID: 37152723 PMCID: PMC10157048 DOI: 10.3389/fmicb.2023.1160960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Tailings can cause extensive damage to soil structure and microbial community. Phytoremediation is an effective strategy for remedied tailings soil due to its environmentally friendly and low-cost advantage. Fungi play a crucial role in nutrient cycling, stress resistance, stabilizing soil structure, and promoting plant growth. However, the fungal community variation in phytoremediation remains largely unexplored. Methods We analyzed soil fungal community based on high-throughput sequencing during three plant species combined with urban sludge to remediate quartz tailings soil. Results The results indicated that the fungal diversity was significantly increased with plant diversity, and the highest fungal diversity was in the three plant species combination treatments. Moreover, the fungal diversity was significantly decreased with the addition of urban sludge compared with plant treatments, while the abundance of potential beneficial fungi such as Cutaneotrichosporon, Apiotrichum, and Alternaria were increased. Notably, the fungal community composition in different plant species combination treatments were significant difference at the genus level. The addition of urban sludge increased pH, available phosphorus (AP), and available nitrogen (AN) content that were the main drivers for fungal community composition. Furthermore, the fungal networks of the plant treatments had more nodes and edges, higher connectedness, and lower modularity than plant combined with urban sludge treatments. Conclusion Our results showed that three plant species combined with urban sludge treatments improved fungal community and soil properties. Our results provide insights for quartz tailings soil remediation using plant-fungi- urban sludge.
Collapse
Affiliation(s)
- Fabao Dong
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, Thailand
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou, China
| | - Yujia Zhu
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| | - Xunmei Zhu
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| | - Chengzhi Zhang
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| | - Yingying Tao
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| | - Taotao Shao
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| | - Yue Wang
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| | - Xia Luo
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| |
Collapse
|
143
|
Zhang Z, Li J, Li H, Wang L, Zhou Y, Li S, Zhang Z, Feng K, Deng Y. Environmental DNA metabarcoding reveals the influence of human activities on microeukaryotic plankton along the Chinese coastline. WATER RESEARCH 2023; 233:119730. [PMID: 36801577 DOI: 10.1016/j.watres.2023.119730] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/04/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Microeukaryotic plankton, with its extremely diverse taxa, is a key component in both the marine food web and biogeochemical cycling. Coastal seas, which are home to the numerous microeukaryotic plankton that underpin the functions of these aquatic ecosystems, are often impacted by human activities. However, understanding the biogeographical patterns of diversity and community structure of microeukaryotic plankton and the role that major shaping factors play at the continent scale is still a challenge in coastal ecology. Here, the biogeographic patterns of biodiversity, community structure, and co-occurrence patterns were investigated by environmental DNA (eDNA) based approaches. Unlike most eDNA studies, we combined several methods (in silico PCR, mock and environmental communities) to systematically evaluate the specificity and coverage of primers to overcome the limitation of marker selection on biodiversity recovery. The 1380F/1510R primer set showed the best performance for the amplification of coastal plankton with the highest coverage, sensitivity, and resolution. We showed a unimodal pattern for planktonic alpha diversity with latitude (P < 0.001), and nutrient-related factors (NO3N, NO2N, and NH4N) were the leading predictors for spatial patterning. Significant regional biogeographic patterns and potential drivers for planktonic communities were found across coastal regions. All communities generally fitted the regional distance-decay relationship (DDR) model with the strongest spatial turnover rate was found in the Yalujiang (YLJ) estuary (P < 0.001). The environmental factors, especially inorganic nitrogen and heavy metals (HMs), had the greatest impact on planktonic community similarity in the Beibu Bay (BB) and East China Sea (ECS). Furthermore, we observed spatial plankton co-occurrence patterns, and the networked topology and structure were strongly driven by potential anthropogenic activity factors (nutrients and HMs). Overall, our study provided a systematic approach for metabarcode primer selection in eDNA-based biodiversity monitoring and revealed that the spatial pattern of the microeukaryotic plankton community was mainly controlled by regional human activity-related factors.
Collapse
Affiliation(s)
- Zheng Zhang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Jiang Li
- Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources; Key Laboratory of Ecological Environment Science and Technology, Ministry of Natural Resources, Qingdao, China, 266061.
| | - Hongjun Li
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Linlin Wang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Yuqi Zhou
- Institute of Soil and Water Resources and Environmental Science College of Environmental and Natural Resource Sciences, Zhejiang University, China
| | - Shuzhen Li
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhaojing Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Kai Feng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China; Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
144
|
Chen L, Wang M, Shi Y, Ma P, Xiao Y, Yu H, Ding J. Soil phosphorus form affects the advantages that arbuscular mycorrhizal fungi confer on the invasive plant species, Solidago canadensis, over its congener. Front Microbiol 2023; 14:1160631. [PMID: 37125154 PMCID: PMC10140316 DOI: 10.3389/fmicb.2023.1160631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Interactions between plants and arbuscular mycorrhizal fungi (AMF) are strongly affected by soil phosphorus (P) availability. However, how P forms impact rhizosphere AMF diversity, community composition, and the co-occurrence network associated with native and invasive plants, and whether these changes in turn influence the invasiveness of alien species remain unclear. In this work, we performed a greenhouse experiment with the invasive species Solidago canadensis and its native congener S. decurrens to investigate how different forms of P altered the AMF community and evaluate how these changes were linked with the growth advantage of S. canadensis relative to S. decurrens. Plants were subjected to five different P treatments: no P addition (control), simple inorganic P (sodium dihydrogen phosphate, NaP), complex inorganic P (hydroxyapatite, CaP), simple organic P (adenosine monophosphate, AMP) and complex organic P (myo-inositol hexakisphosphate, PA). Overall, invasive S. canadensis grew larger than native S. decurrens across all P treatments, and this growth advantage was strengthened when these species were grown in CaP and AMP treatments. The two Solidago species harbored divergent AMF communities, and soil P treatments significantly shifted AMF community composition. In particular, the differences in AMF diversity, community composition, topological features and keystone taxa of the co-occurrence networks between S. canadensis and S. decurrens were amplified when the dominant form of soil P was altered. Despite significant correlations between AMF alpha diversity, community structure, co-occurrence network composition and plant performance, we found that alpha diversity and keystone taxa of the AMF co-occurrence networks were the primary factors influencing plant growth and the growth advantage of invasive S. canadensis between soil P treatments. These results suggest that AMF could confer invasive plants with greater advantages over native congeners, depending on the forms of P in the soil, and emphasize the important roles of multiple AMF traits in plant invasion.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Mengqi Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yu Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Pinpin Ma
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Yali Xiao
- School of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Hongwei Yu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jianqing Ding
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
145
|
Ma YN, Gu YL, Liu J, Zhang Y, Wang X, Xia Z, Wei HL. Deciphering the rhizosphere bacteriome associated with biological control of tobacco black shank disease. FRONTIERS IN PLANT SCIENCE 2023; 14:1152639. [PMID: 37077642 PMCID: PMC10108594 DOI: 10.3389/fpls.2023.1152639] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Introduction The black shank disease seriously affects the health of tobacco plants. Conventional control methods have limitations in terms of effectiveness or economic aspects and cause public health concerns. Thus, biological control methods have come into the field, and microorganisms play a key role in suppressing tobacco black shank disease. Methods In this study, we examined the impact of soil microbial community on black shank disease basing on the structural difference of bacterial communities in rhizosphere soils. We used Illumina sequencing to compare the bacterial community diversity and structure in different rhizosphere soil samples in terms of healthy tobacco, tobacco showing typical black shank symptoms, and tobacco treated with the biocontrol agent, Bacillus velezensis S719. Results We found that Alphaproteobacteria in the biocontrol group, accounted for 27.2% of the ASVs, was the most abundant bacterial class among three groups. Heatmap and LEfSe analyses were done to determine the distinct bacterial genera in the three sample groups. For the healthy group, Pseudomonas was the most significant genus; for the diseased group, Stenotrophomonas exhibited the strongest enrichment trend, and Sphingomonas showed the highest linear discriminant analysis score, and was even more abundant than Bacillus; for the biocontrol group, Bacillus, and Gemmatimonas were the largely distributed genus. In addition, co-occurrence network analysis confirmed the abundance of taxa, and detected a recovery trend in the network topological parameters of the biocontrol group. Further functional prediction also provided a possible explanation for the bacterial community changes with related KEGG annotation terms. Discussion These findings will improve our knowledge of plant-microbe interactions and the application of biocontrol agents to improve plant fitness, and may contribute to the selection of biocontrol strains.
Collapse
Affiliation(s)
- Yi-Nan Ma
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yi-Lin Gu
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Liu
- Zunyi Tobacco Company of Guizhou Provincial Tobacco Corporation, Zunyi, China
| | - Yuqin Zhang
- China National Tobacco Corporation Shandong Branch, Jinan, China
| | - Xinwei Wang
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management in Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zhenyuan Xia
- Yunnan Academy of Tobacco Agricultural Science, Kunming, China
| | - Hai-Lei Wei
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
146
|
Lian Z, Xu Y, Wang C, Chen Y, Yuan L, Liu Z, Liu Y, He P, Cai Z, Zhao J. Gut microbiota-derived melatonin from Puerariae Lobatae Radix-resistant starch supplementation attenuates ischemic stroke injury via a positive microbial co-occurrence pattern. Pharmacol Res 2023; 190:106714. [PMID: 36863429 DOI: 10.1016/j.phrs.2023.106714] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023]
Abstract
Ischemic stroke is closely associated with gut microbiota dysbiosis and intestinal barrier dysfunction. Prebiotic intervention could modulate the intestinal microbiota, thus considered a practical strategy for neurological disorders. Puerariae Lobatae Radix-resistant starch (PLR-RS) is a potential novel prebiotic; however, its role in ischemic stroke remains unknown. This study aimed to clarify the effects and underlying mechanisms of PLR-RS in ischemic stroke. Middle cerebral artery occlusion surgery was performed to establish a model of ischemic stroke in rats. After gavage for 14 days, PLR-RS attenuated ischemic stroke-induced brain impairment and gut barrier dysfunction. Moreover, PLR-RS rescued gut microbiota dysbiosis and enriched Akkermansia and Bifidobacterium. We transplanted the fecal microbiota from PLR-RS-treated rats into rats with ischemic stroke and found that the brain and colon damage were also ameliorated. Notably, we found that PLR-RS promoted the gut microbiota to produce a higher level of melatonin. Intriguingly, exogenous gavage of melatonin attenuated ischemic stroke injury. In particular, melatonin attenuated brain impairment via a positive co-occurrence pattern in the intestinal microecology. Specific beneficial bacteria served as leaders or keystone species to promoted gut homeostasis, such as Enterobacter, Bacteroidales_S24-7_group, Prevotella_9, Ruminococcaceae and Lachnospiraceae. Thus, this new underlying mechanism could explain that the therapeutic efficacy of PLR-RS on ischemic stroke at least partly attributed to gut microbiota-derived melatonin. In summary, improving intestinal microecology by prebiotic intervention and melatonin supplementation in the gut were found to be effective therapies for ischemic stroke.
Collapse
Affiliation(s)
- Zhuoshi Lian
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ying Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chan Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ye Chen
- Department of Gastroenterology, Integrative Clinical Microecology Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China
| | - Li Yuan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhongyu Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yarui Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peishi He
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zheng Cai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China.
| | - Jie Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China; Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
147
|
Hu J, Tang J, Zhang X, Yang K, Zhong A, Yang Q, Liu Y, Li Y, Zhang T. Landscape in the gallbladder mycobiome and bacteriome of patients undergoing cholelithiasis with chronic cholecystitis. Front Microbiol 2023; 14:1131694. [PMID: 37032855 PMCID: PMC10073429 DOI: 10.3389/fmicb.2023.1131694] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/03/2023] [Indexed: 04/11/2023] Open
Abstract
Gallstone disease (GSD) is associated with changes in the gut and gallbladder bacterial composition, but there is limited information on the role of the fungal community (mycobiome) in disease development. This study aimed to characterize the gallbladder mycobiome profiles and their interactions with bacteriome in GSD. A total of 136 bile and gallstone samples (34 paired for bacteriome, and 33 paired and extra 2 bile samples for mycobiome) were obtained from calculi patients with chronic cholecystitis. Bile and gallstone bacteriome and mycobiome were profiled by 16S and internal transcribed spacer (ITS) rRNA gene sequencing, respectively. Gallbladder bacteriome, mycobiome, and interkingdom and intrakingdom interactions were compared between bile and gallstone. In general, microbial diversity was higher in bile than in gallstone, and distinct microbial community structures were observed among them. Deep Sea Euryarchaeotic Group, Rhodobacteraceae, and Rhodobacterales were microbial biomarkers of bile, while Clostridiales and Eubacterium coprostanoligenes were biomarkers of gallstone. Five fungal taxa, including Colletotrichum, Colletotrichum sublineola, and Epicoccum, were enriched in gallstone. Further ecologic analyses revealed that intensive transkingdom correlations between fungi and bacteria and intrakingdom correlations within them observed in gallstone were significantly decreased in bile. Large and complex fungal communities inhabit the gallbladder of patients with GSD. Gallstone, compared with bile, is characterized by significantly altered bacterial taxonomic composition and strengthened bacterial-bacterial, fungal-fungal, and bacterial-fungal correlations in the gallbladder of patients with GSD.
Collapse
Affiliation(s)
- Junqing Hu
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- The Center for Obesity and Metabolic Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- Medical Research Center, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Jichao Tang
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- The Center for Obesity and Metabolic Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- General Surgery Day Ward, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Xinpeng Zhang
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- The Center for Obesity and Metabolic Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- General Surgery Day Ward, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Kaijin Yang
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- The Center for Obesity and Metabolic Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- General Surgery Day Ward, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Ayan Zhong
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- The Center for Obesity and Metabolic Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- General Surgery Day Ward, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Qin Yang
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- The Center for Obesity and Metabolic Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- Section for Hepato-Pancreato-Biliary Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Yanjun Liu
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- The Center for Obesity and Metabolic Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Yi Li
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- The Center for Obesity and Metabolic Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- General Surgery Day Ward, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Tongtong Zhang
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- The Center for Obesity and Metabolic Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- Medical Research Center, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| |
Collapse
|
148
|
Wang Q, Chen J, Qi W, Wang D, Lin H, Wu X, Wang D, Bai Y, Qu J. Dam construction alters planktonic microbial predator‒prey communities in the urban reaches of the Yangtze River. WATER RESEARCH 2023; 230:119575. [PMID: 36623385 DOI: 10.1016/j.watres.2023.119575] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
While dam construction supports social and economic development, changes in hydraulic conditions can also affect natural aquatic ecosystems, especially microbial ecosystems. The compositional and functional traits of multi-trophic microbiota can be altered by dam construction, which may result in changes in aquatic predator-prey interactions. To understand this process, we performed a large-scale sampling campaign in the urban reaches of the dam-impacted Yangtze River (1 995 km) and obtained 211 metagenomic datasets and water quality data. We first compared the compositional traits of planktonic microbial communities upstream, downstream, and in a dam reservoir. Results showed that Bacteroidetes (R-strategy) bacteria were more likely to survive upstream, whilst the reservoir and downstream regions were more conducive to the survival of K-strategy bacteria such as Actinobacteria. Eukaryotic predators tended to be enriched upstream, whilst phototrophs tended to be enriched in the reservoir and downstream regions. Based on bipartite networks, we inferred that the potential microbial predator-prey interactions gradually and significantly decreased from upstream to the downstream and dam regions, affecting 56% of keystone microbial species. Remarkably, functional analysis showed that the abundance of the photosynthetic gene psbO was higher in the reservoir and downstream regions, whilst the abundance of the KEGG carbohydrate metabolic pathway was higher upstream. These results indicate that dam construction in the Yangtze River induced planktonic microbial ecosystem transformation from detritus-based food webs to autotroph-based food webs.
Collapse
Affiliation(s)
- Qiaojuan Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Junwen Chen
- Center for Water and Ecology, Tsinghua University, Beijing 100084, China
| | - Weixiao Qi
- Center for Water and Ecology, Tsinghua University, Beijing 100084, China
| | - Donglin Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hui Lin
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Xinghua Wu
- China Three Gorges Corporation, Wuhan 430010, China
| | | | - Yaohui Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
149
|
Liu D, Song X, Liu Y, Wang C. Effects of phosphorus application on soil phosphorus forms and phoD-harboring microbial communities in an alpine grassland on the Qinghai-Tibetan Plateau. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1131408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Phosphorus (P) application to terrestrial ecosystems affects not only aboveground plants but also soil P forms and phosphatase-associated microbes. The phoD gene is widespread in soil and plays an important role in P transformation. However, it is still unclear how phoD-harboring microbial communities respond to different P application rates, and the relationships between soil properties and phoD-harboring microbial community need to be better understood. In this study, the impacts of seven P application rates [0 (P0), 10 (P10), 20 (P20), 30 (P30), 40 (P40), 50 (P50), and 60 (P60) g⋅m–2⋅a–1] on the soil physicochemical properties, P forms, and phoD-harboring microbial communities were assessed. As the results, inorganic P (i.e., Resin-Pi, NaHCO3-Pi, NaOH-Pi, and HCl-Pi) and Bio-P increased firstly and then decreased with increasing P application rate, with the highest values in the P30 treatment. Soil phoD-harboring microbial community structures in low-P (P0∼P30) treatments were significantly different from that in high-P (P40∼P60) treatments. Soil phoD-harboring microbial Shannon and Simpson diversity increased firstly and then decreased with increasing P application rate, and there was a tipping point at the P application rate of 30 g⋅m–2⋅a–1. The Mantel test and structural equation modeling (SEM) revealed that Bio-P, TC (total carbon), Fe, NaOH-organic P (NaOH-Po), and soil pH were strongly related to the soil phoD-harboring microbial community structure. In conclusion, this study demonstrated that P application affected soil P forms and phoD-harboring microbes in an alpine grassland on the Qinghai-Tibetan Plateau, and there was a P application threshold for optimistic growth of phoD-harboring microbes in an alpine grassland on the Qinghai-Tibetan Plateau.
Collapse
|
150
|
Liu C, Li C, Jiang Y, Zeng RJ, Yao M, Li X. A guide for comparing microbial co-occurrence networks. IMETA 2023; 2:e71. [PMID: 38868345 PMCID: PMC10989802 DOI: 10.1002/imt2.71] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 06/14/2024]
Abstract
The article provides a pipeline for comparing microbial co-occurrence networks based on the R microeco package and meconetcomp package. It has high flexibility and expansibility and can help users efficiently compare networks built from different groups of samples or different construction approaches.
Collapse
Affiliation(s)
- Chi Liu
- Engineering Research Center of Soil Remediation of Fujian Province University, College of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhouChina
| | - Chaonan Li
- Key Laboratory of Environmental and Applied Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
| | - Yanqiong Jiang
- Engineering Research Center of Soil Remediation of Fujian Province University, College of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhouChina
| | - Raymond J. Zeng
- Engineering Research Center of Soil Remediation of Fujian Province University, College of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhouChina
| | - Minjie Yao
- Engineering Research Center of Soil Remediation of Fujian Province University, College of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xiangzhen Li
- Key Laboratory of Environmental and Applied Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
| |
Collapse
|