101
|
Ekberg J, Landberg G, Holm C, Richter J, Wolgemuth DJ, Persson JL. Regulation of the cyclin A1 protein is associated with its differential subcellular localization in hematopoietic and leukemic cells. Oncogene 2004; 23:9082-9. [PMID: 15489899 DOI: 10.1038/sj.onc.1208090] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An important role of the cell cycle regulatory protein cyclin A1 in the development of acute myeloid leukemia (AML) was previously demonstrated in a transgenic mouse model. We have now turned our attention to study specific aspects of the activity and subcellular distribution of cyclin A1 using bone marrow samples from normal donors and patients with AML, as well as leukemic cell lines. We show that the localization of cyclin A1 in normal hematopoietic cells is nuclear, whereas in leukemic cells from AML patients and cell lines, it is predominantly cytoplasmic. In leukemic cell lines treated with all-trans retinoic acid (ATRA), cyclin A1 localized to the nucleus. Further, there was a direct interaction between cyclin A1 and cyclin-dependent kinase 1, as well as a major ATRA receptor, RARalpha, in ATRA-treated cells but not in untreated leukemic cells. Our results indicate that the altered intracellular distribution of cyclin A1 in leukemic cells correlates with the status of the leukemic phenotype.
Collapse
Affiliation(s)
- Jenny Ekberg
- Division of Pathology, Department of Laboratory Medicine, Lund University, University Hospital, Malmö S-20502, Sweden
| | | | | | | | | | | |
Collapse
|
102
|
Zimber A, Nguyen QD, Gespach C. Nuclear bodies and compartments: functional roles and cellular signalling in health and disease. Cell Signal 2004; 16:1085-104. [PMID: 15240004 DOI: 10.1016/j.cellsig.2004.03.020] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2004] [Accepted: 03/17/2004] [Indexed: 01/08/2023]
Abstract
There is much interest in recent years in the possible role of different nuclear compartments and subnuclear domains in the regulation of gene expression, signalling, and cellular functions. The nucleus contains inositol phosphates, actin and actin-binding proteins and myosin isoforms, multiple protein kinases and phosphatases targeting Cdk-1 and Cdk-2, MAPK/SAPK, and Src-related kinases and their substrates, suggesting the implication of several signalling pathways in the intranuclear organization and function of nuclear bodies (NBs). NBs include the well-characterized Cajal bodies (CBs; or coiled bodies), the nucleolus, perinucleolar and perichromatin regions, additional NBs best illustrated by the promyelocytic leukemia nuclear bodies [PML-NBs, also named PML oncogenic dots (PODs), ND10, Kr-bodies] and similar intranuclear foci containing multi-molecular complexes with major role in DNA replication, surveillance, and repair, as well as messenger RNA and ribosomal RNA synthesis and assembly. Chromatin modifying proteins, such as the CBP acetyltransferase and type I histone deacetylase, accumulate at PML-NBs. PML-NBs and Cajal bodies are very dynamic and mobile within the nuclear space and are regulated by cellular stress (heat shock, apoptosis, senescence, heavy metal exposure, viral infection, and DNA damage responses). NBs strongly interact, using signalling mechanisms for the directional and ordered traffic of essential molecular components. NBs organize the delivery and storage of essential RNAs and proteins that play a role in transcription, pre-mRNA biosynthesis and splicing, and the sequestration and/or degradation of regulatory proteins, such as heterogenous nuclear ribonuclear proteins (hnRNPs), p53, Rb1, CBP, STAT3, and others. The objective of this review is to summarize some aspects of these nuclear structures/bodies/domains, including their proposed roles in cellular signalling and in human diseases, mainly neurodegenerative disorders and cancer.
Collapse
Affiliation(s)
- Amazia Zimber
- Department of Animal Sciences, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | |
Collapse
|
103
|
Day PM, Baker CC, Lowy DR, Schiller JT. Establishment of papillomavirus infection is enhanced by promyelocytic leukemia protein (PML) expression. Proc Natl Acad Sci U S A 2004; 101:14252-7. [PMID: 15383670 PMCID: PMC521143 DOI: 10.1073/pnas.0404229101] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Previous studies have suggested that most papillomaviruses enter the host cell via clathrin-dependent receptor-mediated endocytosis but have not addressed later steps in viral entry. To examine these events, we followed the localization of L2 and packaged DNA after entry of infectious virions or L1/L2 pseudovirions. Confocal microscopic analyses of HeLa cells showed a time-dependent uncoating of capsids in cytoplasmic vesicles and the accumulation of both L2 and viral DNA at distinct nuclear domains identified as nuclear domain 10 (ND10). Both L2 and the pseudogenome had a punctate distribution and localized to ND10 in promyelocytic leukemia protein (PML)-expressing cells, whereas L2 had a diffuse nuclear distribution in PML-/- cells. The number of pseudovirus-infected cells was an order of magnitude higher in the PML+ cells compared with the PML-/- cells, and viral genome transcription after infection with authentic bovine papillomavirus virions was similarly elevated in PML+ cells. The results identify a role for PML in the enhancement of viral infectivity in the early part of the life cycle. We propose a model in which L2 chaperones the viral genome to ND10 to efficiently initiate viral transcription.
Collapse
Affiliation(s)
- Patricia M Day
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
104
|
Abstract
Nuclear architecture - the spatial arrangement of chromosomes and other nuclear components - provides a framework for organizing and regulating the diverse functional processes within the nucleus. There are characteristic differences in the nuclear architectures of cancer cells, compared with normal cells, and some anticancer treatments restore normal nuclear structure and function. Advances in understanding nuclear structure have revealed insights into the process of malignant transformation and provide a basis for the development of new diagnostic tools and therapeutics.
Collapse
Affiliation(s)
- Daniele Zink
- University of Munich (LMU), Department of Biology II, Goethestr. 31, 80336 Munich, Germany.
| | | | | |
Collapse
|
105
|
Jul-Larsen A, Visted T, Karlsen BO, Rinaldo CH, Bjerkvig R, Lønning PE, Bøe SO. PML-nuclear bodies accumulate DNA in response to polyomavirus BK and simian virus 40 replication. Exp Cell Res 2004; 298:58-73. [PMID: 15242762 DOI: 10.1016/j.yexcr.2004.03.045] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2003] [Revised: 03/10/2004] [Indexed: 01/08/2023]
Abstract
Promyelocytic nuclear bodies (PML-NBs) are distinct nuclear structures that are involved in apoptosis, differentiation, transcriptional regulation and DNA damage response. These bodies have also been shown to associate with nuclear sites of viral DNA replication. In the present study, we used BrdU pulse labeling to demonstrate that PML-NBs accumulate newly synthesized DNA in cells infected by the polyomaviruses simian virus 40 (SV40) or polyomavirus BK (BKV). Sequestration of DNA molecules in these structures depended on active viral DNA replication, and was observed exclusively in cells that contained prominent viral replication domains. Furthermore, a significant portion of the accumulated DNA was found to be single-stranded, indicating that the sequestered DNA had been subjected to processing by nuclease or DNA unwinding activities. siRNA-mediated suppression of the PML protein prevented the recruitment of single-stranded DNA into nuclear foci, but did not significantly affect the overall efficiency of viral DNA replication. These results indicate a role of PML and PML-NBs in post-replication DNA processing, and suggest that PML-NBs become linked to sites of viral DNA synthesis due to a role of these structures in DNA metabolism.
Collapse
Affiliation(s)
- Asne Jul-Larsen
- Section of Anatomy and Cell Biology, Department of Biomedicine, University of Bergen, 5009, Norway
| | | | | | | | | | | | | |
Collapse
|
106
|
Shin J, Park B, Cho S, Lee S, Kim Y, Lee SO, Cho K, Lee S, Jin BS, Ahn JH, Choi EJ, Ahn K. Promyelocytic leukemia is a direct inhibitor of SAPK2/p38 mitogen-activated protein kinase. J Biol Chem 2004; 279:40994-1003. [PMID: 15273249 DOI: 10.1074/jbc.m407369200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The promyelocytic leukemia gene (PML) encodes a growth/tumor suppressor protein that is essential for the induction of apoptosis in response to various apoptotic signals. The mechanism by which PML plays a role in the regulation of cell death is still unknown. In the current study, we demonstrate that PML negatively regulated the SAPK2/p38 signaling pathway by sequestering p38 from its upstream kinases, MKK3, MKK4, and MKK6, whereas PML did not affect the SAPK1/c-Jun NH(2)-terminal kinase pathway. PML associated with p38 both in vitro and in vivo and the carboxyl terminus of PML mediated the interaction. In contrast to other studies of PML and PML-nuclear bodies (NB), our study shows that the formation of PML-NBs was not required for PML to suppress p38 activity because PML was still able to bind and inhibit p38 activity under the conditions in which PML-NBs were disrupted. In addition, we show that the promotion of Fas-induced cell death by PML correlated with the extent of p38 inhibition by PML, suggesting that PML might regulate apoptosis through manipulating SAPK2/p38 pathways. Our findings define a novel function of PML as a negative regulator of p38 kinase and provide further understanding on the mechanism of how PML induces multiple pathways of apoptosis.
Collapse
Affiliation(s)
- Jinwook Shin
- College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Villagrá NT, Berciano J, Altable M, Navascués J, Casafont I, Lafarga M, Berciano MT. PML bodies in reactive sensory ganglion neurons of the Guillain–Barré syndrome. Neurobiol Dis 2004; 16:158-68. [PMID: 15207273 DOI: 10.1016/j.nbd.2004.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Revised: 01/28/2004] [Accepted: 02/18/2004] [Indexed: 11/16/2022] Open
Abstract
Acute inflammatory demyelinating polyneuropathy (AIDP) is a type of Guillain-Barré syndrome (GBS) characterized by primary nerve demyelination sometimes with secondary axonal degeneration. Studies on the fine structure of dorsal root ganglia in AIDP are lacking. Our aim was to investigate the cytology and nuclear organization of primary sensory neurons in AIDP with axonal injury using ultrastructural and immunohistochemical analysis. The light cytology of the L5 dorsal ganglion showed the characteristic findings of neuronal axonal reaction. The organization of chromatin, nucleolus, Cajal bodies, and nuclear pores corresponded to transcriptionally active neurons. However, the hallmark of the nuclear response to axonal injury was the formation of numerous nuclear bodies (NBs; 6.37 +/- 0.6, in the AIDP, vs. 2.53 +/- 0.2, in the control, mean +/- SDM), identified as promyelocytic leukemia (PML) bodies by the presence of the protein PML. In addition to PML protein, nuclear bodies contained SUMO-1 and the transcriptional regulators CREB-binding protein (CBP) and glucocorticoid receptor (GR). The presence of proteasome 19S was also detected in some nuclear bodies. We suggest that neuronal PML bodies could regulate the nuclear concentration of active proteins, a process mediated by protein interactions with PML and SUMO-1 proteins. In the AIDP case, the proliferation of PML bodies may result from the overexpression of some nuclear proteins due to changes in gene expression associated with axonal injury.
Collapse
Affiliation(s)
- Nuria T Villagrá
- Department of Anatomy and Cell Biology, University Hospital Marqués de Valdecilla, Santander, Spain
| | | | | | | | | | | | | |
Collapse
|
108
|
Hayakawa F, Privalsky ML. Phosphorylation of PML by mitogen-activated protein kinases plays a key role in arsenic trioxide-mediated apoptosis. Cancer Cell 2004; 5:389-401. [PMID: 15093545 DOI: 10.1016/s1535-6108(04)00082-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2003] [Revised: 02/05/2004] [Accepted: 03/01/2004] [Indexed: 12/13/2022]
Abstract
The promyelocytic leukemia (PML) protein is a potent growth suppressor and proapototic factor, whereas aberrant fusions of PML and retinoic acid receptor (RAR)-alpha are causal agents in human acute promyelocytic leukemia. Arsenic trioxide (As(2)O(3)) treatment induces apoptosis in acute promyelocytic leukemia cells through an incompletely understood mechanism. We report here that As(2)O(3) treatment induces phosphorylation of the PML protein through a mitogen-activated protein (MAP) kinase pathway. Increased PML phosphorylation is associated with increased sumoylation of PML and increased PML-mediated apoptosis. Conversely, MAP kinase cascade inhibitors, or the introduction of phosphorylation or sumoylation-defective mutations of PML, impair As(2)O(3)-mediated apoptosis by PML. We conclude that phosphorylation by MAP kinase cascades potentiates the antiproliferative functions of PML and helps mediate the proapoptotic effects of As(2)O(3).
Collapse
Affiliation(s)
- Fumihiko Hayakawa
- Section of Microbiology, Division of Biological Sciences, University of California at Davis, Davis, CA 95616, USA
| | | |
Collapse
|
109
|
Zhao Q, Tao J, Zhu Q, Jia PM, Dou AX, Li X, Cheng F, Waxman S, Chen GQ, Chen SJ, Lanotte M, Chen Z, Tong JH. Rapid induction of cAMP/PKA pathway during retinoic acid-induced acute promyelocytic leukemia cell differentiation. Leukemia 2004; 18:285-92. [PMID: 14628075 DOI: 10.1038/sj.leu.2403226] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The second messenger cyclic adenosine monophosphate (cAMP) plays an important role in cell proliferation, differentiation and apoptosis. In the present work, we evaluated the cAMP signaling in acute promyelocytic leukemia (APL) cells in the context of differentiation induced by all-trans retinoic acid (ATRA). There was a marked increase in the intracellular cAMP level within a few minutes after treatment with ATRA in APL cell line NB4 and fresh APL cells, whereas no such phenomenon was observed in NB4-R1 cells that are resistant to ATRA-induced maturation. In addition, the basal level of intracellular cAMP was lower in NB4-R1 than in NB4 cells. Mechanistic study showed that this induction of cAMP was mediated through the activation of adenylate cyclase. Moreover, we found that cAMP-dependent protein kinase (PKA) activity was quickly upregulated in parallel in ATRA-treated NB4 cells, and the phosphorylation of RARalpha by PKA could increase its transactivation effect. Use of H-89, an inhibitor of PKA, could partially suppress the transcriptional expression of ATRA target genes and ATRA-induced differentiation of APL cells. Taken together, we suggested a crosstalk between ATRA-induced cytosolic pathway and nuclear pathway in APL cell differentiation.
Collapse
Affiliation(s)
- Q Zhao
- State Key Lab for Human Genome Research (SKLHGR), Shanghai Institute of Hematology, Ruijin Hospital, Samuel Waxman Cancer Research Foundation Laboratory of Shanghai Second Medical University (SSMU), Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Pitha-Rowe I, Hassel BA, Dmitrovsky E. Involvement of UBE1L in ISG15 conjugation during retinoid-induced differentiation of acute promyelocytic leukemia. J Biol Chem 2004; 279:18178-87. [PMID: 14976209 DOI: 10.1074/jbc.m309259200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Acute promyelocytic leukemia (APL) cases expressing the t(15,17) product, promyelocytic leukemia (PML)/retinoic acid receptor alpha (RARalpha), have clinical remissions through leukemic cell differentiation after all-trans-retinoic acid (RA) treatment. This differentiation therapy propelled interest in uncovering molecular mechanisms for RA-dependent APL differentiation. We previously identified the ubiquitin-activating enzyme-E1-like protein (UBE1L) as an RA-regulated target gene in APL that triggers PML/RARalpha degradation and apoptosis. This study reports that conjugation of the ubiquitin-like species, interferon-stimulated gene, 15-kDa protein (ISG15), also occurs during RA-induced APL differentiation. Knock-down of UBE1L expression inhibited this conjugation. RA treatment of APL and other RA-responsive leukemic cells induced expression of UBE1L and ISG15 as well as intracellular ISG15 conjugates. Notably, ISG15 conjugation did not occur in RA-resistant NB4-R1 APL cells. Induction of UBE1L and ISG15 along with ISG15 conjugation in RA-sensitive NB4-S1 APL cells were detected following treatment with specific retinoids and type I interferon (IFN). UBE1L and ISG15 mRNAs were co-expressed in normal human tissues that were examined. In contrast, UBE1L mRNA expression was markedly repressed in several cancer cell lines. A physical association was found between UBE1L and ISG15 in vivo. This required the conserved diglycine motif in the carboxyl terminus of ISG15. Targeting UBE1L expression with small inhibitory RNA or small hairpin RNA inhibited IFN and RA-induced ISG15 conjugation. Formation of ISG15 conjugates through induction of an activating enzyme represents a novel pharmacologic mechanism for regulation of this ubiquitin-related species. Taken together, the observed rela tionship between expression of UBE1L and ISG15, their physical association and coordinate regulation, and induced ISG15 conjugation during leukemic cell differentiation implicate an important role for these proteins in retinoid response.
Collapse
Affiliation(s)
- Ian Pitha-Rowe
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.
| | | | | |
Collapse
|
111
|
Chelbi-alix MK, Bobé P, Benoit G, Canova A, Pine R. Arsenic enhances the activation of Stat1 by interferon gamma leading to synergistic expression of IRF-1. Oncogene 2004; 22:9121-30. [PMID: 14668793 DOI: 10.1038/sj.onc.1207090] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Arsenic trioxide (As2O3) can induce clinical remission in patients with acute promyelocytic leukemia (APL), including those who have relapsed after treatment with all-trans-retinoic acid (RA). In vitro studies with the APL-derived NB4 cell line showed that As2O3 exerts a dose-dependent dual effect, which induces apoptosis at 1 microM, whereas at a lower concentration of 0.1 microM, a partial differentiation of APL is observed. In non-APL cells, interferon (IFN) alpha and 1 microM As2O3 act synergistically to induce apoptosis. In this report, we show that in NB4 cells and in two RA-resistant NB4-derived cell lines, NB4-R1 and NB4-R2, IFNalpha or IFNgamma combined with 0.1 microM As2O3 lead to an increased maturation effect. Moreover, IFNgamma alone is able to differentiate RA-sensitive and -resistant cells with a higher maturation effect on NB4-R2 cells. In contrast, all these cells underwent apoptosis in the presence of the cytokine and a higher concentration of As2O3. IFNgamma boosted As2O3-induced apoptosis in APL cells as tested by TUNEL, Annexin V staining and activation of caspase 3. As2O3 differently altered IFN-induced gene products; it downregulated PML/RARalpha and PML, did not alter PKR and Stat1, and upregulated interferon regulatory family (IRF)-1. Synergism by IFNgamma and arsenic on IRF-1 expression is mediated by a composite element in the IRF-1 promoter that includes an IFNgamma-activation site (GAS) overlapped by a nonconsensus site for nuclear factor kappa B (NFkappaB). Arsenic has no effect on NFkappaB, whereas it enhances the activation of Stat1 by IFNgamma in NB4 cells leading to an increase in IRF-1 expression.
Collapse
|
112
|
Altucci L, Gronemeyer H. Retinoids and TRAIL: two cooperating actors to fight against cancer. VITAMINS AND HORMONES 2004; 67:319-45. [PMID: 15110184 DOI: 10.1016/s0083-6729(04)67017-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Multiple studies performed in in vitro and in vivo settings have confirmed the cancer therapeutic and cancer preventive capacity of retinoids and rexinoids. These compounds mediate their actions through the retinoid and rexinoid receptors, respectively, which exist in multiple isoforms and form a plethora of distinct heterodimers. Despite their apparent anticancer potential, with one exception the molecular basis of this activity has remained largely elusive. The exception concerns acute promyelocytic leukemia (APL), the prototype of retinoic acid-dependent differentiation therapy, for which both the molecular nature of the disease and the mechanism of action of retinoids are well understood. However, retinoids and rexinoids are active beyond the borderlines of the well-defined chromosomal translocation that gives rise to curable APL. In this context, particularly interesting is that retinoic acid induces a member of the tumor necrosis factor family, tumor necrosis factor-related apoptosis inducing ligand (TRAIL) or Apo2L. This ligand is exceptional in that it is capable of inducing apoptosis in cancer cells but not in normal cells. It is possible that this connection to the TRAIL signaling pathway contributes to the anti-tumor activity of retinoids and rexinoids. This review focuses on what is presently known about the regulation of cell life and death by the retinoid/rexinoid and TRAIL signaling pathways.
Collapse
Affiliation(s)
- Lucia Altucci
- Dipartimento di Patologia Generale Seconda Università degli Studi di Napoli 80138, Napoli, Italy
| | | |
Collapse
|
113
|
Puccetti E, Beissert T, Güller S, Li JE, Hoelzer D, Ottmann OG, Ruthardt M. Leukemia-associated translocation products able to activate RAS modify PML and render cells sensitive to arsenic-induced apoptosis. Oncogene 2003; 22:6900-8. [PMID: 14534537 DOI: 10.1038/sj.onc.1206747] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Since the 19th century, arsenic (As2O3) has been used in the treatment of chronic myelogenous leukemia (CML) characterized by the t(9;22) translocation. As2O3 induces complete remissions in patients with acute promyelocytic leukemia. The response to As2O3 is genetically determined by the t(15;17)-or the t(9;22)-specific fusion proteins PML/RARalpha or BCR/ABL. The PML portion of PML/RARalpha is crucial for the sensitivity to As2O3. PML is nearly entirely contained in PML/RARalpha. PML is upregulated by oncogenic RAS in primary fibroblasts. The aberrant kinase activity of BCR/ABL leads to constitutive activation of RAS. Therefore, we hypothesized that BCR/ABL could increase sensitivity to As2O2-induced apoptosis by modifying PML expression. To disclose the mechanism of As2O3-induced apoptosis in PML/RARalpha- and BCR/ABL-expressing cells, we focused on the role of PML for As2O3-induced cell death. Here we report that (i) sensitivity to As2O3-induced apoptosis of U937 cells can be increased either by overexpression of PML, or by conditional expression of activated RAS; (ii) also the expression of the t(8;21)-related AML-1/ETO increased sensitivity to As2O3-induced apoptosis; (iii) both BCR/ABL and AML-1/ETO activated RAS and modified the PML expression pattern; (iv) the expression of either BCR/ABL or AML-1/ETO rendered U937 cells sensitive to interferon alpha-induced apoptosis. In summary, these data suggest a crucial role of factors able to upregulate PML for As2O2-induced cell death.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Arsenicals/pharmacology
- Arsenicals/therapeutic use
- Benzamides
- Enzyme Inhibitors/pharmacology
- Fibroblasts/drug effects
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Gene Expression Regulation, Leukemic/drug effects
- Genes, ras
- Humans
- Imatinib Mesylate
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Monocytes/drug effects
- Oxides/pharmacology
- Oxides/therapeutic use
- Philadelphia Chromosome
- Piperazines/pharmacology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Proto-Oncogene Proteins c-abl/genetics
- Proto-Oncogene Proteins c-abl/metabolism
- Pyrimidines/pharmacology
- Receptors, Retinoic Acid/metabolism
- Retinoic Acid Receptor alpha
- Transgenes
- Translocation, Genetic
- Tumor Cells, Cultured
- U937 Cells
- Up-Regulation
Collapse
Affiliation(s)
- Elena Puccetti
- Med. Klinik III/Abtl. Hämatologie, Johann Wolfgang Goethe-Universität, D-60590 Frankfurt, Germany
| | | | | | | | | | | | | |
Collapse
|
114
|
Pitha-Rowe I, Petty WJ, Kitareewan S, Dmitrovsky E. Retinoid target genes in acute promyelocytic leukemia. Leukemia 2003; 17:1723-30. [PMID: 12970771 DOI: 10.1038/sj.leu.2403065] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
All-trans-retinoic acid (RA)-based differentiation therapy induces clinical remissions in acute promyelocytic leukemia (APL). This has propelled interest in elucidating the molecular mechanisms responsible for these remissions. The t(15;17) rearrangement results in the expression of the PML/RARalpha fusion transcript that is paradoxically linked to the etiology and clinical retinoid response in APL. PML/RARalpha expression blocks terminal myeloid differentiation in APL. Treatment with pharmacological RA dosages overcomes the dominant-negative effects of PML/RARalpha to activate transcription of retinoid target genes. This regulation is linked directly to RA effects in APL, including PML/RARalpha degradation and induction of differentiation. Identifying retinoid target genes is an important step in developing a mechanistic understanding of RA effects in APL. RA target genes have been uncovered through the use of molecular genetic approaches as well as unique cellular and transgenic APL models. Recent developments in the proteomic and functional genomic fields are providing useful tools for elucidating mechanisms of RA response or resistance in APL. These target genes represent potential therapeutic targets in APL and other retinoid-responsive diseases. Previous spotlights in Leukemia have highlighted the importance of cytokine effects and signal transduction crosstalk in retinoid response in APL and in normal hematopoiesis. This review builds on prior work by addressing the role of retinoid target genes in mediating retinoid response or resistance in APL.
Collapse
Affiliation(s)
- I Pitha-Rowe
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | |
Collapse
|
115
|
|
116
|
Affiliation(s)
- Laurent Degos
- Institut d'Hématologie, Hopital Saint Louis, 1 avenue Claude Vellefaux, 75010 Paris, France.
| |
Collapse
|
117
|
Wei X, Yu ZK, Ramalingam A, Grossman SR, Yu JH, Bloch DB, Maki CG. Physical and functional interactions between PML and MDM2. J Biol Chem 2003; 278:29288-97. [PMID: 12759344 DOI: 10.1074/jbc.m212215200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tumor suppressor protein PML and oncoprotein MDM2 have opposing effects on p53. PML stimulates p53 activity by recruiting it to nuclear foci termed PML nuclear bodies. In contrast, MDM2 inhibits p53 by promoting its degradation. To date, neither a physical nor functional relationship between PML and MDM2 has been described. In this study, we report an in vivo and in vitro interaction between PML and MDM2 which is independent of p53. Two separate regions of PML are recognized which can interact with MDM2. The C-terminal half of PML, encoded by residues 300-633, can interact with the central region of MDM2 which includes the MDM2 acidic domain. In addition, PML amino acids 1-200, which encode the RING-finger and most of the B box zinc binding motifs, can interact with the C-terminal, RING-finger containing region of MDM2. Interestingly, PML mutants in which sumoylation at lysine 160 was inhibited displayed an increased association with MDM2, suggesting that sumoylation at this site may be a determinant of PML-MDM2 binding. Coexpression with MDM2 caused a redistribution of PML from the nucleus to the cytoplasm, and this required the PML N terminus and the MDM2 RING-finger domain. These results suggest that interaction between the PML N terminus and MDM2 C terminus can promote PML nuclear exclusion. Wild-type MDM2 inhibited the ability of PML to stimulate the transcriptional activity of a GAL4-CBP fusion protein. This inhibition required the central, acidic region of MDM2, but did not require the MDM2 C terminus. Taken together, these studies demonstrate that MDM2 and PML can interact through at least two separate protein regions, and that these interactions can have specific effects on the activity and/or localization of PML.
Collapse
Affiliation(s)
- Xiaolong Wei
- Department of Radiation Oncology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | |
Collapse
|
118
|
Abstract
Acute promyelocytic leukaemia (APL) is characterised by the fusion gene transcript PML-RAR-alpha and is now the most frequently curable acute leukaemia in adults if promptly diagnosed and adequately treated. The clinical presentation is associated with a haemorrhagic diathesis and the blasts almost always have Auer rods. Poor prognostic factors include older age, elevated white blood cell count, low platelet count, and CD56 expression. The introduction of all-trans retinoic acid (ATRA), which leads to the differentiation of leukaemic blasts into mature granulocytes has been the major breakthrough in the treatment of APL. Induction treatment with concurrent ATRA and chemotherapy leads to a rapid resolution of the characteristic life-threatening coagulopathy, high complete remission rates and excellent survival rates, compared to chemotherapy alone. However, treatment with ATRA is associated with the retinoic acid syndrome (RAS), which is a major toxicity and may lead to mortality. The role of cytarabine as a part of initial induction regimen remains unclear. After achievement of complete remission (CR), there is a definitive role of maintenance therapy with ATRA with or without low-dose chemotherapy. In relapsed patients, arsenic trioxide is considered the treatment of choice. However, the best postremission treatment for patients with second CR remains unknown. With the continued improvement in the field of stem cell transplantation, it may play an important role in the few patients with relapsed/refractory disease or those in second CR.
Collapse
Affiliation(s)
- Simrit Parmar
- Division of Hematology-Oncology, Northwestern University Feinberg School of Medicine, Robert H Lurie Comprehensive Cancer Center, 676 North St. Clair, Suite 850, Chicago, IL 60611, USA
| | | |
Collapse
|
119
|
Jing Y, Xia L, Lu M, Waxman S. The cleavage product deltaPML-RARalpha contributes to all-trans retinoic acid-mediated differentiation in acute promyelocytic leukemia cells. Oncogene 2003; 22:4083-91. [PMID: 12821942 DOI: 10.1038/sj.onc.1206568] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PML-RARalpha protein, the leukemogenic product of t(15,17) in acute promyelocytic leukemia, is cleaved into a truncated form termed deltaPML-RARalpha during all-trans retinoic acid (ATRA)-induced differentiation of NB4 cells. DeltaPML-RARalpha is not formed in ATRA differentiation resistant NB4 subclones. As(2)O(3) inhibits deltaPML-RARalpha formation and differentiation-induction when given in combination with ATRA. Treatment with hexamethylene bisacetamide (HMBA) combined with ATRA enhances ATRA-induced differentiation in ATRA-insensitive NB4-CI and arsenic-resistant NB4/As cells, and is associated with stabilization of PML-RARalpha protein and increased deltaPML-RARalpha formation. Unlike forced expression of PML-RARalpha, forced deltaPML-RARalpha expression based on an estimated deletion of the N-terminal PML portion does not repress RARE-tk-luc reporter activity mediated by endogenous retinoic acid receptors. The cleavage of PML-RARalpha is blocked by RARalpha antagonist Ro-41-5253 and cycloheximide and therefore requires a RARalpha transactivation-dependent pathway. Proteasome inhibitor MG-132 and caspase inhibitor Z-VAD-FMK do not block ATRA-induced PML-RARalpha cleavage and differentiation. These data suggest that (a) ATRA treatment induces PML-RARalpha cleavage by induction of unknown enzymes independent of proteasome- and caspase-mediated pathways; (b) deltaPML-RARalpha might function differently from both PML-RARalpha and RARalpha; (c) failure to cleave PML-RARalpha and form deltaPML-RARalpha after ATRA treatment may contribute to ATRA resistance in APL cells.
Collapse
Affiliation(s)
- Yongkui Jing
- Division of Hematology/Oncology, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | |
Collapse
|
120
|
Abstract
With the sequence of the human genome now complete, studies must focus on how the genome is functionally organized within the confines of the cell nucleus and the dynamic interplay between the genome and its regulatory factors to effectively control gene expression and silencing. In this review I describe our current state of knowledge with regard to the organization of chromosomes within the nucleus and the positioning of active versus inactive genes. In addition, I discuss studies on the dynamics of chromosomes and specific genetic loci within living cells and its relationship to gene activity and the cell cycle. Furthermore, our current understanding of the distribution and dynamics of RNA polymerase II transcription factors is discussed in relation to chromosomal loci and other nuclear domains.
Collapse
Affiliation(s)
- David L Spector
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, New York 11724, USA.
| |
Collapse
|
121
|
Mistry AR, Pedersen EW, Solomon E, Grimwade D. The molecular pathogenesis of acute promyelocytic leukaemia: implications for the clinical management of the disease. Blood Rev 2003; 17:71-97. [PMID: 12642121 DOI: 10.1016/s0268-960x(02)00075-9] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Acute promyelocytic leukaemia (APL) is characterised by chromosomal rearrangements of 17q21, leading to fusion of the gene encoding retinoic acid receptor alpha (RARalpha) to a number of alternative partner genes (X), the most frequent of which are PML (>95%), PLZF (0.8%) and NPM (0.5%). Over the last few years, it has been established that the X-RARalpha fusion proteins play a key role in the pathogenesis of APL through recruitment of co-repressors and the histone deacetylase (HDAC)-complex to repress genes implicated in myeloid differentiation. Paradoxically, the X-RARalpha fusion protein has the potential to mediate myeloid differentiation at pharmacological doses of its ligand (all trans-retinoic acid (ATRA)), which is dependent on the dissociation of the HDAC/co-repressor complex. Arsenic compounds have also been shown to be promising therapeutic agents, leading to differentiation and apoptosis of APL blasts. It is now apparent that the nature of the RARalpha-fusion partner is a critical determinant of response to ATRA and arsenic, underlining the importance of cytogenetic and molecular characterisation of patients with suspected APL to determine the most appropriate treatment approach. Standard protocols involving ATRA combined with anthracycline-based chemotherapy, lead to cure of approximately 70% patients with PML-RARalpha-associated APL. Patients at high risk of relapse can be identified by minimal residual disease monitoring. The challenge for future studies is to improve complete remission rates through reduction of induction deaths, particularly due to haemorrhage, identification of patients at high risk of relapse who would benefit from additional therapy, and identification of a favourable-risk group, for which treatment intensity could be reduced, thereby reducing risks of treatment toxicity and development of secondary leukaemia/myelodysplasia. With the advent of ATRA and arsenic, APL has already provided the first example of successful molecularly targeted therapy; it is hoped that with further understanding of the pathogenesis of the disease, the next decade will yield further improvements in the outlook for these patients.
Collapse
MESH Headings
- Animals
- Gene Rearrangement
- Humans
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/pathology
- Leukemia, Promyelocytic, Acute/therapy
- Models, Biological
- Mutation
- Neoplasm, Residual/genetics
- Neoplasm, Residual/pathology
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Retinoic Acid Receptor alpha
- Translocation, Genetic
Collapse
Affiliation(s)
- Anita R Mistry
- Division of Medical and Molecular Genetics, Guy's, King's and St Thomas' School of Medicine, London, UK
| | | | | | | |
Collapse
|
122
|
Bruno S, Ghiotto F, Fais F, Fagioli M, Luzi L, Pelicci PG, Grossi CE, Ciccone E. The PML gene is not involved in the regulation of MHC class I expression in human cell lines. Blood 2003; 101:3514-9. [PMID: 12506025 DOI: 10.1182/blood-2002-11-3335] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The promyelocytic leukemia gene, PML, is a growth and transformation suppressor. An additional role for PML as a regulator of major histocompatibility complex (MHC) class I antigen presentation has been proposed in a murine model, which would account for evasion from host immunity of tumors bearing malfunctioning PML, such as acute promyelocytic leukemia. Here we investigated a possible role of PML for the control MHC class I expression in human cells. PML function was perturbed in human cell lines either by PML/RAR alpha transfection or by PML- specific RNA interference. Impairment of wild-type PML function was proved by a microspeckled disassembly of nuclear bodies (NBs), where the protein is normally localized, or by their complete disappearance. However, no MHC class I down-regulation was observed in both instances. We next constructed a PML mutant, PML mut ex3, that is a human homolog of the murine PML mutant, truncated in exon 3, that was shown to down-regulate murine MHC class I. PML mut ex3 transfected in human cell lines exerted a dominant-negative effect since no PML molecules were detected in NBs but, instead, in perinuclear and cytoplasmic larger dot-like structures. Nevertheless, no down-regulation of MHC class I expression was evident. Moreover, neither transfection with PML mut ex3 nor PML-specific RNA interference affected the ability of gamma-interferon to up-regulate MHC class I expression. We conclude that, in human cell lines, PML is not involved directly in the regulation of MHC class I expression.
Collapse
Affiliation(s)
- Silvia Bruno
- Department of Experimental Medicine, Section of Human Anatomy, Genoa University, Genoa, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
123
|
Antolini F, Lo Bello M, Sette M. Purified promyelocytic leukemia coiled-coil aggregates as a tetramer displaying low alpha-helical content. Protein Expr Purif 2003; 29:94-102. [PMID: 12729730 DOI: 10.1016/s1046-5928(03)00004-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The promyelocytic leukemia (PML) gene is involved in the 15/17 chromosomal translocation of acute promyelocytic leukemia (APL). It encodes a nuclear phosphoprotein containing an alpha-helical coiled-coil domain with four heptad repeats. The heptad repeats consist of four clusters of hydrophobic amino acids that mediate in vivo the complex formation between PML and other PML molecules or PML-RARalpha mutant protein. In this report, we show the production of PML coiled-coil (fragment 223-360) as a fusion protein, its solubilization by the combined action of two different detergents, and its purification with affinity chromatography after column proteolytic cleavage. The FPLC chromatograms of the purified coiled-coils, carried out under non-denaturing conditions, show that the peptide elutes only in the presence of Sarkosyl detergent (conc. 0.1%) and, under these conditions, elutes as a tetrameric complex. This confirms the evidence from in vivo experiments that this region is responsible for protein complex formation. The HPLC analyses show the presence of a single peak eluting under highly hydrophobic conditions, indicating the high hydrophobicity of the peptide in accordance with the primary sequence analysis. Finally, the purified peptide was structurally characterized by means of circular dichroism (CD) measurements that were carried out with low Sarkosyl concentration (0.003%). The CD spectra indicate a low alpha-helical content (13.5%) with respect to predictions based on the primary sequence analysis (PSI-PRED, SS-PRO, and J-PRED), suggesting that the alpha-helix content could be modulated by coiled-coil surrounding domains and/or by other post-translational modifications, even if the effect of the Sarkosyl on the peptide secondary structure cannot be excluded.
Collapse
Affiliation(s)
- Francesco Antolini
- Department of Internal Medicine, Applied Biochemistry and Clinical Chemistry section, Via del Giochetto s.n.c., 06100 Perugia, Italy.
| | | | | |
Collapse
|
124
|
Kawasaki A, Matsumura I, Kataoka Y, Takigawa E, Nakajima K, Kanakura Y. Opposing effects of PML and PML/RAR alpha on STAT3 activity. Blood 2003; 101:3668-73. [PMID: 12506013 DOI: 10.1182/blood-2002-08-2474] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Promyelocytic leukemia protein PML acts as a tumor suppressor, whereas its chimeric mutant promyelocytic leukemia/retinoic acid receptor alpha (PML/RAR alpha) causes acute promyelocytic leukemia (APL). Because PML has been shown to form transcription-regulatory complexes with various molecules, we speculated that PML and/or PML/RAR alpha might affect signal transducer and activator of transcription 3 (STAT3) activity, which plays a crucial role in granulocyte colony-stimulating factor (G-CSF)-induced growth and survival of myeloid cells. In luciferase assays, PML inhibited STAT3 activity in NIH3T3, 293T, HepG2, and 32D cells. PML formed a complex with STAT3 through B-box and COOH terminal regions in vitro and in vivo, thereby inhibiting its DNA binding activity. Although PML/RAR alpha did not interact with STAT3, it dissociated PML from STAT3 and restored its activity suppressed by PML. To assess the biologic significance of these findings, we introduced PML and PML/RAR alpha into interleukin-3 (IL-3)-dependent Ba/F3 cells expressing the chimeric receptor composed of extracellular domain of G-CSF-R and cytoplasmic domain of gp130, in which gp130-mediated growth is essentially dependent on STAT3 activity. Neither PML nor PML/RAR alpha affected IL-3-dependent growth of these clones. By contrast, gp130-mediated growth was abrogated by PML, whereas it was enhanced by PML/RAR alpha. These results reveal new functions of PML and PML/RAR alpha and suggest that dysregulated STAT3 activity by PML/RAR alpha may participate in the pathogenesis of APL.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Binding, Competitive
- Carcinoma, Hepatocellular/pathology
- Cell Line/drug effects
- DNA, Complementary/genetics
- DNA-Binding Proteins/antagonists & inhibitors
- DNA-Binding Proteins/physiology
- Electrophoretic Mobility Shift Assay
- Gene Expression Regulation, Leukemic/drug effects
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/drug effects
- Humans
- Kidney/cytology
- Kidney/embryology
- Leukemia, Promyelocytic, Acute/etiology
- Leukemia, Promyelocytic, Acute/metabolism
- Liver Neoplasms/pathology
- Macromolecular Substances
- Mice
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/pharmacology
- Neoplasm Proteins/physiology
- Nuclear Proteins
- Oncogene Proteins, Fusion/pharmacology
- Promyelocytic Leukemia Protein
- Protein Binding
- Protein Interaction Mapping
- Recombinant Fusion Proteins/metabolism
- STAT3 Transcription Factor
- Trans-Activators/antagonists & inhibitors
- Trans-Activators/physiology
- Transcription Factors/pharmacology
- Transfection
- Tumor Cells, Cultured/drug effects
- Tumor Suppressor Proteins
Collapse
Affiliation(s)
- Akira Kawasaki
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | | | | | | | | | | |
Collapse
|
125
|
Abstract
Conventional treatment of acute leukemia involves the use of cytotoxic agents (chemotherapy), but other strategies have been explored. All-trans retinoic acid (ATRA) and arsenic have clearly been effective in the treatment of acute promyelocytic leukemia (APL), which creates the possibility that other types of acute leukemia can be conquered by selectively inducing differentiation and/or apoptosis. A great number of investigations have been performed to elucidate the mechanisms and search for effective agents in the treatment of other types of acute leukemia by these new strategies. Progress at the molecular level has been achieved in explaining the mechanisms of action of ATRA and arsenic compounds, and several new agents have emerged, although their clinical effectiveness remains to be confirmed. Mechanism-/gene-based targeted therapy and a combination of different strategies will improve the treatment of acute leukemia.
Collapse
Affiliation(s)
- Zhen-Yi Wang
- Shanghai Second Medical University, Shangai Institute of Hematology, Shanghai, China
| |
Collapse
|
126
|
Abstract
Abstract
Conventional treatment of acute leukemia involves the use of cytotoxic agents (chemotherapy), but other strategies have been explored. All-trans retinoic acid (ATRA) and arsenic have clearly been effective in the treatment of acute promyelocytic leukemia (APL), which creates the possibility that other types of acute leukemia can be conquered by selectively inducing differentiation and/or apoptosis. A great number of investigations have been performed to elucidate the mechanisms and search for effective agents in the treatment of other types of acute leukemia by these new strategies. Progress at the molecular level has been achieved in explaining the mechanisms of action of ATRA and arsenic compounds, and several new agents have emerged, although their clinical effectiveness remains to be confirmed. Mechanism-/gene-based targeted therapy and a combination of different strategies will improve the treatment of acute leukemia.
Collapse
|
127
|
Blondel D, Regad T, Poisson N, Pavie B, Harper F, Pandolfi PP, De Thé H, Chelbi-Alix MK. Rabies virus P and small P products interact directly with PML and reorganize PML nuclear bodies. Oncogene 2002; 21:7957-70. [PMID: 12439746 DOI: 10.1038/sj.onc.1205931] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2002] [Revised: 08/05/2002] [Accepted: 08/05/2002] [Indexed: 11/09/2022]
Abstract
The interferon-induced promyelocytic leukaemia (PML) protein localizes both in the nucleoplasm and in matrix-associated multi-protein complexes known as nuclear bodies (NBs). NBs are disorganized in acute promyelocytic leukaemia or during some viral infections, suggesting that PML NBs could be a part of cellular defense mechanism. Rabies virus, a member of the rhabdoviridae family, replicates in the cytoplasm. Rabies phosphoprotein P and four other amino-terminally truncated products (P2, P3, P4, P5) are all translated from P mRNA. P and P2 are located in the cytoplasm, whereas P3, P4 and P5 are found mostly in the nucleus. Infection with rabies virus reorganized PML NBs. PML NBs became larger and appeared as dense aggregates when analysed by confocal or electron microscopy, respectively. The expression of P sequesters PML in the cytoplasm where both proteins colocalize, whereas that of P3 results in an increase in PML body size, as observed in infected cells. The P and P3 interacted directly in vivo and in vitro with PML. The C-terminal domain of P and the PML RING finger seem to be involved in this binding. Moreover, PML-/- primary mouse embryonic fibroblasts expressed viral proteins at a higher level and produced 20 times more virus than wild-type cells, suggesting that the absence of all PML isoforms resulted in an increase in rabies virus replication.
Collapse
|
128
|
Fuchsová B, Hozák P. The Localization of Nuclear DNA Helicase II in Different Nuclear Compartments Is Linked to Transcription. Exp Cell Res 2002; 279:260-70. [PMID: 12243751 DOI: 10.1006/excr.2002.5617] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nuclear DNA helicase II (NDH II) is a member of the DEAH superfamily of helicases and functions as a pre-mRNA- and mRNA-binding protein in human cells. Here we report for the first time that human NDH II is associated with the nucleolus of transformed and nontransformed cells as shown by immunofluorescence and by ultrastructural studies. When RNA polymerase II (POL II) transcription is inhibited, NDH II highly accumulates in the nucleolus and shows predominant association with subdomains in DFC and in a portion of GC attached to DFC. Furthermore, these subdomains completely co-localize with mRNA-binding protein TLS. In addition, we show that nucleolar accumulation of NDH II is closely related to G(0)-phase growth arrest in human fibroblasts. Thus, the nucleolar localization of NDH II depends upon the metabolic state of the cell. Based on the data we propose that NDH II operates in both nucleoplasmic and nucleolar mode, and that its redistribution reflects accumulations indicating a possible cycling of NDH II between nucleoplasm and the nucleolus. The nucleolus can serve as a temporary storage or recycling center for NDH II. Possible functions of NDH II in pre-rRNA biogenesis, or in nucleolar mRNA metabolism, are also discussed.
Collapse
Affiliation(s)
- B Fuchsová
- Department of Cell Ultrastructure and Molecular Biology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | |
Collapse
|
129
|
Abstract
Despite its many therapeutic qualities, arsenic trioxide has been more commonly remembered as Madame Bovary's poison than as an anticancer drug. The ability of arsenic trioxide to treat acute promyelocytic leukaemia has radically changed this view, providing new insights into the pathogenesis of this malignancy and raising hopes that arsenicals might be useful in treating other cancers.
Collapse
MESH Headings
- Animals
- Arsenic Trioxide
- Arsenicals/history
- Arsenicals/therapeutic use
- Cell Differentiation
- China
- Europe
- Gene Expression Regulation, Neoplastic
- History, 15th Century
- History, 16th Century
- History, 18th Century
- History, 20th Century
- History, 21st Century
- History, Ancient
- Humans
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Neoplasm Proteins/metabolism
- Nuclear Proteins
- Oxides/history
- Oxides/therapeutic use
- Promyelocytic Leukemia Protein
- Receptors, Retinoic Acid/metabolism
- Transcription Factors/metabolism
- Tumor Suppressor Proteins
Collapse
Affiliation(s)
- Jun Zhu
- CNRS UPR 9051, Laboratoire associé du comité de Paris de la ligue contre le cancer, affilié à l'université de Paris VII, Hôpital St Louis, 1 avenue C. Vellefaux, 75475 Paris cedex 10, France
| | | | | | | |
Collapse
|
130
|
Fuchsová B, Novák P, Kafková J, Hozák P. Nuclear DNA helicase II is recruited to IFN-alpha-activated transcription sites at PML nuclear bodies. J Cell Biol 2002; 158:463-73. [PMID: 12163469 PMCID: PMC2173842 DOI: 10.1083/jcb.200202035] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
It is known that nuclear DNA helicase II (NDH II) links CREB-binding protein directly to RNA polymerase II holoenzyme, and that this interaction is essential for gene activation by CREB. Here, we report for the first time that some NDH II/RNA helicase A is a component of promyelocytic leukemia nuclear bodies (PML NBs). An autoimmune serum specific for PML NBs was identified and used in immunoprecipitation experiments. NDH II was present in the immunoprecipitates as shown by mass spectrometry and by immunoblotting. Immunofluorescence and ultrastructural studies showed that NDH II colocalizes with a small subset of PML NBs in control cells, however, colocalizes with practically all bodies in interferon-alpha-stimulated cells. After interferon stimulation, more PML NBs were found to contain newly synthesized RNA, as indicated by bromouridine incorporation. PML NBs also contain RNA polymerase II. The association of NDH II with PML NBs was transcriptionally dependent, and NDH II was present in all bodies with nascent RNA. Blocking of mRNA synthesis caused NDH II relocalization from nucleoplasm to nucleoli. Based on the data, we suggest that NDH II recruitment to PML NBs is connected with transcriptional regulation of interferon-alpha-inducible genes attached to PML NBs.
Collapse
Affiliation(s)
- Beata Fuchsová
- Department of Cell Ultrastructure and Molecular Biology, Institute of Experimental Medicine, Academy of the Czech Republic, Czech Republic
| | | | | | | |
Collapse
|
131
|
Abstract
Small ubiquitin-related modifier-1 (SUMO-1) is a protein that is covalently modified to various cellular proteins and protects cells against both anti-Fas and TNF-induced cell death. Previously, we reported that the C-terminus of Daxx interacted with Ubc9, an E2 type SUMO-1 conjugating enzyme, as well as with SUMO-1. In BOSC23 cells expressing FLAG-Daxx together with HA-SUMO-1, 110 and 130kDa Daxx appeared and the 130kDa band bound to both anti-HA and anti-FLAG antibodies. This means that Daxx can be covalently modified by SUMO-1. Substitution of K630 and K631 abrogated the modification of Daxx by SUMO-1, implying that K630 and K631 were essential for sumoylation. Daxx (K630, 631A) and Daxx (K634, 636, 637A) in which the putative C-terminal nuclear localization signals (NLSs) were disrupted appeared in the nucleus, suggesting that the C-terminal NLS was not functional. Daxx (K630, 631A), the sumoylation defective mutant, was able to interact with PML and co-localized with PML in the PML oncogenic domains (PODs). Thus, our data show that sumoylation status of Daxx does not affect its presence in PODs.
Collapse
Affiliation(s)
- Moon-Sun Jang
- Research Center for Biomedicinal Resources and Division of Life Science, PaiChai University, 439-6 Doma-2-dong, Seo-gu, Daejon 302-735, Republic of Korea
| | | | | |
Collapse
|
132
|
Lam YW, Lyon CE, Lamond AI. Large-scale isolation of Cajal bodies from HeLa cells. Mol Biol Cell 2002; 13:2461-73. [PMID: 12134083 PMCID: PMC117327 DOI: 10.1091/mbc.02-03-0034] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2001] [Revised: 02/20/2002] [Accepted: 04/05/2002] [Indexed: 11/11/2022] Open
Abstract
The Cajal body (CB) is a conserved, dynamic nuclear structure that is implicated in various cellular processes, such as the maturation of splicing small nuclear ribonucleoproteins and the assembly of transcription complexes. Here, we report the first procedure for the large-scale purification of CBs from HeLa cell nuclei, resulting in an approximately 750-fold enrichment of the CB marker protein p80-coilin. Immunofluorescence, immunoblotting, and mass spectrometric analyses showed that the composition of the isolated CBs was similar to that of CBs in situ. The morphology and structure of the isolated CBs, as judged by transmission and scanning electron microscopy analysis, are also similar to those of CBs in situ. This protocol demonstrates the feasibility of isolating intact distinct classes of subnuclear bodies from cultured cells in sufficient yield and purity to allow detailed characterization of their molecular composition, structure, and properties.
Collapse
Affiliation(s)
- Yun Wah Lam
- Wellcome Trust Biocentre, MSI/WTB Complex, University of Dundee, Dundee DD1 4HN, Scotland, United Kingdom
| | | | | |
Collapse
|
133
|
Rizzatti EG, Garcia AB, Portieres FL, Silva DE, Martins SLR, Falcão RP. Expression of CD117 and CD11b in bone marrow can differentiate acute promyelocytic leukemia from recovering benign myeloid proliferation. Am J Clin Pathol 2002; 118:31-7. [PMID: 12109853 DOI: 10.1309/6u82-2wng-4kx3-hbma] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The morphologic characteristics of bone marrow aspirates from patients recovering from acute agranulocytosis may be closely similar to the pattern observed in cases of acute promyelocytic leukemia (APL). The clinical manifestation also can be ambiguous in a substantial number of cases. The immunophenotypic features of bone marrow from 5 patients recovering from acute agranulocytosis, showing an increase in the percentage of promyelocytes (26%-66%), were compared with the immunophenotype of 31 consecutive patients with APL whose diagnosis was confirmed by PML-RAR alpha gene rearrangement. All markers were similarly expressed, except for CD117 and CD11b. CD117 was positive in 24 (77%) of the APL cases and in none of the acute agranulocytosis cases. On the other hand, CD11b was positive in 5 (100%) of the acute agranulocytosis cases and in only 2 (6%) of the APL cases. Thus, the CD117-CD11b+ phenotype was detected in all patients recovering from agranulocytosis and in only 1 (3%) of 31 APL cases. Therefore, we suggest that the combination of both markers is helpful in the differentiation of APL from recovering benign myeloid proliferation.
Collapse
MESH Headings
- Acute Disease
- Adult
- Agranulocytosis/genetics
- Agranulocytosis/metabolism
- Agranulocytosis/pathology
- Biomarkers
- Biopsy, Needle
- Bone Marrow/immunology
- Bone Marrow/metabolism
- Bone Marrow/pathology
- Cell Division
- Child, Preschool
- Diagnosis, Differential
- Female
- Flow Cytometry
- Gene Rearrangement
- Granulocytes/immunology
- Granulocytes/metabolism
- Granulocytes/pathology
- Humans
- Immunophenotyping
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Macrophage-1 Antigen/metabolism
- Male
- Neoplasm Proteins/genetics
- Oncogene Proteins, Fusion/genetics
- Proto-Oncogene Proteins c-kit/metabolism
Collapse
Affiliation(s)
- Edgar G Rizzatti
- Department of Clinical Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
134
|
Sawata M, Yoshino D, Takeuchi H, Kamikouchi A, Ohashi K, Kubo T. Identification and punctate nuclear localization of a novel noncoding RNA, Ks-1, from the honeybee brain. RNA (NEW YORK, N.Y.) 2002; 8:772-85. [PMID: 12088150 PMCID: PMC1370296 DOI: 10.1017/s1355838202028790] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We identified a novel gene, Ks-1, which is expressed preferentially in the small-type Kenyon cells of the honeybee brain. This gene is also expressed in some of the large soma neurons in the brain and in the suboesophageal ganglion. Reverse transcription-polymerase chain reaction experiments indicated that Ks-1 transcripts are enriched in the honeybee brain. cDNA cloning revealed that the consensus Ks-1 cDNA is over 17 kbp and contains no significant open reading frames. Furthermore, fluorescent in situ hybridization revealed that Ks-1 transcripts are located in the nuclei of the neural cells, accumulating in some scattered spots. These findings demonstrate that Ks-1 encodes a novel class of noncoding nuclear RNA and is possibly involved in the regulation of neural functions.
Collapse
Affiliation(s)
- Miyuki Sawata
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
135
|
Kim KI, Baek SH, Chung CH. Versatile protein tag, SUMO: its enzymology and biological function. J Cell Physiol 2002; 191:257-68. [PMID: 12012321 DOI: 10.1002/jcp.10100] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Small ubiquitin-related modifier (SUMO) is a member of a ubiquitin-like protein family that regulates cellular function of a variety of target proteins. SUMO and ubiquitin are synthesized as precursors that need to be processed prior to conjugation to target proteins, and their mature forms have a similar tertiary structure. The mechanism for SUMO conjugation is also analogous to that of the ubiquitin system, such as the utilization of E1, E2, and E3 cascade enzymes. However, the biological consequence of SUMO modification is quite different from that of the ubiquitin system. Whereas ubiquitination of most proteins is for the degradative pathway, SUMO modification of target proteins is involved in nuclear protein targeting, formation of subnuclear structures, regulation of transcriptional activities or DNA binding abilities of transcription factors, and control of protein stability. This review will summarize the recent progress made in the enzymology of SUMO and its biological significance.
Collapse
Affiliation(s)
- Keun Il Kim
- NRL of Protein Biochemistry, School of Biological Sciences, Seoul National University, Seoul, Korea
| | | | | |
Collapse
|
136
|
Scandura JM, Boccuni P, Cammenga J, Nimer SD. Transcription factor fusions in acute leukemia: variations on a theme. Oncogene 2002; 21:3422-44. [PMID: 12032780 DOI: 10.1038/sj.onc.1205315] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The leukemia-associated fusion proteins share several structural or functional similarities, suggesting that they may impart a leukemic phenotype through common modes of transcriptional dysregulation. The fusion proteins generated by these translocations usually contain a DNA-binding domain, domains responsible for homo- or hetero-dimerization, and domains that interact with proteins involved in chromatin remodeling (e.g., co-repressor molecules or co-activator molecules). It is these shared features that constitute the 'variations on the theme' that underling the aberrant growth and differentiation that is the hallmark of acute leukemia cells.
Collapse
Affiliation(s)
- Joseph M Scandura
- Laboratory of Molecular Aspects of Hematopoiesis, Sloan-Kettering Institute Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
137
|
Bonilla WV, Pinschewer DD, Klenerman P, Rousson V, Gaboli M, Pandolfi PP, Zinkernagel RM, Salvato MS, Hengartner H. Effects of promyelocytic leukemia protein on virus-host balance. J Virol 2002; 76:3810-8. [PMID: 11907221 PMCID: PMC136073 DOI: 10.1128/jvi.76.8.3810-3818.2002] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The cellular promyelocytic leukemia protein (PML) associates with the proteins of several viruses and in some cases reduces viral propagation in cell culture. To examine the role of PML in vivo, we compared immune responses and virus loads of PML-deficient and control mice infected with lymphocytic choriomeningitis virus (LCMV) and vesicular stomatitis virus (VSV). PML(-/-) mice exhibited accelerated primary footpad swelling reactions to very-low-dose LCMV, higher swelling peaks upon high-dose inoculation, and higher viral loads in the early phase of systemic LCMV infection. T-cell-mediated hepatitis and consequent mortality upon infection with a hepatotropic LCMV strain required 10- to 100-times-lower inocula despite normal cytotoxic T-lymphocyte reactivity in PML(-/-) mice. Furthermore, PML deficiency rendered mice 10 times more susceptible to lethal immunopathology upon intracerebral LCMV inoculation. Accordingly, 10-times-lower VSV inocula elicited specific neutralizing-antibody responses, a replication-based effect not observed with inactivated virus or after immunization with recombinant VSV glycoprotein. These in vivo observations corroborated our results showing more virus production in PML(-/-) fibroblasts. Thus, PML is a contributor to innate immunity, defining host susceptibility to viral infections and to immunopathology.
Collapse
Affiliation(s)
- Weldy V Bonilla
- Institute of Experimental Immunology, University Hospital, CH-8091 Zurich, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Florin L, Schäfer F, Sotlar K, Streeck RE, Sapp M. Reorganization of nuclear domain 10 induced by papillomavirus capsid protein l2. Virology 2002; 295:97-107. [PMID: 12033769 DOI: 10.1006/viro.2002.1360] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nuclear domains (ND) 10 are associated with proteins implicated in transcriptional regulation, growth suppression, and apoptosis. We now show that the minor capsid protein L2 of human papillomavirus (HPV) type 33 induces a reorganization of ND10-associated proteins. Whereas the promyelocytic leukemia protein, the major structural component of ND10, was unaffected by L2, Sp100 was released from ND10 upon L2 expression. The total cellular amount of Sp100, but not of Sp100 mRNA, decreased significantly, suggesting degradation of Sp100. Proteasome inhibitors induced the dispersal of Sp100 and inhibited the nuclear translocation of L2. In contrast to Sp100, Daxx was recruited to ND10 by L2 expression. Coimmunoprecipitation demonstrated interaction of the two proteins. L2-induced reorganization of ND10 was observed both in cell culture and in natural HPV lesions. The differential change in protein composition observed provides further evidence to suggest that the ND10-associated proteins are an important interface of viral life cycle and host cell.
Collapse
Affiliation(s)
- Luise Florin
- Institute for Medical Microbiology and Hygiene, University of Mainz, Mainz, 55101, Germany
| | | | | | | | | |
Collapse
|
139
|
Muratani M, Gerlich D, Janicki SM, Gebhard M, Eils R, Spector DL. Metabolic-energy-dependent movement of PML bodies within the mammalian cell nucleus. Nat Cell Biol 2002; 4:106-10. [PMID: 11753375 DOI: 10.1038/ncb740] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Promyelocytic leukaemia (PML) nuclear bodies are present in most mammalian cell nuclei. PML bodies are disrupted by PML retinoic acid receptor alpha (RAR alpha) oncoproteins in acute promyelocytic leukaemia. These bodies contain numerous proteins, including Sp100, SUMO-1, HAUSP(USP7), CBP and BLM, and they have been implicated in aspects of transcriptional regulation or as nuclear storage depots. Here, we show that three classes of PML nuclear bodies can be distinguished, on the basis of their dynamic properties in living cells. One class of PML bodies is particularly noteworthy in that it moves by a metabolic-energy-dependent mechanism. This represents the first example of metabolic-energy-dependent transport of a nuclear body within the mammalian cell nucleus.
Collapse
Affiliation(s)
- Masafumi Muratani
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | | | |
Collapse
|
140
|
Falini B, Mason DY. Proteins encoded by genes involved in chromosomal alterations in lymphoma and leukemia: clinical value of their detection by immunocytochemistry. Blood 2002; 99:409-26. [PMID: 11781220 DOI: 10.1182/blood.v99.2.409] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Acquired chromosomal anomalies (most commonly translocations) in lymphoma and leukemia usually result in either activation of a quiescent gene (by means of immunoglobulin or T-cell-receptor promotors) and expression of an intact protein product, or creation of a fusion gene encoding a chimeric protein. This review summarizes current immunocytochemical studies of these 2 categories of oncogenic protein, with emphasis on the clinical relevance of their detection in diagnostic samples. Among the quiescent genes activated by rearrangement, expression of cyclin D1 (due to rearrangement of the CCND1 [BCL-1] gene) is a near-specific marker of t(11;14) in mantle cell lymphoma; BCL-2 expression distinguishes follicular lymphoma cells from their nonneoplastic counterparts in reactive germinal centers and appears to be an independent prognostic marker in diffuse large cell lymphoma; and TAL-1 (SCL) expression identifies T-cell acute lymphoblastic neoplasms in which this gene is activated. The protein products of other genes activated by chromosomal rearrangement have a role as markers of either lineage (eg, PAX-5 [B-cell-specific activator protein] for B cells, including B-lymphoblastic neoplasms), or maturation stage (eg, BCL-6 for germinal-center and activated B cells and MUM-1/IRF4 for plasma cells). Currently, no hybrid protein encoded by fusion genes is reliably detectable by antibodies recognizing unique junctional epitopes (ie, epitopes absent from the wild-type constituent proteins). Nevertheless, staining for promyelocytic leukemia (PML) protein will detect acute PML with t(15;17) because the microspeckled nuclear labeling pattern for PML-RARalpha is highly distinctive. Similarly, antibodies to the anaplastic lymphoma kinase (ALK) tyrosine kinase are valuable (because wild-type ALK is not found in normal lymphoid tissue) in detecting neoplasms (CD30-positive large T-cell lymphomas) with t(2;5) or its variants. Thus, immunocytochemical detection of the products of many rearranged genes in lymphoma and leukemia can be clinically informative and provide information on cellular and subcellular protein expression that cannot be inferred from studies based on messenger RNA.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/immunology
- Cell Lineage
- Chromosome Aberrations
- Chromosomes, Human/genetics
- Chromosomes, Human/ultrastructure
- Embryonal Carcinoma Stem Cells
- Gene Expression Profiling
- Humans
- Immunohistochemistry
- Leukemia/classification
- Leukemia/diagnosis
- Leukemia/genetics
- Leukemia/metabolism
- Lymphoma/classification
- Lymphoma/diagnosis
- Lymphoma/genetics
- Lymphoma/metabolism
- Mice
- Neoplasm Proteins/analysis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/immunology
- Neoplastic Stem Cells/metabolism
- Oligonucleotide Array Sequence Analysis
- Oncogene Proteins, Fusion/analysis
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/immunology
- Oncogenes
- Organ Specificity
- Prognosis
- RNA, Messenger/genetics
- RNA, Neoplasm/genetics
- Translocation, Genetic/genetics
Collapse
|
141
|
Abstract
BACKGROUND The cell nucleus contains distinct classes of subnuclear bodies, including nucleoli, splicing speckles, Cajal bodies, gems, and PML bodies. Many nuclear proteins are known to interact dynamically with one or other of these bodies, and disruption of the specific organization of nuclear proteins can result in defects in cell functions and may cause molecular disease. RESULTS A proteomic study of purified human nucleoli has identified novel proteins, including Paraspeckle Protein 1 (PSP1) (see accompanying article, this issue of Current Biology). Here we show that PSP1 accumulates in a new nucleoplasmic compartment, termed paraspeckles, that also contains at least two other protein components: PSP2 and p54/nrb. A similar pattern of typically 10 to 20 paraspeckles was detected in all human cell types analyzed, including primary and transformed cells. Paraspeckles correspond to discrete bodies in the interchromatin nucleoplasmic space that are often located adjacent to splicing speckles. A stable cell line expressing YFP-PSP1 has been established and used to demonstrate that PSP1 interacts dynamically with nucleoli and paraspeckles in living cells. The three paraspeckle proteins relocalize quantitatively to unique cap structures at the nucleolar periphery when transcription is inhibited. CONCLUSIONS We have identified a novel nuclear compartment, termed paraspeckles, found in both primary and transformed human cells. Paraspeckles contain at least three RNA binding proteins that all interact dynamically with the nucleolus in a transcription-dependent fashion.
Collapse
Affiliation(s)
- Archa H Fox
- Wellcome Trust Biocentre, MSI/WTB Complex, University of Dundee, DD1 4HN, Dundee, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
142
|
Drouin A, Schmitt A, Massé JM, Cieutat AM, Fichelson S, Cramer EM. Identification of PML oncogenic domains (PODs) in human megakaryocytes. Exp Cell Res 2001; 271:277-85. [PMID: 11716540 DOI: 10.1006/excr.2001.5377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Megakaryocytes (Mks) are unique cells in the human body in that they carry a single and polyploid nucleus. It is therefore of interest to understand their nuclear ultrastructure. PML oncogenic domains (PODs) were described in several types of eukaryotic cells using human autoantibodies which recognize nuclear antigens with a specific speckled pattern (dots) in indirect immunofluorescence (IF). Two main antigens, PML and Sp 100, usually colocalize and concentrate in these nuclear subdomains. We investigated the presence of PODs using IF and immunoelectron microscopy (IEM) in cells from megakaryocytic lineage: the HEL cell line and human cultured Mks. Antibodies against PML, Sp100, and anti-nuclear dots were used in single and double labeling. PODs were identified in HEL cells and in human Mks, and their ultrastructure was characterized. We then used IF to quantify PODs within Mks and showed that their number increased proportionally to nuclear lobularity. In summary, we report the identification of PODs in human Mks at an ultrastructural level and an increase in PODs number in parallel with Mk ploidy. We show that endomitosis not only leads to DNA increase but also to the multiplication of at least one of the associated nuclear structures.
Collapse
Affiliation(s)
- A Drouin
- Institut Cochin de Génétique Moléculaire, INSERM U. 474, Paris, France
| | | | | | | | | | | |
Collapse
|
143
|
Khan MM, Nomura T, Kim H, Kaul SC, Wadhwa R, Zhong S, Pandolfi PP, Ishii S. PML-RARalpha alleviates the transcriptional repression mediated by tumor suppressor Rb. J Biol Chem 2001; 276:43491-4. [PMID: 11583987 DOI: 10.1074/jbc.c100532200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A fusion between the promyelocytic leukemia (PML) protein and the retinoic acid receptor-alpha (RARalpha) results in the transforming protein of acute promyelocytic leukemia, PML-RARalpha. PML has growth-suppressive properties and is localized within distinct nuclear structures referred to as nuclear bodies. PML participates in numerous cellular functions, including transcriptional activation, apoptosis, and transcriptional repression, whereas PML-RARalpha blocks these functions. However, the role played by PML-RARalpha in leukemogenesis remains unclear. Here we report that PML is required for transcriptional repression mediated by the tumor suppressor Rb. Rb interacts with the histone decaetylase (HDAC) complex containing co-repressors and represses the transcription of the E2F target genes. Overexpression of PML enhanced Rb-mediated repression. The degree of Rb-mediated repression was weakened by injecting anti-PML antibodies and was lower in Pml-deficient mouse embryonic fibroblasts. PML-RARalpha inhibited Rb-mediated repression, and two co-repressor-interacting sites on the PML-RARalpha molecule were required for this activity. Furthermore, PML-RARalpha blocked the interaction between Rb and HDAC. Thus, aberrant binding of PML-RARalpha to co-repressor-HDAC complexes may inhibit their association with Rb, resulting in the abrogation of Rb activity. Thus, the disruption of Rb-mediated repression may be a contributory factor in leukemogenesis.
Collapse
Affiliation(s)
- M M Khan
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Yamada M, Sato T, Shimohata T, Hayashi S, Igarashi S, Tsuji S, Takahashi H. Interaction between neuronal intranuclear inclusions and promyelocytic leukemia protein nuclear and coiled bodies in CAG repeat diseases. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 159:1785-95. [PMID: 11696439 PMCID: PMC1867069 DOI: 10.1016/s0002-9440(10)63025-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Neuronal intranuclear inclusions (NIIs) are a pathological hallmark of CAG repeat diseases. To elucidate the influence of NII formation on intranuclear substructures, we investigated the relationship of NIIs with nuclear bodies in brains of dentatorubral-pallidoluysian atrophy and Machado-Joseph disease. In both diseases, promyelocytic leukemia protein, a major component of the promyelocytic leukemia protein nuclear bodies, altered the normal distribution and was rearranged around NII, forming a single capsular structure. We further demonstrated that NIIs were present in close contact with coiled bodies, a highly dynamic domain that may be involved in the biogenesis of small nuclear ribonucleoproteins. The preferential association of intranuclear polyglutamine aggregates with coiled bodies was also confirmed in the dentatorubral-pallidoluysian atrophy transgenic mouse brain and culture cells expressing mutant atrophin-1. The results suggest that the interaction between NIIs and nuclear bodies may play a role in the pathogenesis of CAG repeat diseases.
Collapse
Affiliation(s)
- M Yamada
- Departments of Pathology, Brain Research Institute, Niigata University, Niigata, Japan.
| | | | | | | | | | | | | |
Collapse
|
145
|
Regad T, Chelbi-Alix MK. Role and fate of PML nuclear bodies in response to interferon and viral infections. Oncogene 2001; 20:7274-86. [PMID: 11704856 DOI: 10.1038/sj.onc.1204854] [Citation(s) in RCA: 222] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Interferons (IFNs) are a family of secreted proteins with antiviral, antiproliferative and immunomodulatory activities. The different biological actions of IFN are believed to be mediated by the products of specifically induced cellular genes in the target cells. The promyelocytic leukaemia (PML) protein localizes both in the nucleoplasm and in matrix-associated multi-protein complexes known as nuclear bodies (NBs). PML is essential for the proper formation and the integrity of the NBs. Modification of PML by the Small Ubiquitin MOdifier (SUMO) was shown to be required for its localization in NBs. The number and the intensity of PML NBs increase in response to interferon (IFN). Inactivation of the IFN-induced PML gene by its fusion to retinoic acid receptor alpha alters the normal localization of PML from the punctuate nuclear patterns of NBs to micro-dispersed tiny dots and results in uncontrolled growth in Acute Promyelocytic Leukaemia. The NBs-associated proteins, PML, Sp100, Sp140, Sp110, ISG20 and PA28 are induced by IFN suggesting that nuclear bodies could play a role in IFN response. Although the function of PML NBs is still unclear, some results indicate that they may represent preferential targets for viral infections and that PML could play a role in the mechanism of the antiviral action of IFNs. Viruses, which require the cellular machinery for their replication, have evolved different ways to counteract the action of IFN by inhibiting IFN signalling, by blocking the activities of specific antiviral mediators or by altering PML expression and/or localization on nuclear bodies.
Collapse
Affiliation(s)
- T Regad
- UPR 9045 CNRS, Institut André Lwoff, 7 rue Guy Moquet 94801, Villejuif, Cedex, France
| | | |
Collapse
|
146
|
Abstract
PML is a component of a multiprotein complex, termed nuclear bodies, and the PML protein was originally discovered in patients suffering from acute promyelocytic leukaemia (APL). APL is associated with a reciprocal chromosomal translocation of chromosomes 15 and 17, which results in a fusion protein comprising PML and the retinoic acid receptor alpha. The PML genomic locus is approximately 35 kb and is subdivided into nine exons. A large number of alternative spliced transcripts are synthesized from the PML gene, resulting in a variety of PML proteins ranging in molecular weight from 48-97 kDa. In this review we summarize the data on the known PML isoforms and splice variants and present a new unifying nomenclature. Although, the function/s of the PML variants are unclear, all PML isoforms contain an identical N-terminal region, suggesting that these sequences are indispensable for function, but differ in their C-terminal sequences. The N-terminal region harbours a RING-finger, two B-boxes and a predicted alpha-helical Coiled-Coil domain, that together form the RBCC/TRIM motif found in a large family of proteins. In PML this motif is essential for PML nuclear body formation in vivo and PML-homo and hetero interactions conferring growth suppressor, apoptotic and anti-viral activities. In APL oligomerization mediated by the RBCC/TRIM motif is essential for the transformation potential of the PML-RARalpha fusion protein.
Collapse
Affiliation(s)
- K Jensen
- Centre for Structural Biology, Imperial College of Science, Technology and Medicine, Flowers Building, Armstrong Road, London SW7 2AZ, UK
| | | | | |
Collapse
|
147
|
Zhu J, Lallemand-Breitenbach V, de Thé H. Pathways of retinoic acid- or arsenic trioxide-induced PML/RARalpha catabolism, role of oncogene degradation in disease remission. Oncogene 2001; 20:7257-65. [PMID: 11704854 DOI: 10.1038/sj.onc.1204852] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although there is evidence to suggest that PML/RARalpha expression is not the sole genetic event required for the development of acute promyelocytic leukemia (APL), there is little doubt that the fusion protein plays a central role in the initiation of leukemogenesis. The two therapeutic agents, retinoic acid and arsenic, that induce clinical remissions in APL, both target the oncogenic fusion protein, representing the first example of oncogene-directed cancer therapy. This review focuses on the molecular mechanisms accounting for PML/RARalpha degradation. Each drug targets a specific moiety of the fusion protein (RARalpha for retinoic acid, PML for arsenic) to the proteasome. Moreover, both activate a common caspase-dependent cleavage in the PML part of the fusion protein. Specific molecular determinants (the AF2 transactivator domain of RARalpha for retinoic acid and the K160 SUMO-binding site in PML for arsenic) are respectively implicated in RA- or arsenic-triggered catabolism. The respective roles of PML/RARalpha activation versus its catabolism are discussed with respect to differentiation or apoptosis induction in the context of single or dual therapies.
Collapse
Affiliation(s)
- J Zhu
- CNRS UPR 9051, Laboratoire associé #11 Comité de Paris de la Ligue Française contre le Cancer, Affiliè à l'Université de Paris VII. Hôpital St. Louis, 1, Av. C. Vellefaux 75475 Paris Cedex 10, France
| | | | | |
Collapse
|
148
|
Shiels C, Islam SA, Vatcheva R, Sasieni P, Sternberg MJ, Freemont PS, Sheer D. PML bodies associate specifically with the MHC gene cluster in interphase nuclei. J Cell Sci 2001; 114:3705-16. [PMID: 11707522 DOI: 10.1242/jcs.114.20.3705] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Promyelocytic leukemia (PML) bodies are nuclear multi-protein domains. The observations that viruses transcribe their genomes adjacent to PML bodies and that nascent RNA accumulates at their periphery suggest that PML bodies function in transcription. We have used immuno-FISH in primary human fibroblasts to determine the 3D spatial organisation of gene-rich and gene-poor chromosomal regions relative to PML bodies. We find a highly non-random association of the gene-rich major histocompatibilty complex (MHC) on chromosome 6 with PML bodies. This association is specific for the centromeric end of the MHC and extends over a genomic region of at least 1.6 megabases. We also show that PML association is maintained when a subsection of this region is integrated into another chromosomal location. This is the first demonstration that PML bodies have specific chromosomal associations and supports a model for PML bodies as part of a functional nuclear compartment.
Collapse
Affiliation(s)
- C Shiels
- Human Cytogenetics Laboratory, Imperial Cancer Research Fund, London, WC2A 3PX, UK
| | | | | | | | | | | | | |
Collapse
|
149
|
Kentsis A, Dwyer EC, Perez JM, Sharma M, Chen A, Pan ZQ, Borden KL. The RING domains of the promyelocytic leukemia protein PML and the arenaviral protein Z repress translation by directly inhibiting translation initiation factor eIF4E. J Mol Biol 2001; 312:609-23. [PMID: 11575918 DOI: 10.1006/jmbi.2001.5003] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The promyelocytic leukemia protein (PML) is a mammalian regulator of cell growth which is characteristically disrupted in acute promyelocytic leukemia and by a variety of viruses. PML contains a RING domain which is required for its growth-suppressive and antiviral properties. Although normally nuclear, in certain pathogenic conditions, including arenaviral infection, PML is relocated to the cytoplasm, where its functions are poorly understood. Here, we observe that PML and arenavirus protein Z use regions around the first zinc-binding site of their respective RING domains to directly interact, with sub-micromolar affinity, with the dorsal surface of translation initiation factor eIF4E, representing a novel mode of eIF4E recognition. PML and Z profoundly reduce the affinity of eIF4E for its substrate, the 5' 7-methyl guanosine cap of mRNA, by over 100-fold. Association with the dorsal surface of eIF4E and direct antagonism of mRNA cap binding by PML and Z lead to direct inhibition of translation. These activities of the RING domains of PML and Z do not involve ubiquitin-mediated protein degradation, in contrast to many RINGs which have been observed to do so. Although PML and Z have well characterized physiological functions in regulation of growth and apoptosis, this work establishes the first discrete biochemical mechanism which underlies the biological activities of their RING domains. Thus, we establish PML and Z as translational repressors, with potential contributions to the pathogenesis of acute promyelocytic leukemia and variety of viral infections.
Collapse
Affiliation(s)
- A Kentsis
- Department of Physiology & Biophysics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
150
|
Tse WT, Tang J, Jin O, Korsgren C, John KM, Kung AL, Gwynn B, Peters LL, Lux SE. A new spectrin, beta IV, has a major truncated isoform that associates with promyelocytic leukemia protein nuclear bodies and the nuclear matrix. J Biol Chem 2001; 276:23974-85. [PMID: 11294830 DOI: 10.1074/jbc.m009307200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We isolated cDNAs that encode a 77-kDa peptide similar to repeats 10-16 of beta-spectrins. Its gene localizes to human chromosome 19q13.13-q13.2 and mouse chromosome 7, at 7.5 centimorgans. A 289-kDa isoform, similar to full-length beta-spectrins, was partially assembled from sequences in the human genomic DNA data base and completely cloned and sequenced. RNA transcripts are seen predominantly in the brain, and Western analysis shows a major peptide that migrates as a 72-kDa band. This new gene, spectrin betaIV, thus encodes a full-length minor isoform (SpbetaIVSigma1) and a truncated major isoform (SpbetaIVSigma5). Immunostaining of cells shows a micropunctate pattern in the cytoplasm and nucleus. In mesenchymal stem cells, the staining concentrates at nuclear dots that stain positively for the promyelocytic leukemia protein (PML). Expression of SpbetaIVSigma5 fused to green fluorescence protein in cells produces nuclear dots that include all PML bodies, which double in number in transfected cells. Deletion analysis shows that partial repeats 10 and 16 of SpbetaIVSigma5 are necessary for nuclear dot formation. Immunostaining of whole-mount nuclear matrices reveals diffuse positivity with accentuation at PML bodies. Spectrin betaIV is the first beta-spectrin associated with a subnuclear structure and may be part of a nuclear scaffold to which gene regulatory machinery binds.
Collapse
Affiliation(s)
- W T Tse
- Division of Hematology/Oncology, Children's Hospital, and the Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|