101
|
Kim K, Diederich C, Narsinh K, Ozhinsky E. Motion-robust, multi-slice, real-time MR thermometry for MR-guided thermal therapy in abdominal organs. Int J Hyperthermia 2023; 40:2151649. [PMID: 36535967 PMCID: PMC10269483 DOI: 10.1080/02656736.2022.2151649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To develop an effective and practical reconstruction pipeline to achieve motion-robust, multi-slice, real-time MR thermometry for monitoring thermal therapy in abdominal organs. METHODS The application includes a fast spiral magnetic resonance imaging (MRI) pulse sequence and a real-time reconstruction pipeline based on multi-baseline proton resonance frequency shift (PRFS) method with visualization of temperature imaging. The pipeline supports multi-slice acquisition with minimal reconstruction lag. Simulations with a virtual motion phantom were performed to investigate the influence of the number of baselines and respiratory rate on the accuracy of temperature measurement. Phantom experiments with ultrasound heating were performed using a custom-made motion phantom to evaluate the performance of the pipeline. Lastly, experiments in healthy volunteers (N = 2) without heating were performed to evaluate the accuracy and stability of MR thermometry in abdominal organs (liver and kidney). RESULTS The multi-baseline approach with greater than 25 baselines resulted in minimal temperature errors in the simulation. Phantom experiments demonstrated a 713 ms update time for 3-slice acquisitions. Temperature maps with 30 baselines showed clear temperature distributions caused by ultrasound heating in the respiratory phantom. Finally, the pipeline was evaluated with physiologic motions in healthy volunteers without heating, which demonstrated the accuracy (root mean square error [RMSE]) of 1.23 ± 0.18 °C (liver) and 1.21 ± 0.17 °C (kidney) and precision of 1.13 ± 0.11 °C (liver) and 1.16 ± 0.15 °C (kidney) using 32 baselines. CONCLUSIONS The proposed real-time acquisition and reconstruction pipeline allows motion-robust, multi-slice, real-time temperature monitoring within the abdomen during free breathing.
Collapse
Affiliation(s)
- Kisoo Kim
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, USA
| | - Chris Diederich
- Department of Radiation Oncology, University of California, San Francisco, USA
| | - Kazim Narsinh
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, USA
| | - Eugene Ozhinsky
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, USA
| |
Collapse
|
102
|
Assessing critical temperature dose areas in the kidney by magnetic resonance imaging thermometry in an ex vivo Holmium:YAG laser lithotripsy model. World J Urol 2023; 41:543-549. [PMID: 36543945 PMCID: PMC9947089 DOI: 10.1007/s00345-022-04255-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE We aimed to assess critical temperature areas in the kidney parenchyma using magnetic resonance thermometry (MRT) in an ex vivo Holmium:YAG laser lithotripsy model. METHODS Thermal effects of Ho:YAG laser irradiation of 14 W and 30 W were investigated in the calyx and renal pelvis of an ex vivo kidney with different laser application times (tL) followed by a delay time (tD) of tL/tD = 5/5 s, 5/10 s, 10/5 s, 10/10 s, and 20/0 s, with irrigation rates of 10, 30, 50, 70, and 100 ml/min. Using MRT, the size of the area was determined in which the thermal dose as measured by the Cumulative Equivalent Minutes (CEM43) method exceeded a value of 120 min. RESULTS In the calyx, CEM43 never exceeded 120 min for flow rates ≥ 70 ml/min at 14 W, and longer tL (10 s vs. 5 s) lead to exponentially lower thermal affection of tissue (3.6 vs. 21.9 mm2). Similarly at 30 W and ≥ 70 ml/min CEM43 was below 120 min. Interestingly, at irrigation rates of 10 ml/min, tL = 10 s and tD = 10 s CEM43 were observed > 120 min in an area of 84.4 mm2 and 49.1 mm2 at tD = 5 s. Here, tL = 5 s revealed relevant thermal affection of 29.1 mm2 at 10 ml/min. CONCLUSION We demonstrate that critical temperature dose areas in the kidney parenchyma were associated with high laser power and application times, a low irrigation rate, and anatomical volume of the targeted calyx.
Collapse
|
103
|
Zou Y, Heyn C, Grigorian A, Tam F, Andreazza AC, Graham SJ, Maclntosh BJ, Goldstein BI. Measuring Brain Temperature in Youth Bipolar Disorder Using a Novel Magnetic Resonance Imaging Approach: A Proof-of-concept Study. Curr Neuropharmacol 2023; 21:1355-1366. [PMID: 36946483 PMCID: PMC10324328 DOI: 10.2174/1570159x21666230322090754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND There is evidence of alterations in mitochondrial energy metabolism and cerebral blood flow (CBF) in adults and youth with bipolar disorder (BD). Brain thermoregulation is based on the balance of heat-producing metabolism and heat-dissipating mechanisms, including CBF. OBJECTIVE To examine brain temperature, and its relation to CBF, in relation to BD and mood symptom severity in youth. METHODS This study included 25 youth participants (age 17.4 ± 1.7 years; 13 BD, 12 control group (CG)). Magnetic resonance spectroscopy data were acquired to obtain brain temperature in the left anterior cingulate cortex (ACC) and the left precuneus. Regional estimates of CBF were provided by arterial spin labeling imaging. Analyses used general linear regression models, covarying for age, sex, and psychiatric medications. RESULTS Brain temperature was significantly higher in BD compared to CG in the precuneus. A higher ratio of brain temperature to CBF was significantly associated with greater depression symptom severity in both the ACC and precuneus within BD. Analyses examining the relationship of brain temperature or CBF with depression severity score did not reveal any significant finding in the ACC or the precuneus. CONCLUSION The current study provides preliminary evidence of increased brain temperature in youth with BD, in whom reduced thermoregulatory capacity is putatively associated with depression symptom severity. Evaluation of brain temperature and CBF in conjunction may provide valuable insight beyond what can be gleaned by either metric alone. Larger prospective studies are warranted to further evaluate brain temperature and its association with CBF concerning BD.
Collapse
Affiliation(s)
- Yi Zou
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Chinthaka Heyn
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Anahit Grigorian
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Fred Tam
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Ana Cristina Andreazza
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8, ON, Canada
| | - Simon J. Graham
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Bradley J. Maclntosh
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Heart and Stroke Foundation, Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Benjamin I. Goldstein
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8, ON, Canada
| |
Collapse
|
104
|
Haskell-Mendoza AP, Srinivasan ES, Suarez AD, Fecci PE. Laser ablation of a sphenoid wing meningioma: A case report and review of the literature. Surg Neurol Int 2023; 14:138. [PMID: 37151451 PMCID: PMC10159314 DOI: 10.25259/sni_1000_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/15/2023] [Indexed: 05/09/2023] Open
Abstract
Background Meningiomas are the most common primary central nervous system neoplasm in the United States. While the majority of meningiomas are benign, the World Health Organization (WHO) Grade I tumors, a not-insignificant proportion of tumors are in anatomically complex locations or demonstrate more aggressive phenotypes, presenting a challenge for local disease control with surgery and radiation. Laser interstitial thermal therapy (LITT) consists of stereotactic delivery of laser light for tumor ablation and is minimally invasive, requiring implantation of a laser fiber through a cranial burr hole. Herein, we demonstrate the first use of this technology in a progressive atypical sphenoid wing meningioma for a previously resected and irradiated tumor. Case Description A 47-year-old female was diagnosed with a left-sided atypical meningioma, the WHO 2, of the sphenoid wing following acute worsening of bitemporal headache and dizziness. Given neurovascular involvement, a subtotal resection was performed, followed by stereotactic radiosurgery. Following progression 9 months from resection, the patient elected to proceed with LITT. The patient's postoperative course was uncomplicated and she remains progression free at 24 months following LITT. Conclusion We present the first use of LITT for a sphenoid wing meningioma documented in the literature, which demonstrated enhanced disease control for a lesion that was refractory to both surgery and radiation. LITT could represent an additional option for local control of progressive meningiomas, even in locations that are challenging to access surgically. More evidence is needed regarding the technical nuances of LITT for lesions of the skull base.
Collapse
Affiliation(s)
- Aden P. Haskell-Mendoza
- Department of Neurosurgery, Duke University School of Medicine, Baltimore, MD, United States
| | - Ethan S. Srinivasan
- Department of Neurosurgery, Duke University School of Medicine, Baltimore, MD, United States
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alexander D. Suarez
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, United States
| | - Peter E. Fecci
- Department of Neurosurgery, Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, United States
- Corresponding author: Peter E. Fecci, MD, PhD, Professor of Neurosurgery, Preston Robert Tisch Brain Tumor Center, Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
105
|
Feddersen TV, Poot DHJ, Paulides MM, Salim G, van Rhoon GC, Hernandez-Tamames JA. Multi-echo gradient echo pulse sequences: which is best for PRFS MR thermometry guided hyperthermia? Int J Hyperthermia 2023; 40:2184399. [PMID: 36907223 DOI: 10.1080/02656736.2023.2184399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
PURPOSE MR thermometry (MRT) enables noninvasive temperature monitoring during hyperthermia treatments. MRT is already clinically applied for hyperthermia treatments in the abdomen and extremities, and devices for the head are under development. In order to optimally exploit MRT in all anatomical regions, the best sequence setup and post-processing must be selected, and the accuracy needs to be demonstrated. METHODS MRT performance of the traditionally used double-echo gradient-echo sequence (DE-GRE, 2 echoes, 2D) was compared to multi-echo sequences: a 2D fast gradient-echo (ME-FGRE, 11 echoes) and a 3D fast gradient-echo sequence (3D-ME-FGRE, 11 echoes). The different methods were assessed on a 1.5 T MR scanner (GE Healthcare) using a phantom cooling down from 59 °C to 34 °C and unheated brains of 10 volunteers. In-plane motion of volunteers was compensated by rigid body image registration. For the ME sequences, the off-resonance frequency was calculated using a multi-peak fitting tool. To correct for B0 drift, the internal body fat was selected automatically using water/fat density maps. RESULTS The accuracy of the best performing 3D-ME-FGRE sequence was 0.20 °C in phantom (in the clinical temperature range) and 0.75 °C in volunteers, compared to DE-GRE values of 0.37 °C and 1.96 °C, respectively. CONCLUSION For hyperthermia applications, where accuracy is more important than resolution or scan-time, the 3D-ME-FGRE sequence is deemed the most promising candidate. Beyond its convincing MRT performance, the ME nature enables automatic selection of internal body fat for B0 drift correction, an important feature for clinical application.
Collapse
Affiliation(s)
- Theresa V Feddersen
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dirk H J Poot
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Margarethus M Paulides
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Electromagnetics for Care & Cure Research Lab, Center for Care and Cure Technologies Eindhoven (C3Te), Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Ghassan Salim
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Gerard C van Rhoon
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Applied Radiation and Isotopes, Reactor Institute Delft, Delft University of Technology, Delft, The Netherlands
| | - Juan A Hernandez-Tamames
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Imaging Physics, Applied Physics Faculty, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
106
|
Hensen B, Hellms S, Werlein C, Jonigk D, Gronski PA, Bruesch I, Rumpel R, Wittauer EM, Vondran FWR, Parker DL, Wacker F, Gutberlet M. Correction of heat-induced susceptibility changes in respiratory-triggered 2D-PRF-based thermometry for monitoring of magnetic resonance-guided hepatic microwave ablation in a human-like in vivo porcine model. Int J Hyperthermia 2022; 39:1387-1396. [DOI: 10.1080/02656736.2022.2138987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Bennet Hensen
- Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- STIMULATE-Solution Centre for Image Guided Local Therapies, Magdeburg, Germany
| | - Susanne Hellms
- Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | | | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | | | - Inga Bruesch
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Regina Rumpel
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Eva-Maria Wittauer
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Florian W. R. Vondran
- Clinic for General, Abdominal and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Dennis L. Parker
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, USA
| | - Frank Wacker
- Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- STIMULATE-Solution Centre for Image Guided Local Therapies, Magdeburg, Germany
| | - Marcel Gutberlet
- Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- STIMULATE-Solution Centre for Image Guided Local Therapies, Magdeburg, Germany
| |
Collapse
|
107
|
Gray M, Spiers L, Coussios C. Effects of human tissue acoustic properties, abdominal wall shape, and respiratory motion on ultrasound-mediated hyperthermia for targeted drug delivery to pancreatic tumors. Int J Hyperthermia 2022; 39:918-934. [PMID: 35853611 PMCID: PMC9612938 DOI: 10.1080/02656736.2022.2091799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background PanDox is a Phase-1 trial of chemotherapeutic drug delivery to pancreatic tumors using ultrasound-mediated hyperthermia to release doxorubicin from thermally sensitive liposomes. This report describes trial-related hyperthermia simulations featuring: (i) new ultrasonic properties of human pancreatic tissues, (ii) abdomen deflections imposed by a water balloon, and (iii) respiration-driven organ motion. Methods Pancreas heating simulations were carried out using three patient body models. Pancreas acoustic properties were varied between values found in the literature and those determined from our human tissue study. Acoustic beam distortion was assessed with and without balloon-induced abdomen deformation. Target heating was assessed for static, normal respiratory, and jet-ventilation-controlled pancreas motion. Results Human pancreatic tumor attenuation is 63% of the literature values, so that pancreas treatments require commensurately higher input intensity to achieve adequate hyperthermia. Abdominal wall deformation decreased the peak field pressure by as much as 3.5 dB and refracted the focal spot by as much as 4.5 mm. These effects were thermally counteracted by sidelobe power deposition, so the net impact on achieving mild hyperthermia was small. Respiratory motion during moving beam hyperthermia produced localized regions overheated by more than 8.0 °C above the 4.0 °C volumetric goal. The use of jet ventilation reduced this excess to 0.7 °C and yielded temperature field uniformity that was nearly identical to having no respiratory motion. Conclusion Realistic modeling of the ultrasonic propagation environment is critical to achieving adequate mild hyperthermia without the use of real time thermometry for targeted drug delivery in pancreatic cancer patients.
Collapse
Affiliation(s)
- Michael Gray
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Laura Spiers
- NIHR Oxford Biomedical Research Centre, Oxford, UK.,Department of Oncology, University of Oxford, Oxford, UK
| | - Constantin Coussios
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
108
|
Antoniou A, Evripidou N, Panayiotou S, Spanoudes K, Damianou C. Treatment of canine and feline sarcoma using MR-guided focused ultrasound system. J Ultrasound 2022; 25:895-904. [PMID: 35277843 PMCID: PMC9705640 DOI: 10.1007/s40477-022-00672-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/27/2022] [Indexed: 11/30/2022] Open
Abstract
PURPOSE In recent years, veterinary medicine has enhanced its applications beyond traditional approaches, progressively incorporating the Focused Ultrasound (FUS) technology. This study investigated the ability of FUS to precisely ablate naturally occurring canine and feline soft tissue sarcomas (STS). METHODS Six dogs and four cats with superficial tumours were enrolled in the study. The tumours were treated with a Magnetic Resonance guided FUS (MRgFUS) robotic system featuring a single element spherically focused transducer of 2.6 MHz. The tumours were then removed by surgery and sent for hematoxylin and eosin (H&E) staining. RESULTS The MRgFUS system was capable of inflicting well-defined overlapping lesions in the tumours. The anatomical sites of the treated tumours were the neck, leg, face, back and belly. Coagulative necrosis was evidenced by histopathology assessment in 80% of cases. CONCLUSION Therefore, this technology can be a therapeutic solution for veterinary cancer and a model for advancing the knowledge on human STS.
Collapse
Affiliation(s)
- Anastasia Antoniou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, 30 Archbishop Kyprianou Street, 3036, Limassol, Cyprus
| | - Nikolas Evripidou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, 30 Archbishop Kyprianou Street, 3036, Limassol, Cyprus
| | - Stelios Panayiotou
- SGS Diagnostic Centre of Histopathology and Cytology Limited, 21 Thessalonikis, 3025, Limassol, Cyprus
| | - Kyriakos Spanoudes
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, 30 Archbishop Kyprianou Street, 3036, Limassol, Cyprus
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, 30 Archbishop Kyprianou Street, 3036, Limassol, Cyprus.
| |
Collapse
|
109
|
Allen SP, Fergusson A, Edsall C, Chen S, Moore D, Vlaisavljevich E, Davis RM, Meyer CH. Iron-based coupling media for MRI-guided ultrasound surgery. Med Phys 2022; 49:7373-7383. [PMID: 36156266 PMCID: PMC9946126 DOI: 10.1002/mp.15979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/17/2022] [Accepted: 08/31/2022] [Indexed: 12/27/2022] Open
Abstract
PURPOSE In this study, we examine the effects of a recently developed, iron-based coupling medium (IBCM) on guidance magnetic resonance (MR) scans during transcranial, magnetic-resonance-guided, focused ultrasound surgery (tMRgFUS) procedures. More specifically, this study tests the hypotheses that the use of the IBCM will (a) not adversely affect image quality, (b) remove aliasing from small field-of-view scans, and (c) decouple image quality from the motion state of the coupling fluid. METHODS An IBCM, whose chemical synthesis and characterization are reported elsewhere, was used as a coupling medium during tMRgFUS procedures on gel phantoms. Guidance magnetization-prepared rapid-gradient-echo (MP-RAGE), TSE, and GRE scans were acquired with fields of view of 28 and 18 cm. Experiments were repeated with the IBCM in several distinct flow states. GRE scans were used to estimate temperature time courses as a gel target was insonated. IBCM performance was measured by computing (i) the root mean square difference (RMSD) of TSE and GRE pixel values acquired using water and the IBCM, relative to the use of water; (ii) through-time temperature uncertainty for GRE scans; and (iii) Bland-Altman analysis of the temperature time courses. Finally, guidance TSE and GRE scans of a human volunteer were acquired during a separate sham tMRgFUS procedure. As a control, all experiments were repeated using a water coupling medium. RESULTS Use of the IBCM reduced RMSD in TSE scans by a factor of 4 or more for all fields of view and nonstationary motion states, but did not reduce RMSD estimates in MP-RAGE scans. With the coupling media in a stationary state, the IBCM altered estimates of temperature uncertainty relative to the use of water by less than 0.2°C. However, with a high flow state, the IBCM reduced temperature uncertainties by the statistically significant amounts (at the 0.01 level) of 0.5°C (28 cm field of view) and 5°C (18 cm field of view). Bland-Altman analyses found a 0.1°C ± 0.5°C difference between temperature estimates acquired using water and the IBCM as coupling media. Finally, scans of a human volunteer using the IBCM indicate more conspicuous grey/white matter contrast, a reduction in aliasing, and a less than 0.2°C change in temperature uncertainty. CONCLUSIONS The use of an IBCM during tMRgFUS procedures does not adversely affect image quality for TSE and GRE scans, can decouple image quality from the motion state of the coupling fluid, and can remove aliasing from scans where the field of view is set to be much smaller than the spatial extent of the coupling fluid.
Collapse
Affiliation(s)
- Steven P Allen
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, Utah, USA
| | - Austin Fergusson
- Graduate Program in Translational Biology, Medicine and Health Virginia Tech, Blacksburg, Virginia, USA
| | - Connor Edsall
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
| | - Sheng Chen
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - David Moore
- The Focused Ultrasound Foundation, Charlottesville, Virginia, USA
| | - Eli Vlaisavljevich
- Graduate Program in Translational Biology, Medicine and Health Virginia Tech, Blacksburg, Virginia, USA
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
| | - Richey M Davis
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia, USA
| | - Craig H Meyer
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
110
|
Sung D, Risk BB, Kottke PA, Allen JW, Nahab F, Fedorov AG, Fleischer CC. Comparisons of healthy human brain temperature predicted from biophysical modeling and measured with whole brain MR thermometry. Sci Rep 2022; 12:19285. [PMID: 36369468 PMCID: PMC9652378 DOI: 10.1038/s41598-022-22599-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
Brain temperature is an understudied parameter relevant to brain injury and ischemia. To advance our understanding of thermal dynamics in the human brain, combined with the challenges of routine experimental measurements, a biophysical modeling framework was developed to facilitate individualized brain temperature predictions. Model-predicted brain temperatures using our fully conserved model were compared with whole brain chemical shift thermometry acquired in 30 healthy human subjects (15 male and 15 female, age range 18-36 years old). Magnetic resonance (MR) thermometry, as well as structural imaging, angiography, and venography, were acquired prospectively on a Siemens Prisma whole body 3 T MR scanner. Bland-Altman plots demonstrate agreement between model-predicted and MR-measured brain temperatures at the voxel-level. Regional variations were similar between predicted and measured temperatures (< 0.55 °C for all 10 cortical and 12 subcortical regions of interest), and subcortical white matter temperatures were higher than cortical regions. We anticipate the advancement of brain temperature as a marker of health and injury will be facilitated by a well-validated computational model which can enable predictions when experiments are not feasible.
Collapse
Affiliation(s)
- Dongsuk Sung
- grid.213917.f0000 0001 2097 4943Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA USA
| | - Benjamin B. Risk
- grid.189967.80000 0001 0941 6502Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA USA
| | - Peter A. Kottke
- grid.213917.f0000 0001 2097 4943Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA USA
| | - Jason W. Allen
- grid.213917.f0000 0001 2097 4943Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502Department of Neurology, Emory University School of Medicine, Atlanta, GA USA
| | - Fadi Nahab
- grid.189967.80000 0001 0941 6502Department of Neurology, Emory University School of Medicine, Atlanta, GA USA
| | - Andrei G. Fedorov
- grid.213917.f0000 0001 2097 4943Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA USA ,grid.213917.f0000 0001 2097 4943Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA USA
| | - Candace C. Fleischer
- grid.213917.f0000 0001 2097 4943Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA USA ,grid.213917.f0000 0001 2097 4943Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502Wesley Woods Health Center, Emory University School of Medicine, 1841 Clifton Road, Atlanta, GA 30329 USA
| |
Collapse
|
111
|
Muacevic A, Adler JR, Jimenez MJD, Budnick HC, Raskin J. Thermal Damage Estimate Artifact Following Antecedent Biopsy: A Case Report. Cureus 2022; 14:e31913. [PMID: 36579245 PMCID: PMC9792349 DOI: 10.7759/cureus.31913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2022] [Indexed: 11/27/2022] Open
Abstract
MR-guided laser interstitial therapy (MRgLITT) is becoming more commonly used for minimal access approaches to intracranial lesions of all etiologies. The short-term safety profile of MRgLITT is favorable compared with sweeping incisions and open craniotomies, especially for lesions located in deep, periventricular, and highly eloquent areas. The Visualase software (Medtronic Inc., Minneapolis, MN, USA) has multiple adaptations to assist with this safety margin, including the thermal damage estimate (TDE), which applies predictive mathematical modeling to a two-dimensional (2D) graphical representation. TDE has been shown to highly correlate with actual tissue destruction in a priori MRgLITT cases and to anecdotally be imprecise when MRgLITT is combined with biopsy. We present a case regarding a 17-year-old male patient with intractable focal epilepsy. He underwent stereotactic biopsy and then ablation where it was shown that TDE is ~35% larger in the coronal plane than in the actual ablation zone. Air may have caused this artifact in the biopsy cavity, which affected the proton resonance frequency (PRF) and caused TDE pigment deposition. We believe in the need for a more comprehensive understanding and investigation regarding this TDE artifact. Future prospective studies into MRgLITT should attend carefully in cases where it is combined with biopsy.
Collapse
|
112
|
Antoniou A, Georgiou L, Evripidou N, Ioannides C, Damianou C. Challenges regarding MR compatibility of an MRgFUS robotic system. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 344:107317. [PMID: 36279604 DOI: 10.1016/j.jmr.2022.107317] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Numerous challenges are faced when employing Magnetic Resonance guided Focused Ultrasound (MRgFUS) hardware in the Magnetic Resonance Imaging (MRI) setting. The current study aimed to provide insights on this topic through a series of experiments performed in the framework of evaluating the MRI compatibility of an MRgFUS robotic device. All experiments were performed in a 1.5 T MRI scanner. The main metric for MRI compatibility assessment was the signal to noise ratio (SNR). Measurements were carried out in a tissue mimicking phantom and freshly excised pork tissue under various activation states of the system. In the effort to minimize magnetic interference and image distortion, various set-up parameters were examined. Significant SNR degradation and image distortion occurred when the FUS transducer was activated mainly owing to FUS-induced target and coil vibrations and was getting worse as the output power was increased. Proper design and stable positioning of the imaged phantom play a critical role in reducing these vibrations. Moreover, isolation of the phantom from the imaging coil was proven essential for avoiding FUS-induced vibrations from being transferred to the coil during sonication and resulted in a more than 3-fold increase in SNR. The use of a multi-channel coil increased the SNR by up to 50 % compared to a single-channel coil. Placement of the electronics outside the coil detection area increased the SNR by about 65 %. A similar SNR improvement was observed when the encoders' counting pulses were deactivated. Overall, this study raises awareness about major challenges regarding operation of an MRgFUS system in the MRI environment and proposes simple measures that could mitigate the impact of noise sources so that the monitoring value of MR imaging in FUS applications is not compromised.
Collapse
Affiliation(s)
- Anastasia Antoniou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus.
| | - Leonidas Georgiou
- German Oncology Center, Department of Interventional Radiology, Limassol, Cyprus.
| | - Nikolas Evripidou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus.
| | - Cleanthis Ioannides
- German Oncology Center, Department of Interventional Radiology, Limassol, Cyprus.
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus.
| |
Collapse
|
113
|
Hübner F, Blauth S, Leithäuser C, Schreiner R, Siedow N, Vogl TJ. Validating a simulation model for laser-induced thermotherapy using MR thermometry. Int J Hyperthermia 2022; 39:1315-1326. [PMID: 36220179 DOI: 10.1080/02656736.2022.2129102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
OBJECTIVES We want to investigate whether temperature measurements obtained from MR thermometry are accurate and reliable enough to aid the development and validation of simulation models for Laser-induced interstitial thermotherapy (LITT). METHODS Laser-induced interstitial thermotherapy (LITT) is applied to ex-vivo porcine livers. An artificial blood vessel is used to study the cooling effect of large blood vessels in proximity to the ablation zone. The experimental setting is simulated using a model based on partial differential equations (PDEs) for temperature, radiation, and tissue damage. The simulated temperature distributions are compared to temperature data obtained from MR thermometry. RESULTS The overall agreement between measurement and simulation is good for two of our four test cases, while for the remaining cases drift problems with the thermometry data have been an issue. At higher temperatures local deviations between simulation and measurement occur in close proximity to the laser applicator and the vessel. This suggests that certain aspects of the model may need some refinement. CONCLUSION Thermometry data is well-suited for aiding the development of simulations models since it shows where refinements are necessary and enables the validation of such models.
Collapse
Affiliation(s)
- Frank Hübner
- Institute for Diagnostic and Interventional Radiology of the J.W. Goethe University Hospital, Frankfurt am Main, Germany
| | | | | | - Roland Schreiner
- Institute for Diagnostic and Interventional Radiology of the J.W. Goethe University Hospital, Frankfurt am Main, Germany
| | | | - Thomas J Vogl
- Institute for Diagnostic and Interventional Radiology of the J.W. Goethe University Hospital, Frankfurt am Main, Germany
| |
Collapse
|
114
|
Ledezma DK, Balakrishnan PB, Shukla A, Medina JA, Chen J, Oakley E, Bollard CM, Shafirstein G, Miscuglio M, Fernandes R. Interstitial Photothermal Therapy Generates Durable Treatment Responses in Neuroblastoma. Adv Healthc Mater 2022; 11:e2201084. [PMID: 35943173 PMCID: PMC9588730 DOI: 10.1002/adhm.202201084] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/23/2022] [Indexed: 01/28/2023]
Abstract
Photothermal therapy (PTT) represents a promising modality for tumor control typically using infrared light-responsive nanoparticles illuminated by a wavelength-matched external laser. However, due to the constraints of light penetration, PTT is generally restricted to superficially accessible tumors. With the goal of extending the benefits of PTT to all tumor settings, interstitial PTT (I-PTT) is evaluated by the photothermal activation of intratumorally administered Prussian blue nanoparticles with a laser fiber positioned interstitially within the tumor. This interstitial fiber, which is fitted with a terminal diffuser, distributes light within the tumor microenvironment from the "inside-out" as compared to from the "outside-in" traditionally observed during superficially administered PTT (S-PTT). I-PTT improves the heating efficiency and heat distribution within a target treatment area compared to S-PTT. Additionally, I-PTT generates increased cytotoxicity and thermal damage at equivalent thermal doses, and elicits immunogenic cell death at lower thermal doses in targeted neuroblastoma tumor cells compared to S-PTT. In vivo, I-PTT induces significantly higher long-term tumor regression, lower rates of tumor recurrence, and improved long-term survival in multiple syngeneic murine models of neuroblastoma. This study highlights the significantly enhanced therapeutic benefit of I-PTT compared to traditional S-PTT as a promising treatment modality for solid tumors.
Collapse
Affiliation(s)
- Debbie K. Ledezma
- The George Washington Cancer CenterThe George Washington University800 22nd St NW, 8300 Science and Engineering HallWashingtonDC20052USA
- The Institute for Biomedical SciencesThe George Washington University2300 Eye Street NW, Ross Hall Room 561WashingtonDC20037USA
| | - Preethi B. Balakrishnan
- The George Washington Cancer CenterThe George Washington University800 22nd St NW, 8300 Science and Engineering HallWashingtonDC20052USA
| | - Anshi Shukla
- The George Washington Cancer CenterThe George Washington University800 22nd St NW, 8300 Science and Engineering HallWashingtonDC20052USA
| | - Jacob A. Medina
- The George Washington Cancer CenterThe George Washington University800 22nd St NW, 8300 Science and Engineering HallWashingtonDC20052USA
- The Institute for Biomedical SciencesThe George Washington University2300 Eye Street NW, Ross Hall Room 561WashingtonDC20037USA
| | - Jie Chen
- The George Washington Cancer CenterThe George Washington University800 22nd St NW, 8300 Science and Engineering HallWashingtonDC20052USA
| | - Emily Oakley
- Photodynamic Therapy CenterRoswell Park Comprehensive Cancer CenterDepartment of Cell Stress BiologyRoswell Park, Elm and Carlton StreetsBuffaloNY14263USA
| | - Catherine M. Bollard
- The George Washington Cancer CenterThe George Washington University800 22nd St NW, 8300 Science and Engineering HallWashingtonDC20052USA
- Center for Cancer and Immunology ResearchChildren's National Hospital111 Michigan Ave NWWashingtonDC20010USA
| | - Gal Shafirstein
- Photodynamic Therapy CenterRoswell Park Comprehensive Cancer CenterDepartment of Cell Stress BiologyRoswell Park, Elm and Carlton StreetsBuffaloNY14263USA
| | - Mario Miscuglio
- Department of Electrical and Computer EngineeringThe George Washington University800 22nd St NW, 5000 Science and Engineering HallWashingtonDC20052USA
| | - Rohan Fernandes
- The George Washington Cancer CenterThe George Washington University800 22nd St NW, 8300 Science and Engineering HallWashingtonDC20052USA
- Department of MedicineThe George Washington University2150 Pennsylvania Avenue, NW, Suite 8‐416WashingtonDC20037USA
| |
Collapse
|
115
|
Li N, Gaur P, Quah K, Pauly KB. Improving in situ acoustic intensity estimates using MR acoustic radiation force imaging in combination with multifrequency MR elastography. Magn Reson Med 2022; 88:1673-1689. [PMID: 35762849 PMCID: PMC9439407 DOI: 10.1002/mrm.29309] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 11/08/2022]
Abstract
PURPOSE Magnetic resonance acoustic radiation force imaging (MR-ARFI) enables focal spot localization during nonablative transcranial ultrasound therapies. As the acoustic radiation force is proportional to the applied acoustic intensity, measured MR-ARFI displacements could potentially be used to estimate the acoustic intensity at the target. However, variable brain stiffness is an obstacle. The goal of this study was to develop and assess a method to accurately estimate the acoustic intensity at the focus using MR-ARFI displacements in combination with viscoelastic properties obtained with multifrequency MR elastography (MRE). METHODS Phantoms with a range of viscoelastic properties were fabricated, and MR-ARFI displacements were acquired within each phantom using multiple acoustic intensities. Voigt model parameters were estimated for each phantom based on storage and loss moduli measured using multifrequency MRE, and these were used to predict the relationship between acoustic intensity and measured displacement. RESULTS Using assumed viscoelastic properties, MR-ARFI displacements alone could not accurately estimate acoustic intensity across phantoms. For example, acoustic intensities were underestimated in phantoms stiffer than the assumed stiffness and overestimated in phantoms softer than the assumed stiffness. This error was greatly reduced using individualized viscoelasticity measurements obtained from MRE. CONCLUSION We demonstrated that viscoelasticity information from MRE could be used in combination with MR-ARFI displacements to obtain more accurate estimates of acoustic intensity. Additionally, Voigt model viscosity parameters were found to be predictive of the relaxation rate of each phantom's time-varying displacement response, which could be used to optimize patient-specific MR-ARFI pulse sequences.
Collapse
Affiliation(s)
- Ningrui Li
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Pooja Gaur
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Kristin Quah
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Kim Butts Pauly
- Department of Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|
116
|
Mooiweer R, Schneider R, Krafft AJ, Empanger K, Stroup J, Neofytou AP, Mukherjee RK, Williams SE, Lloyd T, O'Neill M, Razavi R, Schaeffter T, Neji R, Roujol S. Active Tracking-based cardiac triggering for MR-thermometry during radiofrequency ablation therapy in the left ventricle. Front Cardiovasc Med 2022; 9:971869. [PMID: 36093156 PMCID: PMC9453599 DOI: 10.3389/fcvm.2022.971869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiac MR thermometry shows promise for real-time guidance of radiofrequency ablation of cardiac arrhythmias. This technique uses ECG triggering, which can be unreliable in this situation. A prospective cardiac triggering method was developed for MR thermometry using the active tracking (AT) signal measured from catheter microcoils. In the proposed AT-based cardiac triggering (AT-trig) sequence, AT modules were repeatedly acquired to measure the catheter motion until a cardiac trigger was identified to start cardiac MR thermometry using single-shot echo-planar imaging. The AT signal was bandpass filtered to extract the motion induced by the beating heart, and cardiac triggers were defined as the extremum (peak or valley) of the filtered AT signal. AT-trig was evaluated in a beating heart phantom and in vivo in the left ventricle of a swine during temperature stability experiments (6 locations) and during one ablation. Stability was defined as the standard deviation over time. In the phantom, AT-trig enabled triggering of MR thermometry and resulted in higher temperature stability than an untriggered sequence. In all in vivo experiments, AT-trig intervals matched ECG-derived RR intervals. Mis-triggers were observed in 1/12 AT-trig stability experiments. Comparable stability of MR thermometry was achieved using peak AT-trig (1.0 ± 0.4°C), valley AT-trig (1.1 ± 0.5°C), and ECG triggering (0.9 ± 0.4°C). These experiments show that continuously acquired AT signal for prospective cardiac triggering is feasible. MR thermometry with AT-trig leads to comparable temperature stability as with conventional ECG triggering. AT-trig could serve as an alternative cardiac triggering strategy in situations where ECG triggering is not effective.
Collapse
Affiliation(s)
- Ronald Mooiweer
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- MR Research Collaborations, Siemens Healthcare Limited, Camberley, United Kingdom
| | | | | | - Katy Empanger
- Imricor Medical Systems, Burnsville, MN, United States
| | - Jason Stroup
- Imricor Medical Systems, Burnsville, MN, United States
| | - Alexander Paul Neofytou
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Rahul K. Mukherjee
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Steven E. Williams
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, United Kingdom
| | - Tom Lloyd
- Imricor Medical Systems, Burnsville, MN, United States
| | - Mark O'Neill
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Reza Razavi
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Tobias Schaeffter
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- MR Research Collaborations, Siemens Healthcare Limited, Camberley, United Kingdom
| | - Sébastien Roujol
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| |
Collapse
|
117
|
Sakai K, Kentaro A, Tazoe J, Ikeno H, Nakagawa T, Yamada K. Does cerebrospinal fluid pulsation affect diffusion-weighted imaging thermometry? A study in healthy volunteers. NMR IN BIOMEDICINE 2022; 35:e4738. [PMID: 35388508 DOI: 10.1002/nbm.4738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 01/25/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Diffusion-weighted imaging (DWI)-based thermometry offers potential as a noninvasive method for measuring temperatures deep inside the human brain. However, DWI might be influenced by the pulsatile flow of cerebrospinal fluid (CSF). This study aimed to investigate the influence of such pulsations on DWI thermometry in healthy individuals. A total of 104 participants (50 men, 54 women; mean [± standard deviation] age, 44.2 ± 14.3 years; range 21-69 years) were investigated. DWI-based brain temperature (TDWI ) was acquired at three speeds (maximum and minimum speeds of ascending flow and random timing at the cerebral aqueduct) of CSF pulsation using a 3-T magnetic resonance imaging scanner. Magnetic resonance spectroscopy (MRS)-based temperature (TMRS ) at the thalamus was also obtained as a reference standard for brain temperature. The three different CSF pulsatile flows were monitored by heart rate during the scan. The difference between reference temperature and brain temperature (ΔT = TDWI - TMRS ) along with the three CSF speeds were statistically compared using Student's matched pair t-test. No significant difference in ΔT was evident among CSF speeds (p > 0.05). No significant linear correlation between ΔT and CSF flow speed at the cerebral aqueduct was observed. Using DWI thermometry with clinical acquisition settings, which utilizes mean values within thresholds, no effect of CSF pulsation speed was observed in the estimation of ΔT.
Collapse
Affiliation(s)
- Koji Sakai
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Akazawa Kentaro
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Jun Tazoe
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Hiroyasu Ikeno
- Department of Radiology, Kyoto Prefectural University of Medicine Hospital, Kyoto City, Japan
| | - Toshiaki Nakagawa
- Department of Radiology, Kyoto Prefectural University of Medicine Hospital, Kyoto City, Japan
| | - Kei Yamada
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| |
Collapse
|
118
|
Zhong X, Cao Y, Zhou P. Thermochromic Tissue-Mimicking Phantoms for Thermal Ablation Based on Polyacrylamide Gel. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1361-1372. [PMID: 35623921 DOI: 10.1016/j.ultrasmedbio.2022.03.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 06/15/2023]
Abstract
In recent years, thermal ablation has played an increasingly important role in treating various tumors in the clinic. A practical thermochromic phantom model can provide a favorable platform for clinical thermotherapy training of young physicians or calibration and optimization of thermal devices without risk to animals or human participants. To date, many tissue-mimicking thermal phantoms have been developed and are well liked, especially the polyacrylamide gel (PAG)-based phantoms. This review summarizes the PAG-based phantoms in the field of thermotherapy, details their advantages and disadvantages and provides a direction for further optimization. The relevant physical parameters (such as electrical, acoustic, and thermal properties) of these phantoms are also presented in this review, which can assist operators in a deeper understanding of these phantoms and selection of the proper recipes for phantom fabrication.
Collapse
Affiliation(s)
- Xinyu Zhong
- Department of Ultrasound, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuting Cao
- Institute of Ultrasound Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, China
| | - Ping Zhou
- Department of Ultrasound, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
119
|
Ding Y, So B, Cao J, Wondraczek L. Ultrasound-Induced Mechanoluminescence and Optical Thermometry Toward Stimulus-Responsive Materials with Simultaneous Trigger Response and Read-Out Functions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201631. [PMID: 35712779 PMCID: PMC9376836 DOI: 10.1002/advs.202201631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/13/2022] [Indexed: 05/08/2023]
Abstract
Ultrasound-induced mechanoluminescence (USML) of Erbium-doped CaZnOS is reported. Using the fluorescence intensity ratio of the 2 H11/2 , 4 S3/2 → 4 I15/2 transitions of Er3+ allows for simultaneous temperature mapping at an absolute sensitivity of 0.003 K-1 in the physiological regime. The combination of USML, local heating, and remote read-out enables a feedback and response loop for highly controlled stimulation. It is found that ML is a result of direct energy transfer from the host material to Er3+ , giving room for adapted spectral characteristics through bandgap modulation. ML saturation at high acoustic power enables independent control of local light emission and ultrasonic heating. Such USML materials may have profound implications for optogenetics, photodynamic therapy and other areas requiring local illumination, heating, and thermometry simultaneously.
Collapse
Affiliation(s)
- Yicong Ding
- Otto Schott Institute of Materials ResearchFriedrich Schiller University JenaFraunhoferstrasse 6Jena07743Germany
| | - Byoungjin So
- Otto Schott Institute of Materials ResearchFriedrich Schiller University JenaFraunhoferstrasse 6Jena07743Germany
| | - Jiangkun Cao
- Otto Schott Institute of Materials ResearchFriedrich Schiller University JenaFraunhoferstrasse 6Jena07743Germany
| | - Lothar Wondraczek
- Otto Schott Institute of Materials ResearchFriedrich Schiller University JenaFraunhoferstrasse 6Jena07743Germany
| |
Collapse
|
120
|
Nouwens SAN, Paulides MM, Fölker J, VilasBoas-Ribeiro I, de Jager B, Heemels WPMH. Integrated thermal and magnetic susceptibility modeling for air-motion artifact correction in proton resonance frequency shift thermometry. Int J Hyperthermia 2022; 39:967-976. [PMID: 35853735 DOI: 10.1080/02656736.2022.2094475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
PURPOSE Hyperthermia treatments are successful adjuvants to conventional cancer therapies in which the tumor is sensitized by heating. To monitor and guide the hyperthermia treatment, measuring the tumor and healthy tissue temperature is important. The typical clinical practice heavily relies on intraluminal probe measurements that are uncomfortable for the patient and only provide spatially sparse temperature information. A solution may be offered through recent advances in magnetic resonance thermometry, which allows for three-dimensional internal temperature measurements. However, these measurements are not widely used in the pelvic region due to a low signal-to-noise ratio and presence of image artifacts. METHODS To advance the clinical integration of magnetic resonance-guided cancer treatments, we consider the problem of removing air-motion-induced image artifacts. Thereto, we propose a new combined thermal and magnetic susceptibility model-based temperature estimation scheme that uses temperature estimates to improve the removal of air-motion-induced image artifacts. The method is experimentally validated using a dedicated phantom that enables the controlled injection of air-motion artifacts and with in vivo thermometry from a clinical hyperthermia treatment. RESULTS We showed, using probe measurements in a heated phantom, that our method reduced the mean absolute error (MAE) by 58% compared to the state-of-the-art near a moving air volume. Moreover, with in vivo thermometry our method obtained a MAE reduction between 17% and 95% compared to the state-of-the-art. CONCLUSION We expect that the combined thermal and magnetic susceptibility modeling used in model-based temperature estimation can significantly improve the monitoring in hyperthermia treatments and enable feedback strategies to further improve MR-guided hyperthermia cancer treatments.
Collapse
Affiliation(s)
- S A N Nouwens
- Control Systems Technology Group, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - M M Paulides
- Department of Radiotherapy, Erasmus University Medical Center Cancer Institute, Rotterdam, The Netherlands.,Electromagnetics for Care & Cure, Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - J Fölker
- Control Systems Technology Group, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - I VilasBoas-Ribeiro
- Department of Radiotherapy, Erasmus University Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - B de Jager
- Control Systems Technology Group, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - W P M H Heemels
- Control Systems Technology Group, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
121
|
Rakhshi E, Cambert M, Diascorn Y, Lucas T, Rondeau-Mouro C. An insight into tapioca and wheat starch gelatinization mechanisms using TD-NMR and complementary techniques. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2022; 60:702-718. [PMID: 35178770 DOI: 10.1002/mrc.5258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
To provide evidence for previously proposed assumptions concerning starch gelatinization sub-mechanisms, a more detailed investigation was carried out using multiscale analysis of a starch type selected for its marked difference. Tapioca starch was chosen due to its cohesive/springy properties and its growing use in the food industry. Time-domain nuclear magnetic resonance (TD-NMR) was used to investigate the leaching of material, water absorption and crystallite melting in hydrated tapioca starch (45%). The interpretation of T2 mass intensity evolutions, especially those of the (intra- and extra-granular) aqueous phases, was discussed drawing on complementary techniques such as microscopy, Rapid Visco Analyser (RVA), differential scanning calorimetry (DSC) and swelling factor (SF) and solubility index (SI) measurements. Results show that the T2 assignments usually proposed in the literature are dependent on starch origin. The differences in T2 evolutions (value and mass intensity) observed between wheat and tapioca starches at intermediate hydration levels could be linked to the different gelatinization behaviour of tapioca starch involving the latter's higher granule rupture level, higher gelatinization temperature and greater swelling power above its gelatinization temperature.
Collapse
|
122
|
Abrishami Kashani M, Campbell-Washburn AE, Murphy MC, Catalano OA, McDermott S, Fintelmann FJ. Magnetic Resonance Imaging for Guidance and Follow-up of Thoracic Needle Biopsies and Thermal Ablations. J Thorac Imaging 2022; 37:201-216. [PMID: 35426857 PMCID: PMC10441002 DOI: 10.1097/rti.0000000000000651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Magnetic resonance imaging (MRI) is used for the guidance and follow-up of percutaneous minimally invasive interventions in many body parts. In the thorax, computed tomography (CT) is currently the most used imaging modality for the guidance and follow-up of needle biopsies and thermal ablations. Compared with CT, MRI provides excellent soft tissue contrast, lacks ionizing radiation, and allows functional imaging. The role of MRI is limited in the thorax due to the low hydrogen proton density and many air-tissue interfaces of the lung, as well as respiratory and cardiac motion. Here, we review the current experience of MR-guided thoracic needle biopsies and of MR-guided thermal ablations targeting lesions in the lung, mediastinum, and the chest wall. We provide an overview of MR-compatible biopsy needles and ablation devices. We detail relevant MRI sequences and their relative advantages and disadvantages for procedural guidance, assessment of complications, and long-term follow-up. We compare the advantages and disadvantages of CT and MR for thoracic interventions and identify areas in need of improvement and additional research.
Collapse
Affiliation(s)
| | - Adrienne E Campbell-Washburn
- Division of Intramural Research, Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Mark C Murphy
- Division of Thoracic Imaging and Intervention, Department of Radiology
| | - Onofrio A Catalano
- Division of Abdominal Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA
| | | | | |
Collapse
|
123
|
Huang X, Zhou Y, Wang C, Qi F, Luo P, Du H, Zhang Q, Liu Z, Yuan K, Qiu B. Development of a novel MR-conditional microwave needle for MR-guided interventional microwave ablation at 1.5T. Magn Reson Med 2022; 88:1886-1900. [PMID: 35775830 DOI: 10.1002/mrm.29289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 11/08/2022]
Abstract
PURPOSE To develop an MR-conditional microwave needle that generates a spherical ablation zone and clear MRI visibility for MR-guided microwave ablation. METHODS An MR-conditional microwave needle consisting of zirconia tip and TA18 titanium alloy tube was investigated. The numerical model was created to optimize the needle's geometry and analyze its performance. A geometrically optimized needle was produced using non-magnetic materials based on the electromagnetics simulation results. The needle's mechanical properties were tested per the Chinese pharmaceutical industry standard YY0899-2013. The MRI visibility performance and ablation characteristics of the needle was tested both in vitro (phantom) and in vivo (rabbit) at 1.5T. The RF-induced heating was evaluated in ex vivo porcine liver. RESULTS The needle's mechanical properties met the specified requirements. The needle susceptibility artifact was clearly visible both in vitro and in vivo. The needle artifact diameter (A) was small in in vivo (Ashaft: 4.96 ± 0.18 mm for T1W-FLASH, 3.13 ± 0.05 mm for T2-weighted fast spin-echo (T2W-FSE); Atip: 2.31 ± 0.09 mm for T1W-FLASH, 2.29 ± 0.08 mm for T2W-FSE; tip location error [TLE]: -0.94 ± 0.07 mm for T1W-FLASH, -1.10 ± 0.09 mm for T2W-FSE). Ablation zones generated by the needle were nearly spherical with an elliptical aspect ratio ranging from 0.79 to 0.90 at 30 W, 50 W for 3, 5, 10 min duration ex vivo ablations and 0.86 at 30 W for 10 min duration in vivo ablations. CONCLUSION The designed MR-conditional microwave needle offers excellent mechanical properties, reliable MRI visibility, insignificant RF-induced heating, and a sufficiently spherical ablation zone. Further clinical development of MR-guided microwave ablation appears warranted.
Collapse
Affiliation(s)
- Xiaoyan Huang
- Hefei National Lab for Physical Science at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, AnHui Province, China
| | - Yufu Zhou
- Hefei National Lab for Physical Science at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, AnHui Province, China
| | - Changliang Wang
- Hefei National Lab for Physical Science at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, AnHui Province, China
| | - Fulang Qi
- Hefei National Lab for Physical Science at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, AnHui Province, China
| | - Penghui Luo
- Hefei National Lab for Physical Science at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, AnHui Province, China
| | - Huiyu Du
- Hefei National Lab for Physical Science at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, AnHui Province, China
| | - Qing Zhang
- Hefei National Lab for Physical Science at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, AnHui Province, China
| | - Zhengrong Liu
- Hefei National Lab for Physical Science at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, AnHui Province, China
| | - Kecheng Yuan
- Hefei National Lab for Physical Science at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, AnHui Province, China
| | - Bensheng Qiu
- Hefei National Lab for Physical Science at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, AnHui Province, China
| |
Collapse
|
124
|
De Landro M, Pietra FL, Pagotto SM, Porta L, Staiano I, Giraudeau C, Verde J, Ambarki K, Bianchi L, Korganbayev S, Odeen H, Gallix B, Saccomandi P. Analysis of cavitation artifacts in Magnetic Resonance Imaging Thermometry during laser ablation monitoring. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:5008-5011. [PMID: 36085902 DOI: 10.1109/embc48229.2022.9871675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Magnetic Resonance Thermometry Imaging (MRTI) holds great potential in laser ablation (LA) monitoring. It provides the real-time multidimensional visualization of the treatment effect inside the body, thus enabling accurate intraoperative prediction of the thermal damage induced. Despite its great potential., thermal maps obtained with MRTI may be affected by numerous artifacts. Among the sources of error producing artifacts in the images., the cavitation phenomena which could occur in the tissue during LA induces dipole-structured artifacts. In this work., an analysis of the cavitation artifacts occurring during LA in a gelatin phantom in terms of symmetry in space and symmetry of temperature values was performed. Results of 2 Wand 4 W laser power were compared finding higher symmetry for the 2 W case in terms of both dimensions of artifact-lobes and difference in temperature values extracted in specular pixels in the image. This preliminary investigation of artifact features may provide a step forward in the identification of the best strategy to correct and avoid artifact occurrence during thermal therapy monitoring. Clinical Relevance- This work presents an analysis of cavitation artifacts in MRTI from LA which must be corrected to avoid error in the prediction of thermal damage during LA monitoring.
Collapse
|
125
|
Padilla F, Ter Haar G. Recommendations for Reporting Therapeutic Ultrasound Treatment Parameters. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1299-1308. [PMID: 35461726 DOI: 10.1016/j.ultrasmedbio.2022.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/17/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
These recommendations are intended to provide guidance and to encourage best practice in reporting therapeutic ultrasound treatment parameters. Detailed uniform reporting will allow testing of therapy ultrasound systems and protocols, cross-comparison of studies between different teams using different systems and validation of therapeutic bio-effects. These recommendations have been divided into two sets, one for clinical and one for preclinical studies, each with stratified reporting categories, to account for the disparities in expertise and access to equipment between sites. The recommendations are intended to be useful for clinicians and researchers, for ethical and funding review boards and for the editors and reviewers of scientific journals.
Collapse
Affiliation(s)
- Frederic Padilla
- Focused Ultrasound Foundation, Charlottesville, Virginia, USA; Department of Radiology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Gail Ter Haar
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
126
|
VilasBoas-Ribeiro I, Nouwens SAN, Curto S, Jager BD, Franckena M, van Rhoon GC, Heemels WPMH, Paulides MM. POD-Kalman filtering for improving noninvasive 3D temperature monitoring in MR-guided hyperthermia. Med Phys 2022; 49:4955-4970. [PMID: 35717578 PMCID: PMC9545729 DOI: 10.1002/mp.15811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 12/21/2022] Open
Abstract
Background During resonance frequency (RF) hyperthermia treatment, the temperature of the tumor tissue is elevated to the range of 39–44°C. Accurate temperature monitoring is essential to guide treatments and ensure precise heat delivery and treatment quality. Magnetic resonance (MR) thermometry is currently the only clinical method to measure temperature noninvasively in a volume during treatment. However, several studies have shown that this approach is not always sufficiently accurate for thermal dosimetry in areas with motion, such as the pelvic region. Model‐based temperature estimation is a promising approach to correct and supplement 3D online temperature estimation in regions where MR thermometry is unreliable or cannot be measured. However, complete 3D temperature modeling of the pelvic region is too complex for online usage. Purpose This study aimed to evaluate the use of proper orthogonal decomposition (POD) model reduction combined with Kalman filtering to improve temperature estimation using MR thermometry. Furthermore, we assessed the benefit of this method using data from hyperthermia treatment where there were limited and unreliable MR thermometry measurements. Methods The performance of POD–Kalman filtering was evaluated in several heating experiments and for data from patients treated for locally advanced cervical cancer. For each method, we evaluated the mean absolute error (MAE) concerning the temperature measurements acquired by the thermal probes, and we assessed the reproducibility and consistency using the standard deviation of error (SDE). Furthermore, three patient groups were defined according to susceptibility artifacts caused by the level of intestinal gas motion to assess if the POD–Kalman filtering could compensate for missing and unreliable MR thermometry measurements. Results First, we showed that this method is beneficial and reproducible in phantom experiments. Second, we demonstrated that the combined method improved the match between temperature prediction and temperature acquired by intraluminal thermometry for patients treated for locally advanced cervical cancer. Considering all patients, the POD–Kalman filter improved MAE by 43% (filtered MR thermometry = 1.29°C, POD–Kalman filtered temperature = 0.74°C). Moreover, the SDE was improved by 47% (filtered MR thermometry = 1.16°C, POD–Kalman filtered temperature = 0.61°C). Specifically, the POD–Kalman filter reduced the MAE by approximately 60% in patients whose MR thermometry was unreliable because of the great amount of susceptibilities caused by the high level of intestinal gas motion. Conclusions We showed that the POD–Kalman filter significantly improved the accuracy of temperature monitoring compared to MR thermometry in heating experiments and hyperthermia treatments. The results demonstrated that POD–Kalman filtering can improve thermal dosimetry during RF hyperthermia treatment, especially when MR thermometry is inaccurate.
Collapse
Affiliation(s)
- Iva VilasBoas-Ribeiro
- Department of Radiotherapy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Sven A N Nouwens
- Control System Technology Group, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Sergio Curto
- Department of Radiotherapy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Bram de Jager
- Control System Technology Group, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Martine Franckena
- Department of Radiotherapy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Gerard C van Rhoon
- Department of Radiotherapy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - W P M H Heemels
- Control System Technology Group, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Margarethus M Paulides
- Department of Radiotherapy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Care and Cure Research Lab (EM-4C&C) of the Electromagnetics Group, Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
127
|
Lerner EC, Edwards RM, Wilkinson DS, Fecci PE. Laser ablation: Heating up the anti-tumor response in the intracranial compartment. Adv Drug Deliv Rev 2022; 185:114311. [PMID: 35489652 PMCID: PMC10589123 DOI: 10.1016/j.addr.2022.114311] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/29/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023]
Abstract
Immunotherapies, such as immune checkpoint inhibition (ICI), have had limited success in treating intracranial malignancies. These failures are due partly to the restrictive blood-brain-barrier (BBB), the profound tumor-dependent induction of local and systemic immunosuppression, and immune evasion exhibited by these tumors. Therefore, novel approaches must be explored that aim to overcome these stringent barriers. LITT is an emerging treatment for brain tumors that utilizes thermal ablation to kill tumor cells. LITT provides an additional therapeutic benefit by synergizing with ICI and systemic chemotherapies to strengthen the anti-tumor immune response. This synergistic relationship involves transient disruption of the BBB and local augmentation of immune function, culminating in increased CNS drug penetrance and improved anti-tumor immunity. In this review, we will provide an overview of the challenges facing immunotherapy for brain tumors, and discuss how LITT may synergize with the endogenous anti-tumor response to improve the efficacy of ICI.
Collapse
Affiliation(s)
- Emily C Lerner
- Duke Medical School, Duke University Medical Center, Durham, NC, United States
| | - Ryan M Edwards
- Duke Medical School, Duke University Medical Center, Durham, NC, United States
| | - Daniel S Wilkinson
- Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - Peter E Fecci
- Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States.
| |
Collapse
|
128
|
Antoniou A, Georgiou A, Evripidou N, Damianou C. Full coverage path planning algorithm for MRgFUS therapy. Int J Med Robot 2022; 18:e2389. [PMID: 35257476 PMCID: PMC9286630 DOI: 10.1002/rcs.2389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND High-quality methods for Magnetic Resonance guided Focussed Ultrasound (MRgFUS) therapy planning are needed for safe and efficient clinical practices. Herein, an algorithm for full coverage path planning based on preoperative MR images is presented. METHODS The software functionalities of an MRgFUS robotic system were enhanced by implementing the developed algorithm. The algorithm's performance in accurate path planning following a Zig-Zag pathway was assessed on MR images. The planned sonication paths were performed on acrylic films using the robotic system carrying a 2.75 MHz single element transducer. RESULTS Ablation patterns were successfully planned on MR images and produced on acrylic films by overlapping lesions with excellent match between the planned and experimental lesion shapes. CONCLUSIONS The advanced software was proven efficient in planning and executing full ablation of any segmented target. The reliability of the algorithm could be enhanced through the development of a fully automated segmentation procedure.
Collapse
Affiliation(s)
- Anastasia Antoniou
- Department of Electrical EngineeringComputer Engineering, and InformaticsCyprus University of TechnologyLimassolCyprus
| | - Andreas Georgiou
- Department of Electrical EngineeringComputer Engineering, and InformaticsCyprus University of TechnologyLimassolCyprus
| | - Nikolas Evripidou
- Department of Electrical EngineeringComputer Engineering, and InformaticsCyprus University of TechnologyLimassolCyprus
| | - Christakis Damianou
- Department of Electrical EngineeringComputer Engineering, and InformaticsCyprus University of TechnologyLimassolCyprus
| |
Collapse
|
129
|
A new versatile MR-guided high-intensity focused ultrasound (HIFU) device for the treatment of musculoskeletal tumors. Sci Rep 2022; 12:9095. [PMID: 35641597 PMCID: PMC9156664 DOI: 10.1038/s41598-022-13213-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/23/2022] [Indexed: 11/08/2022] Open
Abstract
Magnetic Resonance (MR) Imaging-guided High Intensity focused Ultrasound (MRgHIFU) is a non-invasive, non-ionizing thermal ablation therapy that is particularly interesting for the palliative or curative treatment of musculoskeletal tumors. We introduce a new modular MRgHIFU device that allows the ultrasound transducer to be positioned precisely and interactively over the body part to be treated. A flexible, MR-compatible supporting structure allows free positioning of the transducer under MRI/optical fusion imaging guidance. The same structure can be rigidified using pneumatic depression, holding the transducer rigidly in place. Targeting accuracy was first evaluated in vitro. The average targeting error of the complete process was found to be equal to 5.4 ± 2.2 mm in terms of focus position, and 4.7° ± 2° in terms of transducer orientation. First-in-man feasibility is demonstrated on a patient suffering from important, uncontrolled pain from a bone metastasis located in the forearm. The 81 × 47 × 34 mm3 lesion was successfully treated using five successive positions of the transducer, under real-time monitoring by MR Thermometry. Significant pain palliation was observed 3 days after the intervention. The system described and characterized in this study is a particularly interesting modular, low-cost MRgHIFU device for musculoskeletal tumor therapy.
Collapse
|
130
|
Kim K, Ahn J, Yoon K, Ko M, Ahn J, Kim H, Park J, Lee C, Chang D, Oh S. In Vivo Magnetic Resonance Thermometry for Brain and Body Temperature Variations in Canines under General Anesthesia. SENSORS 2022; 22:s22114034. [PMID: 35684654 PMCID: PMC9183176 DOI: 10.3390/s22114034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023]
Abstract
The core body temperature tends to decrease under general anesthesia. Consequently, monitoring the core body temperature during procedures involving general anesthesia is essential to ensure patient safety. In veterinary medicine, rectal temperature is used as an indicator of the core body temperature, owing to the accuracy and convenience of this approach. Some previous studies involving craniotomy reported differences between the brain and core temperatures under general anesthesia. However, noninvasive imaging techniques are required to ascertain this because invasive brain temperature measurements can cause unintended temperature changes by inserting the temperature sensors into the brain or by performing the surgical operations. In this study, we employed in vivo magnetic resonance thermometry to observe the brain temperatures of patients under general anesthesia using the proton resonance frequency shift method. The rectal temperature was also recorded using a fiber optic thermometer during the MR thermometry to compare with the brain temperature changes. When the rectal temperature decreased by 1.4 ± 0.5 °C (mean ± standard deviation), the brain temperature (white matter) decreased by 4.8 ± 0.5 °C. Furthermore, a difference in the temperature reduction of the different types of brain tissue was observed; the reduction in the temperature of white matter exceeded that of gray matter mainly due to the distribution of blood vessels in the gray matter. We also analyzed and interpreted the core temperature changes with the body conditioning scores of subjects to see how the body weight affected the temperature changes.
Collapse
Affiliation(s)
- Keonil Kim
- Bio-Chemical Analysis Team, Center for Research Equipment, Korea Basic Science Institute, Cheongju 28119, Korea; (K.K.); (C.L.)
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Korea
| | - Jisoo Ahn
- Section of Veterinary Medical Imaging, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (J.A.); (K.Y.); (M.K.); (J.A.); (H.K.); (J.P.)
| | - Kwangyong Yoon
- Section of Veterinary Medical Imaging, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (J.A.); (K.Y.); (M.K.); (J.A.); (H.K.); (J.P.)
| | - Minjung Ko
- Section of Veterinary Medical Imaging, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (J.A.); (K.Y.); (M.K.); (J.A.); (H.K.); (J.P.)
| | - Jiyoung Ahn
- Section of Veterinary Medical Imaging, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (J.A.); (K.Y.); (M.K.); (J.A.); (H.K.); (J.P.)
| | - Hyesung Kim
- Section of Veterinary Medical Imaging, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (J.A.); (K.Y.); (M.K.); (J.A.); (H.K.); (J.P.)
| | - Jihyeon Park
- Section of Veterinary Medical Imaging, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (J.A.); (K.Y.); (M.K.); (J.A.); (H.K.); (J.P.)
| | - Chulhyun Lee
- Bio-Chemical Analysis Team, Center for Research Equipment, Korea Basic Science Institute, Cheongju 28119, Korea; (K.K.); (C.L.)
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Korea
| | - Dongwoo Chang
- Section of Veterinary Medical Imaging, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (J.A.); (K.Y.); (M.K.); (J.A.); (H.K.); (J.P.)
- Correspondence: (D.C.); (S.O.)
| | - Sukhoon Oh
- Bio-Chemical Analysis Team, Center for Research Equipment, Korea Basic Science Institute, Cheongju 28119, Korea; (K.K.); (C.L.)
- Correspondence: (D.C.); (S.O.)
| |
Collapse
|
131
|
Üngör Ö, Ozvat TM, Ni Z, Zadrozny JM. Record Chemical-Shift Temperature Sensitivity in a Series of Trinuclear Cobalt Complexes. J Am Chem Soc 2022; 144:9132-9137. [PMID: 35549174 DOI: 10.1021/jacs.2c03115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Designing spins that exhibit long-lived coherence and strong temperature sensitivity is central to designing effective molecular thermometers and a fundamental challenge in the chemistry/quantum-information space. Herein, we provide a new pathway to both properties in the same molecule by designing a nuclear spin, which possesses a robust spin coherence, to mimic the strong temperature sensitivity of an electronic spin. This design strategy is demonstrated in the group of trinuclear Co(III) spin-crossover compounds [(CpCo(OP(OR)2)3)2Co](SbCl6) where Cp = cyclopentadienyl and R = Me (1), Et (2), i-Pr (3), and t-Bu (4). Nuclear magnetic resonance analyses of the 59Co nuclear spins reveal 59Co chemical-shift temperature sensitivity (Δδ/ΔT) values that span from 101(1) ppm/°C in 1 to 149(1) ppm/°C in 2 and 150(2) ppm/°C in 4, where the latter two are record temperature sensitivities for any nuclear spin. Additionally, complexes 2 and 4 have T2* values of 74 and 78 μs in solution at ambient temperatures surpassing those from electron-spin-based complexes, which typically display long coherence times only at extremely low temperatures. Our results suggest that spin-crossover phenomena can enable electron-spin-like temperature sensitivities in nuclear spins while retaining robust coherence times at room temperature.
Collapse
Affiliation(s)
- Ökten Üngör
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Tyler M Ozvat
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Zhen Ni
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| | - Joseph M Zadrozny
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
132
|
Baek H, Lockwood D, Mason EJ, Obusez E, Poturalski M, Rammo R, Nagel SJ, Jones SE. Clinical Intervention Using Focused Ultrasound (FUS) Stimulation of the Brain in Diverse Neurological Disorders. Front Neurol 2022; 13:880814. [PMID: 35614924 PMCID: PMC9124976 DOI: 10.3389/fneur.2022.880814] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/07/2022] [Indexed: 12/02/2022] Open
Abstract
Various surgical techniques and pharmaceutical treatments have been developed to improve the current technologies of treating brain diseases. Focused ultrasound (FUS) is a new brain stimulation modality that can exert a therapeutic effect on diseased brain cells, with this effect ranging from permanent ablation of the pathological neural circuit to transient excitatory/inhibitory modulation of the neural activity depending on the acoustic energy of choice. With the development of intraoperative imaging technology, FUS has become a clinically available noninvasive neurosurgical option with visual feedback. Over the past 10 years, FUS has shown enormous potential. It can deliver acoustic energy through the physical barrier of the brain and eliminate abnormal brain cells to treat patients with Parkinson's disease and essential tremor. In addition, FUS can help introduce potentially beneficial therapeutics at the exact brain region where they need to be, bypassing the brain's function barrier, which can be applied for a wide range of central nervous system disorders. In this review, we introduce the current FDA-approved clinical applications of FUS, ranging from thermal ablation to blood barrier opening, as well as the emerging applications of FUS in the context of pain control, epilepsy, and neuromodulation. We also discuss the expansion of future applications and challenges. Broadening FUS technologies requires a deep understanding of the effect of ultrasound when targeting various brain structures in diverse disease conditions in the context of skull interface, anatomical structure inside the brain, and pathology.
Collapse
Affiliation(s)
- Hongchae Baek
- Cleveland Clinic, Imaging Institute, Cleveland, OH, United States
- Center for Neurological Restoration, Cleveland Clinic, Neurological Institute, Cleveland, OH, United States
| | - Daniel Lockwood
- Cleveland Clinic, Imaging Institute, Cleveland, OH, United States
| | | | - Emmanuel Obusez
- Cleveland Clinic, Imaging Institute, Cleveland, OH, United States
| | | | - Richard Rammo
- Center for Neurological Restoration, Cleveland Clinic, Neurological Institute, Cleveland, OH, United States
| | - Sean J. Nagel
- Center for Neurological Restoration, Cleveland Clinic, Neurological Institute, Cleveland, OH, United States
| | - Stephen E. Jones
- Cleveland Clinic, Imaging Institute, Cleveland, OH, United States
- *Correspondence: Stephen E. Jones
| |
Collapse
|
133
|
Fite BZ, Wang J, Ghanouni P, Ferrara KW. A Review of Imaging Methods to Assess Ultrasound-Mediated Ablation. BME FRONTIERS 2022; 2022:9758652. [PMID: 35957844 PMCID: PMC9364780 DOI: 10.34133/2022/9758652] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/21/2022] [Indexed: 12/18/2022] Open
Abstract
Ultrasound ablation techniques are minimally invasive alternatives to surgical resection and have rapidly increased in use. The response of tissue to HIFU ablation differs based on the relative contributions of thermal and mechanical effects, which can be varied to achieve optimal ablation parameters for a given tissue type and location. In tumor ablation, similar to surgical resection, it is desirable to include a safety margin of ablated tissue around the entirety of the tumor. A factor in optimizing ablative techniques is minimizing the recurrence rate, which can be due to incomplete ablation of the target tissue. Further, combining focal ablation with immunotherapy is likely to be key for effective treatment of metastatic cancer, and therefore characterizing the impact of ablation on the tumor microenvironment will be important. Thus, visualization and quantification of the extent of ablation is an integral component of ablative procedures. The aim of this review article is to describe the radiological findings after ultrasound ablation across multiple imaging modalities. This review presents readers with a general overview of the current and emerging imaging methods to assess the efficacy of ultrasound ablative treatments.
Collapse
Affiliation(s)
- Brett Z. Fite
- Department of Radiology, Stanford University, Palo Alto, CA 94305, USA
| | - James Wang
- Department of Radiology, Stanford University, Palo Alto, CA 94305, USA
| | - Pejman Ghanouni
- Department of Radiology, Stanford University, Palo Alto, CA 94305, USA
| | | |
Collapse
|
134
|
Antoniou A, Georgiou L, Christodoulou T, Panayiotou N, Ioannides C, Zamboglou N, Damianou C. MR relaxation times of agar-based tissue-mimicking phantoms. J Appl Clin Med Phys 2022; 23:e13533. [PMID: 35415875 PMCID: PMC9121050 DOI: 10.1002/acm2.13533] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/29/2021] [Indexed: 12/31/2022] Open
Abstract
Agar gels were previously proven capable of accurately replicating the acoustical and thermal properties of real tissue and widely used for the construction of tissue-mimicking phantoms (TMPs) for focused ultrasound (FUS) applications. Given the current popularity of magnetic resonance-guided FUS (MRgFUS), we have investigated the MR relaxation times T1 and T2 of different mixtures of agar-based phantoms. Nine TMPs were constructed containing agar as the gelling agent and various concentrations of silicon dioxide and evaporated milk. An agar-based phantom doped with wood powder was also evaluated. A series of MR images were acquired in a 1.5 T scanner for T1 and T2 mapping. T2 was predominantly affected by varying agar concentrations. A trend toward decreasing T1 with an increasing concentration of evaporated milk was observed. The addition of silicon dioxide decreased both relaxation times of pure agar gels. The proposed phantoms have great potential for use with the continuously emerging MRgFUS technology. The MR relaxation times of several body tissues can be mimicked by adjusting the concentration of ingredients, thus enabling more accurate and realistic MRgFUS studies.
Collapse
Affiliation(s)
- Anastasia Antoniou
- Department of Electrical EngineeringComputer Engineering, and InformaticsCyprus University of TechnologyLimassolCyprus
| | - Leonidas Georgiou
- Department of Interventional RadiologyGerman Oncology CenterLimassolCyprus
| | | | - Natalie Panayiotou
- Department of Interventional RadiologyGerman Oncology CenterLimassolCyprus
| | | | - Nikolaos Zamboglou
- Department of Interventional RadiologyGerman Oncology CenterLimassolCyprus
| | - Christakis Damianou
- Department of Electrical EngineeringComputer Engineering, and InformaticsCyprus University of TechnologyLimassolCyprus
| |
Collapse
|
135
|
Xu G, Zhao Z, Xu K, Zhu J, Roe AW, Xu B, Zhang X, Li J, Xu D. Magnetic resonance temperature imaging of laser-induced thermotherapy using proton resonance frequency shift: evaluation of different sequences in phantom and porcine brain at 7 T. Jpn J Radiol 2022; 40:768-780. [DOI: 10.1007/s11604-022-01263-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
|
136
|
Antoniou A, Giannakou M, Evripidou N, Stratis S, Pichardo S, Damianou C. Robotic system for top to bottom MRgFUS therapy of multiple cancer types. Int J Med Robot 2022; 18:e2364. [PMID: 34996126 DOI: 10.1002/rcs.2364] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 04/02/2025]
Abstract
BACKGROUND A robotic system for Magnetic Resonance guided Focussed Ultrasound (MRgFUS) therapy of tumours in the breast, bone, thyroid, and abdomen was developed. METHODS A special C-shaped structure was designed to be attached to the table of conventional magnetic resonance imaging (MRI) systems carrying 4 computer-controlled motion stages dedicated to positioning a 2.75 MHz spherically focussed transducer relative to a patient placed in the supine position. The developed system was evaluated for its MRI compatibility and heating abilities in agar-based phantoms and freshly excised tissue. RESULTS Compatibility of the system with a clinical high-field MRI scanner was demonstrated. FUS heating in the phantom was successfully monitored by magnetic resonance thermometry without any evidence of magnetically induced phenomena. Cigar-shaped discrete lesions and well-defined areas of overlapping lesions were inflicted in excised tissue by robotic movement along grid patterns. CONCLUSIONS The developed MRgFUS robotic system was proven safe and efficient by ex-vivo feasibility studies.
Collapse
Affiliation(s)
- Anastasia Antoniou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | | | - Nikolas Evripidou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Stylianos Stratis
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Samuel Pichardo
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
137
|
Scotti AM, Damen F, Gao J, Li W, Liew CW, Cai Z, Zhang Z, Cai K. Phase-independent thermometry by Z-spectrum MR imaging. Magn Reson Med 2022; 87:1731-1741. [PMID: 34752646 PMCID: PMC10029969 DOI: 10.1002/mrm.29072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/30/2021] [Accepted: 10/17/2021] [Indexed: 01/05/2023]
Abstract
PURPOSE Z-spectrum imaging, defined as the consecutive collection of images after saturating over a range of frequency offsets, has been recently proposed as a method to measure the fat-water fraction by the simultaneous detection of fat and water resonances. By incorporating a binomial pulse irradiated at each offset before the readout, the spectral selectivity of the sequence can be further amplified, making it possible to monitor the subtle proton resonance frequency shift that follows a change in temperature. METHODS We tested the hypothesis in aqueous and cream phantoms and in healthy mice, all under thermal challenge. The binomial module consisted of 2 sinc-shaped pulses of opposite phase separated by a delay. Such a delay served to spread out off-resonance spins, with the resulting excitation profile being a periodic function of the delay and the chemical shift. RESULTS During heating experiments, the water resonance shifted downfield, and by fitting the curve to a sine function it was possible to quantify the change in temperature. Results from Z-spectrum imaging correlated linearly with data from conventional MRI techniques like T1 mapping and phase differences from spoiled GRE. CONCLUSION Because the measurement is performed solely on magnitude images, the technique is independent of phase artifacts and is therefore applicable in mixed tissues (e.g., fat). We showed that Z-spectrum imaging can deliver reliable temperature change measurement in both muscular and fatty tissues.
Collapse
Affiliation(s)
- Alessandro M. Scotti
- Department of Radiology, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Frederick Damen
- Department of Radiology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jin Gao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
- Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Weiguo Li
- Department of Radiology, University of Illinois at Chicago, Chicago, Illinois, USA
- Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Chong Wee Liew
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Zimeng Cai
- School of Medical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Image Processing, Southern Medical University, Guangzhou, China
| | - Zhuoli Zhang
- Department of Radiology, Northwestern University, Evanston, Illinois, USA
| | - Kejia Cai
- Department of Radiology, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
138
|
Lee AL, Pandey AK, Chiniforoush S, Mandal M, Li J, Cramer CJ, Haynes CL, Pomerantz WCK. Development of a Highly Responsive Organofluorine Temperature Sensor for 19F Magnetic Resonance Applications. Anal Chem 2022; 94:3782-3790. [PMID: 35191677 PMCID: PMC9683353 DOI: 10.1021/acs.analchem.1c04248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Temperature can affect many biological and chemical processes within a body. During in vivo measurements, varied temperature can impact the accurate quantification of additional abiotic factors such as oxygen. During magnetic resonance imaging (MRI) measurements, the temperature of the sample can increase with the absorption of radiofrequency energy, which needs to be well-regulated for thermal therapies and long exposure. To address this potentially confounding effect, temperature can be probed intentionally using reporter molecules to determine the temperature in vivo. This work describes a combined experimental and computational approach for the design of fluorinated molecular temperature sensors with the potential to improve the accuracy and sensitivity of 19F MRI-based temperature monitoring. These fluorinated sensors are being developed to overcome the temperature sensitivity and tissue limitations of the proton resonance frequency (10 × 10-3 ppm °C-1), a standard parameter used for temperature mapping in MRI. Here, we develop (perfluoro-[1,1'-biphenyl]-4,4'-diyl)bis((heptadecafluorodecyl)sulfane), which has a nearly 2-fold increase in temperature responsiveness, compared to the proton resonance frequency and the 19F MRI temperature sensor perfluorotributylamine, when tested under identical NMR conditions. While 19F MRI is in the early stages of translation into clinical practice, development of alternative sensors with improved diagnostic abilities will help advance the development and incorporation of fluorine magnetic resonance techniques for clinical use.
Collapse
Affiliation(s)
- Amani L Lee
- University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Anil K Pandey
- University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Sina Chiniforoush
- University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Mukunda Mandal
- University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Jiaqian Li
- University of Minnesota, Minneapolis, Minnesota 55414, United States
| | | | - Christy L Haynes
- University of Minnesota, Minneapolis, Minnesota 55414, United States
| | | |
Collapse
|
139
|
Continuous cardiac thermometry via simultaneous catheter tracking and undersampled radial golden angle acquisition for radiofrequency ablation monitoring. Sci Rep 2022; 12:4006. [PMID: 35256627 PMCID: PMC8901729 DOI: 10.1038/s41598-022-06927-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/24/2022] [Indexed: 01/18/2023] Open
Abstract
The complexity of the MRI protocol is one of the factors limiting the clinical adoption of MR temperature mapping for real-time monitoring of cardiac ablation procedures and a push-button solution would ease its use. Continuous gradient echo golden angle radial acquisition combined with intra-scan motion correction and undersampled temperature determination could be a robust and more user-friendly alternative than the ultrafast GRE-EPI sequence which suffers from sensitivity to magnetic field susceptibility artifacts and requires ECG-gating. The goal of this proof-of-concept work is to establish the temperature uncertainty as well as the spatial and temporal resolutions achievable in an Agar-gel phantom and in vivo using this method. GRE radial golden angle acquisitions were used to monitor RF ablations in a phantom and in vivo in two sheep hearts with different slice orientations. In each case, 2D rigid motion correction based on catheter micro-coil signal, tracking its motion, was performed and its impact on the temperature imaging was assessed. The temperature uncertainty was determined for three spatial resolutions (1 × 1 × 3 mm3, 2 × 2 × 3 mm3, and 3 × 3 × 3 mm3) and three temporal resolutions (0.48, 0.72, and 0.97 s) with undersampling acceleration factors ranging from 2 to 17. The combination of radial golden angle GRE acquisition, simultaneous catheter tracking, intra-scan 2D motion correction, and undersampled thermometry enabled temperature monitoring in the myocardium in vivo during RF ablations with high temporal (< 1 s) and high spatial resolution. The temperature uncertainty ranged from 0.2 ± 0.1 to 1.8 ± 0.2 °C for the various temporal and spatial resolutions and, on average, remained superior to the uncertainty of an EPI acquisition while still allowing clinical monitoring of the RF ablation process. The proposed method is a robust and promising alternative to EPI acquisition to monitor in vivo RF cardiac ablations. Further studies remain required to improve the temperature uncertainty and establish its clinical applicability.
Collapse
|
140
|
Darmani G, Bergmann T, Butts Pauly K, Caskey C, de Lecea L, Fomenko A, Fouragnan E, Legon W, Murphy K, Nandi T, Phipps M, Pinton G, Ramezanpour H, Sallet J, Yaakub S, Yoo S, Chen R. Non-invasive transcranial ultrasound stimulation for neuromodulation. Clin Neurophysiol 2022; 135:51-73. [DOI: 10.1016/j.clinph.2021.12.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022]
|
141
|
Kuroda K, Yatsushiro S. New Insights into MR Safety for Implantable Medical Devices. Magn Reson Med Sci 2022; 21:110-131. [PMID: 35228487 PMCID: PMC9199981 DOI: 10.2463/mrms.rev.2021-0160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/08/2022] [Indexed: 12/24/2022] Open
Abstract
Over the last two decades, the status of MR safety has dramatically changed. In particular, ever since the MR-conditional cardiac device was approved by the Food and Drug Administration (FDA) in 2008 and by the Pharmaceuticals and Medical Devices Agency (PMDA) in 2012, the safety of patients with an implantable medical device (IMD) has been one of the most important issues in terms of MR use. In conjunction with the regulatory approvals for various IMDs, standards, technical specifications, and guidelines have also been rapidly created and developed. Many invaluable papers investigating and reviewing the history and status of MR use in the presence of IMDs already exist. As such, this review paper seeks to bridge the gap between clinical practice and the information that is obtained by standard-based tests and provided by an IMD's package insert or instructions for use. Interpretation of the gradient of the magnetic flux density intensity of the static magnetic field with respect to the magnetic displacement force is discussed, along with the physical background of RF field. The relationship between specific absorption rate (SAR) and B1+RMS, and their effects on image quality are described. In addition, insofar as providing new directions for future research and practice, the feasibility of safety test methods for RF-induced heating of IMDs using MR thermometry, evaluation of tissue heat damage, and challenges in cardiac IMDs will be discussed.
Collapse
Affiliation(s)
- Kagayaki Kuroda
- Department of Human and Information Sciences, School of Information Science and Technology, Tokai University, Hiratsuka, Kanagawa, Japan
| | - Satoshi Yatsushiro
- Department of Human and Information Sciences, School of Information Science and Technology, Tokai University, Hiratsuka, Kanagawa, Japan
- Biosim Laboratory, Bioview, Inc., Tokyo, Japan
| |
Collapse
|
142
|
Tang M, Yamamoto T. Progress in Understanding Radiofrequency Heating and Burn Injuries for Safer MR Imaging. Magn Reson Med Sci 2022; 22:7-25. [PMID: 35228437 PMCID: PMC9849420 DOI: 10.2463/mrms.rev.2021-0047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
RF electromagnetic wave exposure during MRI scans induces heat and occasionally causes burn injuries to patients. Among all the types of physical injuries that have occurred during MRI examinations, RF burn injuries are the most common ones. The number of RF burn injuries increases as the static magnetic field of MRI systems increases because higher RFs lead to higher heating. The commonly believed mechanisms of RF burn injuries are the formation of a conductive loop by the patient's posture or cables, such as an electrocardiogram lead; however, the mechanisms of RF burn injuries that occur at the contact points, such as the bore wall and the elbow, remain unclear. A comprehensive understanding of RF heating is needed to address effective countermeasures against all RF burn injuries for safe MRI examinations. In this review, we summarize the occurrence of RF burn injury cases by categorizing RF burn injuries reported worldwide in recent decades. Safety standards and regulations governing RF heating that occurs during MRI examinations are presented, along with their theoretical and physiological backgrounds. The experimental assessment techniques for RF heating are then reviewed, and the development of numerical simulation techniques is explained. In addition, a comprehensive theoretical interpretation of RF burn injuries is presented. By including the results of recent experimental and numerical simulation studies on RF heating, this review describes the progress achieved in understanding RF heating from the standpoint of MRI burn injury prevention.
Collapse
Affiliation(s)
- Minghui Tang
- Department of Diagnostic Imaging, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Toru Yamamoto
- Division of Biomedical Engineering and Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan,Corresponding author: Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0812, Japan. Phone: +81-11-706-3412, Fax: +81-11-706-4916, E-mail:
| |
Collapse
|
143
|
Saniour I, Robb FJL, Taracila V, Mishra V, Vincent J, Voss HU, Kaplitt MG, Chazen JL, Winkler SA. Characterization of a Low-Profile, Flexible, and Acoustically Transparent Receive-Only MRI Coil Array for High Sensitivity MR-Guided Focused Ultrasound. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2022; 10:25062-25072. [PMID: 35600672 PMCID: PMC9119199 DOI: 10.1109/access.2022.3154824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Magnetic resonance guided focused ultrasound (MRgFUS) is a non-invasive therapeutic modality for neurodegenerative diseases that employs real-time imaging and thermometry monitoring of targeted regions. MRI is used in guidance of ultrasound treatment; however, the MR image quality in current clinical applications is poor when using the vendor built-in body coil. We present an 8-channel, ultra-thin, flexible, and acoustically transparent receive-only head coil design (FUS-Flex) to improve the signal-to-noise ratio (SNR) and thus the quality of MR images during MRgFUS procedures. Acoustic simulations/experiments exhibit transparency of the FUS-Flex coil as high as 97% at 650 kHz. Electromagnetic simulations show a SNR increase of 13× over the body coil. In vivo results show an increase of the SNR over the body coil by a factor of 7.3 with 2× acceleration (equivalent to 11× without acceleration) in the brain of a healthy volunteer, which agrees well with simulation. These preliminary results show that the use of a FUS-Flex coil in MRgFUS surgery can increase MR image quality, which could yield improved focal precision, real-time intraprocedural anatomical imaging, and real-time 3D thermometry mapping.
Collapse
Affiliation(s)
- Isabelle Saniour
- Department of Radiology, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, NY 10065, USA
| | | | | | - Vishwas Mishra
- Department of Radiology, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, NY 10065, USA
| | - Jana Vincent
- MR Engineering, GE Healthcare Coils, Aurora, OH 44202, USA
| | - Henning U Voss
- Department of Radiology, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, NY 10065, USA
| | - Michael G Kaplitt
- Department of Neurological Surgery, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, NY 10065, USA
| | - J Levi Chazen
- Department of Radiology, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, NY 10065, USA
| | - Simone Angela Winkler
- Department of Radiology, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, NY 10065, USA
| |
Collapse
|
144
|
MR Imaging in Real Time Guiding of Therapies in Prostate Cancer. Life (Basel) 2022; 12:life12020302. [PMID: 35207589 PMCID: PMC8878909 DOI: 10.3390/life12020302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/31/2022] [Accepted: 02/11/2022] [Indexed: 11/22/2022] Open
Abstract
Magnetic resonance imaging (MRI)-guided therapy for prostate cancer (PCa) aims to reduce the treatment-associated comorbidity of existing radical treatment, including radical prostatectomy and radiotherapy. Although active surveillance has been used as a conservative method to reduce overtreatment, there is a growing demand for less morbidity and personalized (focal) treatment. The development of multiparametric MRI was of real importance in improving the detection, localization and staging of PCa. Moreover, MRI has been useful for lesion targeting within the prostate, as it is used in the guidance of prostate biopsies, by means of cognitive registration, MRI-ultrasound fusion guidance or direct in-bore MRI-guidance. With regard to PCa therapies, MRI is used for precise probe placement into the lesion and to accurately monitor the treatment in real-time. Moreover, advances in MR-compatible thermal ablation allow for noninvasive real-time temperature mapping during treatment. In this review, we present an overview of the current status of MRI-guided therapies in PCa, focusing on cryoablation, focal laser ablation, high intensity focused ultrasound and transurethral ultrasound ablation. We explain the important role of MRI in the evaluation of the completeness of the ablation and during follow-up. Finally, we will discuss the challenges and future development inherent to these new technologies.
Collapse
|
145
|
Raghuram H, Keunen B, Soucier N, Looi T, Pichardo S, Waspe AC, Drake JM. A robotic magnetic resonance-guided high-intensity focused ultrasound platform for neonatal neurosurgery: Assessment of targeting accuracy and precision in a brain phantom. Med Phys 2022; 49:2120-2135. [PMID: 35174892 DOI: 10.1002/mp.15540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Intraventricular Hemorrhage (IVH) is one of the most serious neurovascular complications resulting from premature birth. It can result in clotting of blood within the ventricles, which causes a buildup of cerebrospinal fluid that can lead to posthemorrhagic ventricular dilation and posthemorrhagic hydrocephalus. Currently, there are no direct treatments for these blood clots as the standard of care is invasive surgery to insert a shunt. Magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU) has been investigated as a non-invasive treatment to lyse blood clots. However, current MRgHIFU systems are not suitable in the context of treating IVH in neonates. PURPOSE We have developed a robotic MRgHIFU neurosurgical platform designed to treat the neonatal brain. This platform facilitates ergonomic patient positioning and directs treatment through their open anterior fontanelle while providing a larger treatment volume. The platform is based on an MR-compatible robot developed by our group. Further development of the platform has warranted investigation of its targeting ability to assess its feasibility in the neonatal brain. This study aimed to quantify the platform's targeting accuracy, precision, and repeatability using a brain phantom and clinical MRI system. METHODS A thermosensitive brain-mimicking phantom was developed to test the platform's targeting accuracy. Rectangular grid patterns were created with HIFU thermal energy "lesions" in the phantoms by targeting specific coordinate points. The intended target locations were demarcated by inserting carbon fibre rods through a targeting assessment template. Coordinates for the intended and actual targets were derived from T2-weighted MRI scans and the centroid distance between them was measured. Subsequently, the platform's targeting accuracy was quantified according to equations derived from ISO Standard 9283:1998. RESULTS HIFU ablation resulted in distinct thermal lesions within the thermosensitive phantoms, which appeared as discrete hypointense regions in T2-weighted MR scans. A total of 127 target points were included in the data analysis, which yielded a targeting accuracy of 0.6mm and targeting precision of 1.2mm. CONCLUSIONS The robotic MRgHIFU platform was shown to have a high degree of accuracy, precision, and repeatability. The results demonstrate the platform's functionality when targeting through simulated brain matter. These results serve as an initial verification of the platform targeting ability and showed promise towards the final application in a neonatal brain. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hrishikesh Raghuram
- Posluns Centre for Image Guided Innovation and Therapeutic Intervention, Hospital for Sick Children, Toronto, Ontario, M5G 1 × 8, Canada.,The Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, M5G 3G9, Canada
| | - Benjamin Keunen
- The Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, M5G 3G9, Canada
| | - Nathan Soucier
- Posluns Centre for Image Guided Innovation and Therapeutic Intervention, Hospital for Sick Children, Toronto, Ontario, M5G 1 × 8, Canada.,The Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, M5G 3G9, Canada
| | - Thomas Looi
- Posluns Centre for Image Guided Innovation and Therapeutic Intervention, Hospital for Sick Children, Toronto, Ontario, M5G 1 × 8, Canada.,Department of Medical Imaging, University of Toronto, Toronto, Ontario, M5T 1W7, Canada
| | - Samuel Pichardo
- Radiology and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Adam C Waspe
- Posluns Centre for Image Guided Innovation and Therapeutic Intervention, Hospital for Sick Children, Toronto, Ontario, M5G 1 × 8, Canada.,Department of Medical Imaging, University of Toronto, Toronto, Ontario, M5T 1W7, Canada
| | - James M Drake
- Posluns Centre for Image Guided Innovation and Therapeutic Intervention, Hospital for Sick Children, Toronto, Ontario, M5G 1 × 8, Canada.,The Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, M5G 3G9, Canada.,Department of Neurosurgery, University of Toronto, Toronto, Ontario, M5S 1A1, Canada
| |
Collapse
|
146
|
Seo H, Huh H, Lee EH, Park J. Numerical Evaluation of the Effects of Transducer Displacement on Transcranial Focused Ultrasound in the Rat Brain. Brain Sci 2022; 12:216. [PMID: 35203979 PMCID: PMC8870101 DOI: 10.3390/brainsci12020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/15/2022] [Accepted: 02/03/2022] [Indexed: 02/04/2023] Open
Abstract
Focused ultrasound is a promising therapeutic technique, as it involves the focusing of an ultrasonic beam with sufficient acoustic energy into a target brain region with high precision. Low-intensity ultrasound transmission by a single-element transducer is mostly established for neuromodulation applications and blood-brain barrier disruption for drug delivery. However, transducer positioning errors can occur without fine control over the sonication, which can affect repeatability and lead to reliability problems. The objective of this study was to determine whether the target brain region would be stable under small displacement (0.5 mm) of the transducer based on numerical simulations. Computed-tomography-derived three-dimensional models of a rat head were constructed to investigate the effects of transducer displacement in the caudate putamen (CP) and thalamus (TH). Using three different frequencies (1.1, 0.69, and 0.25 MHz), the transducer was displaced by 0.5 mm in each of the following six directions: superior, interior, anterior, posterior, left, and right. The maximum value of the intracranial pressure field was calculated, and the targeting errors were determined by the full-width-at-half-maximum (FWHM) overlap between the free water space (FWHMwater) and transcranial transmission (FWHMbase). When the transducer was positioned directly above the target region, a clear distinction between the target regions was observed, resulting in 88.3%, 81.5%, and 84.5% FWHMwater for the CP and 65.6%, 76.3%, and 64.4% FWHMwater for the TH at 1.1, 0.69, and 0.25 MHz, respectively. Small transducer displacements induced both enhancement and reduction of the peak pressure and targeting errors, compared with when the transducer was displaced in water. Small transducer displacement to the left resulted in the lowest stability, with 34.8% and 55.0% targeting accuracy (FWHMwater) at 1.1 and 0.69 MHz in the TH, respectively. In addition, the maximum pressure was reduced by up to 11% by the transducer displacement. This work provides the targeting errors induced by transducer displacements through a preclinical study and recommends that attention be paid to determining the initial sonication foci in the transverse plane in the cases of small animals.
Collapse
Affiliation(s)
- Hyeon Seo
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (H.S.); (H.H.); (E.-H.L.)
| | - Hyungkyu Huh
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (H.S.); (H.H.); (E.-H.L.)
| | - Eun-Hee Lee
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (H.S.); (H.H.); (E.-H.L.)
| | - Juyoung Park
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (H.S.); (H.H.); (E.-H.L.)
- Department of High-Tech Medical Device, College of Future Industry, Gachon University, Seongnam-si 13120, Korea
| |
Collapse
|
147
|
Utkur M, Saritas EU. Simultaneous temperature and viscosity estimation capability via magnetic nanoparticle relaxation. Med Phys 2022; 49:2590-2601. [PMID: 35103333 DOI: 10.1002/mp.15509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 11/05/2022] Open
Abstract
PURPOSE Magnetic particle imaging (MPI) is emerging as a highly promising imaging modality. Magnetic nanoparticles (MNPs) are used as imaging tracers in MPI, and their relaxation behavior provides the foundation for its functional imaging capability. Since MNPs are also utilized in magnetic fluid hyperthermia (MFH) and MPI enables localized MFH, temperature mapping arises as an important application area of MPI. To achieve accurate temperature estimations, however, one must also take into account the confounding effects of viscosity on the MPI signal. In this work, we analyze the effects of temperature and viscosity on MNP relaxation, and determine temperature and viscosity sensitivities of relaxation time constant estimations via TAURUS (TAU estimation via Recovery of Underlying mirror Symmetry) at a wide range of operating points to empower simultaneous mapping of these two parameters. METHODS A total of 15 samples were prepared to reach 4 target viscosity levels (0.9-3.6 mPa·s) at 5 different temperatures (25-45°C). Experiments were performed on a magnetic particle spectrometer (MPS) setup at 60 different operating points at drive field amplitudes ranging between 5-25 mT and frequencies ranging between 1-7 kHz. To enable these extensive experiments, an in-house arbitrary-waveform MPS setup with temperature-controlled heating capability was developed. The operating points were divided into 4 groups with comparable signal levels to maximize signal gain during rapid signal acquisition. The relaxation time constants were estimated via TAURUS, by restoring the underlying mirror symmetry property of the positive and negative half cycles of the time-domain MNP response. The relative time constants with respect to the drive field period, τ̂, were computed to enable quantitative comparison across different operating points. At each operating point, a linear fit was performed to τ̂ as a function of each functional parameter (i.e., temperature or viscosity). The slopes of these linear fits were utilized to compute the temperature and viscosity sensitivities of TAURUS. RESULTS Except for outlier behaviors at 1 kHz, the following global trends were observed: τ̂ decreases with drive field amplitude, increases with drive field frequency, decreases with temperature, and increases with viscosity. The temperature sensitivity varies slowly across the operating points and reaches a maximum value of 1.18%/°C. In contrast, viscosity sensitivity is high at low frequencies around 1 kHz with a maximum value of 13.4%/(mPa·s), but rapidly falls down after 3 kHz. These results suggest that the simultaneous estimation of temperature and viscosity can be achieved by performing measurements at two different drive field settings that provide complementary temperature/viscosity sensitivities. Alternatively, temperature estimation alone can be achieved with a single measurement at drive field frequencies above 3 kHz, where viscosity sensitivity is minimized. CONCLUSIONS This work demonstrates highly promising temperature and viscosity sensitivities for TAURUS, highlighting its potential for simultaneous estimation of these two environmental parameters via MNP relaxation. The findings of this work reveal the potential of a hybrid MPI-MFH system for real-time monitored and localized thermal ablation treatment of cancer. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mustafa Utkur
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, 06800, Turkey.,National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, 06800, Turkey
| | - Emine Ulku Saritas
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, 06800, Turkey.,National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, 06800, Turkey.,Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, 06800, Turkey
| |
Collapse
|
148
|
Geoghegan R, Ter Haar G, Nightingale K, Marks L, Natarajan S. Methods of monitoring thermal ablation of soft tissue tumors - A comprehensive review. Med Phys 2022; 49:769-791. [PMID: 34965307 DOI: 10.1002/mp.15439] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 11/30/2020] [Accepted: 12/15/2021] [Indexed: 11/12/2022] Open
Abstract
Thermal ablation is a form of hyperthermia in which oncologic control can be achieved by briefly inducing elevated temperatures, typically in the range 50-80°C, within a target tissue. Ablation modalities include high intensity focused ultrasound, radiofrequency ablation, microwave ablation, and laser interstitial thermal therapy which are all capable of generating confined zones of tissue destruction, resulting in fewer complications than conventional cancer therapies. Oncologic control is contingent upon achieving predefined coagulation zones; therefore, intraoperative assessment of treatment progress is highly desirable. Consequently, there is a growing interest in the development of ablation monitoring modalities. The first section of this review presents the mechanism of action and common applications of the primary ablation modalities. The following section outlines the state-of-the-art in thermal dosimetry which includes interstitial thermal probes and radiologic imaging. Both the physical mechanism of measurement and clinical or pre-clinical performance are discussed for each ablation modality. Thermal dosimetry must be coupled with a thermal damage model as outlined in Section 4. These models estimate cell death based on temperature-time history and are inherently tissue specific. In the absence of a reliable thermal model, the utility of thermal monitoring is greatly reduced. The final section of this review paper covers technologies that have been developed to directly assess tissue conditions. These approaches include visualization of non-perfused tissue with contrast-enhanced imaging, assessment of tissue mechanical properties using ultrasound and magnetic resonance elastography, and finally interrogation of tissue optical properties with interstitial probes. In summary, monitoring thermal ablation is critical for consistent clinical success and many promising technologies are under development but an optimal solution has yet to achieve widespread adoption.
Collapse
Affiliation(s)
- Rory Geoghegan
- Department of Urology, University of California Los Angeles, Los Angeles, California, USA
| | - Gail Ter Haar
- Department of Physics, Institute of Cancer Research, University of London, Sutton, UK
| | - Kathryn Nightingale
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Leonard Marks
- Department of Urology, University of California Los Angeles, Los Angeles, California, USA
| | - Shyam Natarajan
- Departments of Urology & Bioengineering, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
149
|
Antoniou A, Damianou C. MR relaxation properties of tissue-mimicking phantoms. ULTRASONICS 2022; 119:106600. [PMID: 34627028 DOI: 10.1016/j.ultras.2021.106600] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
High quality tissue-mimicking phantoms (TMPs) have a critical role in the preclinical testing of emerging modalities for diagnosis and therapy. TMPs capable of accurately mimicking real tissue in Magnetic Resonance guided Focused Ultrasound (MRgFUS) applications should be fabricated with precise T1 and T2 relaxation times. Given the current popularity of the MRgFUS technology, we herein performed a systematic review on the MR relaxation properties of different phantoms types. Polyacrylamide (PAA) and agar based phantoms were proven capable of accurately replicating critical thermal, acoustical, and MR relaxation properties of various body tissues. Although gelatin phantoms were also proven factional in this regard, they lack the capacity to withstand ablation temperatures, and thus, are only recommended for hyperthermia applications. Other gelling agents identified in the literature are Poly-vinyl alcohol (PVA), Polyvinyl Chloride (PVC), silicone, and TX-150/ TX-151; however, their efficacy in thermal studies is yet to be established. PAA gels are favorable in that they offer optical transparency enabling direct visualization of coagulative lesions. On the other hand, agar phantoms have lower preparation costs and were proven very promising for use with the MRgFUS technology, without the toxicity issues related to the preparation and storage of PAA materials. Remarkably, agar turned out to be the prominent modifier of the T2 relaxation time even for phantoms containing other types of gelling agents instead of agar. This review could be useful in manufacturing realistic MRgFUS phantoms while simultaneously indicating an opportunity for further research in the field with a particular focus on the MR behavior of agar-based TMPs.
Collapse
Affiliation(s)
- Anastasia Antoniou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus.
| |
Collapse
|
150
|
He J, Wu J, Zhu Y, Chen Y, Yuan M, Zeng L, Ji X. Multitarget Transcranial Ultrasound Therapy in Small Animals Based on Phase-Only Acoustic Holographic Lens. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:662-671. [PMID: 34847028 DOI: 10.1109/tuffc.2021.3131752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Transcranial ultrasound therapy has become a noninvasive method for treating neurological and psychiatric disorders, and studies have further demonstrated that multitarget transcranial ultrasound therapy is a better solution. At present, multitarget transcranial ultrasound therapy in small animals can only be achieved by the multitransducer or phased array. However, multiple transducers may cause spatial interference, and the phased array system is complicated, expensive, and especially unsuitable for small animals. This study is the first to design and fabricate a miniature acoustic holography lens for multitarget transcranial ultrasound therapy in rats. The acoustic holographic lens, working at a frequency of 1.0 MHz, with a size of 10.08 mm ×10.08 mm and a pixel resolution of 0.72 mm, was designed, optimized, and fabricated. The dual-focus transcranial ultrasound generated based on the lens was measured; the full-width at half-maximum (FWHM) of the focal spots in the y -direction was 2.15 and 2.27 mm and in the z -direction was 2.3 and 2.36 mm. The focal length was 5.4 mm, and the distance between the two focuses was 5.6 mm, close to the desired values of 5.4 and 6.0 mm. Finally, the multiple-target blood-brain barrier opening in rats' bilateral secondary visual cortex (mediolateral area, V2ML) was demonstrated using the transcranial ultrasound therapy system based on the lens. These results demonstrate the good performance of the multitarget transcranial ultrasound therapy system for small animals, including high spatial resolution, small size, and low cost.
Collapse
|