101
|
Hasan MR, Hassan N, Khan R, Kim YT, Iqbal SM. Classification of cancer cells using computational analysis of dynamic morphology. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2018; 156:105-112. [PMID: 29428061 DOI: 10.1016/j.cmpb.2017.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/09/2017] [Accepted: 12/05/2017] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Detection of metastatic tumor cells is important for early diagnosis and staging of cancer. However, such cells are exceedingly difficult to detect from blood or biopsy samples at the disease onset. It is reported that cancer cells, and especially metastatic tumor cells, show very distinctive morphological behavior compared to their healthy counterparts on aptamer functionalized substrates. The ability to quickly analyze the data and quantify the cell morphology for an instant real-time feedback can certainly contribute to early cancer diagnosis. A supervised machine learning approach is presented for identification and classification of cancer cell gestures for early diagnosis. METHODS We quantified the morphologically distinct behavior of metastatic cells and their healthy counterparts captured on aptamer-functionalized glass substrates from time-lapse optical micrographs. As a proof of concept, the morphologies of human glioblastoma (hGBM) and astrocyte cells were used. The cells were captured and imaged with an optical microscope. Multiple feature vectors were extracted to quantify and differentiate the complex physical gestures of cancerous and non-cancerous cells. Three different classifier models, Support Vector Machine (SVM), Random Forest Tree (RFT), and Naïve Bayes Classifier (NBC) were trained with the known dataset using machine learning algorithms. The performances of the classifiers were compared for accuracy, precision, and recall measurements using five-fold cross-validation technique. RESULTS All the classifier models detected the cancer cells with an average accuracy of at least 82%. The NBC performed the best among the three classifiers in terms of Precision (0.91), Recall (0.9), and F1-score (0.89) for the existing dataset. CONCLUSIONS This paper presents a standalone system built on machine learning techniques for cancer screening based on cell gestures. The system offers rapid, efficient, and novel identification of hGBM brain tumor cells and can be extended to define single cell analysis metrics for many other types of tumor cells.
Collapse
Affiliation(s)
- Mohammad R Hasan
- Nano-Bio Lab, University of Texas at Arlington, Arlington, TX 76019, USA; Nanotechnology Research Center, University of Texas at Arlington, Arlington, TX 76019, USA; Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Naeemul Hassan
- Department of Computer and Information Science, University of Mississippi, University, MS 38677, USA
| | - Rayan Khan
- Nano-Bio Lab, University of Texas at Arlington, Arlington, TX 76019, USA; Nanotechnology Research Center, University of Texas at Arlington, Arlington, TX 76019, USA; Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Young-Tae Kim
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA; Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75235, USA
| | - Samir M Iqbal
- Nano-Bio Lab, University of Texas at Arlington, Arlington, TX 76019, USA; Department of Electrical Engineering, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA.
| |
Collapse
|
102
|
Ahmed EM, Bandopadhyay G, Coyle B, Grabowska A. A HIF-independent, CD133-mediated mechanism of cisplatin resistance in glioblastoma cells. Cell Oncol (Dordr) 2018; 41:319-328. [PMID: 29492900 PMCID: PMC5951876 DOI: 10.1007/s13402-018-0374-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2018] [Indexed: 01/13/2023] Open
Abstract
Purpose Glioblastoma (GBM) is the commonest brain tumour in adults. A sub-population of cells within these tumours, known as cancer stem cells (CSCs), is thought to mediate their chemo-/radiotherapy resistance. CD133 is a cell surface marker that is used to identify and isolate GBM CSCs. However, its functional significance, as well as the relevant microenvironment in which to study CD133, have so far remained unknown. Here, we examined the effect of hypoxia on the expression of CD133 and on that of the hypoxia-related factors HIF-1α and HIF-2α, and the potential functional significance of CD133 expression on the acquisition of chemo-resistance by GBM cells. Methods CD133, HIF-1α, HIF-2α, VEFG and (control) HPRT mRNA expression analyses were carried out on GBM cells (U251, U87 and SNB19; 2D or 3D cultures) under both normoxic and hypoxic conditions, using qRT-PCR. siRNA was used to downregulate CD133, HIF-1α and HIF-2α expression in the GBM cells, which was confirmed by flow cytometry and qRT-PCR, respectively. Drug sensitivity-related IC50 values were established using an Alamar Blue cell viability assay in conjunction with the Graphpad prism software tool. Results We found that the expression of CD133 was upregulated under hypoxic conditions in both the 2D and 3D GBM cell culture models. In addition, an increased resistance to cisplatin, temozolomide and etoposide was observed in the GBM cells cultured under hypoxic conditions compared to normoxic conditions. siRNA-mediated knockdown of either HIF-1α or HIF-2α resulted in a reduced CD133 expression, with HIF-2α having a more long-term effect. We also found that HIF-2α downregulation sensitized the GBM cells to cisplatin to a greater extent than HIF-1α, whereas CD133 knockdown had a more marked effect on cisplatin sensitisation than knockdown of either one of the HIFs, suggesting the existence of a HIF-independent cisplatin resistance mechanism mediated by CD133. This same mechanism does not seem to be involved in temozolomide resistance, since we found that HIF-1α downregulation, but not HIF-2α or CD133 downregulation, sensitized GBM cells to temozolomide. Conclusions From our data we conclude that the mechanisms underlying hypoxia-induced CD133-mediated cisplatin resistance may be instrumental for the design of new GBM treatment strategies. Electronic supplementary material The online version of this article (10.1007/s13402-018-0374-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eroje M Ahmed
- Division of Cancer and Stem Cells, Cancer Biology, University of Nottingham, Nottingham, UK
| | - Gagori Bandopadhyay
- Division of Cancer and Stem Cells, Cancer Biology, University of Nottingham, Nottingham, UK
| | - Beth Coyle
- Children's Brain Tumour Research Centre, Queens Medical Centre, University of Nottingham, Nottingham, UK.
| | - Anna Grabowska
- Division of Cancer and Stem Cells, Cancer Biology, University of Nottingham, Nottingham, UK.
| |
Collapse
|
103
|
Tumor-initiating cell frequency is relevant for glioblastoma aggressiveness. Oncotarget 2018; 7:71491-71503. [PMID: 27582543 PMCID: PMC5342095 DOI: 10.18632/oncotarget.11600] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 08/13/2016] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma (GBM) is maintained by a small subpopulation of tumor-initiating cells (TICs). The arduous assessment of TIC frequencies challenges the prognostic role of TICs in predicting the clinical outcome in GBM patients. We estimated the TIC frequency in human GBM injecting intracerebrally in mice dissociated cells without any passage in culture. All GBMs contained rare TICsand were tumorigenic in vivo but only 54% of them grew in vitro as neurospheres. We demonstrated that neurosphere formation in vitro did not foretell tumorigenic ability in vivo and frequencies calculated in vitro overestimated the TIC content. Our findings assert the pathological significance of GBM TICs. TIC number correlated positively with tumor incidence and inversely with survival of tumor-bearing mice. Stratification of GBM patients according to TIC content revealed that patients with low TIC frequency experienced a trend towards a longer progression free survival. The expression of either putative stem-cell markers or markers associated with different GBM molecular subtypes did not associate with either TIC content or neurosphere formation underlying the limitations of TIC identification based on the expression of some putative stem cell-markers.
Collapse
|
104
|
Identification of microRNAs differentially expressed in glioblastoma stem-like cells and their association with patient survival. Sci Rep 2018; 8:2836. [PMID: 29434344 PMCID: PMC5809429 DOI: 10.1038/s41598-018-20929-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/25/2018] [Indexed: 01/29/2023] Open
Abstract
Glioblastoma stem-like cells (GSCs) are critical for the aggressiveness and progression of glioblastoma (GBM) and contribute to its resistance to adjuvant treatment. MicroRNAs (miRNAs) are small, non-coding RNAs controlling gene expression at the post-transcriptional level, which are known to be important regulators of the stem-like features. Moreover, miRNAs have been previously proved to be promising diagnostic biomarkers in several cancers including GBM. Using global expression analysis of miRNAs in 10 paired in-vitro as well as in-vivo characterized primary GSC and non-stem glioblastoma cultures, we identified a miRNA signature associated with the stem-like phenotype in GBM. 51 most deregulated miRNAs classified the cell cultures into GSC and non-stem cell clusters and identified a subgroup of GSC cultures with more pronounced stem-cell characteristics. The importance of the identified miRNA signature was further supported by demonstrating that a Risk Score based on the expression of seven miRNAs overexpressed in GSC predicted overall survival in GBM patients in the TCGA dataset independently of the IDH1 status. In summary, we identified miRNAs differentially expressed in GSCs and described their association with GBM patient survival. We propose that these miRNAs participate on GSC features and could represent helpful prognostic markers and potential therapeutic targets in GBM.
Collapse
|
105
|
Kamran N, Alghamri MS, Nunez FJ, Shah D, Asad AS, Candolfi M, Altshuler D, Lowenstein PR, Castro MG. Current state and future prospects of immunotherapy for glioma. Immunotherapy 2018; 10:317-339. [PMID: 29421984 PMCID: PMC5810852 DOI: 10.2217/imt-2017-0122] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/30/2017] [Indexed: 12/14/2022] Open
Abstract
There is a large unmet need for effective therapeutic approaches for glioma, the most malignant brain tumor. Clinical and preclinical studies have enormously expanded our knowledge about the molecular aspects of this deadly disease and its interaction with the host immune system. In this review we highlight the wide array of immunotherapeutic interventions that are currently being tested in glioma patients. Given the molecular heterogeneity, tumor immunoediting and the profound immunosuppression that characterize glioma, it has become clear that combinatorial approaches targeting multiple pathways tailored to the genetic signature of the tumor will be required in order to achieve optimal therapeutic efficacy.
Collapse
Affiliation(s)
- Neha Kamran
- Department of Neurosurgery, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
- Department of Cell & Developmental Biology, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
| | - Mahmoud S Alghamri
- Department of Neurosurgery, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
- Department of Cell & Developmental Biology, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
| | - Felipe J Nunez
- Department of Neurosurgery, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
- Department of Cell & Developmental Biology, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
| | - Diana Shah
- Department of Neurosurgery, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
- Department of Cell & Developmental Biology, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
| | - Antonela S Asad
- Instituto de Investigaciones Biomédicas (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - David Altshuler
- Department of Neurosurgery, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
- Department of Cell & Developmental Biology, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
| | - Pedro R Lowenstein
- Department of Neurosurgery, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
- Department of Cell & Developmental Biology, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
| | - Maria G Castro
- Department of Neurosurgery, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
- Department of Cell & Developmental Biology, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
| |
Collapse
|
106
|
Association of Glioblastoma Multiforme Stem Cell Characteristics, Differentiation, and Microglia Marker Genes with Patient Survival. Stem Cells Int 2018. [PMID: 29535786 PMCID: PMC5822829 DOI: 10.1155/2018/9628289] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Patients with glioblastoma multiforme (GBM) are at high risk to develop a relapse despite multimodal therapy. Assumedly, glioma stem cells (GSCs) are responsible for treatment resistance of GBM. Identification of specific GSC markers may help to develop targeted therapies. Here, we performed expression analyses of stem cell (ABCG2, CD44, CD95, CD133, ELF4, Nanog, and Nestin) as well as differentiation and microglia markers (GFAP, Iba1, and Sparc) in GBM compared to nonmalignant brain. Furthermore, the role of these proteins for patient survival and their expression in LN18 stem-like neurospheres was analyzed. At mRNA level, ABCG2 and CD95 were reduced, GFAP was unchanged; all other investigated markers were increased in GBM. At protein level, CD44, ELF4, Nanog, Nestin, and Sparc were elevated in GBM, but only CD133 and Nestin were strongly associated with survival time. In addition, ABCG2 and GFAP expression was decreased in LN18 neurospheres whereas CD44, CD95, CD133, ELF4, Nanog, Nestin, and Sparc were upregulated. Altogether only CD133 and Nestin were associated with survival rates. This raises concerns regarding the suitability of the other target structures as prognostic markers, but makes both CD133 and Nestin candidates for GBM therapy. Nevertheless, a search for more specific marker proteins is urgently needed.
Collapse
|
107
|
Valtorta S, Lo Dico A, Raccagni I, Gaglio D, Belloli S, Politi LS, Martelli C, Diceglie C, Bonanomi M, Ercoli G, Vaira V, Ottobrini L, Moresco RM. Metformin and temozolomide, a synergic option to overcome resistance in glioblastoma multiforme models. Oncotarget 2017; 8:113090-113104. [PMID: 29348889 PMCID: PMC5762574 DOI: 10.18632/oncotarget.23028] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/14/2017] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor with poor survival. Cytoreduction in association with radiotherapy and temozolomide (TMZ) is the standard therapy, but response is heterogeneous and life expectancy is limited. The combined use of chemotherapeutic agents with drugs targeting cell metabolism is becoming an interesting therapeutic option for cancer treatment. Here, we found that metformin (MET) enhances TMZ effect on TMZ-sensitive cell line (U251) and overcomes TMZ-resistance in T98G GBM cell line. In particular, combined-treatment modulated apoptosis by increasing Bax/Bcl-2 ratio, and reduced Reactive Oxygen Species (ROS) production. We also observed that MET associated with TMZ was able to reduce the expression of glioma stem cells (GSC) marker CD90 particularly in T98G cells but not that of CD133. In vivo experiments showed that combined treatment with TMZ and MET significantly slowed down growth of TMZ-resistant tumors but did not affect overall survival of TMZ-sensitive tumor bearing mice. In conclusion, our results showed that metformin is able to enhance TMZ effect in TMZ-resistant cell line suggesting its potential use in TMZ refractory GBM patients. However, the lack of effect on a GBM malignancy marker like CD133 requires further evaluation since it might influence response duration.
Collapse
Affiliation(s)
- Silvia Valtorta
- Tecnomed Foundation and Medicine and Surgery Department, University of Milan-Bicocca, Monza, Italy.,Institute of Molecular Bioimaging and Physiology (IBFM), CNR, Segrate, Italy.,Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy.,SYSBIO.IT, Centre of Systems Biology, Milan, Italy
| | - Alessia Lo Dico
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Isabella Raccagni
- Tecnomed Foundation and Medicine and Surgery Department, University of Milan-Bicocca, Monza, Italy.,Institute of Molecular Bioimaging and Physiology (IBFM), CNR, Segrate, Italy.,Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy.,SYSBIO.IT, Centre of Systems Biology, Milan, Italy
| | - Daniela Gaglio
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, Segrate, Italy.,SYSBIO.IT, Centre of Systems Biology, Milan, Italy
| | - Sara Belloli
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, Segrate, Italy.,Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy.,SYSBIO.IT, Centre of Systems Biology, Milan, Italy
| | - Letterio S Politi
- Imaging Core, IRCCS San Raffaele Scientific Institute, Milan, Italy.,University of Massachusetts Medical School, Worcester, MA, USA.,Hematology/Oncology Division and Radiology Department, Boston Children's Hospital, Boston, MA, USA
| | - Cristina Martelli
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Cecilia Diceglie
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy.,Tecnomed Foundation and Medicine and Surgery Department, University of Milan-Bicocca, Monza, Italy
| | | | - Giulia Ercoli
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Vaira
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy.,Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luisa Ottobrini
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, Segrate, Italy.,Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Rosa Maria Moresco
- Tecnomed Foundation and Medicine and Surgery Department, University of Milan-Bicocca, Monza, Italy.,Institute of Molecular Bioimaging and Physiology (IBFM), CNR, Segrate, Italy.,Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy.,SYSBIO.IT, Centre of Systems Biology, Milan, Italy
| |
Collapse
|
108
|
Aptamers and Glioblastoma: Their Potential Use for Imaging and Therapeutic Applications. Int J Mol Sci 2017; 18:ijms18122576. [PMID: 29189740 PMCID: PMC5751179 DOI: 10.3390/ijms18122576] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/25/2017] [Accepted: 11/27/2017] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma is a highly aggressive primary brain tumour, renowned for its infiltrative growth and varied genetic profiles. The current treatment options are insufficient, and their off-target effects greatly reduce patient quality of life. The major challenge in improving glioblastoma diagnosis and treatment involves the development of a targeted imaging and drug delivery platform, capable of circumventing the blood brain barrier and specifically targeting glioblastoma tumours. The unique properties of aptamers demonstrate their capability of bridging the gap to the development of successful diagnosis and treatment options, where antibodies have previously failed. Aptamers possess many characteristics that make them an ideal novel imaging and therapeutic agent for the treatment of glioblastoma and other brain malignancies, and are likely to provide patients with a better standard of care and improved quality of life. Their target sensitivity, selective nature, ease of modification and low immunogenicity make them an ideal drug-delivery platform. This review article summarises the aptamers previously generated against glioblastoma cells or its identified biomarkers, and their potential application in diagnosis and therapeutic targeting of glioblastoma tumours.
Collapse
|
109
|
Mokhtarzadeh A, Hassanpour S, Vahid ZF, Hejazi M, Hashemi M, Ranjbari J, Tabarzad M, Noorolyai S, de la Guardia M. Nano-delivery system targeting to cancer stem cell cluster of differentiation biomarkers. J Control Release 2017; 266:166-186. [PMID: 28941992 DOI: 10.1016/j.jconrel.2017.09.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 02/07/2023]
Abstract
Cancer stem cells (CSCs) are one of the most important origins of cancer progression and metastasis. CSCs have unique self-renewal properties and diverse cell membrane receptors that induced the resistance to the conventional chemotherapeutic agents. Therefore, the therapeutic removal of CSCs could result in the cancer cure with lack of recurrence and metastasis. In this regard, targeting CSCs in accordance to their specific biomarkers is a talented attitude in cancer therapy. Various CSCs surface biomarkers have been described, which some of them exhibited similarities on different cancer cell types, while the others are cancer specific and have just been reported on one or a few types of cancers. In this review, the importance of CSCs in cancer development and therapeutic response has been stated. Different CSCs cluster of differentiation (CD) biomarkers and their specific function and applications in the treatment of cancers have been discussed, Special attention has been made on targeted nano-delivery systems. In this regard, several examples have been illustrated concerning specific natural and artificial ligands against CSCs CD biomarkers that could be decorated on various nanoparticulated drug delivery systems to enhance therapeutic index of chemotherapeutic agents or anticancer gene therapy. The outlook of CSCs biomarkers discovery and therapeutic/diagnostic applications was discussed.
Collapse
Affiliation(s)
- Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Soodabeh Hassanpour
- Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | | | | | - Maryam Hashemi
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Ranjbari
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Tabarzad
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saeed Noorolyai
- Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain.
| |
Collapse
|
110
|
Valdés-Rives SA, Casique-Aguirre D, Germán-Castelán L, Velasco-Velázquez MA, González-Arenas A. Apoptotic Signaling Pathways in Glioblastoma and Therapeutic Implications. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7403747. [PMID: 29259986 PMCID: PMC5702396 DOI: 10.1155/2017/7403747] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/22/2017] [Accepted: 09/28/2017] [Indexed: 12/18/2022]
Abstract
Glioblastoma multiforme (GBM) is the most hostile type of brain cancer. Its aggressiveness is due to increased invasion, migration, proliferation, angiogenesis, and a decreased apoptosis. In this review, we discuss the role of key regulators of apoptosis in GBM and glioblastoma stem cells. Given their importance in the etiology and pathogenesis of GBM, these signaling molecules may represent potential therapeutic targets.
Collapse
Affiliation(s)
- Silvia Anahi Valdés-Rives
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Diana Casique-Aguirre
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Liliana Germán-Castelán
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Marco A. Velasco-Velázquez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Unidad Periférica de Investigación en Biomedicina Translacional, ISSSTE C.M.N. 20 de Noviembre, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Aliesha González-Arenas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
111
|
Kostopoulou ON, Mohammad AA, Bartek J, Winter J, Jung M, Stragliotto G, Söderberg-Nauclér C, Landázuri N. Glucocorticoids promote a glioma stem cell-like phenotype and resistance to chemotherapy in human glioblastoma primary cells: Biological and prognostic significance. Int J Cancer 2017; 142:1266-1276. [PMID: 29067692 DOI: 10.1002/ijc.31132] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/24/2017] [Accepted: 10/12/2017] [Indexed: 12/28/2022]
Abstract
Glioma stem cells (GSCs) are glioblastoma (GBM) cells that are resistant to therapy and can give rise to recurrent tumors. The identification of patient-related factors that support GSCs is thus necessary to design effective therapies for GBM patients. Glucocorticoids (GCs) are used to treat GBM-associated edema. However, glucocorticoids participate in the physiological response to psychosocial stress, which has been linked to poor cancer prognosis. This raises concern that glucocorticoids affect the tumor and GSCs. Here, we treated primary human GBM cells with dexamethasone and evaluated GC-driven changes in cell morphology, proliferation, migration, gene expression, secretory activity and growth as neurospheres. Dexamethasone treatment of GBM cells appeared to promote the development of a GSC-like phenotype and conferred resistance to physiological stress and chemotherapy. We also analyzed a potential correlation between GC treatment and tumor recurrence after surgical excision in a population-based consecutive cohort of 48 GBM patients, adjusted for differences in known prognostic factors concerning baseline and treatment characteristics. In this cohort, we found a negative correlation between GC intake and progression-free survival, regardless of the MGMT methylation status. In conclusion, our findings raise concern that treatment of GBM with GCs may compromise the efficacy of chemotherapy and may support a GSC population, which could contribute to tumor recurrence and the poor prognosis of the disease.
Collapse
Affiliation(s)
- Ourania N Kostopoulou
- Department of Medicine, Center for Molecular Medicine, Microbial Pathogenesis, Karolinska Institute, Stockholm, Sweden
| | - Abdul-Aleem Mohammad
- Department of Medicine, Center for Molecular Medicine, Microbial Pathogenesis, Karolinska Institute, Stockholm, Sweden
| | - Jiri Bartek
- Department of Medicine, Center for Molecular Medicine, Microbial Pathogenesis, Karolinska Institute, Stockholm, Sweden.,Department of Neurology and Neurosurgery, Karolinska University Hospital, Stockholm, Sweden.,Department of Neurosurgery, Copenhagen University Hospital Rigshospitalet, Denmark
| | - Julia Winter
- Department of Medicine, Center for Molecular Medicine, Microbial Pathogenesis, Karolinska Institute, Stockholm, Sweden
| | - Masany Jung
- Department of Medicine, Center for Molecular Medicine, Microbial Pathogenesis, Karolinska Institute, Stockholm, Sweden
| | - Giuseppe Stragliotto
- Department of Neurology and Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Cecilia Söderberg-Nauclér
- Department of Medicine, Center for Molecular Medicine, Microbial Pathogenesis, Karolinska Institute, Stockholm, Sweden.,Department of Neurology and Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Natalia Landázuri
- Department of Medicine, Center for Molecular Medicine, Microbial Pathogenesis, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
112
|
Abstract
Cancer stem cells can generate tumors from only a small number of cells, whereas differentiated cancer cells cannot. The prominent feature of cancer stem cells is its ability to self-renew and differentiate into multiple types of cancer cells. Cancer stem cells have several distinct tumorigenic abilities, including stem cell signal transduction, tumorigenicity, metastasis, and resistance to anticancer drugs, which are regulated by genetic or epigenetic changes. Like normal adult stem cells involved in various developmental processes and tissue homeostasis, cancer stem cells maintain their self-renewal capacity by activating multiple stem cell signaling pathways and inhibiting differentiation signaling pathways during cancer initiation and progression. Recently, many studies have focused on targeting cancer stem cells to eradicate malignancies by regulating stem cell signaling pathways, and products of some of these strategies are in preclinical and clinical trials. In this review, we describe the crucial features of cancer stem cells related to tumor relapse and drug resistance, as well as the new therapeutic strategy to target cancer stem cells named "differentiation therapy."
Collapse
Affiliation(s)
- Xiong Jin
- 1 Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
- 2 Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Xun Jin
- 3 Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- 4 Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- 5 Institute of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hyunggee Kim
- 1 Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
- 2 Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
113
|
Cheng ZX, Yin WB, Wang ZY. MicroRNA-132 induces temozolomide resistance and promotes the formation of cancer stem cell phenotypes by targeting tumor suppressor candidate 3 in glioblastoma. Int J Mol Med 2017; 40:1307-1314. [PMID: 28901390 PMCID: PMC5627876 DOI: 10.3892/ijmm.2017.3124] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 08/10/2017] [Indexed: 12/01/2022] Open
Abstract
The prognosis of patients suffering from glioblastoma [also referred to as glioblastoma multiforme (GBM)] is dismal despite multimodal therapy. Chemotherapy with temozolomide may suppress tumor growth for a certain period of time (a few months); however, invariable tumor recurrence suggests that glioblastoma initiating cells (GICs) render these tumors persistant. Thus, the understanding of the molecular mechanisms of action of GICs as regards their role in the progression of GBM is important as such knowledge will be helpful in the discovery of novel drug targets, as well as in the design of novel therapeutic strategies for more effective treatment of the disease. In this study, we found that tumor suppressor candidate 3 (TUSC3) was downregulated in temozolomide-resistant U87MG cells (U87MG-res cells) and its restoration sensitized U87MG-res cells to temozolomide. TUSC3 was able to inhibit the formation of GIC phenotypes in the U87MG-res cells. The overexpression of microRNA (miR)‑132 inhibited TUSC3 protein expression in the U87MG cells. However, its overexpression did not degrade TUSC3 mRNA expression in the cells. miR‑132 was upregulated in the U87MG-res cells and its overexpression induced temozolomide resistance and the formation of cancer stem cell phenotypes in the U87MG cells. Thus, our data indicate that miR-132 induces temozolomide resistance and promotes the formation of cancer stem cell phenotypes by targeting TUSC3 in glioblastoma.
Collapse
Affiliation(s)
- Zhen-Xiu Cheng
- Department of Neurosurgery, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Wen-Bo Yin
- Department of Neurosurgery, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Zhong-Yu Wang
- Department of Neurosurgery, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| |
Collapse
|
114
|
Gallardo-Pérez JC, Adán-Ladrón de Guevara A, Marín-Hernández A, Moreno-Sánchez R, Rodríguez-Enríquez S. HPI/AMF inhibition halts the development of the aggressive phenotype of breast cancer stem cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017. [DOI: 10.1016/j.bbamcr.2017.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
115
|
Arun S, Ravisankar S, Vanisree AJ. Implication of connexin30 on the stemness of glioma: connexin30 reverses the malignant phenotype of glioma by modulating IGF-1R, CD133 and cMyc. J Neurooncol 2017; 135:473-485. [PMID: 28875331 DOI: 10.1007/s11060-017-2608-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/20/2017] [Indexed: 01/24/2023]
Abstract
Gap-junctional intercellular communication (GJIC) plays a major role in the malignant growth of glioma. Although the mechanistic aspects of GJIC have been extensively studied, the role of connexins in the regulation of the malignant behavior of glioma stem cells (GSCs) remains unclear. In our previous studies, we have shown that connexin30 can interfere with the insulin-like growth factor 1 receptor (IGF-1R), which is known for self-renewal and pluripotency. Following our earlier in vitro observation, in this work, we aimed to study the consequence of this influence of Cx30 on IGF-1R by evaluating the marker of GSCs, CD133 and oncoprotein, cMyc. We strengthened our basis by examining human glioma samples of different grades as well as rat C6 xenografts (Cx30-transfected and -non-transfected C6 cells) along with the sphere formation assays in vitro. Investigation of stemness-related CD133 and cMyc in human samples and rat xenografts exhibited a reciprocal relationship between Cx30 and IGF-1R in the low and high grades (HG) of glioma. Cx30 was completely abolished in HG; levels of IGF-1R, CD133 and cMyc expression were positively correlated with HG. Cx30 transfection could attenuate the malignant burden of glioma in rat xenografts. Cx30 transfection also altered the tumor sphere formation of C6 glioma cells in vitro, an important property of GSCs, and there was a significant reduction of CD133 and cMyc expression by Cx30 both in vitro and in vivo. These factors indicate that dysfunction of Cx30 plays a crucial role in the prevention of the stemness of glioma, and the exploitation of this feature will help in the management of glioma.
Collapse
Affiliation(s)
- Sankaradoss Arun
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, Tamil Nadu, 600 025, India
| | - Shantha Ravisankar
- Department of Neuropathology, Tamil Nadu Multi-Specialty Hospital, Chennai, Tamil Nadu, 600 003, India
| | | |
Collapse
|
116
|
Jung HJ. Chemical Proteomic Approaches Targeting Cancer Stem Cells: A Review of Current Literature. Cancer Genomics Proteomics 2017; 14:315-327. [PMID: 28870999 PMCID: PMC5611518 DOI: 10.21873/cgp.20042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 12/24/2022] Open
Abstract
Cancer stem cells (CSCs) have been proposed as central drivers of tumor initiation, progression, recurrence, and therapeutic resistance. Therefore, identifying stem-like cells within cancers and understanding their properties is crucial for the development of effective anticancer therapies. Recently, chemical proteomics has become a powerful tool to efficiently determine protein networks responsible for CSC pathophysiology and comprehensively elucidate molecular mechanisms of drug action against CSCs. This review provides an overview of major methodologies utilized in chemical proteomic approaches. In addition, recent successful chemical proteomic applications targeting CSCs are highlighted. Future direction of potential CSC research by integrating chemical genomic and proteomic data obtained from a single biological sample of CSCs are also suggested in this review.
Collapse
Affiliation(s)
- Hye Jin Jung
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Asan, Republic of Korea
| |
Collapse
|
117
|
Pang LY, Saunders L, Argyle DJ. Epidermal growth factor receptor activity is elevated in glioma cancer stem cells and is required to maintain chemotherapy and radiation resistance. Oncotarget 2017; 8:72494-72512. [PMID: 29069805 PMCID: PMC5641148 DOI: 10.18632/oncotarget.19868] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/06/2017] [Indexed: 12/26/2022] Open
Abstract
Glioblastoma remains among the most aggressive of all human and canine malignancies, displaying high mortality rates and limited treatment options. We propose that given the similarities between canine and human gliomas, such as incidence of occurrence, histopathology, molecular characteristics, and response to therapy, that canine gliomas are a natural model of the human disease. A range of human and canine tumours have been shown to harbor specific subpopulations of cells with stem cell-like properties that initiate and maintain neoplasticity while resisting conventional therapies. Here, we show that both canine and human glioma cell lines contain a small population of cancer stem cells (CSCs), and by molecular profiling highlight the important role of the epidermal growth factor receptor (EGFR) pathway in canine CSCs. EGFR signaling is crucial in the regulation of cancer cell proliferation, migration and survival. To date EGFR-targeted interventions alone have been largely ineffective. Our findings confirm that specifically inhibiting EGFR signaling alone has no significant effect on the viability of CSCs. However inhibition of EGFR did enhance the chemo- and radio-sensitivity of both canine and human glioma CSCs, enabling this resistant, tumourigenic population of cells to be effectively targeted by conventional therapies.
Collapse
Affiliation(s)
- Lisa Y Pang
- Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland
| | - Lauren Saunders
- Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland
| | - David J Argyle
- Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland
| |
Collapse
|
118
|
Lee SY, Kim JK, Jeon HY, Ham SW, Kim H. CD133 Regulates IL-1β Signaling and Neutrophil Recruitment in Glioblastoma. Mol Cells 2017; 40:515-522. [PMID: 28736425 PMCID: PMC5547221 DOI: 10.14348/molcells.2017.0089] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/29/2017] [Accepted: 06/29/2017] [Indexed: 12/31/2022] Open
Abstract
CD133, a pentaspan transmembrane glycoprotein, is generally used as a cancer stem cell marker in various human malignancies, but its biological function in cancer cells, especially in glioma cells, is largely unknown. Here, we demonstrated that forced expression of CD133 increases the expression of IL-1β and its downstream chemokines, namely, CCL3, CXCL3 and CXCL5, in U87MG glioma cells. Although there were no apparent changes in cell growth and sphere formation in vitro and tumor growth in vivo, in vitro trans-well studies and in vivo tumor xenograft assays showed that neutrophil recruitment was markedly increased by the ectopic expression of CD133. In addition, the clinical relevance between CD133 expression and IL-1β gene signature was established in patients with malignant gliomas. Thus, these results imply that glioma cells expressing CD133 are capable of modulating tumor microenvironment through the IL-1β signaling pathway.
Collapse
Affiliation(s)
- Seon Yong Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841,
Korea
| | - Jun-Kyum Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841,
Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841,
Korea
| | - Hee-Young Jeon
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841,
Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841,
Korea
| | - Seok Won Ham
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841,
Korea
| | - Hyunggee Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841,
Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841,
Korea
| |
Collapse
|
119
|
Singh VK, Saini A, Chandra R. The Implications and Future Perspectives of Nanomedicine for Cancer Stem Cell Targeted Therapies. Front Mol Biosci 2017; 4:52. [PMID: 28785557 PMCID: PMC5520001 DOI: 10.3389/fmolb.2017.00052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/07/2017] [Indexed: 12/14/2022] Open
Abstract
Cancer stem cells (CSCs) are believed to exhibit distinctive self-renewal, proliferation, and differentiation capabilities, and thus play a significant role in various aspects of cancer. CSCs have significant impacts on the progression of tumors, drug resistance, recurrence and metastasis in different types of malignancies. Due to their primary role, most researchers have focused on developing anti-CSC therapeutic strategies, and tremendous efforts have been put to explore methods for selective eradication of these therapeutically resistant CSCs. In recent years, many reports have shown the use of CSCs-specific approaches such as ATP-binding cassette (ABC) transporters, blockade of self-renewal and survival of CSCs, CSCs surface markers targeted drugs delivery and eradication of the tumor microenvironment. Also, various therapeutic agents such as small molecule drugs, nucleic acids, and antibodies are said to destroy CSCs selectively. Targeted drug delivery holds the key to the success of most of the anti-CSCs based drugs/therapies. The convention CSCs-specific therapeutic agents, suffer from various problems. For instance, limited water solubility, small circulation time and inconsistent stability of conventional therapeutic agents have significantly limited their efficacy. Recent advancement in the drug delivery technology has demonstrated that specially designed nanocarrier-based drug delivery approaches (nanomedicine) can be useful in delivering sufficient amount of drug molecules even in the most interiors of CSCs niches and thus can overcome the limitations associated with the conventional free drug delivery methods. The nanomedicine has also been promising in designing effective therapeutic regime against pump-mediated drug resistance (ATP-driven) and reduces detrimental effects on normal stem cells. Here we focus on the biological processes regulating CSCs' drug resistance and various strategies developed so far to deal with them. We also review the various nanomedicine approaches developed so far to overcome these CSCs related issues and their future perspectives.
Collapse
Affiliation(s)
- Vimal K. Singh
- Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological UniversityNew Delhi, India
| | - Abhishek Saini
- Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological UniversityNew Delhi, India
| | - Ramesh Chandra
- Department of Chemistry, University of DelhiNew Delhi, India
| |
Collapse
|
120
|
Hinokitiol suppresses cancer stemness and oncogenicity in glioma stem cells by Nrf2 regulation. Cancer Chemother Pharmacol 2017; 80:411-419. [PMID: 28685346 DOI: 10.1007/s00280-017-3381-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/23/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE Glioma is one of the lethal malignancies with poor prognosis. In addition, glioma stem cells (GSCs) have been considered as the crucial player that attributed to the tumorigenesis and drug resistance. In the current study, we investigated the therapeutic effect of hinokitiol, a natural bioactive compound of aromatic tropolone, on the characteristics of GSCs and the possible mechanism. METHODS U87MG and T98G glioma cells were used to isolate GSCs. CD133 positivity and ALDH1 activity of GSCs following hinokitiol treatment were assessed by flow cytometry analysis. Secondary sphere formation, migration, invasion, and colony-forming assays were performed to examine the self-renewal capacity and oncogenicity in GCS after hinokitiol administration. The expression of Nrf2 was evaluated by RT-PCR and western blot analyses. RESULTS We demonstrated that hinokitiol effectively inhibited the CD133 positivity and ALDH1 activity along with the reduced self-renewal, migration, invasion, and colony formation properties of GSCs. In addition, hinokitiol repressed the gene and protein expression of Nrf2, which has been shown to be critical for those GSCs features. Furthermore, we showed that administration of exogenous Nrf2 counteracted the inhibitory effect of hinokitiol on self-renewal and invasiveness of GSCs. CONCLUSION These evidences suggest that treatment of hinokitiol significantly attenuates the hallmarks of GSCs due to downregulation of Nrf2 expression. Hence, hinokitiol may serve as a promising agent for the therapy of glioma.
Collapse
|
121
|
Brehar FM, Gafencu AV, Trusca VG, Fuior EV, Arsene D, Amaireh M, Giovani A, Gorgan MR. Preferential Association of Lissencephaly-1 Gene Expression with CD133+ Glioblastoma Cells. J Cancer 2017; 8:1284-1291. [PMID: 28607604 PMCID: PMC5463444 DOI: 10.7150/jca.17635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/12/2017] [Indexed: 12/18/2022] Open
Abstract
Lissencephaly-1 (Lis1) protein is a dynein-binding protein involved in neural stem cell division, morphogenesis and motility. To determine whether Lis1 is a key factor in glioblastoma, we evaluated its expression and function in CD133+ glioblastoma cells. Global, Lis1 gene expression is similar in glioblastoma and normal samples. Interestingly, immunohistochemistry data indicate increased Lis1 expression colocalized with CD133 in a subset of glioma cells, including the tumor cells with perivascular localization. Lis1 gene expression is increased up to 60-fold in CD133 positive cells isolated from primary cultures of glioblastoma and U87 glioblastoma cell line as compared to CD133 negative cells. To investigate the potential role of Lis1 in CD133+ glioblastoma cells, we silenced Lis1 gene in U87 cell line obtaining shLis1-U87 cells. In shLis1-U87 cell culture we noticed a significant decrease of CD133+ cells fraction as compared with control cells and also, CD133+ cells isolated from shLis1-U87 were two times less adhesive, migratory and proliferative, as compared with control transfected U87 CD133+ cells. Moreover, Lis1 silencing decreased the proliferative capacity of irradiated U87 cells, an effect attributable to the lower percentage of CD133+ cells. This is the first report showing a preferential expression of Lis1 gene in CD133+ glioblastoma cells. Our data suggest a role of Lis1 in regulating CD133+ glioblastoma cells function.
Collapse
Affiliation(s)
- Felix Mircea Brehar
- "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania.,"Bagdasar-Arseni" Clinical Hospital, Neurosurgery Clinic, 10-12 Berceni Street, 041915 Bucharest, Romania
| | - Anca Violeta Gafencu
- Institute of Cellular Biology and Pathology, "Nicolae Simionescu", 8 B. P. Hasdeu Street, 050568 Bucharest, Romania
| | - Violeta Georgeta Trusca
- Institute of Cellular Biology and Pathology, "Nicolae Simionescu", 8 B. P. Hasdeu Street, 050568 Bucharest, Romania
| | - Elena Valeria Fuior
- Institute of Cellular Biology and Pathology, "Nicolae Simionescu", 8 B. P. Hasdeu Street, 050568 Bucharest, Romania
| | - Dorel Arsene
- " Victor Babes" National Institute of Pathology, 99-101 Splaiul Independentei Street, 055096 Bucharest, Romania
| | - Mirela Amaireh
- "Bagdasar-Arseni" Clinical Hospital, Neurosurgery Clinic, 10-12 Berceni Street, 041915 Bucharest, Romania
| | - Andrei Giovani
- "Bagdasar-Arseni" Clinical Hospital, Neurosurgery Clinic, 10-12 Berceni Street, 041915 Bucharest, Romania
| | - Mircea Radu Gorgan
- "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania.,"Bagdasar-Arseni" Clinical Hospital, Neurosurgery Clinic, 10-12 Berceni Street, 041915 Bucharest, Romania
| |
Collapse
|
122
|
Notch signaling regulates metabolic heterogeneity in glioblastoma stem cells. Oncotarget 2017; 8:64932-64953. [PMID: 29029402 PMCID: PMC5630302 DOI: 10.18632/oncotarget.18117] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 05/10/2017] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) stem cells (GSCs) reside in both hypoxic and vascular microenvironments within tumors. The molecular mechanisms that allow GSCs to occupy such contrasting niches are not understood. We used patient-derived GBM cultures to identify GSC subtypes with differential activation of Notch signaling, which co-exist in tumors but occupy distinct niches and match their metabolism accordingly. Multipotent GSCs with Notch pathway activation reside in perivascular niches, and are unable to entrain anaerobic glycolysis during hypoxia. In contrast, most CD133-expressing GSCs do not depend on canonical Notch signaling, populate tumors regardless of local vascularity and selectively utilize anaerobic glycolysis to expand in hypoxia. Ectopic activation of Notch signaling in CD133-expressing GSCs is sufficient to suppress anaerobic glycolysis and resistance to hypoxia. These findings demonstrate a novel role for Notch signaling in regulating GSC metabolism and suggest intratumoral GSC heterogeneity ensures metabolic adaptations to support tumor growth in diverse tumor microenvironments.
Collapse
|
123
|
Rosa P, Sforna L, Carlomagno S, Mangino G, Miscusi M, Pessia M, Franciolini F, Calogero A, Catacuzzeno L. Overexpression of Large-Conductance Calcium-Activated Potassium Channels in Human Glioblastoma Stem-Like Cells and Their Role in Cell Migration. J Cell Physiol 2017; 232:2478-2488. [PMID: 27606467 DOI: 10.1002/jcp.25592] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 09/07/2016] [Indexed: 01/24/2023]
Abstract
Glioblastomas (GBMs) are brain tumors characterized by diffuse invasion of cancer cells into the healthy brain parenchyma, and establishment of secondary foci. GBM cells abundantly express large-conductance, calcium-activated potassium (BK) channels that are thought to promote cell invasion. Recent evidence suggests that the GBM high invasive potential mainly originates from a pool of stem-like cells, but the expression and function of BK channels in this cell subpopulation have not been studied. We investigated the expression of BK channels in GBM stem-like cells using electrophysiological and immunochemical techniques, and assessed their involvement in the migratory process of this important cell subpopulation. In U87-MG cells, BK channel expression and function were markedly upregulated by growth conditions that enriched the culture in GBM stem-like cells (U87-NS). Cytofluorimetric analysis further confirmed the appearance of a cell subpopulation that co-expressed high levels of BK channels and CD133, as well as other stem cell markers. A similar association was also found in cells derived from freshly resected GBM biopsies. Finally, transwell migration tests showed that U87-NS cells migration was much more sensitive to BK channel block than U87-MG cells. Our data show that BK channels are highly expressed in GBM stem-like cells, and participate to their high migratory activity. J. Cell. Physiol. 232: 2478-2488, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Paolo Rosa
- Department of Medico-Surgical Sciences and Biotechnologies, "La Sapienza" University, Latina, Italy
| | - Luigi Sforna
- Department of Chemistry Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Silvia Carlomagno
- Department of Medico-Surgical Sciences and Biotechnologies, "La Sapienza" University, Latina, Italy
| | - Giorgio Mangino
- Department of Medico-Surgical Sciences and Biotechnologies, "La Sapienza" University, Latina, Italy
| | - Massimo Miscusi
- Department of Medico-Surgical Sciences and Biotechnologies, "La Sapienza" University, Latina, Italy
| | - Mauro Pessia
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Department of Physiology and Biochemistry, University of Malta, Msida, Malta
| | - Fabio Franciolini
- Department of Chemistry Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Antonella Calogero
- Department of Medico-Surgical Sciences and Biotechnologies, "La Sapienza" University, Latina, Italy
| | - Luigi Catacuzzeno
- Department of Chemistry Biology and Biotechnology, University of Perugia, Perugia, Italy
| |
Collapse
|
124
|
Rowse AL, Gibson SA, Meares GP, Rajbhandari R, Nozell SE, Dees KJ, Hjelmeland AB, McFarland BC, Benveniste EN. Protein kinase CK2 is important for the function of glioblastoma brain tumor initiating cells. J Neurooncol 2017; 132:219-229. [PMID: 28181105 PMCID: PMC5492387 DOI: 10.1007/s11060-017-2378-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/29/2017] [Indexed: 10/20/2022]
Abstract
Protein kinase CK2 is a ubiquitously expressed serine/threonine kinase composed of two catalytic subunits (α) and/or (α') and two regulatory (β) subunits. The expression and kinase activity of CK2 is elevated in many different cancers, including glioblastoma (GBM). Brain tumor initiating cells (BTICs) are a subset of cells that are highly tumorigenic and promote the resistance of GBM to current therapies. We previously reported that CK2 activity promotes prosurvival signaling in GBM. In this study, the role of CK2 signaling in BTIC function was examined. We found that expression of CK2α was increased in CD133+ BTICs compared to CD133- cells within the same GBM xenolines. Treatment with CX-4945, an ATP-competitive inhibitor of CK2, led to reduced expression of Sox2 and Nestin, transcription factors important for the maintenance of stem cells. Similarly, inhibition of CK2 also reduced the frequency of CD133+ BTICs over the course of 7 days, indicating a role for CK2 in BTIC persistence and survival. Importantly, using an in vitro limiting dilution assay, we found that inhibition of CK2 kinase activity with CX-4945 or siRNA knockdown of the CK2 catalytic subunits reduced neurosphere formation in GBM xenolines of different molecular subtypes. Lastly, we found that inhibition of CK2 led to decreased EGFR levels in some xenolines, and combination treatment with CX-4945 and Gefitinib to inhibit CK2 and EGFR, respectively, provided optimal inhibition of viability of cells. Therefore, due to the integration of CK2 in multiple signaling pathways important for BTIC survival, CK2 is a promising target in GBM.
Collapse
Affiliation(s)
- Amber L Rowse
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sara A Gibson
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gordon P Meares
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajani Rajbhandari
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Susan E Nozell
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kory J Dees
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anita B Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Braden C McFarland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, MCLM 388, Birmingham, AL, 35294-0004, USA.
| | - Etty N Benveniste
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 510, 20th Street South, FOT 1220D, Birmingham, AL, 35294-3412, USA.
| |
Collapse
|
125
|
Lupia M, Cavallaro U. Ovarian cancer stem cells: still an elusive entity? Mol Cancer 2017; 16:64. [PMID: 28320418 PMCID: PMC5360065 DOI: 10.1186/s12943-017-0638-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/13/2017] [Indexed: 12/16/2022] Open
Abstract
The cancer stem cell (CSC) model proposes that tumor development and progression are fueled and sustained by undifferentiated cancer cells, endowed with self-renewal and tumor-initiating capacity. Ovarian carcinoma, based on its biological features and clinical evolution, appears as a prototypical example of CSC-driven disease. Indeed, ovarian cancer stem cells (OCSC) would account not only for the primary tumor growth, the peritoneal spread and the relapse, but also for the development of chemoresistance, thus having profound implication for the treatment of this deadly disease. In the last decade, an increasing body of experimental evidence has supported the existence of OCSC and their pathogenic role in the disease. Nevertheless, the identification of OCSC and the definition of their phenotypical and functional traits have proven quite challenging, mainly because of the heterogeneity of the disease and of the difficulties in establishing reliable biological models. A deeper understanding of OCSC pathobiology will shed light on the mechanisms that underlie the clinical behaviour of OC. In addition, it will favour the design of innovative treatment regimens that, on one hand, would counteract the resistance to conventional chemotherapy, and, on the other, would aim at the eradication of OC through the elimination of its CSC component.
Collapse
Affiliation(s)
- Michela Lupia
- Unit of Gynecological Oncology Research, European Institute of Oncology, Via G. Ripamonti 435, I-20141, Milan, Italy
| | - Ugo Cavallaro
- Unit of Gynecological Oncology Research, European Institute of Oncology, Via G. Ripamonti 435, I-20141, Milan, Italy.
| |
Collapse
|
126
|
n-Butylidenephthalide Regulated Tumor Stem Cell Genes EZH2/AXL and Reduced Its Migration and Invasion in Glioblastoma. Int J Mol Sci 2017; 18:ijms18020372. [PMID: 28208648 PMCID: PMC5343907 DOI: 10.3390/ijms18020372] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/06/2017] [Indexed: 01/16/2023] Open
Abstract
Glioblastoma (GBM) is one of the most common and aggressive types of brain tumor. Due to its highly recurrent rate and poor prognosis, the overall survival time with this type of tumor is only 20–21 months. Recent knowledge suggests that its recurrence is in part due to the presence of cancer stem cells (CSCs), which display radioresistant, chemoresistant, self-renewal and tumorigenic potential. Enhancers of Zeste 2 (EZH2) and AXL receptor tyrosine kinase (AXL) are both highly expressed in GBM. Additionally, they are an essential regulator involved in CSCs maintenance, migration, invasion, epithelial-to-mesenchymal transition (EMT), stemness, metastasis and patient survival. In this study, we used a small molecule, n-butylidenephthalide (BP), to assess the anti-GBM stem-like cells potential, and then tried to find out the associated genes involved with regulation in migration and invasion. We demonstrated that BP reduced the expression of AXL and stemness related genes in a dose-dependent manner. The migratory and invasive capabilities of GBM stem-like cells could be reduced by AXL/EZH2. Finally, in the overexpression of AXL, EZH2 and Sox2 by transfection in GBM stem-like cells, we found that AXL/EZH2/TGF-β1, but not Sox2, might be a key regulator in tumor invasion, migration and EMT. These results might help in the development of a new anticancer compound and can be a target for treating GBM.
Collapse
|
127
|
Gersey ZC, Rodriguez GA, Barbarite E, Sanchez A, Walters WM, Ohaeto KC, Komotar RJ, Graham RM. Curcumin decreases malignant characteristics of glioblastoma stem cells via induction of reactive oxygen species. BMC Cancer 2017; 17:99. [PMID: 28160777 PMCID: PMC5292151 DOI: 10.1186/s12885-017-3058-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/11/2017] [Indexed: 01/14/2023] Open
Abstract
Background Glioblastoma Multiforme (GBM) is the most common and lethal form of primary brain tumor in adults. Following standard treatment of surgery, radiation and chemotherapy, patients are expected to survive 12–14 months. Theorized cause of disease recurrence in these patients is tumor cell repopulation through the proliferation of treatment-resistant cancer stem cells. Current research has revealed curcumin, the principal ingredient in turmeric, can modulate multiple signaling pathways important for cancer stem cell self-renewal and survival. Methods Following resection, tumor specimens were dissociated and glioblastoma stem cells (GSCs) were propagated in neurosphere media and characterized via immunocytochemistry. Cell viability was determined with MTS assay. GSC proliferation, sphere forming and colony forming assays were conducted through standard counting methods. Reactive oxygen species (ROS) production was examined using the fluorescent molecular probe CM-H2DCFA. Effects on cell signaling pathways were elucidated by western blot. Results We evaluate the effects of curcumin on patient-derived GSC lines. We demonstrate a curcumin-induced dose-dependent decrease in GSC viability with an approximate IC50 of 25 μM. Treatment with sub-toxic levels (2.5 μM) of curcumin significantly decreased GSC proliferation, sphere forming ability and colony forming potential. Curcumin induced ROS, promoted MAPK pathway activation, downregulated STAT3 activity and IAP family members. Inhibition of ROS with the antioxidant N-acetylcysteine reversed these effects indicating a ROS dependent mechanism. Conclusions Discoveries made in this investigation may lead to a non-toxic intervention designed to prevent recurrence in glioblastoma by targeting glioblastoma stem cells. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3058-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zachary C Gersey
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Gregor A Rodriguez
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Eric Barbarite
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Anthony Sanchez
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Winston M Walters
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Kelechi C Ohaeto
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ricardo J Komotar
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Regina M Graham
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida, USA. .,Department of Neurological Surgery, University of Miami Brain Tumor Initiative (UMBTI) Research Laboratory, Lois Pope LIFE Center, 2nd Floor, 1095 NW 14th Terrace, Miami, Florida, 33136, USA.
| |
Collapse
|
128
|
Bijangi-Vishehsaraei K, Reza Saadatzadeh M, Wang H, Nguyen A, Kamocka MM, Cai W, Cohen-Gadol AA, Halum SL, Sarkaria JN, Pollok KE, Safa AR. Sulforaphane suppresses the growth of glioblastoma cells, glioblastoma stem cell-like spheroids, and tumor xenografts through multiple cell signaling pathways. J Neurosurg 2017; 127:1219-1230. [PMID: 28059653 DOI: 10.3171/2016.8.jns161197] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Defects in the apoptotic machinery and augmented survival signals contribute to drug resistance in glioblastoma (GBM). Moreover, another complexity related to GBM treatment is the concept that GBM development and recurrence may arise from the expression of GBM stem cells (GSCs). Therefore, the use of a multifaceted approach or multitargeted agents that affect specific tumor cell characteristics will likely be necessary to successfully eradicate GBM. The objective of this study was to investigate the usefulness of sulforaphane (SFN)-a constituent of cruciferous vegetables with a multitargeted effect-as a therapeutic agent for GBM. METHODS The inhibitory effects of SFN on established cell lines, early primary cultures, CD133-positive GSCs, GSC-derived spheroids, and GBM xenografts were evaluated using various methods, including GSC isolation and the sphere-forming assay, analysis of reactive oxygen species (ROS) and apoptosis, cell growth inhibition assay, comet assays for assessing SFN-triggered DNA damage, confocal microscopy, Western blot analysis, and the determination of in vivo efficacy as assessed in human GBM xenograft models. RESULTS SFN triggered the significant inhibition of cell survival and induced apoptotic cell death, which was associated with caspase 3 and caspase 7 activation. Moreover, SFN triggered the formation of mitochondrial ROS, and SFN-triggered cell death was ROS dependent. Comet assays revealed that SFN increased single- and double-strand DNA breaks in GBM. Compared with the vehicle control cells, a significantly higher amount of γ-H2AX foci correlated with an increase in DNA double-strand breaks in the SFN-treated samples. Furthermore, SFN robustly inhibited the growth of GBM cell-induced cell death in established cell cultures and early-passage primary cultures and, most importantly, was effective in eliminating GSCs, which play a major role in drug resistance and disease recurrence. In vivo studies revealed that SFN administration at 100 mg/kg for 5-day cycles repeated for 3 weeks significantly decreased the growth of ectopic xenografts that were established from the early passage of primary cultures of GBM10. CONCLUSIONS These results suggest that SFN is a potent anti-GBM agent that targets several apoptosis and cell survival pathways and further preclinical and clinical studies may prove that SFN alone or in combination with other therapies may be potentially useful for GBM therapy.
Collapse
Affiliation(s)
| | - M Reza Saadatzadeh
- 1Indiana University Simon Cancer Center.,3Neurosurgery, Indiana University School of Medicine and Goodman Campbell Brain and Spine
| | - Haiyan Wang
- 1Indiana University Simon Cancer Center.,4Herman B. Wells Center for Pediatric Research
| | - Angie Nguyen
- 1Indiana University Simon Cancer Center.,Departments of2Pharmacology and Toxicology and
| | - Malgorzata M Kamocka
- 5Indiana Center for Biological Microscopy, Indiana University School of Medicine, Indianapolis
| | | | - Aaron A Cohen-Gadol
- 3Neurosurgery, Indiana University School of Medicine and Goodman Campbell Brain and Spine
| | - Stacey L Halum
- 6Purdue University and the Voice Clinic of Indiana, Lafayette, Indiana; and
| | - Jann N Sarkaria
- 7Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Karen E Pollok
- 1Indiana University Simon Cancer Center.,Departments of2Pharmacology and Toxicology and.,4Herman B. Wells Center for Pediatric Research
| | - Ahmad R Safa
- 1Indiana University Simon Cancer Center.,Departments of2Pharmacology and Toxicology and
| |
Collapse
|
129
|
Haley EM, Tilson SG, Triantafillu UL, Magrath JW, Kim Y. Acidic pH with coordinated reduction of basic fibroblast growth factor maintains the glioblastoma stem cell-like phenotype in vitro. J Biosci Bioeng 2017; 123:634-641. [PMID: 28063758 DOI: 10.1016/j.jbiosc.2016.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/29/2016] [Accepted: 12/10/2016] [Indexed: 11/30/2022]
Abstract
Glioblastoma stem cells (GSCs) are a unique subpopulation of cells within glioblastoma multiforme (GBM) brain tumors that possess the ability to self-renew and differentiate into bulk tumor cells. GSCs are resistant to currently available treatments and are the likely culprit behind tumor relapse in GBM patients. However, GSCs are currently inaccessible to the larger scientific community because obtaining a sufficient number of GSCs remains technically challenging and cost-prohibitive. Thus, the objective of this study was to develop a more efficient GSC culture strategy that results in a higher cell yield of GSCs at a lower cost. We observed that the basic fibroblast growth factor (bFGF) is indispensable in allowing GSCs to retain an optimal stem cell-like phenotype in vitro, but little change was seen in their stemness when grown with lower concentrations of bFGF than the established protocol. Interestingly, a dynamic fluctuation of GSC protein marker expression was observed that corresponded to the changes in the bFGF concentration during the culture period. This suggested that bFGF alone did not control stem cell-like phenotype; rather, it was linked to the fluctuations of both bFGF and media pH. We demonstrated that a high level of stem cell-like phenotype could be retained even when lowering bFGF to 8 ng/mL when the media pH was simultaneously lowered to 6.8. These results provide the proof-of-concept that GSC expansion costs could be lowered to a more economical level and warrant the use of pH- and bFGF-controlled bioprocessing methodologies to more optimally expand GSCs in the future.
Collapse
Affiliation(s)
- Elizabeth M Haley
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487-0203, USA
| | - Samantha G Tilson
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487-0203, USA
| | - Ursula L Triantafillu
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487-0203, USA
| | - Justin W Magrath
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487-0203, USA
| | - Yonghyun Kim
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487-0203, USA.
| |
Collapse
|
130
|
Development of a novel imaging agent using peptide-coated gold nanoparticles toward brain glioma stem cell marker CD133. Acta Biomater 2017; 47:182-192. [PMID: 27721007 DOI: 10.1016/j.actbio.2016.10.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 09/28/2016] [Accepted: 10/05/2016] [Indexed: 12/13/2022]
Abstract
CD133 is known as biomarker for glioblastoma (GBM) and also serves as a marker for cancer stem cells (CSCs), which carry out tumorigenesis and resist conventional therapeutics. The presence of CD133-presenting CSC is a one of the factors in maintenance of the tumorigenic potential of GBM. Thus, CD133 is a potential target for accurate diagnosis of GBM, which could improve its poor prognosis for patients when CSCs are present. Herein we designed a small peptide-based imaging agent with stimulus-responsive properties. A novel small peptide, CBP4, was screened by a phage display technique, and demonstrated binding to the target CD133 (ECD) comparable to that of an antibody. As a quencher, we used gold nanoparticles (GNPs); the targeting peptide was conjugated to GNPs with high efficiency. By means of a quenching effect, the peptide-coated GNP showed 'signal on-off' properties depending upon the presence of the target. In addition, the particles exhibited biocompatibility when localized in the cytosol. Thus, this study demonstrated that the peptide-coated GNPs can be utilized as an imaging agent for accurate diagnosis of GBM, and further as a drug carrier for therapeutic approaches. STATEMENT OF SIGNIFICANCE The diagnosis and determination of prognosis made by cancer stem cell markers could be a key strategy to eradicate cancer stem cells and cure the cancer. The significance of this study is the characterization of quenching-based signal on-off mechanism and showed that the active targeting via peptide can contribute to the design of a stimulus-responsive cellular imaging agent. Moreover, small peptide based nano complexation showed specific recognition of the target stem cell and internalized on cellular cyotosol with stimulus responsive fluorescence. With its novel biocompatibility, the strategy might be a promising tool for drug carrier systems able to measure and visualize the delivered efficiency at intracellular sites.
Collapse
|
131
|
Bayin NS, Frenster JD, Kane JR, Rubenstein J, Modrek AS, Baitalmal R, Dolgalev I, Rudzenski K, Scarabottolo L, Crespi D, Redaelli L, Snuderl M, Golfinos JG, Doyle W, Pacione D, Parker EC, Chi AS, Heguy A, MacNeil DJ, Shohdy N, Zagzag D, Placantonakis DG. GPR133 (ADGRD1), an adhesion G-protein-coupled receptor, is necessary for glioblastoma growth. Oncogenesis 2016; 5:e263. [PMID: 27775701 PMCID: PMC5117849 DOI: 10.1038/oncsis.2016.63] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 08/09/2016] [Accepted: 08/24/2016] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is a deadly primary brain malignancy with extensive intratumoral hypoxia. Hypoxic regions of GBM contain stem-like cells and are associated with tumor growth and angiogenesis. The molecular mechanisms that regulate tumor growth in hypoxic conditions are incompletely understood. Here, we use primary human tumor biospecimens and cultures to identify GPR133 (ADGRD1), an orphan member of the adhesion family of G-protein-coupled receptors, as a critical regulator of the response to hypoxia and tumor growth in GBM. GPR133 is selectively expressed in CD133+ GBM stem cells (GSCs) and within the hypoxic areas of PPN in human biospecimens. GPR133 mRNA is transcriptionally upregulated by hypoxia in hypoxia-inducible factor 1α (Hif1α)-dependent manner. Genetic inhibition of GPR133 with short hairpin RNA reduces the prevalence of CD133+ GSCs, tumor cell proliferation and tumorsphere formation in vitro. Forskolin rescues the GPR133 knockdown phenotype, suggesting that GPR133 signaling is mediated by cAMP. Implantation of GBM cells with short hairpin RNA-mediated knockdown of GPR133 in the mouse brain markedly reduces tumor xenograft formation and increases host survival. Analysis of the TCGA data shows that GPR133 expression levels are inversely correlated with patient survival. These findings indicate that GPR133 is an important mediator of the hypoxic response in GBM and has significant protumorigenic functions. We propose that GPR133 represents a novel molecular target in GBM and possibly other malignancies where hypoxia is fundamental to pathogenesis.
Collapse
Affiliation(s)
- N S Bayin
- Department of Neurosurgery, New York University School of Medicine, New York, NY, USA
- Kimmel Center for Stem Cell Biology, New York University School of Medicine, New York, NY, USA
| | - J D Frenster
- Department of Neurosurgery, New York University School of Medicine, New York, NY, USA
- Kimmel Center for Stem Cell Biology, New York University School of Medicine, New York, NY, USA
| | - J R Kane
- Department of Neurosurgery, New York University School of Medicine, New York, NY, USA
| | - J Rubenstein
- Department of Neurosurgery, New York University School of Medicine, New York, NY, USA
| | - A S Modrek
- Department of Neurosurgery, New York University School of Medicine, New York, NY, USA
| | - R Baitalmal
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - I Dolgalev
- Genome Technology Center, New York University School of Medicine, New York, NY, USA
| | - K Rudzenski
- Office for Therapeutic Alliances, New York University School of Medicine, New York, NY, USA
| | | | | | | | - M Snuderl
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Brain Tumor Center, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - J G Golfinos
- Department of Neurosurgery, New York University School of Medicine, New York, NY, USA
- Brain Tumor Center, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - W Doyle
- Department of Neurosurgery, New York University School of Medicine, New York, NY, USA
| | - D Pacione
- Department of Neurosurgery, New York University School of Medicine, New York, NY, USA
| | - E C Parker
- Department of Neurosurgery, New York University School of Medicine, New York, NY, USA
| | - A S Chi
- Brain Tumor Center, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
- Department of Neurology, New York University School of Medicine, New York, NY, USA
| | - A Heguy
- Genome Technology Center, New York University School of Medicine, New York, NY, USA
| | - D J MacNeil
- Office for Therapeutic Alliances, New York University School of Medicine, New York, NY, USA
| | - N Shohdy
- Office for Therapeutic Alliances, New York University School of Medicine, New York, NY, USA
| | - D Zagzag
- Department of Neurosurgery, New York University School of Medicine, New York, NY, USA
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Brain Tumor Center, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - D G Placantonakis
- Department of Neurosurgery, New York University School of Medicine, New York, NY, USA
- Kimmel Center for Stem Cell Biology, New York University School of Medicine, New York, NY, USA
- Brain Tumor Center, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
132
|
Valproic Acid Increases CD133 Positive Cells that Show Low Sensitivity to Cytostatics in Neuroblastoma. PLoS One 2016; 11:e0162916. [PMID: 27627801 PMCID: PMC5023141 DOI: 10.1371/journal.pone.0162916] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 08/30/2016] [Indexed: 01/26/2023] Open
Abstract
Valproic acid (VPA) is a well-known antiepileptic drug that exhibits antitumor activities through its action as a histone deacetylase inhibitor. CD133 is considered to be a cancer stem cell marker in several tumors including neuroblastoma. CD133 transcription is strictly regulated by epigenetic modifications. We evaluated the epigenetic effects of treatment with 1mM VPA and its influence on the expression of CD133 in four human neuroblastoma cell lines. Chemoresistance and cell cycle of CD133+ and CD133- populations were examined by flow cytometry. We performed bisulfite conversion followed by methylation-sensitive high resolution melting analysis to assess the methylation status of CD133 promoters P1 and P3. Our results revealed that VPA induced CD133 expression that was associated with increased acetylation of histones H3 and H4. On treatment with VPA and cytostatics, CD133+ cells were mainly detected in the S and G2/M phases of the cell cycle and they showed less activated caspase-3 compared to CD133- cells. UKF-NB-3 neuroblastoma cells which express CD133 displayed higher colony and neurosphere formation capacities when treated with VPA, unlike IMR-32 which lacks for CD133 protein. Induction of CD133 in UKF-NB-3 was associated with increased expression of phosphorylated Akt and pluripotency transcription factors Nanog, Oct-4 and Sox2. VPA did not induce CD133 expression in cell lines with methylated P1 and P3 promoters, where the CD133 protein was not detected. Applying the demethylating agent 5-aza-2'-deoxycytidine to the cell lines with methylated promoters resulted in CD133 re-expression that was associated with a drop in P1 and P3 methylation level. In conclusion, CD133 expression in neuroblastoma can be regulated by histone acetylation and/or methylation of its CpG promoters. VPA can induce CD133+ cells which display high proliferation potential and low sensitivity to cytostatics in neuroblastoma. These results give new insight into the possible limitations to use VPA in cancer therapy.
Collapse
|
133
|
Wang X, Chen L, Xiao Z, Wang Y, Liu T, Zhang T, Zhang Y. Screening glioma stem cells in U251 cells based on the P1 promoter of the CD133 gene. Oncol Lett 2016; 12:2457-2462. [PMID: 27698813 PMCID: PMC5038209 DOI: 10.3892/ol.2016.4966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 07/12/2016] [Indexed: 02/06/2023] Open
Abstract
Cluster of differentiation (CD)133 is an important cell surface marker of glioma stem cells (GSCs). The transcription of the CD133 gene is controlled by five alternative promoters (P1, P2, P3, P4 and P5), which are expressed in a tissue-specific manner. In the present study, gene recombination technology was used to construct two types of gene expression vectors that contained the P1 promoter of the CD133 gene, which regulated either the neomycin-resistance gene or the herpes simplex virus thymidine kinase (HSV-TK) gene. Following the stable transfection of U251 glioblastoma cells with these two gene vectors, the cells expressing the P1 promoter that regulated the neomycin-resistance gene were named CD133 (+) cells, while the cells expressing the P1 promoter regulating the HSV-TK gene were called CD133 (−) cells. The expression of CD133 was detected by flow cytometry and reverse transcription-quantitative polymerase chain reaction. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to assess cell proliferation ability, while the cell cycle was analyzed by flow cytometry, and a clone formation test was performed to evaluate the invasive capability of the cells. The results demonstrated that, due to CD133 expression, the cell proliferation ability and the invasive capability of CD133 (+) cells were significantly higher than those of CD133 (−) cells. In conclusion, the present study successfully established a novel method of screening GSCs in U251 cells based on the P1 promoter of the CD133 gene.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Department of Stomatology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Lu Chen
- Department of Tumor and Blood Disease, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Zhongdi Xiao
- Department of General Surgery, General Hospital of Daqing Oil Field, Daqing, Heilongjiang 163001, P.R. China
| | - Yali Wang
- Department of Blood Transfusion, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Tiemei Liu
- Department of Blood Transfusion, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Tianfu Zhang
- Department of Stomatology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Yucheng Zhang
- Scientific Research Center, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
134
|
Ning ST, Lee SY, Wei MF, Peng CL, Lin SYF, Tsai MH, Lee PC, Shih YH, Lin CY, Luo TY, Shieh MJ. Targeting Colorectal Cancer Stem-Like Cells with Anti-CD133 Antibody-Conjugated SN-38 Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2016; 8:17793-804. [PMID: 27348241 DOI: 10.1021/acsami.6b04403] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Cancer stem-like cells play a key role in tumor development, and these cells are relevant to the failure of conventional chemotherapy. To achieve favorable therapy for colorectal cancer, PEG-PCL-based nanoparticles, which possess good biological compatibility, were fabricated as nanocarriers for the topoisomerase inhibitor, SN-38. For cancer stem cell therapy, CD133 (prominin-1) is a theoretical cancer stem-like cell (CSLC) marker for colorectal cancer and is a proposed therapeutic target. Cells with CD133 overexpression have demonstrated enhanced tumor-initiating ability and tumor relapse probability. To resolve the problem of chemotherapy failure, SN-38-loaded nanoparticles were conjugated with anti-CD133 antibody to target CD133-positive (CD133(+)) cells. In this study, anti-CD133 antibody-conjugated SN-38-loaded nanoparticles (CD133Ab-NPs-SN-38) efficiently bound to HCT116 cells, which overexpress CD133 glycoprotein. The cytotoxic effect of CD133Ab-NPs-SN-38 was greater than that of nontargeted nanoparticles (NPs-SN-38) in HCT116 cells. Furthermore, CD133Ab-NPs-SN-38 could target CD133(+) cells and inhibit colony formation compared with NPs-SN-38. In vivo studies in an HCT116 xenograft model revealed that CD133Ab-NPs-SN-38 suppressed tumor growth and retarded recurrence. A reduction in CD133 expression in HCT116 cells treated with CD133Ab-NPs-SN-38 was also observed in immunohistochemistry results. Therefore, this CD133-targeting nanoparticle delivery system could eliminate CD133-positive cells and is a potential cancer stem cell targeted therapy.
Collapse
Affiliation(s)
- Sin-Tzu Ning
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , Taipei 100, Taiwan
| | - Shin-Yu Lee
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , Taipei 100, Taiwan
| | - Ming-Feng Wei
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , Taipei 100, Taiwan
| | - Cheng-Liang Peng
- Isotope Application Division, Institute of Nuclear Energy Research , Longtan, Taoyuan 325, Taiwan
| | - Susan Yun-Fan Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , Taipei 100, Taiwan
| | - Ming-Hsien Tsai
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , Taipei 100, Taiwan
| | - Pei-Chi Lee
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , Taipei 100, Taiwan
| | - Ying-Hsia Shih
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , Taipei 100, Taiwan
- Isotope Application Division, Institute of Nuclear Energy Research , Longtan, Taoyuan 325, Taiwan
| | - Chun-Yen Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , Taipei 100, Taiwan
| | - Tsai-Yueh Luo
- Isotope Application Division, Institute of Nuclear Energy Research , Longtan, Taoyuan 325, Taiwan
| | - Ming-Jium Shieh
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , Taipei 100, Taiwan
- Department of Oncology, National Taiwan University Hospital and College of Medicine , Taipei 100, Taiwan
| |
Collapse
|
135
|
Ferreyra Solari NE, Belforte FS, Canedo L, Videla-Richardson GA, Espinosa JM, Rossi M, Serna E, Riudavets MA, Martinetto H, Sevlever G, Perez-Castro C. The NSL Chromatin-Modifying Complex Subunit KANSL2 Regulates Cancer Stem-like Properties in Glioblastoma That Contribute to Tumorigenesis. Cancer Res 2016; 76:5383-94. [PMID: 27406830 DOI: 10.1158/0008-5472.can-15-3159] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 06/24/2016] [Indexed: 12/17/2022]
Abstract
KANSL2 is an integral subunit of the nonspecific lethal (NSL) chromatin-modifying complex that contributes to epigenetic programs in embryonic stem cells. In this study, we report a role for KANSL2 in regulation of stemness in glioblastoma (GBM), which is characterized by heterogeneous tumor stem-like cells associated with therapy resistance and disease relapse. KANSL2 expression is upregulated in cancer cells, mainly at perivascular regions of tumors. RNAi-mediated silencing of KANSL2 in GBM cells impairs their tumorigenic capacity in mouse xenograft models. In clinical specimens, we found that expression levels of KANSL2 correlate with stemness markers in GBM stem-like cell populations. Mechanistic investigations showed that KANSL2 regulates cell self-renewal, which correlates with effects on expression of the stemness transcription factor POU5F1. RNAi-mediated silencing of POU5F1 reduced KANSL2 levels, linking these two genes to stemness control in GBM cells. Together, our findings indicate that KANSL2 acts to regulate the stem cell population in GBM, defining it as a candidate GBM biomarker for clinical use. Cancer Res; 76(18); 5383-94. ©2016 AACR.
Collapse
Affiliation(s)
- Nazarena E Ferreyra Solari
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET -Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Fiorella S Belforte
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET -Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Lucía Canedo
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET -Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Guillermo A Videla-Richardson
- Laboratorio de Investigación aplicada a Neurociencias (LIAN), Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina
| | - Joaquín M Espinosa
- Linda Crnic Institute for Down Syndrome, Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado
| | - Mario Rossi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET -Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Eva Serna
- Servicio Análisis Multigénico, Unidad Central de Investigación, Facultad de Medicina, Universidad de Valencia, Valencia, España
| | - Miguel A Riudavets
- Laboratorio de Biología Molecular, Departamento de Neuropatología y Biología Molecular, Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina. Laboratorio de Histopatología, Cuerpo Médico Forense, Tribunal Supremo de Justicia, Buenos Aires, Argentina
| | - Horacio Martinetto
- Laboratorio de Biología Molecular, Departamento de Neuropatología y Biología Molecular, Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina
| | - Gustavo Sevlever
- Laboratorio de Biología Molecular, Departamento de Neuropatología y Biología Molecular, Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina
| | - Carolina Perez-Castro
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET -Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
| |
Collapse
|
136
|
Renal Cancer Stem Cells: Characterization and Targeted Therapies. Stem Cells Int 2016; 2016:8342625. [PMID: 27293448 PMCID: PMC4884584 DOI: 10.1155/2016/8342625] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/24/2016] [Indexed: 02/08/2023] Open
Abstract
Renal cell carcinoma (RCC) is a major neoplasm with high incidence in western countries. Tumors are heterogeneous and are composed of differentiated cancer cells, stromal cells, and cancer stem cells (CSCs). CSCs possess two main properties: self-renewal and proliferation. Additionally, they can generate new tumors once transplanted into immunodeficient mice. Several approaches have been described to identify them, through the expression of cell markers, functional assays, or a combination of both. As CSCs are involved in the resistance mechanisms to radio- and chemotherapies, several new strategies have been proposed to directly target CSCs in RCC. One approach drives CSCs to differentiate into cancer cells sensitive to conventional treatments, while the other proposes to eradicate them selectively. A series of innovative therapies aiming at eliminating CSCs have been designed to treat other types of cancer and have not been experimented with on RCC yet, but they reveal themselves to be promising. In conclusion, CSCs are an important player in carcinogenesis and represent a valid target for therapy in RCC patients.
Collapse
|
137
|
Reinhard J, Brösicke N, Theocharidis U, Faissner A. The extracellular matrix niche microenvironment of neural and cancer stem cells in the brain. Int J Biochem Cell Biol 2016; 81:174-183. [PMID: 27157088 DOI: 10.1016/j.biocel.2016.05.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 03/25/2016] [Accepted: 05/04/2016] [Indexed: 12/27/2022]
Abstract
Numerous studies demonstrated that neural stem cells and cancer stem cells (NSCs/CSCs) share several overlapping characteristics such as self-renewal, multipotency and a comparable molecular repertoire. In addition to the intrinsic cellular properties, NSCs/CSCs favor a similar environment to acquire and maintain their characteristics. In the present review, we highlight the shared properties of NSCs and CSCs in regard to their extracellular microenvironment called the NSC/CSC niche. Moreover, we point out that extracellular matrix (ECM) molecules and their complementary receptors influence the behavior of NSCs/CSCs as well as brain tumor progression. Here, we focus on the expression profile and functional importance of the ECM glycoprotein tenascin-C, the chondroitin sulfate proteoglycan DSD-1-PG/phosphacan but also on other important glycoprotein/proteoglycan constituents. Within this review, we specifically concentrate on glioblastoma multiforme (GBM). GBM is the most common malignant brain tumor in adults and is associated with poor prognosis despite intense and aggressive surgical and therapeutic treatment. Recent studies indicate that GBM onset is driven by a subpopulation of CSCs that display self-renewal and recapitulate tumor heterogeneity. Based on the CSC hypothesis the cancer arises just from a small subpopulation of self-sustaining cancer cells with the exclusive ability to self-renew and maintain the tumor. Besides the fundamental stem cell properties of self-renewal and multipotency, GBM stem cells share further molecular characteristics with NSCs, which we would like to review in this article.
Collapse
Affiliation(s)
- Jacqueline Reinhard
- Department of Cell Morphology & Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Nicole Brösicke
- Department of Cell Morphology & Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Ursula Theocharidis
- Department of Cell Morphology & Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Andreas Faissner
- Department of Cell Morphology & Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| |
Collapse
|
138
|
Rennert RC, Achrol AS, Januszyk M, Kahn SA, Liu TT, Liu Y, Sahoo D, Rodrigues M, Maan ZN, Wong VW, Cheshier SH, Chang SD, Steinberg GK, Harsh GR, Gurtner GC. Multiple Subsets of Brain Tumor Initiating Cells Coexist in Glioblastoma. Stem Cells 2016; 34:1702-7. [PMID: 26991945 DOI: 10.1002/stem.2359] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/07/2016] [Indexed: 12/31/2022]
Abstract
Brain tumor-initiating cells (BTICs) are self-renewing multipotent cells critical for tumor maintenance and growth. Using single-cell microfluidic profiling, we identified multiple subpopulations of BTICs coexisting in human glioblastoma, characterized by distinct surface marker expression and single-cell molecular profiles relating to divergent bulk tissue molecular subtypes. These data suggest BTIC subpopulation heterogeneity as an underlying source of intra-tumoral bulk tissue molecular heterogeneity, and will support future studies into BTIC subpopulation-specific therapies. Stem Cells 2016;34:1702-1707.
Collapse
Affiliation(s)
- Robert C Rennert
- Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Achal S Achrol
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michael Januszyk
- Department of Surgery, Stanford University School of Medicine, Stanford, California, USA.,Stanford Center for Biomedical Informatics, Stanford University, Stanford, California, USA
| | - Suzana A Kahn
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Tiffany T Liu
- Stanford Center for Biomedical Informatics, Stanford University, Stanford, California, USA
| | - Yi Liu
- Stanford Center for Biomedical Informatics, Stanford University, Stanford, California, USA
| | - Debashis Sahoo
- Stanford Center for Biomedical Informatics, Stanford University, Stanford, California, USA
| | - Melanie Rodrigues
- Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Zeshaan N Maan
- Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Victor W Wong
- Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Samuel H Cheshier
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Steven D Chang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Griffith R Harsh
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Geoffrey C Gurtner
- Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
139
|
Abstract
Based on an analysis of a large number of sources of literature, the paper gives general information on the markers for cancer stem cells (CSCs), which allow the detection of this rare cell subpopulation, on the possibilities of estimating their immunohistochemical or immunofluorescent expression in tumors, and on the prognostic and predictive values of these molecules. For their detection, investigators generally use definite molecules, the so-called markers of CSCs, among which there are CD44, CD133, CD24, aldehyde dehydrogenase, and others. The expression of these molecules in the tumor tissue obtained from patients affects survival rates and permits the prediction of a response to therapy. A better insight into the immunophenotype of CSCs, the role of CSC markers in retaining the special properties of this call population, and the clinical significance of the expression of CSC markers will be able to elaborate new approaches to therapy for malignancies.
Collapse
Affiliation(s)
- M V Puchinskaya
- Belarusian State Medical University, Minsk, Republic of Belarus
| |
Collapse
|
140
|
Kaushik NK, Kaushik N, Yoo KC, Uddin N, Kim JS, Lee SJ, Choi EH. Low doses of PEG-coated gold nanoparticles sensitize solid tumors to cold plasma by blocking the PI3K/AKT-driven signaling axis to suppress cellular transformation by inhibiting growth and EMT. Biomaterials 2016; 87:118-130. [PMID: 26921841 DOI: 10.1016/j.biomaterials.2016.02.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 01/31/2016] [Accepted: 02/15/2016] [Indexed: 12/30/2022]
Abstract
Metastasis, the primary cause of tumor cell transformation, is often activated during cancer invasion and progression and is associated with poor therapeutic outcomes. The effects of combined treatments that included PEG-coated gold nanoparticles (GNP) and cold plasma on epithelial-mesenchymal transition (EMT) and the maintenance of cancer stem cells (CSC) have not been described so far. Here, we report that co-treatment with GNP and cold plasma inhibited proliferation in cancer cells by abolishing the activation of the PI3K/AKT signaling axis. In addition, co-treatment reversed EMT in solid tumor cells by reducing the secretion of a number of proteins, resulting in the upregulation of epithelial markers such as E-cadherin along with down-regulation of N-Cadherin, Slug and Zeb-1. The inhibition of the PI3K/AKT pathway and the reversal of EMT by co-treatment prevented tumor cells growth in solid tumors. Furthermore, we show that GNP and plasma also suppresses tumor growth by decreasing mesenchymal markers in tumor xenograft mice models. Importantly, co-treatment resulted in a substantial decrease in sphere formation and the self-renewal capacity of glioma-like stem cells. Together, these results indicate a direct link between a decrease of EMT and an increase in cell death in solid tumors following co-treatment with cold plasma and GNP.
Collapse
Affiliation(s)
- Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 139-701, Republic of Korea.
| | - Neha Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 139-701, Republic of Korea; Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 133-791, Republic of Korea
| | - Ki Chun Yoo
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 133-791, Republic of Korea
| | - Nizam Uddin
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 133-791, Republic of Korea
| | - Ju Sung Kim
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 139-701, Republic of Korea
| | - Su Jae Lee
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 133-791, Republic of Korea.
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 139-701, Republic of Korea.
| |
Collapse
|
141
|
Glioma Stem Cells and Their Microenvironments: Providers of Challenging Therapeutic Targets. Stem Cells Int 2016; 2016:5728438. [PMID: 26977157 PMCID: PMC4764748 DOI: 10.1155/2016/5728438] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/12/2015] [Accepted: 01/06/2016] [Indexed: 12/26/2022] Open
Abstract
Malignant gliomas are aggressive brain tumors with limited therapeutic options, possibly because of highly tumorigenic subpopulations of glioma stem cells. These cells require specific microenvironments to maintain their “stemness,” described as perivascular and hypoxic niches. Each of those niches induces particular signatures in glioma stem cells (e.g., activation of Notch signaling, secretion of VEGF, bFGF, SDF1 for the vascular niche, activation of HIF2α, and metabolic reprogramming for hypoxic niche). Recently, accumulated knowledge on tumor-associated macrophages, possibly delineating a third niche, has underlined the role of immune cells in glioma progression, via specific chemoattractant factors and cytokines, such as macrophage-colony stimulation factor (M-CSF). The local or myeloid origin of this new component of glioma stem cells niche is yet to be determined. Such niches are being increasingly recognized as key regulators involved in multiple stages of disease progression, therapy resistance, immune-escaping, and distant metastasis, thereby substantially impacting the future development of frontline interventions in clinical oncology. This review focuses on the microenvironment impact on the glioma stem cell biology, emphasizing GSCs cross talk with hypoxic, perivascular, and immune niches and their potential use as targeted therapy.
Collapse
|
142
|
Yasumoto Y, Miyazaki H, Vaidyan LK, Kagawa Y, Ebrahimi M, Yamamoto Y, Ogata M, Katsuyama Y, Sadahiro H, Suzuki M, Owada Y. Inhibition of Fatty Acid Synthase Decreases Expression of Stemness Markers in Glioma Stem Cells. PLoS One 2016; 11:e0147717. [PMID: 26808816 PMCID: PMC4726602 DOI: 10.1371/journal.pone.0147717] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/13/2015] [Indexed: 12/14/2022] Open
Abstract
Cellular metabolic changes, especially to lipid metabolism, have recently been recognized as a hallmark of various cancer cells. However, little is known about the significance of cellular lipid metabolism in the regulation of biological activity of glioma stem cells (GSCs). In this study, we examined the expression and role of fatty acid synthase (FASN), a key lipogenic enzyme, in GSCs. In the de novo lipid synthesis assay, GSCs exhibited higher lipogenesis than differentiated non-GSCs. Western blot and immunocytochemical analyses revealed that FASN is strongly expressed in multiple lines of patient-derived GSCs (G144 and Y10), but its expression was markedly reduced upon differentiation. When GSCs were treated with 20 μM cerulenin, a pharmacological inhibitor of FASN, their proliferation and migration were significantly suppressed and de novo lipogenesis decreased. Furthermore, following cerulenin treatment, expression of the GSC markers nestin, Sox2 and fatty acid binding protein (FABP7), markers of GCSs, decreased while that of glial fibrillary acidic protein (GFAP) expression increased. Taken together, our results indicate that FASN plays a pivotal role in the maintenance of GSC stemness, and FASN-mediated de novo lipid biosynthesis is closely associated with tumor growth and invasion in glioblastoma.
Collapse
Affiliation(s)
- Yuki Yasumoto
- Department of Organ Anatomy, Yamaguchi University Graduate School of Medicine, Ube, Japan
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hirofumi Miyazaki
- Department of Organ Anatomy, Yamaguchi University Graduate School of Medicine, Ube, Japan
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Linda Koshy Vaidyan
- Department of Organ Anatomy, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Yoshiteru Kagawa
- Department of Organ Anatomy, Yamaguchi University Graduate School of Medicine, Ube, Japan
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Majid Ebrahimi
- Department of Organ Anatomy, Yamaguchi University Graduate School of Medicine, Ube, Japan
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yui Yamamoto
- Department of Organ Anatomy, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Masaki Ogata
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yu Katsuyama
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hirokazu Sadahiro
- Department of Neurosurgery, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Michiyasu Suzuki
- Department of Neurosurgery, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Yamaguchi University Graduate School of Medicine, Ube, Japan
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
- * E-mail:
| |
Collapse
|
143
|
Glioma Stem Cells: Signaling, Microenvironment, and Therapy. Stem Cells Int 2016; 2016:7849890. [PMID: 26880988 PMCID: PMC4736567 DOI: 10.1155/2016/7849890] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/25/2015] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma remains the most common and devastating primary brain tumor despite maximal therapy with surgery, chemotherapy, and radiation. The glioma stem cell (GSC) subpopulation has been identified in glioblastoma and likely plays a key role in resistance of these tumors to conventional therapies as well as recurrent disease. GSCs are capable of self-renewal and differentiation; glioblastoma-derived GSCs are capable of de novo tumor formation when implanted in xenograft models. Further, GSCs possess unique surface markers, modulate characteristic signaling pathways to promote tumorigenesis, and play key roles in glioma vascular formation. These features, in addition to microenvironmental factors, present possible targets for specifically directing therapy against the GSC population within glioblastoma. In this review, the authors summarize the current knowledge of GSC biology and function and the role of GSCs in new vascular formation within glioblastoma and discuss potential therapeutic approaches to target GSCs.
Collapse
|
144
|
ERKAN EP, VURGUN U, ERBAYRAKTAR RS, ERBAYRAKTAR Z. Glioblastoma stem cells: a therapeutic challenge. Turk J Biol 2016. [DOI: 10.3906/biy-1508-79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
145
|
Cho JH, Ha NR, Koh SH, Yoon MY. Design of a PKCδ-specific small peptide as a theragnostic agent for glioblastoma. Anal Biochem 2015; 496:63-70. [PMID: 26739937 DOI: 10.1016/j.ab.2015.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 12/01/2015] [Accepted: 12/14/2015] [Indexed: 12/16/2022]
Abstract
Glioblastoma is an aggressive malignant brain tumor that starts in the brain or spine and frequently recurs after anticancer treatment. The development of an accurate diagnostic system combined with effective cancer therapy is essential to improve prognosis of glioma patients. Peptides, produced from phage display, are attractive biomolecules for glioma treatment because of their biostability, nontoxicity, and small size. In this study, we employed phage display methodology to screen for peptides that specifically recognize the target PKCδ as a novel biomarker for glioma. The phage library screening yielded four different peptides displayed on phages with a 20- to 200-pM Kd value for the recombinant PKCδ catalytic domain. Among these four phage peptides, we selected one to synthesize and tagged it with fluorescein isothiocyanate (FITC) based on the sequence of the PKCδ-binding phage clone. The synthetic peptide showed a relative binding affinity for antibody and localization in the U373 glioma cell. The kinase activity of PKCδ was inhibited by FITC-labeled peptide with an IC50 of 1.4 μM in vitro. Consequently, the peptide found in this study might be a promising therapeutic agent against malignant brain tumor.
Collapse
Affiliation(s)
- Jun-Haeng Cho
- Department of Chemistry and Institute for Natural Sciences, Hanyang University, Seoul 133-791, South Korea
| | - Na-Reum Ha
- Department of Chemistry and Institute for Natural Sciences, Hanyang University, Seoul 133-791, South Korea
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University, Seoul 133-791, South Korea
| | - Moon-Young Yoon
- Department of Chemistry and Institute for Natural Sciences, Hanyang University, Seoul 133-791, South Korea.
| |
Collapse
|
146
|
|
147
|
Kalkan R. Glioblastoma Stem Cells as a New Therapeutic Target for Glioblastoma. CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2015; 9:95-103. [PMID: 26617463 PMCID: PMC4651416 DOI: 10.4137/cmo.s30271] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 07/13/2015] [Accepted: 07/14/2015] [Indexed: 12/17/2022]
Abstract
Primary and secondary glioblastomas (GBMs) are two distinct diseases. The genetic and epigenetic background of these tumors is highly variable. The treatment procedure for these tumors is often unsuccessful because of the cellular heterogeneity and intrinsic ability of the tumor cells to invade healthy tissues. The fatal outcome of these tumors promotes researchers to find out new markers associated with the prognosis and treatment planning. In this communication, the role of glioblastoma stem cells in tumor progression and the malignant behavior of GBMs are summarized with attention to the signaling pathways and molecular regulators that are involved in maintaining the glioblastoma stem cell phenotype. A better understanding of these stem cell-like cells is necessary for designing new effective treatments and developing novel molecular strategies to target glioblastoma stem cells. We discuss hypoxia as a new therapeutic target for GBM. We focus on the inhibition of signaling pathways, which are associated with the hypoxia-mediated maintenance of glioblastoma stem cells, and the knockdown of hypoxia-inducible factors, which could be identified as attractive molecular target approaches for GBM therapeutics.
Collapse
Affiliation(s)
- Rasime Kalkan
- Department of Medical Genetics, Faculty of Medicine, Near East University, Turkish Republic of Northern Cyprus
| |
Collapse
|
148
|
Seymour T, Twigger AJ, Kakulas F. Pluripotency Genes and Their Functions in the Normal and Aberrant Breast and Brain. Int J Mol Sci 2015; 16:27288-301. [PMID: 26580604 PMCID: PMC4661882 DOI: 10.3390/ijms161126024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 12/11/2022] Open
Abstract
Pluripotent stem cells (PSCs) attracted considerable interest with the successful isolation of embryonic stem cells (ESCs) from the inner cell mass of murine, primate and human embryos. Whilst it was initially thought that the only PSCs were ESCs, in more recent years cells with similar properties have been isolated from organs of the adult, including the breast and brain. Adult PSCs in these organs have been suggested to be remnants of embryonic development that facilitate normal tissue homeostasis during repair and regeneration. They share certain characteristics with ESCs, such as an inherent capacity to self-renew and differentiate into cells of the three germ layers, properties that are regulated by master pluripotency transcription factors (TFs) OCT4 (octamer-binding transcription factor 4), SOX2 (sex determining region Y-box 2), and homeobox protein NANOG. Aberrant expression of these TFs can be oncogenic resulting in heterogeneous tumours fueled by cancer stem cells (CSC), which are resistant to conventional treatments and are associated with tumour recurrence post-treatment. Further to enriching our understanding of the role of pluripotency TFs in normal tissue function, research now aims to develop optimized isolation and propagation methods for normal adult PSCs and CSCs for the purposes of regenerative medicine, developmental biology, and disease modeling aimed at targeted personalised cancer therapies.
Collapse
Affiliation(s)
- Tracy Seymour
- School of Chemistry and Biochemistry, Faculty of Science, the University of Western Australia, Perth, Western Australia 6009, Australia.
- School of Medicine and Pharmacology, Faculty of Medicine, Dentistry and Health Sciences, the University of Western Australia, Perth, Western Australia 6009, Australia.
| | - Alecia-Jane Twigger
- School of Chemistry and Biochemistry, Faculty of Science, the University of Western Australia, Perth, Western Australia 6009, Australia.
| | - Foteini Kakulas
- School of Chemistry and Biochemistry, Faculty of Science, the University of Western Australia, Perth, Western Australia 6009, Australia.
| |
Collapse
|
149
|
Sun T, Chen G, Li Y, Xie X, Zhou Y, DU Z. Aggressive invasion is observed in CD133 -/A2B5 + glioma-initiating cells. Oncol Lett 2015; 10:3399-3406. [PMID: 26788141 PMCID: PMC4665828 DOI: 10.3892/ol.2015.3823] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 08/17/2015] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma multiforme is the most common and fatal primary brain tumor in adults. Aggressive invasion of glioblastoma cells into brain tissue often limits complete surgical resection and contributes to therapeutic resistance. The cell surface marker, CD133, has been identified as a putative stem cell marker in normal and malignant brain tissues; CD133-/A2B5+ cells exhibit neural stem-like cell properties. The invasive properties and the molecular mechanisms of CD133-/A2B5+ glioma-initiating cells (GICs) were investigated in the process of self-renewal and tumorigenesis. An increased number of invasive cells through matrigel and an increase in migratory cells through filters were observed in CD133-/A2B5+ GIC populations compared with matched non-initiating tumor cell populations. Considerable changes were detected in expression of mRNA and protein associated with migration or invasion. CD133-/A2B5+ GIC demonstrated infiltrating growth patterns and displayed greater invasive potential under fluorescent microscopy comparing with the matched non-initiating tumor cells after cells labeled with red fluorescence protein were transplanted into the brains of athymic/nude mice. CD133-/A2B5+ GICs possess strong migratory and invasive capacity. These infiltrating cells in the invasive fronts may be responsible for rapid tumor recurrence following conventional treatments. CD133-/A2B5+ GICs may be an important subpopulation with high invasive potential and they should not be ignored when targeting GICs to prevent GBM recurrence.
Collapse
Affiliation(s)
- Ting Sun
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Guilin Chen
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yanyan Li
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xueshun Xie
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Youxin Zhou
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Ziwei DU
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
150
|
Shen S, Xia JX, Wang J. Nanomedicine-mediated cancer stem cell therapy. Biomaterials 2015; 74:1-18. [PMID: 26433488 DOI: 10.1016/j.biomaterials.2015.09.037] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 09/23/2015] [Accepted: 09/23/2015] [Indexed: 12/19/2022]
Abstract
Circumstantial evidence suggests that most tumours are heterogeneous and contain a small population of cancer stem cells (CSCs) that exhibit distinctive self-renewal, proliferation and differentiation capabilities, which are believed to play a crucial role in tumour progression, drug resistance, recurrence and metastasis in multiple malignancies. Given that the existence of CSCs is a primary obstacle to cancer therapy, a tremendous amount of effort has been put into the development of anti-CSC strategies, and several potential approaches to kill therapeutically-resistant CSCs have been explored, including inhibiting ATP-binding cassette transporters, blocking essential signalling pathways involved in self-renewal and survival of CSCs, targeting CSCs surface markers and destroying the tumour microenvironment. Meanwhile, an increasing number of therapeutic agents (e.g. small molecule drugs, nucleic acids and antibodies) to selectively target CSCs have been screened or proposed in recent years. Drug delivery technology-based approaches hold great potential for tackling the limitations impeding clinical applications of CSC-specific agents, such as poor water solubility, short circulation time and inconsistent stability. Properly designed nanocarrier-based therapeutic agents (or nanomedicines) offer new possibilities of penetrating CSC niches and significantly increasing therapeutic drug accumulation in CSCs, which are difficult for free drug counterparts. In addition, intelligent nanomedicine holds great promise to overcome pump-mediated multidrug resistance which is driven by ATP and to decrease detrimental effects on normal somatic stem cells. In this review, we summarise the distinctive biological processes related to CSCs to highlight strategies against inherently drug-resistant CSCs. We then focus on some representative examples that give a glimpse into state-of-the-art nanomedicine approaches developed for CSCs elimination. A perspective on innovative therapeutic strategies and the potential direction of nanomedicine-based CSC therapy in the near future is also presented.
Collapse
Affiliation(s)
- Song Shen
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, PR China
| | - Jin-Xing Xia
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, PR China.
| | - Jun Wang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, PR China; Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230027, PR China; High Magnetic Field Laboratory of CAS, University of Science and Technology of China, Hefei, Anhui 230026, PR China.
| |
Collapse
|