101
|
Sellers JR, Wang F, Chantler PD. Trifluoperazine inhibits the MgATPase activity and in vitro motility of conventional and unconventional myosins. J Muscle Res Cell Motil 2004; 24:579-85. [PMID: 14870973 DOI: 10.1023/b:jure.0000009969.04562.58] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Trifluoperazine, a calmodulin antagonist, has recently been shown to inhibit the MgATPase activity of scallop myosin in the absence of light chain dissociation (Patel et al. (2000) J Biol Chem 275: 4880-4888). To investigate the generality of this observation and the mechanism by which it occurs, we have examined the ability of trifluoperazine to inhibit the enzymatic properties of other conventional and unconventional myosins. We show that trifluoperazine can inhibit the actin-activated MgATPase activity of rabbit skeletal muscle myosin II heavy meromyosin (HMM), phosphorylated turkey gizzard smooth muscle myosin II HMM, phosphorylated human nonmuscle myosin IIA HMM and myosin V subfragment-1 (S1). In all cases half maximal inhibition occurred at 50-75 microM trifluoperazine while light chains (myosin II) or calmodulin (myosin V) remained associated with the heavy chains. In vitro motility of all myosins tested was completely inhibited by trifluoperazine. Chymotryptic digestion of baculovirus-expressed myosin V HMM possessing only two calmodulin binding sites yielded a minimal motor fragment with no bound calmodulin. The MgATPase of this fragment was inhibited by trifluoperazine over the same range of concentrations as the S1 fragment of myosin.
Collapse
Affiliation(s)
- James R Sellers
- Laboratory of Molecular Cardiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
102
|
Ando T, Kodera N, Naito Y, Kinoshita T, Furuta K, Toyoshima YY. A high-speed atomic force microscope for studying biological macromolecules in action. Chemphyschem 2004; 4:1196-202. [PMID: 14652998 DOI: 10.1002/cphc.200300795] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The atomic force microscope (AFM), which was invented by Binnig et al. in 1986, can image at nanometer resolution individual biological macromolecules on a substrate in solution. This unique capability awoke an expectation of imaging processes occurring in biological macromolecules at work. However, this expectation was not met, because the imaging rate with available AFMs was too low to capture biological processes. This expectation has at last been realized by the high-speed AFM developed by our research group at Kanazawa University. In this article, after a brief review of the development of our apparatus, its recent advancement and imaging data obtained with motor proteins are presented.
Collapse
Affiliation(s)
- Toshio Ando
- Department of Physics, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| | | | | | | | | | | |
Collapse
|
103
|
Peterman EJG, Sosa H, Moerner WE. Single-molecule fluorescence spectroscopy and microscopy of biomolecular motors. Annu Rev Phys Chem 2004; 55:79-96. [PMID: 15117248 DOI: 10.1146/annurev.physchem.55.091602.094340] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The methods of single-molecule fluorescence spectroscopy and microscopy have been recently utilized to explore the mechanism of action of several members of the kinesin and myosin biomolecular motor protein families. Whereas ensemble averaging is removed in single-molecule studies, heterogeneity in the behavior of individual motors can be directly observed, without synchronization. Observation of translocation by individual copies of motor proteins allows analysis of step size, rate, pausing, and other statistical properties of the process. Polarization microscopy as a function of nucleotide state has been particularly useful in revealing new and highly rotationally mobile forms of particular motors. These experiments complement X-ray and biochemical studies and provide a detailed view into the local dynamical behavior of motor proteins.
Collapse
Affiliation(s)
- Erwin J G Peterman
- Department of Physics and Astronomy, Vrije Universiteit, Amsterdam, Netherlands.
| | | | | |
Collapse
|
104
|
Heyes CD, Kobitski AY, Amirgoulova EV, Nienhaus GU. Biocompatible Surfaces for Specific Tethering of Individual Protein Molecules. J Phys Chem B 2004. [DOI: 10.1021/jp049057o] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Colin D. Heyes
- Department of Biophysics, University of Ulm, Albert Einstein Allee 11, 89069 Ulm, Germany and Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Andrei Yu. Kobitski
- Department of Biophysics, University of Ulm, Albert Einstein Allee 11, 89069 Ulm, Germany and Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Elza V. Amirgoulova
- Department of Biophysics, University of Ulm, Albert Einstein Allee 11, 89069 Ulm, Germany and Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - G. Ulrich Nienhaus
- Department of Biophysics, University of Ulm, Albert Einstein Allee 11, 89069 Ulm, Germany and Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
105
|
Uemura S, Higuchi H, Olivares AO, De La Cruz EM, Ishiwata S. Mechanochemical coupling of two substeps in a single myosin V motor. Nat Struct Mol Biol 2004; 11:877-83. [PMID: 15286720 DOI: 10.1038/nsmb806] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Accepted: 06/18/2004] [Indexed: 11/09/2022]
Abstract
Myosin V is a double-headed processive molecular motor that moves along an actin filament by taking 36-nm steps. Using optical trapping nanometry with high spatiotemporal resolution, we discovered that there are two possible pathways for the 36-nm steps, one with 12- and 24-nm substeps, in this order, and the other without substeps. Based on the analyses of effects of ATP, ADP and 2,3-butanedione 2-monoxime (a reagent shown here to slow ADP release from actomyosin V) on the dwell time and the occurrence frequency of the main and the intermediate states, we propose that the 12-nm substep occurs after ATP binding to the bound trailing head and the 24-nm substep results from a mechanical step following the isomerization of an actomyosin-ADP state on the bound leading head. When the isomerization precedes the 12-nm substep, the 36-nm step occurs without substeps.
Collapse
Affiliation(s)
- Sotaro Uemura
- Department of Physics, School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | | | | | | | | |
Collapse
|
106
|
Watanabe TM, Tanaka H, Iwane AH, Maki-Yonekura S, Homma K, Inoue A, Ikebe R, Yanagida T, Ikebe M. A one-headed class V myosin molecule develops multiple large (approximately 32-nm) steps successively. Proc Natl Acad Sci U S A 2004; 101:9630-5. [PMID: 15208405 PMCID: PMC470726 DOI: 10.1073/pnas.0402914101] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Class V myosin (myosin-V) was first found as a processive motor that moves along an actin filament with large ( approximately 36-nm) successive steps and plays an important role in cargo transport in cells. Subsequently, several other myosins have also been found to move processively. Because myosin-V has two heads with ATP- and actin-binding sites, the mechanism of successive movement has been generally explained based on the two-headed structure. However, the fundamental problem of whether the two-headed structure is essential for the successive movement has not been solved. Here, we measure motility of engineered myosin-V having only one head by optical trapping nanometry. The results show that a single one-headed myosin-V undergoes multiple successive large (approximately 32-nm) steps, suggesting that a novel mechanism is operating for successive myosin movement.
Collapse
Affiliation(s)
- Tomonobu M Watanabe
- Formation of Soft Nanomachines, Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, and Department of Biophysical Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Baker JE, Krementsova EB, Kennedy GG, Armstrong A, Trybus KM, Warshaw DM. Myosin V processivity: multiple kinetic pathways for head-to-head coordination. Proc Natl Acad Sci U S A 2004; 101:5542-6. [PMID: 15056760 PMCID: PMC397419 DOI: 10.1073/pnas.0307247101] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myosin V, a double-headed molecular motor, transports organelles within cells by walking processively along actin, a process that requires coordination between the heads. To understand the mechanism underlying this coordination, processive runs of single myosin V molecules were perturbed by varying nucleotide content. Contrary to current views, our results show that the two heads of a myosin V molecule communicate, not through any one mechanism but through an elaborate system of cooperative mechanisms involving multiple kinetic pathways. These mechanisms introduce redundancy and safeguards that ensure robust processivity under differing physiologic demands.
Collapse
Affiliation(s)
- Josh E Baker
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | | | |
Collapse
|
108
|
Li XD, Mabuchi K, Ikebe R, Ikebe M. Ca2+-induced activation of ATPase activity of myosin Va is accompanied with a large conformational change. Biochem Biophys Res Commun 2004; 315:538-45. [PMID: 14975734 DOI: 10.1016/j.bbrc.2004.01.084] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2003] [Indexed: 11/30/2022]
Abstract
We succeeded in expressing the recombinant full-length myosin Va (M5Full) and studied its regulation mechanism. The actin-activated ATPase activity of M5Full was significantly activated by Ca(2+), whereas the truncated myosin Va without C-terminal globular domain is not regulated by Ca(2+) and constitutively active. Sedimentation analysis showed that the sedimentation coefficient of M5Full undergoes a Ca(2+)-induced conformational transition from 14S to 11S. Electron microscopy revealed that at low ionic strength, M5Full showed an extended conformation in high Ca(2+) while it formed a folded shape in the presence of EGTA, in which the tail domain was folded back towards the head-neck region. Furthermore, we found that the motor domain of myosin Va folds back to the neck domain in Ca(2+) while the head-neck domain is more extended in EGTA. It is thought that the association of the motor domain to the neck inhibits the binding of the tail to the neck thus destabilizing a folded conformation in Ca(2+). This conformational transition is closely correlated to the actin-activated ATPase activity. These results suggest that the tail and neck domain play a role in the Ca(2+) dependent regulation of myosin Va.
Collapse
Affiliation(s)
- Xiang-dong Li
- Department of Physiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | | | | | | |
Collapse
|
109
|
Matsui Y. Polarized distribution of intracellular components by class V myosins in Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2004; 229:1-42. [PMID: 14669953 DOI: 10.1016/s0074-7696(03)29001-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The budding yeast Saccharomyces cerevisiae has three classes of myosins corresponding to three actin structures: class I myosin for endocytic actin structure, actin patches; class II myosin for contraction of the actomyosin contractile ring around the bud neck; and class V myosin for transport along a cable-like actin structure (actin cables), extending toward the growing cortex. Myo2p and Myo4p constitute respective class V myosins as the heavy chain and, like class V myosins in other organisms, function as actin-based motors for polarized distribution of organelles and intracellular molecules. Proper distribution of organelles is essential for autonomously replicating organelles that cannot be reproduced de novo, and is also quite important for other organelles to ensure their efficient segregation and proper positioning, even though they can be newly synthesized, such as those derived from endoplasmic reticulum. In the budding yeast, microtubule-based motors play limited roles in the distribution. Instead, the actin-based motor myosins, especially Myo2p, play a major role. Studies on Myo2p have revealed a wide variety of Myo2p cargo and Myo2p-interacting proteins and have established that Myo2p interacts with cargo and transfers it along actin cables. Moreover, recent findings suggest that Myo2p has another way to distribute cargo in that Myo2p conveys the attaching cargo along the actin track. Thus, the myosin have "dual paths" for distribution of a cargo. This dual path mechanism is proposed in the last section of this review.
Collapse
Affiliation(s)
- Yasushi Matsui
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
110
|
Abstract
All characterized myosins share a common ATPase mechanism. However, detailed kinetic analyses suggest that modulation of the rate and equilibrium constants that define the ATPase cycle confers specific properties to these motor proteins, suiting them to specific physiological tasks. Understanding the kinetic mechanisms allows potential cellular functions of the different myosin classes and isoforms to be better defined.
Collapse
Affiliation(s)
- Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, PO Box 208114, New Haven, CT 06520, USA
| | | |
Collapse
|
111
|
Abstract
Mammalian myosin V motors transport cargo processively along actin filaments. Recent biophysical and structural studies have led to a detailed understanding of the mechanism of myosin V, making it perhaps the best understood cytoskeletal motor. In addition to describing the mechanism, this review will illustrate how "dynamic" single molecule measurements can synergize with "static" protein structural studies to produce amazingly clear information on the workings of a nanometer-scale machine.
Collapse
Affiliation(s)
- Ronald D Vale
- Department of Cellular and Molecular Pharmacology and The Howard Hughes Medical Institute, University of California, San Francisco, CA 94107, USA.
| |
Collapse
|
112
|
Ishikawa R, Sakamoto T, Ando T, Higashi-Fujime S, Kohama K. Polarized actin bundles formed by human fascin-1: their sliding and disassembly on myosin II and myosin V in vitro. J Neurochem 2003; 87:676-85. [PMID: 14535950 DOI: 10.1046/j.1471-4159.2003.02058.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fascin-1 is a putative bundling factor of actin filaments in the filopodia of neuronal growth cones. Here, we examined the structure of the actin bundle formed by human fascin-1 (actin/fascin bundle), and its mode of interaction with myosin in vitro. The distance between cross-linked filaments in the actin/bundle was 8-9 nm, and the bundle showed the transverse periodicity of 36 nm perpendicular to the bundle axis, which was confirmed by electron microscopy. Decoration of the actin/fascin bundle with heavy meromyosin revealed that the arrowheads of filaments in the bundle pointed in the same direction, indicating that the bundle has polarity. This result suggested that fascin-1 plays an essential role in polarity of actin bundles in filopodia. In the in vitro motility assay, actin/fascin bundles slid as fast as single actin filaments on myosin II and myosin V. When myosin was attached to the surface at high density, the actin/fascin bundle disassembled to single filaments at the pointed end of the bundle during sliding. These results suggest that myosins may drive filopodial actin bundles backward by interacting with actin filaments on the surface, and may induce disassembly of the bundle at the basal region of filopodia.
Collapse
Affiliation(s)
- Ryoki Ishikawa
- Department of Pharmacology, Gunma University School of Medicine, Maebashi, Japan.
| | | | | | | | | |
Collapse
|
113
|
Sakamoto T, Wang F, Schmitz S, Xu Y, Xu Q, Molloy JE, Veigel C, Sellers JR. Neck length and processivity of myosin V. J Biol Chem 2003; 278:29201-7. [PMID: 12740393 DOI: 10.1074/jbc.m303662200] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myosin V is an unconventional myosin that transports cargo such as vesicles, melanosomes, or mRNA on actin filaments. It is a two-headed myosin with an unusually long neck that has six IQ motifs complexed with calmodulin. In vitro studies have shown that myosin V moves processively on actin, taking multiple 36-nm steps that coincide with the helical repeat of actin. This allows the molecule to "walk" across the top of an actin filament, a feature necessary for moving large vesicles along an actin filament bound to the cytoskeleton. The extended neck length of the two heads is thought to be critical for taking 36-nm steps for processive movements. To test this hypothesis we have expressed myosin V heavy meromyosin-like fragments containing 6IQ motifs, as well as ones that shorten (2IQ, 4IQ) or lengthen (8IQ) the neck region or alter the spacing between 3rd and 4th IQ motifs. The step size was proportional to neck length for the 2IQ, 4IQ, 6IQ, and 8IQ molecules, but the molecule with the altered spacing took shorter than expected steps. Total internal reflection fluorescence microscopy was used to determine whether the heavy meromyosin IQ molecules were capable of processive movements on actin. At saturating ATP concentrations, all molecules except for the 2IQ mutant moved processively on actin. When the ATP concentration was lowered to 10 microm or less, the 2IQ mutant demonstrated some processive movements but with reduced run lengths compared with the other mutants. Its weak processivity was also confirmed by actin landing assays.
Collapse
Affiliation(s)
- Takeshi Sakamoto
- Laboratory of Molecular Cardiology and Electron Microscopy Core, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-1762, USA
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Yildiz A, Forkey JN, McKinney SA, Ha T, Goldman YE, Selvin PR. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 2003; 300:2061-5. [PMID: 12791999 DOI: 10.1126/science.1084398] [Citation(s) in RCA: 1266] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Myosin V is a dimeric molecular motor that moves processively on actin, with the center of mass moving approximately 37 nanometers for each adenosine triphosphate hydrolyzed. We have labeled myosin V with a single fluorophore at different positions in the light-chain domain and measured the step size with a standard deviation of <1.5 nanometers, with 0.5-second temporal resolution, and observation times of minutes. The step size alternates between 37 + 2x nm and 37 - 2x, where x is the distance along the direction of motion between the dye and the midpoint between the two heads. These results strongly support a hand-over-hand model of motility, not an inchworm model.
Collapse
Affiliation(s)
- Ahmet Yildiz
- Center for Biophysics and Computational Biology, University of Illinois, Urbana-Champaign, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
115
|
Forkey JN, Quinlan ME, Shaw MA, Corrie JET, Goldman YE. Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization. Nature 2003; 422:399-404. [PMID: 12660775 DOI: 10.1038/nature01529] [Citation(s) in RCA: 332] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2002] [Accepted: 03/03/2003] [Indexed: 11/08/2022]
Abstract
The structural change that generates force and motion in actomyosin motility has been proposed to be tilting of the myosin light chain domain, which serves as a lever arm. Several experimental approaches have provided support for the lever arm hypothesis; however, the extent and timing of tilting motions are not well defined in the motor protein complex of functioning actomyosin. Here we report three-dimensional measurements of the structural dynamics of the light chain domain of brain myosin V using a single-molecule fluorescence polarization technique that determines the orientation of individual protein domains with 20-40-ms time resolution. Single fluorescent calmodulin light chains tilted back and forth between two well-defined angles as the myosin molecule processively translocated along actin. The results provide evidence for lever arm rotation of the calmodulin-binding domain in myosin V, and support a 'hand-over-hand' mechanism for the translocation of double-headed myosin V molecules along actin filaments. The technique is applicable to the study of real-time structural changes in other biological systems.
Collapse
Affiliation(s)
- Joseph N Forkey
- Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6083, USA
| | | | | | | | | |
Collapse
|
116
|
Tominaga M, Kojima H, Yokota E, Orii H, Nakamori R, Katayama E, Anson M, Shimmen T, Oiwa K. Higher plant myosin XI moves processively on actin with 35 nm steps at high velocity. EMBO J 2003; 22:1263-72. [PMID: 12628919 PMCID: PMC151065 DOI: 10.1093/emboj/cdg130] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2002] [Revised: 01/21/2003] [Accepted: 01/27/2003] [Indexed: 11/12/2022] Open
Abstract
High velocity cytoplasmic streaming is found in various plant cells from algae to angiosperms. We characterized mechanical and enzymatic properties of a higher plant myosin purified from tobacco bright yellow-2 cells, responsible for cytoplasmic streaming, having a 175 kDa heavy chain and calmodulin light chains. Sequence analysis shows it to be a class XI myosin and a dimer with six IQ motifs in the light chain-binding domains of each heavy chain. Electron microscopy confirmed these predictions. We measured its ATPase characteristics, in vitro motility and, using optical trap nanometry, forces and movement developed by individual myosin XI molecules. Single myosin XI molecules move processively along actin with 35 nm steps at 7 micro m/s, the fastest known processive motion. Processivity was confirmed by actin landing rate assays. Mean maximal force was approximately 0.5 pN, smaller than for myosin IIs. Dwell time analysis of beads carrying single myosin XI molecules fitted the ATPase kinetics, with ADP release being rate limiting. These results indicate that myosin XI is highly specialized for generation of fast processive movement with concomitantly low forces.
Collapse
Affiliation(s)
| | | | - Etsuo Yokota
- Kansai Advanced Research Center, Communications Research Laboratory, Kobe 651-2492,
Department of Life Science, Graduate School and Faculty of Science, Himeji Institute of Technology, Harima Science Park City, Hyogo 678-1297, Division of Biomolecular Imaging, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, PRESTO, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012 Japan and Division of Physical Biochemistry, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK Corresponding author e-mail:
| | - Hidefumi Orii
- Kansai Advanced Research Center, Communications Research Laboratory, Kobe 651-2492,
Department of Life Science, Graduate School and Faculty of Science, Himeji Institute of Technology, Harima Science Park City, Hyogo 678-1297, Division of Biomolecular Imaging, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, PRESTO, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012 Japan and Division of Physical Biochemistry, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK Corresponding author e-mail:
| | | | - Eisaku Katayama
- Kansai Advanced Research Center, Communications Research Laboratory, Kobe 651-2492,
Department of Life Science, Graduate School and Faculty of Science, Himeji Institute of Technology, Harima Science Park City, Hyogo 678-1297, Division of Biomolecular Imaging, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, PRESTO, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012 Japan and Division of Physical Biochemistry, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK Corresponding author e-mail:
| | - Michael Anson
- Kansai Advanced Research Center, Communications Research Laboratory, Kobe 651-2492,
Department of Life Science, Graduate School and Faculty of Science, Himeji Institute of Technology, Harima Science Park City, Hyogo 678-1297, Division of Biomolecular Imaging, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, PRESTO, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012 Japan and Division of Physical Biochemistry, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK Corresponding author e-mail:
| | - Teruo Shimmen
- Kansai Advanced Research Center, Communications Research Laboratory, Kobe 651-2492,
Department of Life Science, Graduate School and Faculty of Science, Himeji Institute of Technology, Harima Science Park City, Hyogo 678-1297, Division of Biomolecular Imaging, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, PRESTO, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012 Japan and Division of Physical Biochemistry, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK Corresponding author e-mail:
| | - Kazuhiro Oiwa
- Kansai Advanced Research Center, Communications Research Laboratory, Kobe 651-2492,
Department of Life Science, Graduate School and Faculty of Science, Himeji Institute of Technology, Harima Science Park City, Hyogo 678-1297, Division of Biomolecular Imaging, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, PRESTO, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012 Japan and Division of Physical Biochemistry, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK Corresponding author e-mail:
| |
Collapse
|
117
|
Abstract
Myosin-V is a motor protein responsible for organelle and vesicle transport in cells. Recent single-molecule experiments have shown that it is an efficient processive motor that walks along actin filaments taking steps of mean size close to 36 nm. A theoretical study of myosin-V motility is presented following an approach used successfully to analyze the dynamics of conventional kinesin but also taking some account of step-size variations. Much of the present experimental data for myosin-V can be well described by a two-state chemical kinetic model with three load-dependent rates. In addition, the analysis predicts the variation of the mean velocity and of the randomness-a quantitative measure of the stochastic deviations from uniform, constant-speed motion-with ATP concentration under both resisting and assisting loads, and indicates a substep of size d(0) approximately 13-14 nm (from the ATP-binding state) that appears to accord with independent observations.
Collapse
|
118
|
Abstract
Myosin VIIA was cloned from rat kidney, and the construct (M7IQ5) containing the motor domain, IQ domain, and the coiled-coil domain as well as the full-length myosin VIIA (M7full) was expressed. The M7IQ5 contained five calmodulins. Based upon native gel electrophoresis and gel filtration, it was found that M7IQ5 was single-headed, whereas M7full was two-headed, suggesting that the tail domain contributes to form the two-headed structure. M7IQ5 had Mg(2+)-ATPase activity that was markedly activated by actin with K(actin) of 33 microm and V(max) of 0.53 s(-1) head(-1). Myosin VIIA required an extremely high ATP concentration for ATPase activity, ATP-induced dissociation from actin, and in vitro actin-translocating activity. ADP markedly inhibited the actin-activated ATPase activity. ADP also significantly inhibited the ATP-induced dissociation of myosin VIIA from actin. Consistently, ADP decreased K(actin) of the actin-activated ATPase. ADP decreased the actin gliding velocity, although ADP did not stop the actin gliding even at high concentration. These results suggest that myosin VIIA has slow ATP binding or low affinity for ATP and relatively high affinity for ADP. The directionality of myosin VIIA was determined by using the polarity-marked dual fluorescence-labeled actin filaments. It was found that myosin VIIA is a plus-directed motor.
Collapse
Affiliation(s)
- Akira Inoue
- Department of Physiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655-0127, USA
| | | |
Collapse
|
119
|
Kodera N, Kinoshita T, Ito T, Ando T. High-resolution imaging of myosin motor in action by a high-speed atomic force microscope. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 538:119-27. [PMID: 15098660 DOI: 10.1007/978-1-4419-9029-7_11] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The atomic force microscope (AFM) is a powerful tool for imaging biological molecules on a substrate, in solution. However, there is no effective time axis with AFM; commercially available AFMs require minutes to capture an image, but many interesting biological processes occur at much higher rate. Hence, what we can observe using the AFM is limited to stationary molecules, or those moving very slowly. We sought to increase markedly the scan speed of the AFM, so that in the future it can be used to study the dynamic behaviour of biomolecules. For this purpose, we have developed various devices optimised for high-speed scanning. Combining these devices has produced an AFM that can capture a 100 x 100 pixel image within 80 ms, thus generating a movie consisting of many successive images of a sample in aqueous solution. This is demonstrated by imaging myosin V molecules moving on mica, in solution.
Collapse
Affiliation(s)
- Noriyuki Kodera
- Department of Physics, Kanazawa University, Kanazawa 920-1192, Japan
| | | | | | | |
Collapse
|
120
|
Ikebe M, Inoue A, Nishikawa S, Homma K, Tanaka H, Iwane AH, Katayama E, Ikebe R, Yanagida T. Motor function of unconventional myosin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 538:143-56; discussion 157. [PMID: 15098662 DOI: 10.1007/978-1-4419-9029-7_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Mitsuo Ikebe
- Department of Physiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655-0127, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Inoue A, Saito J, Ikebe R, Ikebe M. Myosin IXb is a single-headed minus-end-directed processive motor. Nat Cell Biol 2002; 4:302-6. [PMID: 11901422 DOI: 10.1038/ncb774] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Myosin is an actin-based molecular motor that constitutes a diverse superfamily. In contrast to conventional myosin, which binds to actin for only a short time during cross-bridge cycling, recent studies have demonstrated that class V myosin moves along actin filaments for a long distance without dissociating. This would make it suitable for supporting cargo movement in cells. Because myosin V has a two-headed structure with an expanded neck domain, it has been postulated to 'walk' along the 36-nm helical repeat of the actin filament, with one head attached to the actin and leading the other head to the neighbouring helical pitch. Here, we report that myosin IXb, a single-headed myosin, moves processively on actin filaments. Furthermore, we found that myosin IXb is a minus-end-directed motor. In addition to class VI myosin, this is the first myosin superfamily member identified that moves in the reverse direction. The processive movement of the single-headed myosin IXb cannot be explained by a 'hand-over-hand' mechanism. This suggests that an alternative mechanism must be operating for the processive movement of single-headed myosin IXb.
Collapse
Affiliation(s)
- Akira Inoue
- Department of Physiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655-0127, USA
| | | | | | | |
Collapse
|
122
|
Abstract
Myosin VI is a molecular motor that moves processively along actin filaments and is believed to play a role in cargo movement in cells. Here we found that DOC-2/DAB2, a signaling molecule inhibiting the Ras cascade, binds to myosin VI at the globular tail domain. DOC-2/DAB2 binds stoichiometrically to myosin VI with one molecule per one myosin VI heavy chain. The C-terminal 122 amino acid residues of DOC-2/DAB2, containing the Grb2 binding site, is identified to be critical for the binding to myosin VI. Actin gliding assay revealed that the binding of DOC-2/DAB2 to myosin VI can support the actin filament gliding by myosin VI, suggesting that it can function as a myosin VI anchoring molecule. The C-terminal domain but not the N-terminal domain of DOC-2/DAB2 functions as a myosin VI anchoring site. The present findings suggest that myosin VI plays a role in transporting DOC-2/DAB2, a Ras cascade signaling molecule, thus involved in Ras signaling pathways.
Collapse
Affiliation(s)
- Akira Inoue
- Department of Physiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655-0127, USA
| | | | | | | |
Collapse
|
123
|
Provance DW, James TL, Mercer JA. Melanophilin, the product of the leaden locus, is required for targeting of myosin-Va to melanosomes. Traffic 2002; 3:124-32. [PMID: 11929602 PMCID: PMC1351229 DOI: 10.1034/j.1600-0854.2002.030205.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The formation of complex subcellular organelles requires the coordinated targeting of multiple components. Melanosome biogenesis in mouse melanocytes is an excellent model system for studying the coordinated function of multiple gene products in intracellular trafficking. To begin to order events in melanosome biogenesis and distribution, we employed the classical coat-color mutants ashen, dilute, and leaden, which affect melanosome distribution, but not melanin synthesis. The loci have been renamed Rab27a, Myo5a, and Mlph for their gene products. While each of the three loci has been shown to be required for melanosome distribution, the point(s) at which each acts is unknown. We have utilized primary melanocytes to examine the interdependencies between rab27a, myosin-Va, and melanophilin. The localization of rab27a to melanosomes did not require the function of either myosin-Va or melanophilin, but leaden function was required for the association of myosin-Va with melanosomes. In leaden melanocytes permeabilized before fixation, myosin-Va immunoreactivity was greatly attenuated, suggesting that myosin-Va is free in the cytoplasm. Finally, we have complemented both the leaden and ashen phenotypes by cell fusion and observed redistribution of mature melanosomes in the absence of both protein and melanin synthesis. Together, our data suggest a model for the initial assembly of the machinery required for melanosome distribution.
Collapse
|
124
|
Nishikawa S, Homma K, Komori Y, Iwaki M, Wazawa T, Hikikoshi Iwane A, Saito J, Ikebe R, Katayama E, Yanagida T, Ikebe M. Class VI myosin moves processively along actin filaments backward with large steps. Biochem Biophys Res Commun 2002; 290:311-7. [PMID: 11779171 DOI: 10.1006/bbrc.2001.6142] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Among a superfamily of myosin, class VI myosin moves actin filaments backwards. Here we show that myosin VI moves processively on actin filaments backwards with large ( approximately 36 nm) steps, nevertheless it has an extremely short neck domain. Myosin V also moves processively with large ( approximately 36 nm) steps and it is believed that myosin V strides along the actin helical repeat with its elongated neck domain that is critical for its processive movement with large steps. Myosin VI having a short neck cannot take this scenario. We found by electron microscopy that myosin VI cooperatively binds to an actin filament at approximately 36 nm intervals in the presence of ATP, raising a hypothesis that the binding of myosin VI evokes "hot spots" on actin filaments that attract myosin heads. Myosin VI may step on these "hot spots" on actin filaments in every helical pitch, thus producing processive movement with 36 nm steps.
Collapse
Affiliation(s)
- So Nishikawa
- Single Molecule Process Project, ICORP, JST, 2-4-14, Senba-Higashi, Mino, Osaka 562-0035, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Tanaka H, Homma K, Iwane AH, Katayama E, Ikebe R, Saito J, Yanagida T, Ikebe M. The motor domain determines the large step of myosin-V. Nature 2002; 415:192-5. [PMID: 11805840 DOI: 10.1038/415192a] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Class-V myosin proceeds along actin filaments with large ( approximately 36 nm) steps. Myosin-V has two heads, each of which consists of a motor domain and a long (23 nm) neck domain. In accordance with the widely accepted lever-arm model, it was suggested that myosin-V steps to successive (36 nm) target zones along the actin helical repeat by tilting its long neck (lever-arm). To test this hypothesis, we measured the mechanical properties of single molecules of myosin-V truncation mutants with neck domains only one-sixth of the native length. Our results show that the processivity and step distance along actin are both similar to those of full-length myosin-V. Thus, the long neck domain is not essential for either the large steps or processivity of myosin-V. These results challenge the lever-arm model. We propose that the motor domain and/or the actomyosin interface enable myosin-V to produce large processive steps during translocation along actin.
Collapse
Affiliation(s)
- Hiroto Tanaka
- Single Molecule Processes Project, ICORP, JST, 2-4-14, Senba-higashi, Mino, Osaka 562-0035, Japan
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Schott DH, Collins RN, Bretscher A. Secretory vesicle transport velocity in living cells depends on the myosin-V lever arm length. J Cell Biol 2002; 156:35-9. [PMID: 11781333 PMCID: PMC2173574 DOI: 10.1083/jcb.200110086] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Myosins are molecular motors that exert force against actin filaments. One widely conserved myosin class, the myosin-Vs, recruits organelles to polarized sites in animal and fungal cells. However, it has been unclear whether myosin-Vs actively transport organelles, and whether the recently challenged lever arm model developed for muscle myosin applies to myosin-Vs. Here we demonstrate in living, intact yeast that secretory vesicles move rapidly toward their site of exocytosis. The maximal speed varies linearly over a wide range of lever arm lengths genetically engineered into the myosin-V heavy chain encoded by the MYO2 gene. Thus, secretory vesicle polarization is achieved through active transport by a myosin-V, and the motor mechanism is consistent with the lever arm model.
Collapse
Affiliation(s)
- Daniel H Schott
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
127
|
|
128
|
Veigel C, Wang F, Bartoo ML, Sellers JR, Molloy JE. The gated gait of the processive molecular motor, myosin V. Nat Cell Biol 2002; 4:59-65. [PMID: 11740494 DOI: 10.1038/ncb732] [Citation(s) in RCA: 296] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Class V myosins are actin-based molecular motors involved in vesicular and organellar transport. Single myosin V molecules move processively along F-actin, taking several 36-nm steps for each diffusional encounter. Here we have measured the mechanical interactions between mouse brain myosin V and rabbit skeletal F-actin. The working stroke produced by a myosin V head is approximately 25 nm, consisting of two separate mechanical phases (20 + 5 nm). We show that there are preferred myosin binding positions (target zones) every 36 nm along the actin filament, and propose that the 36-nm steps of the double-headed motor are a combination of the working stroke (25 nm) of the bound head and a biased, thermally driven diffusive movement (11 nm) of the free head onto the next target zone. The second phase of the working stroke (5 nm) acts as a gate - like an escapement in a clock, coordinating the ATPase cycles of the two myosin V heads. This mechanism increases processivity and enables a single myosin V molecule to travel distances of several hundred nanometres along the actin filament.
Collapse
Affiliation(s)
- Claudia Veigel
- Department of Biology, University of York, PO Box 373, York YO10 5YW, UK.
| | | | | | | | | |
Collapse
|
129
|
Abstract
The integrity of the actin cytoskeleton and associated motor proteins are essential for the efficient functioning of clathrin mediated endocytosis at least in polarised cells. Myosin VI, the only motor protein so far identified that moves towards the minus end of actin filaments, is the first motor protein to be shown to associate with clathrin coated pits/vesicles at the plasma membrane and to modulate clathrin mediated endocytosis. Recent kinetic studies suggest that myosin VI may move processively along actin filaments providing clues about its functions in the cell. The possible role(s) of myosin VI in the sequential steps involved in receptor mediated endocytosis are discussed.
Collapse
Affiliation(s)
- F Buss
- Department of Clinical Biochemistry, University of Cambridge, UK.
| | | | | |
Collapse
|
130
|
Rock RS, Rice SE, Wells AL, Purcell TJ, Spudich JA, Sweeney HL. Myosin VI is a processive motor with a large step size. Proc Natl Acad Sci U S A 2001; 98:13655-9. [PMID: 11707568 PMCID: PMC61096 DOI: 10.1073/pnas.191512398] [Citation(s) in RCA: 280] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myosin VI is a molecular motor involved in intracellular vesicle and organelle transport. To carry out its cellular functions myosin VI moves toward the pointed end of actin, backward in relation to all other characterized myosins. Myosin V, a motor that moves toward the barbed end of actin, is processive, undergoing multiple catalytic cycles and mechanical advances before it releases from actin. Here we show that myosin VI is also processive by using single molecule motility and optical trapping experiments. Remarkably, myosin VI takes much larger steps than expected, based on a simple lever-arm mechanism, for a myosin with only one light chain in the lever-arm domain. Unlike other characterized myosins, myosin VI stepping is highly irregular with a broad distribution of step sizes.
Collapse
Affiliation(s)
- R S Rock
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
131
|
Moore JR, Krementsova EB, Trybus KM, Warshaw DM. Myosin V exhibits a high duty cycle and large unitary displacement. J Cell Biol 2001; 155:625-35. [PMID: 11706052 PMCID: PMC2198872 DOI: 10.1083/jcb.200103128] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Myosin V is a double-headed unconventional myosin that has been implicated in organelle transport. To perform this role, myosin V may have a high duty cycle. To test this hypothesis and understand the properties of this molecule at the molecular level, we used the laser trap and in vitro motility assay to characterize the mechanics of heavy meromyosin-like fragments of myosin V (M5(HMM)) expressed in the Baculovirus system. The relationship between actin filament velocity and the number of interacting M5(HMM) molecules indicates a duty cycle of > or =50%. This high duty cycle would allow actin filament translocation and thus organelle transport by a few M5(HMM) molecules. Single molecule displacement data showed predominantly single step events of 20 nm and an occasional second step to 37 nm. The 20-nm unitary step represents the myosin V working stroke and is independent of the mode of M5(HMM) attachment to the motility surface or light chain content. The large M5(HMM) working stroke is consistent with the myosin V neck acting as a mechanical lever. The second step is characterized by an increased displacement variance, suggesting a model for how the two heads of myosin V function in processive motion.
Collapse
Affiliation(s)
- J R Moore
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
132
|
Tauhata SB, dos Santos DV, Taylor EW, Mooseker MS, Larson RE. High affinity binding of brain myosin-Va to F-actin induced by calcium in the presence of ATP. J Biol Chem 2001; 276:39812-8. [PMID: 11517216 DOI: 10.1074/jbc.m102583200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Brain myosin-Va consists of two heavy chains, each containing a neck domain with six tandem IQ motifs that bind four to five calmodulins and one to two essential light chains. Previous studies demonstrated that myosin-Va exhibits an unusually high affinity for F-actin in the presence of ATP and that its MgATPase activity is stimulated by micromolar Ca(2+) in a highly cooperative manner. We demonstrate here that Ca(2+) also induces myosin-Va binding to and cosedimentation with F-actin in the presence of ATP in a similar cooperative manner and calcium concentration range as that observed for the ATPase activity. Neither hydrolysis of ATP nor buildup of ADP was required for Ca(2+)-induced cosedimentation. The Ca(2+)-induced binding was inhibited by low temperature or by 0.6 m NaCl, but not by 1% Triton X-100. Tight binding between myosin-Va and pyrene-labeled F-actin in the presence of ATP and Ca(2+) was also detected by quenching of the pyrene fluorescence. Negatively stained preparations of actomyosin-Va under Ca(2+)-induced binding conditions showed tightly packed F-actin bundles cross-linked by myosin-Va. Our data demonstrate that high affinity binding of myosin-Va and F-actin in the presence of ATP or 5'-O-(thiotriphosphate) is induced by micromolar concentrations of Ca(2+). Since Ca(2+) regulates both the actin binding properties and actin-activated ATPase of myosin-Va over the same concentration range, we suggest that the calcium signal may regulate the mechanism of processivity of myosin Va.
Collapse
Affiliation(s)
- S B Tauhata
- Department of Cellular and Molecular Biology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil, 14049-900
| | | | | | | | | |
Collapse
|
133
|
Yoshimura M, Homma K, Saito J, Inoue A, Ikebe R, Ikebe M. Dual regulation of mammalian myosin VI motor function. J Biol Chem 2001; 276:39600-7. [PMID: 11517222 DOI: 10.1074/jbc.m105080200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myosin VI is expressed in a variety of cell types and is thought to play a role in membrane trafficking and endocytosis, yet its motor function and regulation are not understood. The present study clarified mammalian myosin VI motor function and regulation at a molecular level. Myosin VI ATPase activity was highly activated by actin with K(actin) of 9 microm. A predominant amount of myosin VI bound to actin in the presence of ATP unlike conventional myosins. K(ATP) was much higher than those of other known myosins, suggesting that myosin VI has a weak affinity or slow binding for ATP. On the other hand, ADP markedly inhibited the actin-activated ATPase activity, suggesting a high affinity for ADP. These results suggested that myosin VI is predominantly in a strong actin binding state during the ATPase cycle. p21-activated kinase 3 phosphorylated myosin VI, and the site was identified as Thr(406). The phosphorylation of myosin VI significantly facilitated the actin-translocating activity of myosin VI. On the other hand, Ca(2+) diminished the actin-translocating activity of myosin VI although the actin-activated ATPase activity was not affected by Ca(2+). Calmodulin was not dissociated from the heavy chain at high Ca(2+), suggesting that a conformational change of calmodulin upon Ca(2+) binding, but not its physical dissociation, determines the inhibition of the motility activity. The present results revealed the dual regulation of myosin VI by phosphorylation and Ca(2+) binding to calmodulin light chain.
Collapse
Affiliation(s)
- M Yoshimura
- Department of Physiology, University of Massachusetts Medical School, 55 Lake Ave., Worcester, MA 01655-0127, USA
| | | | | | | | | | | |
Collapse
|
134
|
Ando T, Kodera N, Takai E, Maruyama D, Saito K, Toda A. A high-speed atomic force microscope for studying biological macromolecules. Proc Natl Acad Sci U S A 2001; 98:12468-72. [PMID: 11592975 PMCID: PMC60077 DOI: 10.1073/pnas.211400898] [Citation(s) in RCA: 590] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The atomic force microscope (AFM) is a powerful tool for imaging individual biological molecules attached to a substrate and placed in aqueous solution. At present, however, it is limited by the speed at which it can successively record highly resolved images. We sought to increase markedly the scan speed of the AFM, so that in the future it can be used to study the dynamic behavior of biomolecules. For this purpose, we have developed a high-speed scanner, free of resonant vibrations up to 60 kHz, small cantilevers with high resonance frequencies (450-650 kHz) and small spring constants (150-280 pN/nm), an objective-lens type of deflection detection device, and several electronic devices of wide bandwidth. Integration of these various devices has produced an AFM that can capture a 100 x 100 pixel(2) image within 80 ms and therefore can generate a movie consisting of many successive images (80-ms intervals) of a sample in aqueous solution. This is demonstrated by imaging myosin V molecules moving on mica (see http://www.s.kanazawa-u.ac.jp/phys/biophys/bmv_movie.htm).
Collapse
Affiliation(s)
- T Ando
- Department of Physics, Faculty of Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | | | | | | | | | | |
Collapse
|
135
|
Stachelek SJ, Tuft RA, Lifschitz LM, Leonard DM, Farwell AP, Leonard JL. Real-time visualization of processive myosin 5a-mediated vesicle movement in living astrocytes. J Biol Chem 2001; 276:35652-9. [PMID: 11470781 DOI: 10.1074/jbc.m103331200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recycling endosomes in astrocytes show hormone-regulated, actin fiber-dependent delivery to the endosomal sorting pool. Recycling vesicle trafficking was followed in real time using a fusion protein composed of green fluorescent protein coupled to the 29-kDa subunit of the short-lived, membrane-bound enzyme type 2 deiodinase. Primary endosomes budded from the plasma membrane and oscillated near the cell periphery for 1-4 min. The addition of thyroid hormone triggered the processive, centripetal movement of the recycling vesicle in linear bursts at velocities of up to 200 nm/s. Vesicle migration was hormone-specific and blocked by inhibitors of actin polymerization and myosin ATPase. Domain mapping confirmed that the hormone-dependent vesicle-binding domain was located at the C terminus of the motor. In addition, the interruption of normal dimerization of native myosin 5a monomers inactivated vesicle transport, indicating that single-headed myosin 5a motors do not transport cargo in situ. This is the first demonstration of processive hormone-dependent myosin 5a movement in living cells.
Collapse
Affiliation(s)
- S J Stachelek
- Department of Cellular and Molecular Physiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | |
Collapse
|
136
|
Abstract
Myosin VI is the only pointed end-directed myosin identified and is likely regulated by heavy chain phosphorylation (HCP) at the actin-binding site in vivo. We undertook a detailed kinetic analysis of the actomyosin VI ATPase cycle to determine whether there are unique adaptations to support reverse directionality and to determine the molecular basis of regulation by HCP. ADP release is the rate-limiting step in the cycle. ATP binds slowly and with low affinity. At physiological nucleotide concentrations, myosin VI is strongly bound to actin and populates the nucleotide-free (rigor) and ADP-bound states. Therefore, myosin VI is a high duty ratio motor adapted for maintaining tension and has potential to be processive. A mutant mimicking HCP increases the rate of P(i) release, which lowers the K(ATPase) but does not affect ADP release. These measurements are the first to directly measure the steps regulated by HCP for any myosin. Measurements with double-headed myosin VI demonstrate that the heads are not independent, and the native dimer hydrolyzes multiple ATPs per diffusional encounter with an actin filament. We propose an alternating site model for the stepping and processivity of two-headed high duty ratio myosins.
Collapse
Affiliation(s)
- E M De La Cruz
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania School of Medicine, 3700 Hamilton Walk, Philadelphia, Pennsylvania 19104-6085, USA
| | | | | |
Collapse
|
137
|
Homma K, Yoshimura M, Saito J, Ikebe R, Ikebe M. The core of the motor domain determines the direction of myosin movement. Nature 2001; 412:831-4. [PMID: 11518969 DOI: 10.1038/35090597] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Myosins constitute a superfamily of at least 18 known classes of molecular motors that move along actin filaments. Myosins move towards the plus end of F-actin filaments; however, it was shown recently that a certain class of myosin, class VI myosin, moves towards the opposite end of F-actin, that is, in the minus direction. As there is a large, unique insertion in the myosin VI head domain between the motor domain and the light-chain-binding domain (the lever arm), it was thought that this insertion alters the angle of the lever-arm switch movement, thereby changing the direction of motility. Here we determine the direction of motility of chimaeric myosins that comprise the motor domain and the lever-arm domain (containing an insert) from myosins that have movement in the opposite direction. The results show that the motor core domain, but neither the large insert nor the converter domain, determines the direction of myosin motility.
Collapse
|
138
|
Abstract
Recent experiments, drawing upon single-molecule, solution kinetic and structural techniques, have clarified our mechanistic understanding of class V myosins. The findings of the past two years can be summarized as follows: (1) Myosin V is a highly efficient processive motor, surpassing even conventional kinesin in the distance that individual molecules can traverse. (2) The kinetic scheme underlying ATP turnover resembles those of myosins I and II but with rate constants tuned to favor strong binding to actin. ADP release precedes dissociation from actin and is rate-limiting in the cycle. (3) Myosin V walks in strides averaging ∼36 nm, the long pitch pseudo-repeat of the actin helix, each step coupled to a single ATP hydrolysis. Such a unitary displacement, the largest molecular step size measured to date, is required for a processive myosin motor to follow a linear trajectory along a helical actin track.
Collapse
Affiliation(s)
- A Mehta
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10021-6399, USA.
| |
Collapse
|
139
|
Reck-Peterson SL, Tyska MJ, Novick PJ, Mooseker MS. The yeast class V myosins, Myo2p and Myo4p, are nonprocessive actin-based motors. J Cell Biol 2001; 153:1121-6. [PMID: 11381095 PMCID: PMC2174330 DOI: 10.1083/jcb.153.5.1121] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2001] [Accepted: 04/05/2001] [Indexed: 12/04/2022] Open
Abstract
The motor properties of the two yeast class V myosins, Myo2p and Myo4p, were examined using in vitro motility assays. Both myosins are active motors with maximum velocities of 4.5 microm/s for Myo2p and 1.1 microm/s for Myo4p. Myo2p motility is Ca(2+) insensitive. Both myosins have properties of a nonprocessive motor, unlike chick myosin-Va (M5a), which behaves as a processive motor when assayed under identical conditions. Additional support for the idea that Myo2p is a nonprocessive motor comes from actin cosedimentation assays, which show that Myo2p has a low affinity for F-actin in the presence of ATP and Ca(2+), unlike chick brain M5a. These studies suggest that if Myo2p functions in organelle transport, at least five molecules of Myo2p must be present per organelle to promote directed movement.
Collapse
Affiliation(s)
- Samara L. Reck-Peterson
- Department of Molecular, Cellular, and Developmental Biology
- Department of Cell Biology, Yale University, New Haven, Connecticut 06520
| | | | - Peter J. Novick
- Department of Cell Biology, Yale University, New Haven, Connecticut 06520
| | - Mark S. Mooseker
- Department of Molecular, Cellular, and Developmental Biology
- Department of Cell Biology, Yale University, New Haven, Connecticut 06520
- Department of Pathology, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
140
|
Abstract
No biological system has been studied by more diverse approaches than the actin-based molecular motor myosin. Biophysics, biochemistry, physiology, classical genetics and molecular genetics have all made their contributions, and myosin is now becoming one of the best-understood enzymes in biology.
Collapse
Affiliation(s)
- J A Spudich
- Department of Biochemistry, Beckman Center, B400, Stanford University School of Medicine, Stanford, California 94305-5307, USA.
| |
Collapse
|
141
|
Abstract
High-resolution structures of the motor domain of myosin II and lower resolution actin-myosin structures have led to the "swinging lever arm" model for myosin force generation. The available kinetic data are not all easily reconciled with this model and understanding the final details of the myosin motor mechanism must await actin-myosin co-crystals. The observation that myosin can populate multiple states in the absence of actin has nonetheless led to significant insights. The currently known myosin structures correspond to defined kinetic states that bind weakly (K(d)>microM) to actin. It is possible that the myosin lever arm could complete its swing before strong binding to actin and force generation--a process that would correspond, in the absence of load, to a Brownian ratchet. We further suggest that, under load, internal springs within the myosin head could decouple force generation and lever arm movement.
Collapse
Affiliation(s)
- A Houdusse
- Structural Motility, Institut Curie CNRS, UMR 144, 26 rue d'Ulm, 75248 05 Paris Cedex, France.
| | | |
Collapse
|
142
|
Abstract
Nucleotide-dependent movements of the head and neck of kinesin have been visualized by cryoelectron microscopy and have been inferred from single-molecule studies. Key predictions of the hand-over-hand model for dimeric kinesin have been confirmed, and a novel processivity mechanism for the one-headed, kinesin-related motor KIF1A has been discovered.
Collapse
Affiliation(s)
- W R Schief
- Department of Physiology & Biophysics, University of Washington, Box 357290, Seattle, Washington 98195-2790, USA.
| | | |
Collapse
|
143
|
Affiliation(s)
- T Yanagida
- Department of Physiology and Biosignaling, Graduate School of Medicine, Osaka University, Suita, Japan
| | | |
Collapse
|