101
|
Creuzet SE. Neural crest contribution to forebrain development. Semin Cell Dev Biol 2009; 20:751-9. [PMID: 19500684 DOI: 10.1016/j.semcdb.2009.05.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 05/25/2009] [Accepted: 05/27/2009] [Indexed: 12/25/2022]
Abstract
The neural crest (NC), a defining feature of vertebrate embryo, generates most of the skeletal tissues encasing the developing forebrain and provides the prosencephalon with functional vasculature and meninges. Recent findings show that early in development, the cephalic NC is also essential for the pre-otic neural tube closure and promotes the development of the prosencephalic alar plate by regulating the morphogenetic activities of forebrain organizers.
Collapse
Affiliation(s)
- Sophie E Creuzet
- Institut de Neurobiologie - Alfred Fessard, Laboratoire de Développement, Evolution et Plasticité du Système Nerveux, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
102
|
Bildsoe H, Loebel DAF, Jones VJ, Chen YT, Behringer RR, Tam PPL. Requirement for Twist1 in frontonasal and skull vault development in the mouse embryo. Dev Biol 2009; 331:176-88. [PMID: 19414008 DOI: 10.1016/j.ydbio.2009.04.034] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 04/27/2009] [Accepted: 04/27/2009] [Indexed: 01/10/2023]
Abstract
Using a Cre-mediated conditional deletion approach, we have dissected the function of Twist1 in the morphogenesis of the craniofacial skeleton. Loss of Twist1 in neural crest cells and their derivatives impairs skeletogenic differentiation and leads to the loss of bones of the snout, upper face and skull vault. While no anatomically recognizable maxilla is formed, a malformed mandible is present. Since Twist1 is expressed in the tissues of the maxillary eminence and the mandibular arch, this finding suggests that the requirement for Twist1 is not the same in all neural crest derivatives. The effect of the loss of Twist1 function is not restricted to neural crest-derived bones, since the predominantly mesoderm-derived parietal and interparietal bones are also affected, presumably as a consequence of lost interactions with neural crest-derived tissues. In contrast, the formation of other mesodermal skeletal derivatives such as the occipital bones and most of the chondrocranium are not affected by the loss of Twist1 in the neural crest cells.
Collapse
Affiliation(s)
- Heidi Bildsoe
- Children's Medical Research Institute, The University of Sydney, Wentworthville, NSW, Australia
| | | | | | | | | | | |
Collapse
|
103
|
Gyuris A, Donovan DJ, Seymour KA, Lovasco LA, Smilowitz NR, Halperin ALP, Klysik JE, Freiman RN. The chromatin-targeting protein Brd2 is required for neural tube closure and embryogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:413-21. [PMID: 19362612 DOI: 10.1016/j.bbagrm.2009.03.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2009] [Revised: 03/27/2009] [Accepted: 03/30/2009] [Indexed: 11/26/2022]
Abstract
Chromatin modifications are essential for directing transcription during embryonic development. Bromodomain-containing protein 2 (Brd2; also called RING3 and Fsrg1) is one of four BET (bromodomain and extra-terminal domain) family members known to selectively bind acetylated histones H3 and H4. Brd2 associates with multiple subunits of the transcriptional apparatus including the mediator, TFIID and Swi/Snf multiprotein complexes. While molecular interactions of Brd2 are known, the functions of Brd2 in mammalian embryogenesis remain unknown. In developing a mouse model deficient in Brd2, we find that Brd2 is required for the completion of embryogenesis and proper neural tube closure during development. Embryos lacking Brd2 expression survive up to embryonic day 13.5, soon after mid-gestation, and display fully penetrant neurulation defects that largely result in exencephaly of the developing hindbrain. In this study, we find that highest expression of Brd2 is detected in the developing neural tube, correlating with the neural tube defects found in Brd2-null embryos. Additionally, embryos lacking Brd2 expression display altered gene expression programs, including the mis-expression of multiple genes known to guide neuronal development. Together these results implicate essential roles for Brd2 as a critical integrator of chromatin structure and transcription during mammalian embryogenesis and neurogenesis.
Collapse
Affiliation(s)
- Aron Gyuris
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 70 Ship St., Providence, RI 02903, USA
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Castranio T, Mishina Y. Bmp2 is required for cephalic neural tube closure in the mouse. Dev Dyn 2009; 238:110-22. [PMID: 19097048 DOI: 10.1002/dvdy.21829] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BMPs have been shown to play a role in neural tube development particularly as dorsalizing factors. To explore the possibility that BMP2 could play a role in the developing neural tube (NT) beyond the lethality of Bmp2 null embryos, we created Bmp2 chimeras from Bmp2 null ES cells and WT blastocysts. Analysis of Bmp2 chimeras reveals NT defects at day 9.5 (E9.5). We found that exclusion of Bmp2 null ES cells from the dorsal NT did not always prevent defects. For further comparison, we used a Bmp2 mutant line in a mixed background. Phenotypes observed were similar to chimeras including open NT defects, postneurulation defects, and abnormal neural ectoderm in heterozygous and homozygous null embryos demonstrating a pattern of dose-dependent signaling. Our data exposes BMP2 as a unique player in the developing NT for dorsal patterning and identity, and normal cephalic neural tube closure in a dose-dependent manner.
Collapse
Affiliation(s)
- Trisha Castranio
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.
| | | |
Collapse
|
105
|
Nikitina N, Sauka‐Spengler T, Bronner‐Fraser M. Chapter 1 Gene Regulatory Networks in Neural Crest Development and Evolution. Curr Top Dev Biol 2009; 86:1-14. [DOI: 10.1016/s0070-2153(09)01001-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
106
|
BARNES RALSTONM, FIRULLI ANTHONYB. A twist of insight - the role of Twist-family bHLH factors in development. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2009; 53:909-24. [PMID: 19378251 PMCID: PMC2737731 DOI: 10.1387/ijdb.082747rb] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Members of the Twist-family of bHLH proteins play a pivotal role in a number of essential developmental programs. Twist-family bHLH proteins function by dimerizing with other bHLH members and binding to cis- regulatory elements, called E-boxes. While Twist-family members may simply exhibit a preference in terms of high-affinity binding partners, a complex, multilevel cascade of regulation creates a dynamic role for these bHLH proteins. We summarize in this review information on each Twist-family member concerning expression pattern, function, regulation, downstream targets, and interactions with other bHLH proteins. Additionally, we focus on the phospho-regulatory mechanisms that tightly control posttranslational modification of Twist-family member bHLH proteins.
Collapse
Affiliation(s)
- RALSTON M. BARNES
- Riley Heart Research Center, Wells Center for Pediatric Research, Division of Pediatric Cardiology, Departments of Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis, IN, USA
| | - ANTHONY B. FIRULLI
- Riley Heart Research Center, Wells Center for Pediatric Research, Division of Pediatric Cardiology, Departments of Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis, IN, USA
| |
Collapse
|
107
|
Lin W, Zhang Z, Srajer G, Chen YC, Huang M, Phan HM, Dent SYR. Proper expression of the Gcn5 histone acetyltransferase is required for neural tube closure in mouse embryos. Dev Dyn 2008; 237:928-40. [PMID: 18330926 DOI: 10.1002/dvdy.21479] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Histone acetyltransferases (HATs) are important to gene activation, altering chromatin structures to facilitate association of transcription proteins with gene promoters. The functions of individual HATs in mammalian developmental are not well defined. Our previous studies demonstrated that Gcn5, a prototypical HAT, is required for mesodermal maintenance in early embryos. Homozygous Gcn5 null embryos die soon after gastrulation, preventing determination of Gcn5 functions later during development. We report here the creation of a Gcn5(flox(neo)) allele, which is only partially functional and gives rise to a hypomorphic phenotype. Mice homozygous for this allele had an increased risk of cranial neural tube closure defects (NTDs) and exencephaly. These defects were found at an even greater penetrance in Gcn5(flox(neo)/Delta) embryos. These results indicate that normal levels of Gcn5 expression are critical for neural tube closure in mice and predict that mutations in this HAT may be associated with increased risk of NTDs in humans.
Collapse
Affiliation(s)
- Wenchu Lin
- Program in Genes and Development, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
108
|
Lotterman CD, Kent OA, Mendell JT. Functional integration of microRNAs into oncogenic and tumor suppressor pathways. Cell Cycle 2008; 7:2493-9. [PMID: 18719378 DOI: 10.4161/cc.7.16.6452] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A large body of evidence has documented abnormal microRNA (miRNA) expression patterns in diverse human malignancies. Given that miRNA expression is tightly regulated during development and cellular differentiation, aberrant miRNA expression in cancer cells is likely to be in part a consequence of the loss of normal cellular identity that accompanies malignant transformation. Nevertheless, it is now clear that miRNAs function as critical effectors of several canonical oncogenic and tumor suppressor pathways, including those controlled by Myc and p53. Gain- and loss-of-function of these factors in cancer cells contributes to miRNA dysregulation, directly influencing neoplastic phenotypes including cellular proliferation and apoptosis.
Collapse
Affiliation(s)
- Craig D Lotterman
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
109
|
Yang J, Weinberg RA. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 2008; 14:818-29. [PMID: 18539112 DOI: 10.1016/j.devcel.2008.05.009] [Citation(s) in RCA: 2325] [Impact Index Per Article: 136.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The epithelial-mesenchymal transition is a highly conserved cellular program that allows polarized, immotile epithelial cells to convert to motile mesenchymal cells. This important process was initially recognized during several critical stages of embryonic development and has more recently been implicated in promoting carcinoma invasion and metastasis. In this review, we summarize and compare major signaling pathways that regulate the epithelial-mesenchymal transitions during both development and tumor metastasis. Studies in both fields are critical for our molecular understanding of cell migration and morphogenesis.
Collapse
Affiliation(s)
- Jing Yang
- Department of Pharmacology and Pediatrics, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA.
| | | |
Collapse
|
110
|
Kuriyama S, Mayor R. Molecular analysis of neural crest migration. Philos Trans R Soc Lond B Biol Sci 2008; 363:1349-62. [PMID: 18198151 DOI: 10.1098/rstb.2007.2252] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The neural crest (NC) cells have been called the 'explorers of the embryos' because they migrate all over the embryo where they differentiate into a variety of diverse kinds of cells. In this work, we analyse the role of different molecules controlling the migration of NC cells. First, we describe the strong similarity between the process of NC migration and metastasis in tumour cells. The epithelial-mesenchymal transition process that both kinds of cells undergo is controlled by the same molecular machinery, including cadherins, connexins, Snail and Twist genes and matrix metalloproteases. Second, we analysed the molecular signals that control the patterned migration of the cephalic and trunk NC cells. Most of the factors described so far, such as Eph/ephrins, semaphorins/neuropilins and Slit/Robo, are negative signals that prohibit the migration of NC cells into target areas of the embryo. Finally, we analyse how the direction of migration is controlled by regulation of cell polarity and how the planar cell polarity or non-canonical Wnt signalling is involved in this process.
Collapse
Affiliation(s)
- Sei Kuriyama
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
111
|
Hu L, Roth JM, Brooks P, Ibrahim S, Karpatkin S. Twist is required for thrombin-induced tumor angiogenesis and growth. Cancer Res 2008; 68:4296-302. [PMID: 18519689 DOI: 10.1158/0008-5472.can-08-0067] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Twist, a master regulator of embryonic morphogenesis, induces functions that are also required for tumor invasion and metastasis. Because thrombin contributes to the malignant phenotype by up-regulating tumor metastasis, we examined its effect on Twist in five different tumor cell lines and two different endothelial cell lines. Thrombin up-regulated Twist mRNA and protein in all seven cell lines. Down-regulation of Twist in B16F10 tumor cell lines led to a approximately 3-fold decrease in tumor growth on a chorioallantoic membrane assay and approximately 2-fold decrease in syngeneic mice. Angiogenesis was decreased approximately 45% and 36%, respectively. The effect of Twist on angiogenesis was further examined and compared with the effect of thrombin. In studies using a Twist-inducible plasmid, several identical vascular growth factors and receptors were up-regulated approximately 2- to 3-fold in tumor cells as well as human umbilical vascular endothelial cells by both Twist as well as thrombin (vascular endothelial growth factor, KDR, Ang-2, matrix metalloproteinase 1, GRO-alpha, and CD31). Thrombin-induced endothelial cell chemotaxis and Matrigel endothelial cell tubule formation were similarly regulated by Twist. Thus, thrombin up-regulates Twist, which is required for thrombin-induced angiogenesis as measured by endothelial cell migration, Matrigel tubule formation, and tumor angiogenesis.
Collapse
Affiliation(s)
- Liang Hu
- Department of Medicine, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|
112
|
Abstract
Twist is basic helix-loop-helix transcription factor that binds to E-boxes in gene promoters. Twist possesses an oncogenic function by interfering with the tumor suppressor function of p53. Using a membrane pull-down assay, we found that Twist directly interacts with p53 and that this interaction underlies the inhibitory effects on p53 target gene expression. Twist interacted with the DNA-binding domain of p53 and suppressed the DNA-binding activity of p53. Transcriptional activation of the p21 promoter by p53 was significantly repressed by the expression of Twist. On the other hand, p53 interacted with the N-terminal domain of Twist and repressed Twist-dependent YB-1 promoter activity. Importantly, we found that p53-dependent growth suppression was canceled by the expression of either Twist or YB-1. Thus, our data suggest that Twist inhibits p53 function via a direct interaction with p53.
Collapse
|
113
|
Vincentz JW, Barnes RM, Rodgers R, Firulli BA, Conway SJ, Firulli AB. An absence of Twist1 results in aberrant cardiac neural crest morphogenesis. Dev Biol 2008; 320:131-9. [PMID: 18539270 DOI: 10.1016/j.ydbio.2008.04.037] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 04/23/2008] [Accepted: 04/29/2008] [Indexed: 10/22/2022]
Abstract
The basic helix-loop-helix transcription factor Twist1 plays an essential role in mesenchymal cell populations during embryonic development and in pathological disease. Remodeling of the cardiac outflow tract (OFT) into the functionally separate aortic arch and pulmonary trunk is dependent upon the dynamic, coordinated contribution of multiple mesenchymal cell populations. Here, we report that Twist1(-/-) mice exhibit OFTs that contain amorphic cellular nodules within their OFT endocardial cushions. The nodular mesenchyme expresses the related bHLH factors Hand1 and Hand2, but reduced levels of the normal cushion marker Periostin. Lineage mapping confirms that nodule cells are exclusively of cardiac neural crest origin (cNCC), and are not ectopic cardiomyocytes or smooth muscle cells. These studies also reveal a delay in cNCC colonization of the OFT cushions. Furthermore, these mapping studies uncover nodules in the pharyngeal arches, and identify Twist1(-/-) neural crest cell defects within the dorsal neural tube, which exhibits an expanded domain of Wnt1-Cre-lineage marked cells. Together, these data support a model where Twist1 is required both for proper cNCC delamination, and for emigration from the dorsal neural tube and along cNCC migration pathways. Within the Twist1(-/-) neural crest cell populations that do emigrate to the OFT, a Hand-expressing subpopulation displays defective maturation, tracking, and, presumably, cell-cell adhesion, further compromising cNCC morphogenesis.
Collapse
Affiliation(s)
- Joshua W Vincentz
- Riley Heart Research Center, Riley Hospital for Children, Department of Pediatrics (Pediatric Cardiology), Indiana Medical School, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | | | | | | | | | | |
Collapse
|
114
|
Wu SY, Yang YP, McClay DR. Twist is an essential regulator of the skeletogenic gene regulatory network in the sea urchin embryo. Dev Biol 2008; 319:406-15. [PMID: 18495103 DOI: 10.1016/j.ydbio.2008.04.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 01/16/2008] [Accepted: 04/01/2008] [Indexed: 10/22/2022]
Abstract
Recent work on the sea urchin endomesoderm gene regulatory network (GRN) offers many opportunities to study the specification and differentiation of each cell type during early development at a mechanistic level. The mesoderm lineages consist of two cell populations, primary and secondary mesenchyme cells (PMCs and SMCs). The micromere-PMC GRN governs the development of the larval skeleton, which is the exclusive fate of PMCs, and SMCs diverge into four lineages, each with its own GRN state. Here we identify a sea urchin ortholog of the Twist transcription factor, and show that it plays an essential role in the PMC GRN and later is involved in SMC formation. Perturbations of Twist either by morpholino knockdown or by overexpression result in defects in progressive phases of PMC development, including specification, ingression/EMT, differentiation and skeletogenesis. Evidence is presented that Twist expression is required for the maintenance of the PMC specification state, and a reciprocal regulation between Alx1 and Twist offers stability for the subsequent processes, such as PMC differentiation and skeletogenesis. These data illustrate the significance of regulatory state maintenance and continuous progression during cell specification, and the dynamics of the sequential events that depend on those earlier regulatory states.
Collapse
Affiliation(s)
- Shu-Yu Wu
- Department of Biology, French Family Science Center, Duke University, Durham, NC 27708, USA.
| | | | | |
Collapse
|
115
|
Nikitina NV, Bronner-Fraser M. Gene regulatory networks that control the specification of neural-crest cells in the lamprey. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1789:274-8. [PMID: 18420040 DOI: 10.1016/j.bbagrm.2008.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 03/04/2008] [Accepted: 03/18/2008] [Indexed: 01/15/2023]
Abstract
The lamprey is the only basal vertebrate in which large-scale gene perturbation analyses are feasible at present. Studies on this unique animal model promise to contribute both to the understanding of the basic neural-crest gene regulatory network architecture, and evolution of the neural crest. In this review, we summarize the currently known regulatory relationships underlying formation of the vertebrate neural crest, and discuss new ways of addressing the many remaining questions using lamprey as an experimental model.
Collapse
Affiliation(s)
- Natalya V Nikitina
- Division of Biology, 139-74 Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
116
|
Shelton EL, Yutzey KE. Twist1 function in endocardial cushion cell proliferation, migration, and differentiation during heart valve development. Dev Biol 2008; 317:282-95. [PMID: 18353304 DOI: 10.1016/j.ydbio.2008.02.037] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 01/28/2008] [Accepted: 02/14/2008] [Indexed: 10/22/2022]
Abstract
Twist1 is a bHLH transcription factor that regulates cell proliferation, migration, and differentiation in embryonic progenitor cell populations and transformed tumor cells. While much is known about Twist1's function in a variety of mesenchymal cell types, the role of Twist1 in endocardial cushion cells is unknown. Twist1 gain and loss of function experiments were performed in primary chicken endocardial cushion cells in order to elucidate its role in endocardial cushion development. These studies indicate that Twist1 can induce endocardial cushion cell proliferation as well as promote endocardial cushion cell migration. Furthermore, Twist1 is subject to BMP regulation and can induce expression of cell migration marker genes including Periostin, Cadherin 11, and Mmp2 while repressing markers of valve cell differentiation including Aggrecan. Previously, Tbx20 has been implicated in endocardial cushion cell proliferation and differentiation, and in the current study, Tbx20 also promotes cushion cell migration. Twist1 can induce Tbx20 expression, while Tbx20 does not affect Twist1 expression. Taken together, these data indicate a role for Twist1 upstream of Tbx20 in promoting cell proliferation and migration and repressing differentiation in endocardial cushion cells during embryonic development.
Collapse
Affiliation(s)
- Elaine L Shelton
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Medical Center ML 7020, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | |
Collapse
|
117
|
Merrill AE, Eames BF, Weston SJ, Heath T, Schneider RA. Mesenchyme-dependent BMP signaling directs the timing of mandibular osteogenesis. Development 2008; 135:1223-34. [PMID: 18287200 DOI: 10.1242/dev.015933] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To identify molecular and cellular mechanisms that determine when bone forms, and to elucidate the role played by osteogenic mesenchyme, we employed an avian chimeric system that draws upon the divergent embryonic maturation rates of quail and duck. Pre-migratory neural crest mesenchyme destined to form bone in the mandible was transplanted from quail to duck. In resulting chimeras, quail donor mesenchyme established significantly faster molecular and histological programs for osteogenesis within the relatively slower-progressing duck host environment. To understand this phenotype, we assayed for changes in the timing of epithelial-mesenchymal interactions required for bone formation and found that such interactions were accelerated in chimeras. In situ hybridization analyses uncovered donor-dependent changes in the spatiotemporal expression of genes, including the osteo-inductive growth factor Bmp4. Mesenchymal expression of Bmp4 correlated with an ability of quail donor cells to form bone precociously without duck host epithelium, and also relied upon epithelial interactions until mesenchyme could form bone independently. Treating control mandibles with exogenous BMP4 recapitulated the capacity of chimeras to express molecular mediators of osteogenesis prematurely and led to the early differentiation of bone. Inhibiting BMP signaling delayed bone formation in a stage-dependent manner that was accelerated in chimeras. Thus, mandibular mesenchyme dictates when bone forms by temporally regulating its interactions with epithelium and its own expression of Bmp4. Our findings offer a developmental mechanism to explain how neural crest-derived mesenchyme and BMP signaling underlie the evolution of species-specific skeletal morphology.
Collapse
Affiliation(s)
- Amy E Merrill
- Department of Orthopaedic Surgery, University of California at San Francisco, 533 Parnassus Avenue, U-453, San Francisco, CA 94143-0514, USA
| | | | | | | | | |
Collapse
|
118
|
Shiota M, Izumi H, Onitsuka T, Miyamoto N, Kashiwagi E, Kidani A, Yokomizo A, Naito S, Kohno K. Twist promotes tumor cell growth through YB-1 expression. Cancer Res 2008; 68:98-105. [PMID: 18172301 DOI: 10.1158/0008-5472.can-07-2981] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
YB-1 controls gene expression through both transcriptional and translational mechanisms and is involved in various biological activities such as brain development, chemoresistance, and tumor progression. We have previously shown that YB-1 is overexpressed in cisplatin-resistant cells and is involved in resistance against DNA-damaging agents. Structural analysis of the YB-1 promoter reveals that several E-boxes may participate in the regulation of YB-1 expression. Here, we show that the E-box-binding transcription factor Twist is overexpressed in cisplatin-resistant cells and that YB-1 is a target gene of Twist. Silencing of either Twist or YB-1 expression induces G(1) phase cell cycle arrest of tumor cell growth. Significantly, reexpression of YB-1 led to increase colony formation when Twist expression was down-regulated by small interfering RNA. However, cotransfection of Twist expression plasmid could not increase colony formation when YB-1 expression was down-regulated. Collectively, these data suggest that YB-1 is a major downstream target of Twist. Both YB-1 and Twist expression could induce tumor progression, promoting cell growth and driving oncogenesis in various cancers. Thus, both YB-1 and Twist may represent promising molecular targets for cancer therapy.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Murakami M, Ohkuma M, Nakamura M. Molecular mechanism of transforming growth factor-β-mediated inhibition of growth arrest and differentiation in a myoblast cell line. Dev Growth Differ 2008; 50:121-30. [DOI: 10.1111/j.1440-169x.2007.00982.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
120
|
Jacob K, Sollier C, Jabado N. Circulating tumor cells: detection, molecular profiling and future prospects. Expert Rev Proteomics 2008; 4:741-56. [PMID: 18067413 DOI: 10.1586/14789450.4.6.741] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Disseminated malignancy is responsible for the vast majority of cancer-related deaths. During this process, circulating tumor cells (CTC) are generated, spread from the primary tumor, colonize distant organs and lead to overt metastatic disease. CTC are essential for establishing metastasis; however, they are not sufficient as this process is highly inefficient and most will fail to grow in target sites. Several CTC die during migration while others remain dormant for several years and very few grow into macrometastases. CTC have been well documented in the bloodstream of cancer patients; however, the clinical relevance of this detection is still the subject of controversies and their biology is poorly understood. Indeed, available markers fail to distinguish between subgroups of CTC, and several current methods lack sensitivity, specificity or reproducibility in CTC characterization and detection. The advent of more precise technologies is renewing the interest in CTC biology. We will review herein recent findings on CTC biology, on the role of host-tumor interactions in CTC shedding and implantation, available methods of CTC detection and future perspectives for the molecular characterization of the CTC subset(s) responsible for the development of metastasis. Ultimately, understanding CTC biology and host-tumor 'complementarities' will help define metastasis-related biomarkers providing formidable and tailored novel therapeutic targets.
Collapse
Affiliation(s)
- Karine Jacob
- Department of Pediatrics, Montreal Children's Hospital, McGill University Health Center, Montreal, Canada
| | | | | |
Collapse
|
121
|
Chen YT, Akinwunmi PO, Deng JM, Tam OH, Behringer RR. Generation of a Twist1 conditional null allele in the mouse. Genesis 2007; 45:588-92. [PMID: 17868088 DOI: 10.1002/dvg.20332] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Twist1 is the mouse ortholog of TWIST1, the human gene mutated in Saethre-Chotzen syndrome. Previously, a Twist1 null allele was generated by gene targeting in mouse embryonic stem cells. Twist1 heterozygous mice develop polydactyly and a craniofacial phenotype similar to Saethre-Chotzen patients. Mice homozygous for the Twist1 null allele die around embryonic day 11.5 (E11.5) with cranial neural tube closure and vascular defects, hindering in vivo studies of Twist1 function at later stages of development. Here, we report the generation of a Twist1 conditional null allele in mice that functions like a wild-type allele but can be converted to a null allele upon Cre-mediated recombination.
Collapse
Affiliation(s)
- You-Tzung Chen
- Department of Molecular Genetics, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
122
|
Yeo GH, Cheah FSH, Jabs EW, Chong SS. Zebrafish twist1 is expressed in craniofacial, vertebral, and renal precursors. Dev Genes Evol 2007; 217:783-9. [PMID: 17929053 DOI: 10.1007/s00427-007-0187-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 09/18/2007] [Indexed: 10/22/2022]
Abstract
TWIST1 encodes a transcription factor that contains a highly conserved basic helix-loop-helix DNA-binding domain and a WR motif. We have isolated a full-length complementary DNA of the zebrafish ortholog of TWIST1 and determined its genomic organization. Inter-species comparisons reveal a remarkable degree of conservation at the gene structure, nucleotide, and predicted peptide levels across large evolutionary distances. Using reverse-transcription polymerase chain reaction analysis and in situ hybridization analyses of whole mount and cryosectioned zebrafish embryos, we detected maternal twist1 transcript in the zygote. During somitogenesis, twist1 transcripts were detected in the intermediate mesoderm from the 2-somite to 18-somite stages, followed by expression in the somites from the 5-somite stage to the 24-somite stage. Also, beginning at the two-somite stage, twist1 expression was observed in head mesenchyme and, subsequently, in neural crest-derived pharyngeal arches as the embryo developed. At the 24-hpf stage, twist1 transcripts were also observed in the ventral tail-bud region. These observations are consistent with a role for twist1 in craniofacial, vertebral, and early renal development.
Collapse
Affiliation(s)
- Gare-Hoon Yeo
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| | | | | | | |
Collapse
|
123
|
Seto ML, Hing AV, Chang J, Hu M, Kapp-Simon KA, Patel PK, Burton BK, Kane AA, Smyth MD, Hopper R, Ellenbogen RG, Stevenson K, Speltz ML, Cunningham ML. Isolated sagittal and coronal craniosynostosis associated with TWIST box mutations. Am J Med Genet A 2007; 143A:678-86. [PMID: 17343269 DOI: 10.1002/ajmg.a.31630] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Craniosynostosis, the premature fusion of one or more cranial sutures, affects 1 in 2,500 live births. Isolated single-suture fusion is most prevalent, with sagittal synostosis occurring in 1/5,000 live births. The etiology of isolated (nonsyndromic) single-suture craniosynostosis is largely unknown. In syndromic craniosynostosis, there is a highly nonrandom pattern of causative autosomal dominant mutations involving TWIST1 and fibroblast growth factor receptors (FGFRs). Prior to our study, there were no published TWIST1 mutations in the anti-osteogenic C-terminus, recently coined the TWIST Box, which binds and inhibits RUNX2 transactivation. RUNX2 is the principal master switch for osteogenesis. We performed mutational analysis on 164 infants with isolated, single-suture craniosynostosis for mutations in TWIST1, the IgIIIa exon of FGFR1, the IgIIIa and IgIIIc exons of FGFR2, and the Pro250Arg site of FGFR3. We identified two patients with novel TWIST Box mutations: one with isolated sagittal synostosis and one with isolated coronal synostosis. Kress et al. [2006] reported a TWIST Box "nondisease-causing polymorphism" in a patient with isolated sagittal synostosis. However, compelling evidence suggests that their and our sequence alterations are pathogenic: (1) a mouse with a mutation of the same residue as our sagittal synostosis patient developed sagittal synostosis, (2) mutation of the same residue precluded TWIST1 interaction with RUNX2, (3) each mutation involved nonconservative amino acid substitutions in highly conserved residues across species, and (4) control chromosomes lacked TWIST Box sequence alterations. We suggest that genetic testing of patients with isolated sagittal or coronal synostosis should include TWIST1 mutational analysis.
Collapse
Affiliation(s)
- Marianne L Seto
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195-6320, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Laursen KB, Mielke E, Iannaccone P, Füchtbauer EM. Mechanism of transcriptional activation by the proto-oncogene Twist1. J Biol Chem 2007; 282:34623-33. [PMID: 17893140 DOI: 10.1074/jbc.m707085200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian Twist1, a master regulator in development and a key factor in tumorigenesis, is known to repress transcription by several mechanisms and is therefore considered to mediate its function mainly through inhibition. A role of Twist1 as transactivator has also been reported but, so far, without providing a mechanism for such an activity. Here we show that heterodimeric complexes of Twist1 and E12 mediate E-box-dependent transcriptional activation. We identify a novel Twist1 transactivation domain that coactivates together with the less potent E12 transactivation domain. We found three specific residues in the highly conserved WR domain to be essential for the transactivating function of murine Twist1 and suggest an alpha-helical structure of the transactivation domain.
Collapse
|
125
|
Lee TK, Poon RTP, Wo JY, Ma S, Guan XY, Myers JN, Altevogt P, Yuen APW. Lupeol Suppresses Cisplatin-Induced Nuclear Factor-κB Activation in Head and Neck Squamous Cell Carcinoma and Inhibits Local Invasion and Nodal Metastasis in an Orthotopic Nude Mouse Model. Cancer Res 2007; 67:8800-9. [PMID: 17875721 DOI: 10.1158/0008-5472.can-07-0801] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A poor prognosis in head and neck squamous cell carcinoma (HNSCC) patients is commonly associated with the presence of regional metastasis. Cisplatin-based chemotherapy concurrent with radiation therapy is commonly used in the treatment of locally advanced HNSCC. However, the result is dismal due to common acquisition of chemoresistance and radioresistance. Epidemiologic studies have shown the importance of dietary substances in the prevention of HNSCC. Here, we found that lupeol, a triterpene found in fruits and vegetables, selectively induced substantial HNSCC cell death but exhibited only a minimal effect on a normal tongue fibroblast cell line in vitro. Down-regulation of NF-kappaB was identified as the major mechanism of the anticancer properties of lupeol against HNSCC. Lupeol alone was not only found to suppress tumor growth but also to impair HNSCC cell invasion by reversal of the NF-kappaB-dependent epithelial-to-mesenchymal transition. Lupeol exerted a synergistic effect with cisplatin, resulting in chemosensitization of HNSCC cell lines with high NF-kappaB activity in vitro. In in vivo studies, using an orthotopic metastatic nude mouse model of oral tongue squamous cell carcinoma, lupeol at a dose of 2 mg/animal dramatically decreased tumor volume and suppressed local metastasis, which was more effective than cisplatin alone. Lupeol exerted a significant synergistic cytotoxic effect when combined with low-dose cisplatin without side effects. Our results suggest that lupeol may be an effective agent either alone or in combination for treatment of advanced tumors.
Collapse
Affiliation(s)
- Terence K Lee
- Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Meulemans D, Bronner-Fraser M. Insights from amphioxus into the evolution of vertebrate cartilage. PLoS One 2007; 2:e787. [PMID: 17726517 PMCID: PMC1950077 DOI: 10.1371/journal.pone.0000787] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 08/01/2007] [Indexed: 12/02/2022] Open
Abstract
Central to the story of vertebrate evolution is the origin of the vertebrate head, a problem difficult to approach using paleontology and comparative morphology due to a lack of unambiguous intermediate forms. Embryologically, much of the vertebrate head is derived from two ectodermal tissues, the neural crest and cranial placodes. Recent work in protochordates suggests the first chordates possessed migratory neural tube cells with some features of neural crest cells. However, it is unclear how and when these cells acquired the ability to form cellular cartilage, a cell type unique to vertebrates. It has been variously proposed that the neural crest acquired chondrogenic ability by recruiting proto-chondrogenic gene programs deployed in the neural tube, pharynx, and notochord. To test these hypotheses we examined the expression of 11 amphioxus orthologs of genes involved in neural crest chondrogenesis. Consistent with cellular cartilage as a vertebrate novelty, we find that no single amphioxus tissue co-expresses all or most of these genes. However, most are variously co-expressed in mesodermal derivatives. Our results suggest that neural crest-derived cartilage evolved by serial cooption of genes which functioned primitively in mesoderm.
Collapse
Affiliation(s)
- Daniel Meulemans
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America.
| | | |
Collapse
|
127
|
Abstract
Stem cells are defined by their ability to both self-renew and give rise to multiple lineages in vivo and/or in vitro. As discussed in other chapters in this volume, the embryonic neural crest is a multipotent tissue that gives rise to a plethora of differentiated cell types in the adult organism and is unique to vertebrate embryos. From the point of view of stem cell biology, the neural crest is an ideal source for multipotent adult stem cells. Significant advances have been made in the past few years isolating neural crest stem cell lines that can be maintained in vitro and can give rise to many neural crest derivatives either in vitro or when placed back into the context of an embryo. The initial work identifying these stem cells was carried out with premigratory neural crest from the embryonic neural tube. Later, neural crest stem cells were isolated from postmigratory neural crest, presumably more restricted in developmental potential. More recently it has been demonstrated that neural crest stem cell progenitors persist in the adult in at least two differentiated tissues, the enteric nervous system of the gut and the whisker follicles of the facial skin. In all cases, the properties of the stem cells derived reflect their tissue of origin and the potential of the progenitors becomes more restricted with age. In this chapter we will review this work and speculate on future possibilities with respect to combining our knowledge of neural crest gene function in the embryo and the manipulation of adult neural crest stem cells in vitro and eventually in vivo.
Collapse
Affiliation(s)
- Lu Teng
- Department of Cell and Developmental Biology, 1109 BRBII/III, 421 Curie Blvd., University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6058, USA
| | | |
Collapse
|
128
|
Rinon A, Lazar S, Marshall H, Büchmann-Møller S, Neufeld A, Elhanany-Tamir H, Taketo MM, Sommer L, Krumlauf R, Tzahor E. Cranial neural crest cells regulate head muscle patterning and differentiation during vertebrate embryogenesis. Development 2007; 134:3065-75. [PMID: 17652354 DOI: 10.1242/dev.002501] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the vertebrate head, mesoderm cells fuse together to form a myofiber, which is attached to specific cranial neural crest (CNC)-derived skeletal elements in a highly coordinated manner. Although it has long been recognized that CNC plays a role in the formation of the head musculature, the precise molecular underpinnings of this process remain elusive. In the present study we explored the nature of the crosstalk between CNC and mesoderm cells during head muscle development, employing three models for genetic perturbations of CNC development in mice, as well as experimental ablation of CNC in chick embryos. We demonstrate that although early myogenesis is CNC-independent, the migration, patterning and differentiation of muscle precursors are regulated by CNC. In the absence of CNC cells, accumulated myoblasts are kept in a proliferative state, presumably because of an increase of Fgf8 in adjacent tissues, which leads to abnormalities in both differentiation and subsequent myofiber organization in the head. These results have uncovered a surprising degree of complexity and multiple distinct roles for CNC in the patterning and differentiation of muscles during craniofacial development. We suggest that CNC cells control craniofacial development by regulating positional interactions with mesoderm-derived muscle progenitors that together shape the cranial musculoskeletal architecture in vertebrate embryos.
Collapse
Affiliation(s)
- Ariel Rinon
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Gammill LS, Gonzalez C, Bronner-Fraser M. Neuropilin 2/semaphorin 3F signaling is essential for cranial neural crest migration and trigeminal ganglion condensation. Dev Neurobiol 2007; 67:47-56. [PMID: 17443771 DOI: 10.1002/dneu.20326] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the head of vertebrate embryos, neural crest cells migrate from the neural tube into the presumptive facial region and condense to form cranial ganglia and skeletal elements in the branchial arches. We show that newly formed neural folds and migrating neural crest cells express the neuropilin 2 (npn2) receptor in a manner that is highly conserved in amniotes. The repulsive npn2 ligand semaphorin (sema) 3F is expressed in a complementary pattern in the mouse. Furthermore, mice carrying null mutations for either npn2 or sema3F have abnormal cranial neural crest migration. Most notably, "bridges" of migrating cells are observed crossing between neural crest streams entering branchial arches 1 and 2. In addition, trigeminal ganglia fail to form correctly in the mutants and are improperly condensed and loosely organized. These data show that npn2/sema3F signaling is required for proper cranial neural crest development in the head.
Collapse
Affiliation(s)
- Laura S Gammill
- Division of Biology 139-74, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
130
|
Harris MJ, Juriloff DM. Mouse mutants with neural tube closure defects and their role in understanding human neural tube defects. ACTA ACUST UNITED AC 2007; 79:187-210. [PMID: 17177317 DOI: 10.1002/bdra.20333] [Citation(s) in RCA: 238] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The number of mouse mutants and strains with neural tube closure defects (NTDs) now exceeds 190, including 155 involving known genes, 33 with unidentified genes, and eight "multifactorial" strains. METHODS The emerging patterns of mouse NTDs are considered in relation to the unknown genetics of the common human NTDs, anencephaly, and spina bifida aperta. RESULTS Of the 150 mouse mutants that survive past midgestation, 20% have risk of either exencephaly and spina bifida aperta or both, parallel to the majority of human NTDs, whereas 70% have only exencephaly, 5% have only spina bifida, and 5% have craniorachischisis. The primary defect in most mouse NTDs is failure of neural fold elevation. Most null mutations (>90%) produce syndromes of multiple affected structures with high penetrance in homozygotes, whereas the "multifactorial" strains and several null-mutant heterozygotes and mutants with partial gene function (hypomorphs) have low-penetrance nonsyndromic NTDs, like the majority of human NTDs. The normal functions of the mutated genes are diverse, with clusters in pathways of actin function, apoptosis, and chromatin methylation and structure. The female excess observed in human anencephaly is found in all mouse exencephaly mutants for which gender has been studied. Maternal agents, including folate, methionine, inositol, or alternative commercial diets, have specific preventative effects in eight mutants and strains. CONCLUSIONS If the human homologs of the mouse NTD mutants contribute to risk of common human NTDs, it seems likely to be in multifactorial combinations of hypomorphs and low-penetrance heterozygotes, as exemplified by mouse digenic mutants and the oligogenic SELH/Bc strain.
Collapse
Affiliation(s)
- Muriel J Harris
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.
| | | |
Collapse
|
131
|
Abstract
Neuroblastoma is the second most common solid tumor in children that is metastatic in 70% of patients at the time of diagnosis. The ability of neuroblastoma cells to colonize distant organs like the bone marrow and the bone is the result of close interactions between tumor cells and the microenvironment. Significant progress has been recently made in our understanding of the mechanisms that promote the colonization and invasion of the bone by neuroblastoma cells and these mechanisms are reviewed in this article. How this understanding is now allowing us to test new therapeutic agents specifically targeted at interfering with neuroblastoma metastasis is then discussed.
Collapse
Affiliation(s)
- Tasnim Ara
- Division of Hematology-Oncology, Department of Pediatrics and Biochemistry and Molecular Biology, USC Keck School of Medicine and The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | | |
Collapse
|
132
|
Abstract
Over the past decade, microarray technology has become a powerful tool to provide a genome-wide view of genetic or epigenetic changes associated with tumor metastasis. To extract biologically meaningful information from the vast amounts of microarray data, it is crucial to choose suitable biological systems and have vigilant experimental design. In this review, I will discuss several experimental systems that are used to identify genes involved in tumor metastasis by microarray analysis. Also highlighted are the pros and cons for each system. In particular, I will describe our experience of using microarray technology to identify the transcription factor Twist as an essential player in tumor metastasis.
Collapse
Affiliation(s)
- Jing Yang
- Department of Pharmacology, University of California, San Diego, School of Medicine, La Jolla, CA 92093-0636, USA.
| |
Collapse
|
133
|
Ohkuma M, Funato N, Higashihori N, Murakami M, Ohyama K, Nakamura M. Unique CCT repeats mediate transcription of the TWIST1 gene in mesenchymal cell lines. Biochem Biophys Res Commun 2007; 352:925-31. [PMID: 17157810 DOI: 10.1016/j.bbrc.2006.11.114] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 11/26/2006] [Indexed: 10/23/2022]
Abstract
TWIST1, a basic helix-loop-helix transcription factor, plays critical roles in embryo development, cancer metastasis and mesenchymal progenitor differentiation. Little is known about transcriptional regulation of TWIST1 expression. Here we identified DNA sequences responsible for TWIST1 expression in mesenchymal lineage cell lines. Reporter assays with TWIST1 promoter mutants defined the -102 to -74 sequences that are essential for TWIST1 expression in human and mouse mesenchymal cell lines. Tandem repeats of CCT, but not putative CREB and NF-kappaB sites in the sequences substantially supported activity of the TWIST1 promoter. Electrophoretic mobility shift assay demonstrated that the DNA sequences with the CCT repeats formed complexes with nuclear factors, containing, at least, Sp1 and Sp3. These results suggest critical implication of the CCT repeats in association with Sp1 and Sp3 factors in sustaining expression of the TWIST1 gene in mesenchymal cells.
Collapse
Affiliation(s)
- Mizue Ohkuma
- Maxillofacial Orthognathics, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | | | | | | | | | | |
Collapse
|
134
|
Gammill LS, Gonzalez C, Bronner-Fraser M. Neuropilin 2/semaphorin 3F signaling is essential for cranial neural crest migration and trigeminal ganglion condensation. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/neu.20326] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
135
|
Lee TK, Poon RTP, Yuen AP, Ling MT, Kwok WK, Wang XH, Wong YC, Guan XY, Man K, Chau KL, Fan ST. Twist overexpression correlates with hepatocellular carcinoma metastasis through induction of epithelial-mesenchymal transition. Clin Cancer Res 2006; 12:5369-76. [PMID: 17000670 DOI: 10.1158/1078-0432.ccr-05-2722] [Citation(s) in RCA: 323] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is a rapidly growing tumor associated with a high propensity for vascular invasion and metastasis. Epithelial-mesenchymal transition (EMT) is a key event in the tumor invasion process. Recently, Twist has been identified to play an important role in EMT-mediated metastasis through the regulation of E-cadherin expression. However, the actual role of Twist in tumor invasiveness remains unclear. The purpose of this study is to investigate the expression and possible role of Twist in HCC. EXPERIMENTAL DESIGN We evaluated Twist and E-cadherin expression in HCC tissue microarray of paired primary and metastatic HCC by immunohistochemical staining. The role of Twist in EMT-mediated invasiveness was also evaluated in vitro in HCC cell lines. RESULTS We first showed that overexpression of Twist was correlated with HCC metastasis (P=0.001) and its expression was negatively correlated with E-cadherin expression (P=0.001, r=-0.443) by tissue microarray. A significant increase of Twist at the mRNA level was also found in metastatic HCC cell lines MHCC-97H, MHCC-97L, and H2M when compared with nonmetastatic Huh-7, H2P, and PLC cell lines. The MHCC-97H cell line, which has a higher metastatic ability, was found to have a higher level of Twist than MHCC-97L. Accompanied with increased Twist expression in the metastatic HCC cell lines when compared with the nonmetastatic primary ones, we found decreased E-cadherin mRNA expression in the metastatic HCC cell lines. By ectopic transfection of Twist into PLC cells, Twist was able to suppress E-cadherin expression and induce EMT changes, which was correlated with increased HCC cell invasiveness. CONCLUSION This study shows that Twist overexpression was correlated with HCC metastasis through induction of EMT changes and HCC cell invasiveness.
Collapse
Affiliation(s)
- Terence K Lee
- Centre for the Study of Liver Disease, and Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Lee TK, Man K, Poon RTP, Lo CM, Yuen AP, Ng IO, Ng KT, Leonard W, Fan ST. Signal transducers and activators of transcription 5b activation enhances hepatocellular carcinoma aggressiveness through induction of epithelial-mesenchymal transition. Cancer Res 2006; 66:9948-56. [PMID: 17047057 DOI: 10.1158/0008-5472.can-06-1092] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Poor prognosis of hepatocellular carcinoma (HCC) is associated with a high potential of vascular invasion and metastasis. Epithelial-mesenchymal transition (EMT) is a key event in the tumor invasion process. Recently, signal transducers and activators of transcription 5 (STAT5) has been linked to tumor progression by EMT induction. However, the precise roles of STAT5 genes (STAT5a and STAT5b) in human epithelial cancers have not been elucidated clearly. The aim of this study is to analyze the roles of STAT5 isoforms in HCC progression using HCC clinical samples. We showed that activation of STAT5b, but not STAT5a, was found in HCC clinical samples and its expression was significantly associated with younger age (P = 0.037), advanced tumor stages (P = 0.003), venous infiltration (P = 0.016), microsatellite formation (P = 0.024), multiple tumor nodules (P = 0.02), and poor patient survival. To specifically investigate the mechanism underlying constitutive activation of STAT5b in HCC, EGFP-HBX was introduced into Huh-7 cells. STAT5b activation in HCC is at least partially mediated by HBX activation. Ectopic STAT5b transfection conferred increased HCC cell motility and invasiveness by induction of EMT changes. In conclusion, STAT5b activation enhanced HCC aggressiveness by induction of EMT, which was possibly mediated by HBX activation. STAT5b could serve as a novel molecular target for HCC treatment.
Collapse
Affiliation(s)
- Terence K Lee
- Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Dunlevy LPE, Burren KA, Mills K, Chitty LS, Copp AJ, Greene NDE. Integrity of the methylation cycle is essential for mammalian neural tube closure. ACTA ACUST UNITED AC 2006; 76:544-52. [PMID: 16933307 DOI: 10.1002/bdra.20286] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Closure of the cranial neural tube during embryogenesis is a crucial process in development of the brain. Failure of this event results in the severe neural tube defect (NTD) exencephaly, the developmental forerunner of anencephaly. METHODS The requirement for methylation cycle function in cranial neural tube closure was tested by treatment of cultured mouse embryos with cycloleucine or ethionine, inhibitors of methionine adenosyl transferase. Embryonic phenotypes were investigated by histological analysis, and immunostaining was performed for markers of proliferation and apoptosis. Methylation cycle intermediates s-adenosylmethionine and s-adenosylhomocysteine were also quantitated by tandem mass spectrometry. RESULTS Ethionine and cycloleucine treatments significantly reduced the ratio of abundance of s-adenosylmethionine to s-adenosylhomocysteine and are, therefore, predicted to suppress the methylation cycle. Exposure to these inhibitors during the period of cranial neurulation caused a high incidence of exencephaly, in the absence of generalized toxicity, growth retardation, or developmental delay. Reduced neuroepithelial thickness and reduced density of cranial mesenchyme were detected in ethionine-treated but not cycloleucine-treated embryos that developed exencephaly. Reduced mesenchymal density is a potential cause of ethionine-induced exencephaly, although we could not detect a causative alteration in proliferation or apoptosis prior to failure of neural tube closure. CONCLUSIONS Adequate functioning of the methylation cycle is essential for cranial neural tube closure in the mouse, suggesting that suppression of the methylation cycle could also increase the risk of human NTDs. We hypothesize that inhibition of the methylation cycle causes NTDs due to disruption of crucial reactions involving methylation of DNA, proteins or other biomolecules.
Collapse
Affiliation(s)
- Louisa P E Dunlevy
- Neural Development Unit, Institute of Child Health, University College London, United Kingdom
| | | | | | | | | | | |
Collapse
|
138
|
Affiliation(s)
- H Khonsari
- Laboratoire d'Histologie et Embryologie/UMR CNRS 7000, Faculté de Médecine Pitié-Salpêtrière, Université Paris 6, Pavillon Benjamin-Delessert, 105, boulevard de l'Hôpital, 75631 Paris.
| | | |
Collapse
|
139
|
Abstract
Unraveling the genetic programs that drive -metastasis may offer insights into how to limit or prevent this deadly aspect of cancer progression. Our recent studies indicate that tumor cell metastasis involves the activity of the transcription factor, Twist, which regulates epithelial-mesenchymal transition and early embryonic morphogenesis. Here, we review the Twist signaling pathway during normal development and discuss how the transcription factor Twist and the epithelial-mesenchymal transition program impinge their biological functions during tumor metastasis.
Collapse
Affiliation(s)
- Jing Yang
- Whitehead Institute for Biomedical Research, Cambridge Center, Cambridge, Massachusetts 02142, USA
| | | | | |
Collapse
|
140
|
Affiliation(s)
- D Renier
- Groupe d'Etudes des Malformations Craniofaciales, Service de Neurochirurgie, CHU Necker-Enfants Malades, 149, rue de Sèvres, 75743 Paris.
| | | | | |
Collapse
|
141
|
Merrill AE, Bochukova EG, Brugger SM, Ishii M, Pilz DT, Wall SA, Lyons KM, Wilkie AOM, Maxson RE. Cell mixing at a neural crest-mesoderm boundary and deficient ephrin-Eph signaling in the pathogenesis of craniosynostosis. Hum Mol Genet 2006; 15:1319-28. [PMID: 16540516 DOI: 10.1093/hmg/ddl052] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Boundaries between cellular compartments often serve as signaling interfaces during embryogenesis. The coronal suture is a major growth center of the skull vault and develops at a boundary between cells derived from neural crest and mesodermal origin, forming the frontal and parietal bones, respectively. Premature fusion of these bones, termed coronal synostosis, is a common human developmental anomaly. Known causes of coronal synostosis include haploinsufficiency of TWIST1 and a gain of function mutation in MSX2. In Twist1(+/-) mice with coronal synostosis, we found that the frontal-parietal boundary is defective. Specifically, neural crest cells invade the undifferentiated mesoderm of the Twist1(+/-) mutant coronal suture. This boundary defect is accompanied by an expansion in Msx2 expression and reduction in ephrin-A4 distribution. Reduced dosage of Msx2 in the Twist1 mutant background restores the expression of ephrin-A4, rescues the suture boundary and inhibits craniosynostosis. Underlining the importance of ephrin-A4, we identified heterozygous mutations in the human orthologue, EFNA4, in three of 81 patients with non-syndromic coronal synostosis. This provides genetic evidence that Twist1, Msx2 and Efna4 function together in boundary formation and the pathogenesis of coronal synostosis.
Collapse
Affiliation(s)
- Amy E Merrill
- Department of Biochemistry and Molecular Biology, Norris Cancer Hospital, University of Southern Califoirnia Keck School of Medicine, 1441 Eastlake Avenue, Los Angeles, CA 90089-0176, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Elias MC, Tozer KR, Silber JR, Mikheeva S, Deng M, Morrison RS, Manning TC, Silbergeld DL, Glackin CA, Reh TA, Rostomily RC. TWIST is expressed in human gliomas and promotes invasion. Neoplasia 2006; 7:824-37. [PMID: 16229805 PMCID: PMC1501937 DOI: 10.1593/neo.04352] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Revised: 04/21/2005] [Accepted: 05/18/2005] [Indexed: 11/18/2022] Open
Abstract
TWIST, a basic helix-loop-helix (bHLH) transcription factor that regulates mesodermal development, has been shown to promote tumor cell metastasis and to enhance survival in response to cytotoxic stress. Our analysis of rat C6 glioma cell-derived cDNA revealed TWIST expression, suggesting that the gene may play a role in the genesis and physiology of primary brain tumors. To further delineate a possible oncogenic role for TWIST in the central nervous system (CNS), we analyzed TWIST expression in human gliomas and normal brain by using reverse transcription polymerase chain reaction, Northern blot analysis, in situ hybridization, and immunohistochemistry. TWIST expression was detected in the large majority of human glioma-derived cell lines and human gliomas examined. Levels of TWIST mRNA were associated with the highest grade gliomas, and increased TWIST expression accompanied transition from low grade to high grade in vivo, suggesting a role for TWIST in promoting malignant progression. In accord, elevated TWIST mRNA abundance preceded the spontaneous malignant transformation of cultured mouse astrocytes hemizygous for p53. Overexpression of TWIST protein in a human glioma cell line significantly enhanced tumor cell invasion, a hallmark of high-grade gliomas. These findings support roles for TWIST both in early glial tumorigenesis and subsequent malignant progression. TWIST was also expressed in embryonic and fetal human brain, and in neurons, but not glia, of mature brain, indicating that, in gliomas, TWIST may promote the functions also critical for CNS development or normal neuronal physiology.
Collapse
Affiliation(s)
- Maria C Elias
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Morriss-Kay GM, Wilkie AOM. Growth of the normal skull vault and its alteration in craniosynostosis: insights from human genetics and experimental studies. J Anat 2006; 207:637-53. [PMID: 16313397 PMCID: PMC1571561 DOI: 10.1111/j.1469-7580.2005.00475.x] [Citation(s) in RCA: 310] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The mammalian skull vault is constructed principally from five bones: the paired frontals and parietals, and the unpaired interparietal. These bones abut at sutures, where most growth of the skull vault takes place. Sutural growth involves maintenance of a population of proliferating osteoprogenitor cells which differentiate into bone matrix-secreting osteoblasts. Sustained function of the sutures as growth centres is essential for continuous expansion of the skull vault to accommodate the growing brain. Craniosynostosis, the premature fusion of the cranial sutures, occurs in 1 in 2500 children and often presents challenging clinical problems. Until a dozen years ago, little was known about the causes of craniosynostosis but the discovery of mutations in the MSX2, FGFR1, FGFR2, FGFR3, TWIST1 and EFNB1 genes in both syndromic and non-syndromic cases has led to considerable insights into the aetiology, classification and developmental pathology of these disorders. Investigations of the biological roles of these genes in cranial development and growth have been carried out in normal and mutant mice, elucidating their individual and interdependent roles in normal sutures and in sutures undergoing synostosis. Mouse studies have also revealed a significant correspondence between the neural crest-mesoderm boundary in the early embryonic head and the position of cranial sutures, suggesting roles for tissue interaction in suture formation, including initiation of the signalling system that characterizes the functionally active suture.
Collapse
|
144
|
Zohn IE, Anderson KV, Niswander L. Using genomewide mutagenesis screens to identify the genes required for neural tube closure in the mouse. ACTA ACUST UNITED AC 2006; 73:583-90. [PMID: 15971254 DOI: 10.1002/bdra.20164] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Neural tube closure is a critical embryological process that requires the coordination of many molecular and cellular events. Only recently has the molecular basis of the cell movements that drive neural tube closure begun to be elucidated. This has been accomplished in part due to the analysis of a growing number of genetically targeted and naturally occurring mouse mutant strains that have neural tube defects (NTDs). Currently there are more than 100 genes that when mutated result in NTDs in the mouse. Yet only approximately 10% of genes in the mouse genome have been mutated and their gross phenotype analyzed, suggesting that only a small percentage of the genes that can cause NTDs have been identified. METHODS In order to more systematically and fully understand the genetic basis of neural tube closure and to begin to define the molecular pathways that direct this key embryonic event, our laboratories have undertaken a forward genetic screen in mice. From this we hope to gain a better understanding of the regulation of this complex morphogenic processes. CONCLUSIONS The mouse provides a good model for human neural tube closure, and therefore the information gained from generating novel mouse models of NTDs will help to predict the genes responsible for human NTDs and provide experimental evidence for how they function.
Collapse
Affiliation(s)
- Irene E Zohn
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY, USA.
| | | | | |
Collapse
|
145
|
Dupin E, Creuzet S, Le Douarin NM. The contribution of the neural crest to the vertebrate body. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 589:96-119. [PMID: 17076277 DOI: 10.1007/978-0-387-46954-6_6] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As a transitory structure providing adult tissues of the vertebrates with very diverse cell types, the neural crest (NC) has attracted for long the interest of developmental biologists and is still the subject of ongoing research in a variety of animal models. Here we review a number of data from in vivo cell tracing and in vitro single cell culture experiments, which gained new insights on the mechanisms of cell migration, proliferation and differentiation during NC ontogeny. We put emphasis on the role of Hox genes, morphogens and interactions with neighbouring tissues in specifying and patterning the skeletogenic NC cells in the head. We also include advances made towards characterizing multipotent stem cells in the early NC as well as in various NC derivatives in embryos and even in adult.
Collapse
Affiliation(s)
- Elisabeth Dupin
- Laboratoire d'Embryologie Cellulaire et Moléculaire, CNRS UMR 7128, 49 bis, avenue de la Belle Gabrielle, 94736 Nogent-sur-Marne, France
| | | | | |
Collapse
|
146
|
Larue L, Bellacosa A. Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3' kinase/AKT pathways. Oncogene 2005; 24:7443-54. [PMID: 16288291 DOI: 10.1038/sj.onc.1209091] [Citation(s) in RCA: 944] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is an important process during development by which epithelial cells acquire mesenchymal, fibroblast-like properties and show reduced intercellular adhesion and increased motility. Accumulating evidence points to a critical role of EMT-like events during tumor progression and malignant transformation, endowing the incipient cancer cell with invasive and metastatic properties. Several oncogenic pathways (peptide growth factors, Src, Ras, Ets, integrin, Wnt/beta-catenin and Notch) induce EMT and a critical molecular event is the downregulation of the cell adhesion molecule E-cadherin. Recently, activation of the phosphatidylinositol 3' kinase (PI3K)/AKT axis is emerging as a central feature of EMT. In this review, we discuss the role of PI3K/AKT pathways in EMT during development and cancer with a focus on E-cadherin regulation. Interactions between PI3K/AKT and other EMT-inducing pathways are presented, along with a discussion of the therapeutic implications of modulating EMT in order to achieve cancer control.
Collapse
Affiliation(s)
- Lionel Larue
- Developmental Genetics of Melanocytes, UMR 146, CNRS, Institut Curie, Centre Universitaire, Orsay, France.
| | | |
Collapse
|
147
|
Porter JD, Israel S, Gong B, Merriam AP, Feuerman J, Khanna S, Kaminski HJ. Distinctive morphological and gene/protein expression signatures during myogenesis in novel cell lines from extraocular and hindlimb muscle. Physiol Genomics 2005; 24:264-75. [PMID: 16291736 DOI: 10.1152/physiolgenomics.00234.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscles are not created equal. The underutilized concept of muscle allotypes defines distinct muscle groups that differ in their intrinsic capacity to express novel traits when exposed to a facilitating extrinsic environment. Allotype-specific traits may have significance as determinants of the preferential involvement or sparing of muscle groups that is observed in a variety of neuromuscular diseases. Little is known, however, of the developmental mechanisms underlying the distinctive skeletal muscle allotypes. The lack of appropriate in vitro models, to dissociate the cell-autonomous and non-cell-autonomous mechanisms behind allotype diversity, has been a barrier to such studies. Here, we derived novel cell lines from the extraocular and hindlimb muscle allotypes and assessed their similarities and differences during early myogenesis using morphological and gene/protein expression profiling tools. Our data establish that there are fundamental differences in the transcriptional and cellular signaling pathways used by the two myoblast lineages. Taken together, these data show that myoblast lineage plays a significant role in the divergence of the distinctive muscle groups or allotypes.
Collapse
Affiliation(s)
- John D Porter
- Department of Neurology, Case Western Reserve University, University Hospitals of Cleveland, Cleveland, Ohio, USA.
| | | | | | | | | | | | | |
Collapse
|
148
|
Hay ED. The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev Dyn 2005; 233:706-20. [PMID: 15937929 DOI: 10.1002/dvdy.20345] [Citation(s) in RCA: 453] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This review centers on the role of the mesenchymal cell in development. The creation of this cell is a remarkable process, one where a tightly knit, impervious epithelium suddenly extends filopodia from its basal surface and gives rise to migrating cells. The ensuing process of epithelial-mesenchymal transformation (EMT) creates the mechanism that makes it possible for the mesenchymal cell to become mobile, so as to leave the epithelium and move through the extracellular matrix. EMT is now recognized as a very important mechanism for the remodeling of embryonic tissues, with the power to turn an epithelial somite into sclerotome mesenchyme, and the neural crest into mesenchyme that migrates to many targets. Thus, the time has come for serious study of the underlying mechanisms and the signaling pathways that are used to form the mesenchymal cell in the embryo. In this review, I discuss EMT centers in the embryo that are ready for such serious study and review our current understanding of the mechanisms used for EMT in vitro, as well as those that have been implicated in EMT in vivo. The purpose of this review is not to describe every study published in this rapidly expanding field but rather to stimulate the interest of the reader in the study of the role of the mesenchymal cell in the embryo, where it plays profound roles in development. In the adult, mesenchymal cells may give rise to metastatic tumor cells and other pathological conditions that we will touch on at the end of the review.
Collapse
Affiliation(s)
- Elizabeth D Hay
- Harvard Medical School, Department of Cell Biology, Boston, Massachusetts 02115, USA.
| |
Collapse
|
149
|
Abstract
In early vertebrate development, the neural crest is specified in the embryonic ectoderm at the boundary of the neural plate and the nonneural ectoderm. After the induction, the neural crest cells undergo epithelial-mesenchymal transition, delaminating from the epithelium, and migrate extensively in the embryonic environment to give rise to a wide variety of tissues and cell types. In this review, we try to summarize the recent progress in understanding the molecular nature of the inductive signals and transcription factors involved in neural crest formation and following steps of the neural crest development. We also point out the underlying problems that need to be solved to understand the process further.
Collapse
Affiliation(s)
- Daisuke Sakai
- Department of Developmental Neurobiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | |
Collapse
|
150
|
Osborne NJ, Begbie J, Chilton JK, Schmidt H, Eickholt BJ. Semaphorin/neuropilin signaling influences the positioning of migratory neural crest cells within the hindbrain region of the chick. Dev Dyn 2005; 232:939-49. [PMID: 15729704 DOI: 10.1002/dvdy.20258] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Within the hindbrain region, neural crest cell migration is organized into three streams that follow the segmentation of the neuroepithelium into distinct rhombomeric compartments. Although the streaming of neural crest cells is known to involve signals derived from the neuroepithelium, the molecular properties underlying this process are poorly understood. Here, we have mapped the expression of the signaling component of two secreted class III Semaphorins, Semaphorin (Sema) 3A and Sema 3F, at time points that correspond to neural crest cell migration within the hindbrain region of the chick. Both Semaphorins are expressed within rhombomeres at levels adjacent to crest-free mesenchyme and expression of the receptor components essential for Semaphorin activity by neural crest cells suggests a function in restricting neural crest cell migration. By using bead implantation and electroporation in ovo, we define a role for both Semaphorins in the maintenance of neural crest cell streams in proximity to the neural tube. Attenuation of Semaphorin signaling by expression of soluble Neuropilin-Fc resulted in neural crest cells invading adjacent mesenchymal territories that are normally crest-free. The loss or misguidance of specific neural crest cell populations after changes in Semaphorin signaling also affects the integration of the cranial sensory ganglia. Thus, Sema 3A and 3F, expressed and secreted by the hindbrain neuroepithelium contributes to the appropriate positioning of neural crest cells in proximity to the neural tube, a process crucial for the subsequent establishment of neuronal connectivity within the hindbrain region.
Collapse
Affiliation(s)
- Nicola J Osborne
- MRC Centre for Developmental Neurobiology, King's College London, London SE1 1UL, United Kingdom
| | | | | | | | | |
Collapse
|