101
|
Zhang YN, Zhu XY, Ma JF, Dong ZP, Xu JW, Kang K, Zhang LW. Molecular identification and expression patterns of odorant binding protein and chemosensory protein genes in Athetis lepigone (Lepidoptera: Noctuidae). PeerJ 2017; 5:e3157. [PMID: 28382236 PMCID: PMC5376112 DOI: 10.7717/peerj.3157] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/07/2017] [Indexed: 11/20/2022] Open
Abstract
The olfaction system of insects plays an important role in mediating various physiological behaviors, including locating hosts, avoiding predators, and recognizing mates and oviposition sites. Therefore, some key genes in the system present valuable opportunities as targets for developing novel green pesticides. Athetis lepigone, a noctuid moth can feed on more than 30 different host plants making it a serious polyphagous pest worldwide, and it has become one of the major maize pests in northern China since 2011. However, there are no reports on effective and environmentally friendly pesticides for the control of this pest. In this study, we identified 28 genes encoding putative odorant binding proteins (OBPs) and 20 chemosensory protein (CSPs) genes based on our previous A. lepigone transcriptomic data. A tissue expression investigation and phylogenetic analysis were conducted in an effort to postulate the functions of these genes. Our results show that nearly half (46.4%) of the AlOBPs exhibited antennae-biased expression while many of the AlCSPs were highly abundant in non-antennal tissues. These results will aid in exploring the chemosensory mechanisms of A. lepigone and developing environmentally friendly pesticides against this pest in the future.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, China; Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiu-Yun Zhu
- College of Life Sciences, Huaibei Normal University , Huaibei , China
| | - Ji-Fang Ma
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences , Shijiazhuang , China
| | - Zhi-Ping Dong
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences , Shijiazhuang , China
| | - Ji-Wei Xu
- College of Life Sciences, Huaibei Normal University , Huaibei , China
| | - Ke Kang
- Anhui Vocational & Technical College of Forestry , Hefei , China
| | - Long-Wa Zhang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University , Hefei , China
| |
Collapse
|
102
|
Differential expression of chemosensory-protein genes in midguts in response to diet of Spodoptera litura. Sci Rep 2017; 7:296. [PMID: 28331183 PMCID: PMC5428418 DOI: 10.1038/s41598-017-00403-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 02/27/2017] [Indexed: 01/01/2023] Open
Abstract
While it has been well characterized that chemosensory receptors in guts of mammals have great influence on food preference, much remains elusive in insects. Insect chemosensory proteins (CSPs) are soluble proteins that could deliver chemicals to olfactory and gustatory receptors. Recent studies have identified a number of CSPs expressed in midgut in Lepidoptera insects, which started to reveal their roles in chemical recognition and stimulating appetite in midgut. In this study, we examined expression patterns in midgut of 21 Spodoptera litura CSPs (SlitCSPs) characterized from a previously reported transcriptome, and three CSPs were identified to be expressed highly in midgut. The orthologous relationships between midgut expressed CSPs in S. litura and those in Bombyx mori and Plutella xylostella also suggest a conserved pattern of CSP expression in midgut. We further demonstrated that the expression of midgut-CSPs may change in response to different host plants, and SlitCSPs could bind typical chemicals from host plant in vitro. Overall, our results suggested midgut expressed SlitCSPs may have functional roles, likely contributing to specialization and adaption to different ecosystems. Better knowledge of this critical component of the chemsensation signaling pathways in midguts may improve our understanding of food preference processes in a new perspective.
Collapse
|
103
|
Huang HJ, Xue J, Zhuo JC, Cheng RL, Xu HJ, Zhang CX. Comparative analysis of the transcriptional responses to low and high temperatures in three rice planthopper species. Mol Ecol 2017; 26:2726-2737. [PMID: 28214356 DOI: 10.1111/mec.14067] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 01/19/2017] [Accepted: 02/09/2017] [Indexed: 12/20/2022]
Abstract
The brown planthopper (Nilaparvata lugens, BPH), white-backed planthopper (Sogatella furcifera, WBPH) and small brown planthopper (Laodelphax striatellus, SBPH) are important rice pests in Asia. These three species differ in thermal tolerance and exhibit quite different migration and overwintering strategies. To understand the underlying mechanisms, we sequenced and compared the transcriptome of the three species under different temperature treatments. We found that metabolism-, exoskeleton- and chemosensory-related genes were modulated. In high temperature (37 °C), heat shock protein (HSP) genes were the most co-regulated; other genes related with fatty acid metabolism, amino acid metabolism and transportation were also differentially expressed. In low temperature (5 °C), the differences in gene expression of the genes for fatty acid synthesis, transport proteins and cytochrome P450 might explain why SBPH can overwinter in high latitudes, while BPH and WBPH cannot. In addition, other genes related with moulting, and membrane lipid composition might also play roles in resistance to low and high temperatures. Our study illustrates the common responses and different tolerance mechanisms of three rice planthoppers in coping with temperature change, and provides a potential strategy for pest management.
Collapse
Affiliation(s)
- Hai-Jian Huang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Jian Xue
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Ji-Chong Zhuo
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Ruo-Lin Cheng
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Hai-Jun Xu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Chuan-Xi Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
104
|
Wang R, Li F, Zhang W, Zhang X, Qu C, Tetreau G, Sun L, Luo C, Zhou J. Identification and expression profile analysis of odorant binding protein and chemosensory protein genes in Bemisia tabaci MED by head transcriptome. PLoS One 2017; 12:e0171739. [PMID: 28166541 PMCID: PMC5293548 DOI: 10.1371/journal.pone.0171739] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 01/25/2017] [Indexed: 11/18/2022] Open
Abstract
Odorant binding proteins (OBPs) and chemosensory proteins (CSPs) of arthropods are thought to be involved in chemical recognition which regulates pivotal behaviors including host choice, copulation and reproduction. In insects, OBPs and CSPs located mainly in the antenna but they have not been systematically characterized yet in Bemisia tabaci which is a cryptic species complex and could damage more than 600 plant species. In this study, among the 106,893 transcripts in the head assembly, 8 OBPs and 13 CSPs were identified in B. tabaci MED based on head transcriptomes of adults. Phylogenetic analyses were conducted to investigate the relationships of B. tabaci OBPs and CSPs with those from several other important Hemipteran species, and the motif-patterns between Hemiptera OBPs and CSPs were also compared by MEME. The expression profiles of the OBP and CSP genes in different tissues of B. tabaci MED adults were analyzed by real-time qPCR. Seven out of the 8 OBPs found in B. tabaci MED were highly expressed in the head. Conversely, only 4 CSPs were enriched in the head, while the other nine CSPs were specifically expressed in other tissues. Our findings pave the way for future research on chemical recognition of B. tabaci at the molecular level.
Collapse
Affiliation(s)
- Ran Wang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Fengqi Li
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Wei Zhang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiaoman Zhang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Cheng Qu
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Guillaume Tetreau
- Laboratoire Intéraction Hôtes-Pathogènes-Environnement, Université de Perpignan, Perpignan, France
| | - Lujuan Sun
- Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chen Luo
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- * E-mail:
| | - Jingjiang Zhou
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| |
Collapse
|
105
|
Brito NF, Moreira MF, Melo ACA. A look inside odorant-binding proteins in insect chemoreception. JOURNAL OF INSECT PHYSIOLOGY 2016; 95:51-65. [PMID: 27639942 DOI: 10.1016/j.jinsphys.2016.09.008] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 05/14/2023]
Abstract
Detection of chemical signals from the environment through olfaction is an indispensable mechanism for maintaining an insect's life, evoking critical behavioral responses. Among several proteins involved in the olfactory perception process, the odorant binding protein (OBP) has been shown to be essential for a normally functioning olfactory system. This paper discusses the role of OBPs in insect chemoreception. Here, structural aspects, mechanisms of action and binding affinity of such proteins are reviewed, as well as their promising application as molecular targets for the development of new strategies for insect population management and other technological purposes.
Collapse
Affiliation(s)
- Nathália F Brito
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil
| | - Monica F Moreira
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Ana C A Melo
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil.
| |
Collapse
|
106
|
Xuan N, Rajashekar B, Kasvandik S, Picimbon JF. Structural components of chemosensory protein mutations in the silkworm moth, Bombyx mori. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.aggene.2016.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
107
|
Iovinella I, Ban L, Song L, Pelosi P, Dani FR. Proteomic analysis of castor bean tick Ixodes ricinus: a focus on chemosensory organs. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 78:58-68. [PMID: 27693516 DOI: 10.1016/j.ibmb.2016.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/09/2016] [Accepted: 09/28/2016] [Indexed: 06/06/2023]
Abstract
In arthropods, the large majority of studies on olfaction have been focused on insects, where most of the proteins involved have been identified. In particular, chemosensing in insects relies on two families of membrane receptors, olfactory/gustatory receptors (ORs/GRs) and ionotropic receptors (IRs), and two classes of soluble proteins, odorant-binding proteins (OBPs) and chemosensory proteins (CSPs). In other arthropods, such as ticks and mites, only IRs have been identified, while genes encoding for OBPs and CSPs are absent. A third class of soluble proteins, called Niemann-Pick C2 (NPC2) has been suggested as potential carrier for semiochemicals both in insects and other arthropods. Here we report the results of a proteomic analysis on olfactory organs (Haller's organ and palps) and control tissues of the tick Ixodes ricinus, and of immunostaining experiments targeting NPC2s. Adopting different extraction and proteomic approaches, we identified a large number of proteins, and highlighted those differentially expressed. None of the 13 NPC2s known for this species was found. On the other hand, using immunocytochemistry, we detected reaction against one NPC2 in the Haller's organ and palp sensilla. We hypothesized that the low concentration of such proteins in the tick's tissues could possibly explain the discrepant results. In ligand-binding assays the corresponding recombinant NPC2 showed good affinity to the fluorescent probe N-phenylnaphthylamine and to few organic compounds, supporting a putative role of NPC2s as odorant carriers.
Collapse
Affiliation(s)
- Immacolata Iovinella
- Biology Department, University of Firenze, via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Liping Ban
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Limei Song
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Paolo Pelosi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Francesca Romana Dani
- Biology Department, University of Firenze, via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy; CISM, Mass Spectrometry Centre, University of Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
108
|
Mugford ST, Barclay E, Drurey C, Findlay KC, Hogenhout SA. An Immuno-Suppressive Aphid Saliva Protein Is Delivered into the Cytosol of Plant Mesophyll Cells During Feeding. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:854-861. [PMID: 27831211 DOI: 10.1094/mpmi-08-16-0168-r] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Herbivore selection of plant hosts and plant responses to insect colonization have been subjects of intense investigations. A growing body of evidence suggests that, for successful colonization to occur, (effector/virulence) proteins in insect saliva must modulate plant defense responses to the benefit of the insect. A range of insect saliva proteins that modulate plant defense responses have been identified, but there is no direct evidence that these proteins are delivered into specific plant tissues and enter plant cells. Aphids and other sap-sucking insects of the order Hemiptera use their specialized mouthparts (stylets) to probe plant mesophyll cells until they reach the phloem cells for long-term feeding. Here, we show, by immunogold-labeling of ultrathin sections of aphid feeding sites, that an immuno-suppressive aphid effector localizes in the cytoplasm of mesophyll cells near aphid stylets but not in cells further away from aphid feeding sites. In contrast, another aphid effector protein localizes in the sheaths composed of gelling saliva that surround the aphid stylets. Thus, insects deliver effectors directly into plant tissue. Moreover, different aphid effectors locate extracellularly in the sheath saliva or are introduced into the cytoplasm of plant cells. [Formula: see text] Copyright © 2016 The Author(s). This is an open-access article distributed under the CC BY-NC-ND 4.0 International license .
Collapse
Affiliation(s)
- Sam T Mugford
- Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, U.K
| | - Elaine Barclay
- Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, U.K
| | - Claire Drurey
- Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, U.K
| | - Kim C Findlay
- Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, U.K
| | - Saskia A Hogenhout
- Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, U.K
| |
Collapse
|
109
|
Zhu J, Iovinella I, Dani FR, Liu YL, Huang LQ, Liu Y, Wang CZ, Pelosi P, Wang G. Conserved chemosensory proteins in the proboscis and eyes of Lepidoptera. Int J Biol Sci 2016; 12:1394-1404. [PMID: 27877091 PMCID: PMC5118785 DOI: 10.7150/ijbs.16517] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/16/2016] [Indexed: 11/05/2022] Open
Abstract
Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) are endowed with several different functions besides being carriers for pheromones and odorants. Based on a previous report of a CSP acting as surfactant in the proboscis of the moth Helicoverpa armigera, we revealed the presence of orthologue proteins in two other moths Plutella xylostella and Chilo suppressalis, as well as two butterflies Papilio machaon and Pieris rapae, using immunodetection and proteomic analysis. The unusual conservation of these proteins across large phylogenetic distances indicated a common specific function for these CSPs. This fact prompted us to search for other functions of these proteins and discovered that CSPs are abundantly expressed in the eyes of H. armigera and possibly involved as carriers for carotenoids and visual pigments. This hypothesis is supported by ligand-binding experiments and docking simulations with retinol and β-carotene. This last orange pigment, occurring in many fruits and vegetables, is an antioxidant and the precursor of visual pigments. We propose that structurally related CSPs solubilise nutritionally important carotenoids in the proboscis, while they act as carriers of both β-carotene and its derived products 3-hydroxyretinol and 3-hydroxyretinal in the eye. The use of soluble olfactory proteins, such as CSPs, as carriers for visual pigments in insects, here reported for the first time, parallels the function of retinol-binding protein in vertebrates, a lipocalin structurally related to vertebrate odorant-binding proteins.
Collapse
Affiliation(s)
- Jiao Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Immacolata Iovinella
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China; Dipartimento di Biologia, Università degli Studi di Firenze, 50019 Sesto Fiorentino (Firenze), Italy
| | - Francesca Romana Dani
- Dipartimento di Biologia, Università degli Studi di Firenze, 50019 Sesto Fiorentino (Firenze), Italy
| | - Yu-Ling Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Ling-Qiao Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Paolo Pelosi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
110
|
Masood M, Everett CP, Chan SY, Snow JW. Negligible uptake and transfer of diet-derived pollen microRNAs in adult honey bees. RNA Biol 2016; 13:109-18. [PMID: 26680555 DOI: 10.1080/15476286.2015.1128063] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The putative transfer and gene regulatory activities of diet-derived miRNAs in ingesting animals are still debated. Importantly, no study to date has fully examined the role of dietary uptake of miRNA in the honey bee, a critical pollinator in both agricultural and natural ecosystems. After controlled pollen feeding experiments in adult honey bees, we observed that midguts demonstrated robust increases in plant miRNAs after pollen ingestion. However, we found no evidence of biologically relevant delivery of these molecules to proximal or distal tissues of recipient honey bees. Our results, therefore, support the premise that pollen miRNAs ingested as part of a typical diet are not robustly transferred across barrier epithelia of adult honey bees under normal conditions. Key future questions include whether other small RNA species in honey bee diets behave similarly and whether more specialized and specific delivery mechanisms exist for more efficient transport, particularly in the context of stressed barrier epithelia.
Collapse
Affiliation(s)
- Maryam Masood
- a Department of Biology , Barnard College , New York , NY , 10027 , USA
| | - Claire P Everett
- a Department of Biology , Barnard College , New York , NY , 10027 , USA
| | - Stephen Y Chan
- b Vascular Medicine Institute, University of Pittsburgh Medical Center , Pittsburgh , PA , 15261 , USA
| | - Jonathan W Snow
- a Department of Biology , Barnard College , New York , NY , 10027 , USA
| |
Collapse
|
111
|
Zhao H, Du Y, Gao P, Wang S, Pan J, Jiang Y. Antennal Transcriptome and Differential Expression Analysis of Five Chemosensory Gene Families from the Asian Honeybee Apis cerana cerana. PLoS One 2016; 11:e0165374. [PMID: 27776190 PMCID: PMC5077084 DOI: 10.1371/journal.pone.0165374] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 10/11/2016] [Indexed: 11/18/2022] Open
Abstract
Chemosensory genes play a central role in sensing chemical signals and guiding insect behavior. The Chinese honeybee, Apis cerana cerana, is one of the most important insect species in China in terms of resource production, and providing high-quality products for human consumption, and also serves as an important pollinator. Communication and foraging behavior of worker bees is likely linked to a complex chemosensory system. Here, we used transcriptome sequencing on adult A. c. cerana workers of different ages to identify the major chemosensory gene families and the differentially expressed genes(DEGs), and to investigate their expression profiles. A total of 109 candidate chemosensory genes in five gene families were identified from the antennal transcriptome assemblies, including 17 OBPs, 6 CSPs, 74 ORs, 10 IRs, and 2SNMPs, in which nineteen DEGs were screened and their expression values at different developmental stages were determined in silico. No chemosensory transcript was specific to a certain developmental period. Thirteen DEGs were upregulated and 6were downregulated. We created extensive expression profiles in six major body tissues using qRT-PCR and found that most DEGs were exclusively or primarily expressed in antennae. Others were abundantly expressed in the other tissues, such as head, thorax, abdomen, legs, and wings. Interestingly, when a DEG was highly expressed in the thorax, it also had a high level of expression in legs, but showed a lowlevel in antennae. This study explored five chemoreceptor superfamily genes using RNA-Seq coupled with extensive expression profiling of DEGs. Our results provide new insights into the molecular mechanism of odorant detection in the Asian honeybee and also serve as an extensive novel resource for comparing and investigating olfactory functionality in hymenopterans.
Collapse
Affiliation(s)
- Huiting Zhao
- College of Life Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yali Du
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Pengfei Gao
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Shujie Wang
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jianfang Pan
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yusuo Jiang
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, China
- * E-mail:
| |
Collapse
|
112
|
Tissue, developmental, and caste-specific expression of odorant binding proteins in a eusocial insect, the red imported fire ant, Solenopsis invicta. Sci Rep 2016; 6:35452. [PMID: 27765943 PMCID: PMC5073229 DOI: 10.1038/srep35452] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/28/2016] [Indexed: 11/13/2022] Open
Abstract
Insects interact with the surrounding environment via chemoreception, and in social insects such as ants, chemoreception functions to mediate diverse behaviors including food acquisition, self/non-self recognition, and intraspecific communication. The invasive red imported fire ant, Solenopsis invicta, has spread worldwide, displaying a remarkable environmental adaptability. Odorant binding proteins (OBPs) are chemical compound carriers, involved in diverse physiological processes including odor detection and chemical transport. S. invicta contains a highly divergent 17-member OBP gene family, that includes an ant-specific expansion and the social organization implicated Gp-9 (OBP3) gene. A systematic gene expression analysis of the SiOBP repertoire was performed across social caste (workers, male and female alates), tissues (antennae, head, thorax, and abdomen), and developmental stages (egg, larvae, and pupae), revealing that although SiOBPs were expressed in the antennae, the major regions of expression were in the head and thorax across all castes, and the abdomen in male and female alates. SiOBPs were very highly expressed in female alates and at somewhat lower levels in male alates and workers. SiOBPs were differentially expressed, with unique signatures in various castes and tissues, suggesting functionality of SiOBPs beyond olfaction Expression patterns of SiOBP subgroups also showed relationships with their evolutionary relatedness.
Collapse
|
113
|
Yuan X, Jiang YD, Wang GY, Yu H, Zhou WW, Liu S, Yang MF, Cheng J, Gurr GM, Way MO, Zhu ZR. Odorant-Binding Proteins and Chemosensory Proteins from an Invasive Pest Lissorhoptrus oryzophilus (Coleoptera: Curculionidae). ENVIRONMENTAL ENTOMOLOGY 2016; 45:1276-1286. [PMID: 27569597 DOI: 10.1093/ee/nvw111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/01/2016] [Indexed: 06/06/2023]
Abstract
The rice water weevil, Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae), is a serious pest species both in its original distribution region of northern America and its invaded regions of eastern Asia and southern Europe. The odorant-binding proteins (OBPs) and the chemosensory proteins (CSPs) play important roles in host and mate locating, thus might play a significant role in the success of the species as an invader, which has not been characterized yet. We identified 10 OBPs and 5 CSPs in L. oryzophilus and investigated the expression profiles of these genes in various tissues by quantitative real-time PCR. Five classic OBPs were predominantly expressed in the antennae. CSPs were expressed ubiquitously with particularly high transcript levels in antennae, legs, and wings. Three antenna-specific OBPs (LoOBP1, 8, 11) were up-regulated following 1-3 d of food deprivation and down-regulated afterward. These findings suggest most classic OBPs are likely involved in chemoreception whereas CSPs as well as the minus-C OBPs may have broader physiological functions, which in turn may help to understand the molecular aspects of chemical communication in this invasive insect.
Collapse
Affiliation(s)
- Xin Yuan
- State Key Laboratory of Rice Biology and Key Laboratory of Agricultural Entomology, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China (; ; ; ; ; ; ; ; )
| | - Yan-Dong Jiang
- State Key Laboratory of Rice Biology and Key Laboratory of Agricultural Entomology, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China (; ; ; ; ; ; ; ; )
| | - Gui-Yao Wang
- State Key Laboratory of Rice Biology and Key Laboratory of Agricultural Entomology, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China (; ; ; ; ; ; ; ; )
| | - Hang Yu
- State Key Laboratory of Rice Biology and Key Laboratory of Agricultural Entomology, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China (; ; ; ; ; ; ; ; )
| | - Wen-Wu Zhou
- State Key Laboratory of Rice Biology and Key Laboratory of Agricultural Entomology, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China (; ; ; ; ; ; ; ; )
| | - Su Liu
- State Key Laboratory of Rice Biology and Key Laboratory of Agricultural Entomology, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China (; ; ; ; ; ; ; ; )
| | - Mao-Fa Yang
- Institute of Entomology, Guizhou University, Guiyang, China
| | - Jiaan Cheng
- State Key Laboratory of Rice Biology and Key Laboratory of Agricultural Entomology, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China (; ; ; ; ; ; ; ; )
| | - Geoff M Gurr
- State Key Laboratory of Rice Biology and Key Laboratory of Agricultural Entomology, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China (; ; ; ; ; ; ; ; ) Graham Centre for Agricultural Innovation, Charles Sturt University, Orange, NSW, Australia
| | - Michael O Way
- Texas A&M AgriLife Research and Extension Center, Beaumont, TX
| | - Zeng-Rong Zhu
- State Key Laboratory of Rice Biology and Key Laboratory of Agricultural Entomology, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China (; ; ; ; ; ; ; ; )
| |
Collapse
|
114
|
Xue W, Fan J, Zhang Y, Xu Q, Han Z, Sun J, Chen J. Identification and Expression Analysis of Candidate Odorant-Binding Protein and Chemosensory Protein Genes by Antennal Transcriptome of Sitobion avenae. PLoS One 2016; 11:e0161839. [PMID: 27561107 PMCID: PMC4999175 DOI: 10.1371/journal.pone.0161839] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 08/12/2016] [Indexed: 12/31/2022] Open
Abstract
Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) of aphids are thought to be responsible for the initial molecular interactions during olfaction that mediate detection of chemical signals. Analysis of the diversity of proteins involved comprises critical basic research work that will facilitate the development of sustainable pest control strategies. To help us better understand differences in the olfactory system between winged and wingless grain aphids, we constructed an antennal transcriptome from winged and wingless Sitobion avenae (Fabricius), one of the most serious pests of cereal fields worldwide. Among the 133,331 unigenes in the antennal assembly, 13 OBP and 5 CSP putative transcripts were identified with 6 OBP and 3 CSP sequences representing new S. avenae annotations. We used qPCR to examine the expression profile of these genes sets across S. avenae development and in various tissues. We found 7 SaveOBPs and 1 SaveCSP were specifically or significantly elevated in antennae compared with other tissues, and that some transcripts (SaveOBP8, SaveCSP2 and SaveCSP5) were abundantly expressed in the legs of winged or wingless aphids. The expression levels of the SaveOBPs and SaveCSPs varied depending on the developmental stage. Possible physiological functions of these genes are discussed. Further molecular and functional studies of these olfactory related genes will explore their potential as novel targets for controlling S. avenae.
Collapse
Affiliation(s)
- Wenxin Xue
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jia Fan
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yong Zhang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qingxuan Xu
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zongli Han
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jingrui Sun
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Julian Chen
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- * E-mail: ;
| |
Collapse
|
115
|
Hu P, Tao J, Cui M, Gao C, Lu P, Luo Y. Antennal transcriptome analysis and expression profiles of odorant binding proteins in Eogystia hippophaecolus (Lepidoptera: Cossidae). BMC Genomics 2016; 17:651. [PMID: 27538507 PMCID: PMC4989532 DOI: 10.1186/s12864-016-3008-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 08/10/2016] [Indexed: 12/24/2022] Open
Abstract
Background Eogystia hippophaecolus (Hua et al.) (Lepidoptera: Cossidae) is the major threat to seabuckthorn plantations in China. Specific and highly efficient artificial sex pheromone traps was developed and used to control it. However, the molecular basis for the pheromone recognition is not known. So we established the antennal transcriptome of E. hippophaecolus and characterized the expression profiles of odorant binding proteins. These results establish and improve the basis knowledge of the olfactory receptive system, furthermore provide a theoretical basis for the development of new pest control method. Results We identified 29 transcripts encoding putative odorant-binding proteins (OBPs), 18 putative chemosensory proteins (CSPs), 63 odorant receptors (ORs), 13 gustatory receptors (GRs), 12 ionotropic receptors (IRs), and two sensory neuron membrane proteins (SNMPs). Based on phylogenetic analysis, we found one Orco and three pheromone receptors of E. hippophaecolus and found that EhipGR13 detects sugar, EhipGR11 and EhipGR3 detect bitter. Nine OBPs expression profile indicated that most were the highest expression in antennae, consistent with functions of OBPs in binding and transporting odors during the antennal recognition process. OBP6 was external expressed in male genital-biased in, and this locus may be responsible for pheromone binding and recognition as well as mating. OBP1 was the highest and biased expressed in the foot and may function as identification of host plant volatiles. Conclusions One hundred thirty-seven chemosensory proteins were identified and the accurate functions and groups of part proteins were obtained by phylogenetic analysis. The most OBPs were antenna-biased expressed, which are involved in antennal recognition. However, few OBP was detected biased expression in the foot and external genitalia, and these loci may function in pheromone recognition, mating, and the recognition of plant volatiles. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3008-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ping Hu
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, No.35 Tsinghua East Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Jing Tao
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, No.35 Tsinghua East Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Mingming Cui
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, No.35 Tsinghua East Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Chenglong Gao
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, No.35 Tsinghua East Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Pengfei Lu
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, No.35 Tsinghua East Road, Haidian District, Beijing, 100083, People's Republic of China.
| | - Youqing Luo
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, No.35 Tsinghua East Road, Haidian District, Beijing, 100083, People's Republic of China.
| |
Collapse
|
116
|
Qu SX, Ma L, Li HP, Song JD, Hong XY. Chemosensory proteins involved in host recognition in the stored-food mite Tyrophagus putrescentiae. PEST MANAGEMENT SCIENCE 2016; 72:1508-1516. [PMID: 26515037 DOI: 10.1002/ps.4178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/23/2015] [Accepted: 10/28/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Chemosensory proteins (CSPs) have been proposed to transport a range of aliphatic compounds, esters and other long-chain compounds. A large number of CSPs from different gene subfamilies have been identified and annotated in arthropods; however, the CSP genes in mites remain unknown. Tyrophagus putrescentiae Schrank is an important stored-product and house-dust pest. RESULTS By analysing the transcriptome, two putative CSPs were identified, namely TputCSP1 and TputCSP2 (14.9 kDa and 12.1 kDa respectively). The phylogenetic tree showed that the two TputCSPs shared most homology with CSPs in Ixodes scapularis and partially with Diptera, including Anopheles gambiae, Drosophila melanogaster, D. pseudoobscura, D. simulans, Delia antiqua and Culex quinquefasciatus. Additionally, they had similar secondary structure. The 3D models revealed that there are six α-helices enclosing the hydrophobic ligand binding pocket. Based on a docking study, we found that three ligands, (-)-alloaromadendrene, 2-methylnaphthalene and cyclopentadecane, had high binding affinities for TputCSP1. Moreover, the TputCSP2 protein had a higher inhibition constant with different affinities to all test ligands from host volatile substances. CONCLUSION The two CSPs have distinct physiological functions. TputCSP1 may mediate host recognition. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shao-Xuan Qu
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, China
| | - Lin Ma
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, China
| | - Hui-Ping Li
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, China
| | - Jin-Di Song
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
117
|
Wu Z, Zhang H, Bin S, Chen L, Han Q, Lin J. Antennal and Abdominal Transcriptomes Reveal Chemosensory Genes in the Asian Citrus Psyllid, Diaphorina citri. PLoS One 2016; 11:e0159372. [PMID: 27441376 PMCID: PMC4956155 DOI: 10.1371/journal.pone.0159372] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 07/03/2016] [Indexed: 11/19/2022] Open
Abstract
The Asian citrus psyllid, Diaphorina citri is the principal vector of the highly destructive citrus disease called Huanglongbing (HLB) or citrus greening, which is a major threat to citrus cultivation worldwide. More effective pest control strategies against this pest entail the identification of potential chemosensory proteins that could be used in the development of attractants or repellents. However, the molecular basis of olfaction in the Asian citrus psyllid is not completely understood. Therefore, we performed this study to analyze the antennal and abdominal transcriptome of the Asian citrus psyllid. We identified a large number of transcripts belonging to nine chemoreception-related gene families and compared their expression in male and female adult antennae and terminal abdomen. In total, 9 odorant binding proteins (OBPs), 12 chemosensory proteins (CSPs), 46 odorant receptors (ORs), 20 gustatory receptors (GRs), 35 ionotropic receptors (IRs), 4 sensory neuron membrane proteins (SNMPs) and 4 different gene families encoding odorant-degrading enzymes (ODEs): 80 cytochrome P450s (CYPs), 12 esterase (ESTs), and 5 aldehyde dehydrogenases (ADE) were annotated in the D. citri antennal and abdominal transcriptomes. Our results revealed that a large proportion of chemosensory genes exhibited no distinct differences in their expression patterns in the antennae and terminal abdominal tissues. Notably, RNA sequencing (RNA-seq) data and quantitative real time-PCR (qPCR) analyses showed that 4 DictOBPs, 4 DictCSPs, 4 DictIRs, 1 DictSNMP, and 2 DictCYPs were upregulated in the antennae relative to that in terminal abdominal tissues. Furthermore, 2 DictOBPs (DictOBP8 and DictOBP9), 2 DictCSPs (DictOBP8 and DictOBP12), 4 DictIRs (DictIR3, DictIR6, DictIR10, and DictIR35), and 1 DictCYP (DictCYP57) were expressed at higher levels in the male antennae than in the female antennae. Our study provides the first insights into the molecular basis of chemoreception in this insect pest. Further studies on the identified differentially expressed genes would facilitate the understanding of insect olfaction and their role in the interactions between olfactory system and biological processes.
Collapse
Affiliation(s)
- Zhongzhen Wu
- Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, Guangzhou, PR China
| | - He Zhang
- Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, Guangzhou, PR China
| | - Shuying Bin
- Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, Guangzhou, PR China
| | - Lei Chen
- Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, Guangzhou, PR China
| | - Qunxin Han
- Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, Guangzhou, PR China
| | - Jintian Lin
- Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, Guangzhou, PR China
| |
Collapse
|
118
|
Antennal transcriptome analysis of the Asian longhorned beetle Anoplophora glabripennis. Sci Rep 2016; 6:26652. [PMID: 27222053 PMCID: PMC4879564 DOI: 10.1038/srep26652] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 05/04/2016] [Indexed: 11/11/2022] Open
Abstract
Olfactory proteins form the basis of insect olfactory recognition, which is crucial for host identification, mating, and oviposition. Using transcriptome analysis of Anoplophora glabripennis antenna, we identified 42 odorant-binding proteins (OBPs), 12 chemosensory proteins (CSPs), 14 pheromone-degrading enzymes (PDEs), 1 odorant-degrading enzymes (ODE), 37 odorant receptors (ORs), 11 gustatory receptors (GRs), 2 sensory neuron membrane proteins (SNMPs), and 4 ionotropic receptor (IR). All CSPs and PBPs were expressed in antennae, confirming the authenticity of the transcriptome data. CSP expression profiles showed that AglaCSP3, AglaCSP6, and AglaCSP12 were expressed preferentially in maxillary palps and AglaCSP7 and AglaCSP9 were strongly expressed in antennae. The vast majority of CSPs were highly expressed in multiple chemosensory tissues, suggesting their participation in olfactory recognition in almost all olfactory tissues. Intriguingly, the PBP AglaPBP2 was preferentially expressed in antenna, indicating that it is the main protein involved in efficient and sensitive pheromone recognition. Phylogenetic analysis of olfactory proteins indicated AglaGR1 may detect CO2. This study establishes a foundation for determining the chemoreception molecular mechanisms of A. glabripennis, which would provide a new perspective for controlling pest populations, especially those of borers.
Collapse
|
119
|
Liu G, Ma H, Xie H, Xuan N, Guo X, Fan Z, Rajashekar B, Arnaud P, Offmann B, Picimbon JF. Biotype Characterization, Developmental Profiling, Insecticide Response and Binding Property of Bemisia tabaci Chemosensory Proteins: Role of CSP in Insect Defense. PLoS One 2016; 11:e0154706. [PMID: 27167733 PMCID: PMC4864240 DOI: 10.1371/journal.pone.0154706] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 04/18/2016] [Indexed: 02/03/2023] Open
Abstract
Chemosensory proteins (CSPs) are believed to play a key role in the chemosensory process in insects. Sequencing genomic DNA and RNA encoding CSP1, CSP2 and CSP3 in the sweet potato whitefly Bemisia tabaci showed strong variation between B and Q biotypes. Analyzing CSP-RNA levels showed not only biotype, but also age and developmental stage-specific expression. Interestingly, applying neonicotinoid thiamethoxam insecticide using twenty-five different dose/time treatments in B and Q young adults showed that Bemisia CSP1, CSP2 and CSP3 were also differentially regulated over insecticide exposure. In our study one of the adult-specific gene (CSP1) was shown to be significantly up-regulated by the insecticide in Q, the most highly resistant form of B. tabaci. Correlatively, competitive binding assays using tryptophan fluorescence spectroscopy and molecular docking demonstrated that CSP1 protein preferentially bound to linoleic acid, while CSP2 and CSP3 proteins rather associated to another completely different type of chemical, i.e. α-pentyl-cinnamaldehyde (jasminaldehyde). This might indicate that some CSPs in whiteflies are crucial to facilitate the transport of fatty acids thus regulating some metabolic pathways of the insect immune response, while some others are tuned to much more volatile chemicals known not only for their pleasant odor scent, but also for their potent toxic insecticide activity.
Collapse
Affiliation(s)
- Guoxia Liu
- Shandong Academy of Agricultural Sciences, Biotechnology Research Center, Jinan, China
| | - Hongmei Ma
- Shandong Academy of Agricultural Sciences, Biotechnology Research Center, Jinan, China
| | - Hongyan Xie
- Shandong Academy of Agricultural Sciences, Biotechnology Research Center, Jinan, China
| | - Ning Xuan
- Shandong Academy of Agricultural Sciences, Biotechnology Research Center, Jinan, China
| | - Xia Guo
- Shandong Academy of Agricultural Sciences, Biotechnology Research Center, Jinan, China
| | - Zhongxue Fan
- Shandong Academy of Agricultural Sciences, Biotechnology Research Center, Jinan, China
| | - Balaji Rajashekar
- University of Tartu, Institute of Computer Science, 2 Liivi, Tartu, Estonia
| | - Philippe Arnaud
- University of Nantes, Protein Engineering and Functionality Unit, UMR CNRS 6286, 2 La Houssinière, Nantes, France
| | - Bernard Offmann
- University of Nantes, Protein Engineering and Functionality Unit, UMR CNRS 6286, 2 La Houssinière, Nantes, France
| | | |
Collapse
|
120
|
Zhu J, Wang G, Pelosi P. Plant transcriptomes reveal hidden guests. Biochem Biophys Res Commun 2016; 474:497-502. [PMID: 27130825 DOI: 10.1016/j.bbrc.2016.04.134] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 11/26/2022]
Abstract
With the wide adoption of transcriptome sequencing an ever increasing amount of information is becoming available, together with spurious data originating from contamination. We show that sometimes errors and inaccuracy can turn beneficial, revealing insect and arthropod pests when analysing plant transcriptomes. We have found a large number of soluble olfactory proteins, odorant-binding proteins (OBPs) and chemosensory proteins (CSPs), in plant databases, likely due to contamination by guest insects. In fact, both classes of proteins are only expressed in insects, with few CSPs also present in other arthropods. In addition, we found many sequences of the Niemann-Pick (Npc2) family, proteins dedicated to cholesterol transport in vertebrates and hypothesised to be involved in chemical communication in insects, but absent in plants. In several cases we were able to trace down members of the three classes of proteins to the insect or arthopod species responsible for contamination. Our work suggests that genes found in plants and recognised as contaminants can be turned into useful information to investigate plant-insect relationships or to identify new sequences from insects species not yet investigated.
Collapse
Affiliation(s)
- Jiao Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Paolo Pelosi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
121
|
Derby CD, Kozma MT, Senatore A, Schmidt M. Molecular Mechanisms of Reception and Perireception in Crustacean Chemoreception: A Comparative Review. Chem Senses 2016; 41:381-98. [PMID: 27107425 DOI: 10.1093/chemse/bjw057] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
This review summarizes our present knowledge of chemoreceptor proteins in crustaceans, using a comparative perspective to review these molecules in crustaceans relative to other metazoan models of chemoreception including mammals, insects, nematodes, and molluscs. Evolution has resulted in unique expansions of specific gene families and repurposing of them for chemosensation in various clades, including crustaceans. A major class of chemoreceptor proteins across crustaceans is the Ionotropic Receptors, which diversified from ionotropic glutamate receptors in ancient protostomes but which are not present in deuterostomes. Representatives of another major class of chemoreceptor proteins-the Grl/GR/OR family of ionotropic 7-transmembrane receptors-are diversified in insects but to date have been reported in only one crustacean species, Daphnia pulex So far, canonic 7-transmembrane G-protein coupled receptors, the principal chemoreceptors in vertebrates and reported in a few protostome clades, have not been identified in crustaceans. More types of chemoreceptors are known throughout the metazoans and might well be expected to be discovered in crustaceans. Our review also provides a comparative coverage of perireceptor events in crustacean chemoreception, including molecules involved in stimulus acquisition, stimulus delivery, and stimulus removal, though much less is known about these events in crustaceans, particularly at the molecular level.
Collapse
Affiliation(s)
| | | | - Adriano Senatore
- Present address: Biology Department, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | | |
Collapse
|
122
|
Chemosensory proteins of the eastern honeybee, Apis cerana: Identification, tissue distribution and olfactory related functional characterization. Comp Biochem Physiol B Biochem Mol Biol 2016; 194-195:11-9. [DOI: 10.1016/j.cbpb.2015.11.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 10/20/2015] [Accepted: 11/05/2015] [Indexed: 11/18/2022]
|
123
|
Zhang R, Gao G, Chen H. Silencing of the olfactory co-receptor gene in Dendroctonus armandi leads to EAG response declining to major host volatiles. Sci Rep 2016; 6:23136. [PMID: 26979566 PMCID: PMC4793246 DOI: 10.1038/srep23136] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/29/2016] [Indexed: 11/09/2022] Open
Abstract
In this study, a polymerase chain reaction (PCR) based on homology genes of Orco was utilized to identify DarmOrco, which is essential for olfaction in D. armandi. The results showed that DarmOrco shares significant sequence homology with Orco proteins had known in other insects. Quantitative real-time PCR (qRT-PCR) analysis suggested that DarmOrco was abundantly expressed in adult D. armandi; by contrast, DarmOrco showed trace amounts of expression level in other stages. Of different tissues, DarmOrco expression level was the highest in the antennae. In order to understand the functional significance of Orco, we injected siRNA of DarmOrco into the conjunctivum between the second and third abdominal segments, and evaluated its expression after siRNA injected for 24 h, 48 h and 72 h. The results of qRT-PCR demonstrated that the reduction of mRNA expression level was significant (~80%) in DarmOrco siRNA-treated D. armandi than in water-injected and non-injected controls. The electroantennogram responses of females and males to 11 major volatiles of its host, were also reduced (30~68% for females; 16~70% for males) in siRNA-treated D. armandi compared with the controls. These results suggest that DarmOrco is crucial in mediating odorant perception.
Collapse
Affiliation(s)
- Ranran Zhang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guanqun Gao
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hui Chen
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
124
|
Cui HH, Gu SH, Zhu XQ, Wei Y, Liu HW, Khalid HD, Guo YY, Zhang YJ. Odorant-binding and chemosensory proteins identified in the antennal transcriptome of Adelphocoris suturalis Jakovlev. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 24:139-145. [PMID: 27085212 DOI: 10.1016/j.cbd.2016.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 03/04/2016] [Accepted: 03/06/2016] [Indexed: 10/22/2022]
Abstract
Adelphocoris suturalis Jakovlev (Hemiptera: Miridae) is an insect pest that causes severe agricultural damage to cotton and many other important crops. In insects, olfaction is very important throughout their lifetime. There are two groups of small soluble proteins, named odorant binding proteins (OBPs) and chemosensory proteins (CSPs), which are suggested to participate in the initial biochemical recognition steps of insect olfactory signal transduction. In this study, a total of 16 OBPs (12 classical OBPs and 4 plus-C OBPs) and 8 CSPs, were identified in the antennal transcriptome of A. suturalis. The sex- and tissue-specific profiles of these binding protein genes showed that 13 of the 16 OBP transcripts were highly expressed in the antennae of both sexes, and 4 OBPs (AsutOBP1, 4, 5 and 9) were expressed higher in the male antennae compared to the female antennae. Three CSPs (AsutCSP1, 4 and 5) were expressed specifically in the antennae of both sexes, and AsutCSP1 was expressed higher in the male antennae than in the female antennae. Our findings identify several novel OBP and CSP genes for further investigation of the olfactory system of A. suturalis at the molecular level.
Collapse
Affiliation(s)
- Huan-Huan Cui
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shao-Hua Gu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiao-Qiang Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yu Wei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hang-Wei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hussain Dhiloo Khalid
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Department of Entomology, Faculty of Crop Protection, Sindh Agriculture University Tandojam, Pakistan
| | - Yu-Yuan Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
125
|
Franco TA, Oliveira DS, Moreira MF, Leal WS, Melo ACA. Silencing the odorant receptor co-receptor RproOrco affects the physiology and behavior of the Chagas disease vector Rhodnius prolixus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 69:82-90. [PMID: 25747010 DOI: 10.1016/j.ibmb.2015.02.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 02/09/2015] [Accepted: 02/21/2015] [Indexed: 06/04/2023]
Abstract
Olfaction is one of the main sensory modalities that allow insects to interpret their environment. Several proteins, including odorant-binding proteins (OBPs) and odorant receptors (ORs), are involved in this process. Odorant receptors are ion channels formed by a binding unit OR and an odorant receptor co-receptor (Orco). The main goal of this study was to characterize the Orco gene of Rhodnius prolixus (RproOrco) and to infer its biological functions using gene silencing. The full-length RproOrco gene sequence was downloaded from VectorBase. This gene has 7 introns and is located in the genome SuperContig GL563069: 1,017,713-1,023,165. RproOrco encodes a protein of 473 amino acids, with predicted 7 transmembrane domains, and is highly expressed in the antennae during all R. prolixus developmental stages. The RNAi technique effectively silenced RproOrco, reducing the gene's expression by approximately 73%. Interestingly, the effect of gene silencing persisted for more than 100 days, indicating a prolonged effect of dsRNA that was maintained even after molting. The phenotypic effects of silencing involved the following: (1) loss of the ability to find a vertebrate host in a timely manner, (2) decreased ingested blood volume, (3) delayed and decreased molt rate, (4) increased mortality rate, and (5) decreased egg laying. Our data strongly suggest that dsOrco disrupts R. prolixus host-finding behavior, which is further reflected in the blood ingestion, molting, mortality, and egg laying data. This study clearly demonstrates that Orco is an excellent target for controlling triatomine populations. Thus, the data presented here open new possibilities for the control of vector-borne diseases.
Collapse
Affiliation(s)
- Thiago A Franco
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909, Rio de Janeiro, RJ, Brazil
| | - Daniele S Oliveira
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909, Rio de Janeiro, RJ, Brazil
| | - Monica F Moreira
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Walter S Leal
- Department of Molecular and Cellular Biology, University of California, 95616, Davis, CA, USA
| | - Ana C A Melo
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909, Rio de Janeiro, RJ, Brazil; Department of Molecular and Cellular Biology, University of California, 95616, Davis, CA, USA; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
126
|
Li H, Yang Y, Xu G, Wu D, Lv W, Jiang Q, Zhao Y. Cloning, expression and localization of DacaCSP2 and DacaCSP3 during different reproductive stages in Daphnia carinata. Gene 2016; 582:59-68. [PMID: 26828612 DOI: 10.1016/j.gene.2016.01.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/22/2015] [Accepted: 01/28/2016] [Indexed: 11/19/2022]
Abstract
Daphnia carinata are unique freshwater crustaceans that undergo both sexual and asexual reproduction, depending on environmental factors. While the molecular mechanism behind the reproductive transformation has been unknown, chemosensory proteins (CSPs) may be involved. We have cloned the cDNA sequences of two CSP genes from D. carinata using primers based on homologous sequences and rapid amplification of cDNA ends (RACE). The full-length cDNA of DacaCSP2 (GenBank accession no: KM624608) was 632 bp, with an ORF (open reading frame) of 330 bp encoding a 12.02 kDa protein; and the full-length cDNA of DacaCSP3 (GenBank accession no: KM624609) was 935 bp, with an ORF of 342 bp encoding a 12.78kDa protein. Both CSPs encoded an N-terminal signal peptide, four conserved cysteines, an OS-D superfamily domain, a 2Fe-2S ferredoxin domain, an anaphylatoxin domain and an EGF-like domain. DaCaCSP2 and DaCaCSP3 proteins were most closely related to CSPs from Daphnia pulex and were more distantly related to CSPs from other insects. Using quantitative PCR, we found expression levels of DaCaCSP2 and DaCaCSP3 mRNA were highest in sexual females, followed by parthenogenetic females, and lowest in males. The expression levels of DaCaCSP2 and DaCaCSP3 mRNA also increased at lower temperatures, which suggested they could respond to environmental cues. Whole mount in situ hybridization (ISH) showed that DaCaCSP2 and DaCaCSP3 were expressed mainly in the ovaries, summer eggs, thoracic limbs, rectum and second antennae in sexual females; while they were expressed mainly in the ovaries, thoracic limbs, rectum and second antennae in parthenogenetic females. Together, these results suggest that DacaCSP2 and DacaCSP3 may respond to environmental cues and control the reproductive switch from sexual to asexual reproduction in D. carinata.
Collapse
Affiliation(s)
- Haixia Li
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Yang Yang
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Guorong Xu
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Donglei Wu
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Weiwei Lv
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Qicheng Jiang
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
127
|
Brutscher LM, Flenniken ML. RNAi and Antiviral Defense in the Honey Bee. J Immunol Res 2015; 2015:941897. [PMID: 26798663 PMCID: PMC4698999 DOI: 10.1155/2015/941897] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 11/25/2015] [Accepted: 11/29/2015] [Indexed: 01/08/2023] Open
Abstract
Honey bees play an important agricultural and ecological role as pollinators of numerous agricultural crops and other plant species. Therefore, investigating the factors associated with high annual losses of honey bee colonies in the US is an important and active area of research. Pathogen incidence and abundance correlate with Colony Collapse Disorder- (CCD-) affected colonies in the US and colony losses in the US and in some European countries. Honey bees are readily infected by single-stranded positive sense RNA viruses. Largely dependent on the host immune response, virus infections can either remain asymptomatic or result in deformities, paralysis, or death of adults or larvae. RNA interference (RNAi) is an important antiviral defense mechanism in insects, including honey bees. Herein, we review the role of RNAi in honey bee antiviral defense and highlight some parallels between insect and mammalian immune systems. A more thorough understanding of the role of pathogens on honey bee health and the immune mechanisms bees utilize to combat infectious agents may lead to the development of strategies that enhance honey bee health and result in the discovery of additional mechanisms of immunity in metazoans.
Collapse
Affiliation(s)
- Laura M. Brutscher
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717-3150, USA
- Institute on Ecosystems, Montana State University, Bozeman, MT 59717-3490, USA
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717-3460, USA
| | - Michelle L. Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717-3150, USA
- Institute on Ecosystems, Montana State University, Bozeman, MT 59717-3490, USA
| |
Collapse
|
128
|
Li G, Du J, Li Y, Wu J. Identification of Putative Olfactory Genes from the Oriental Fruit Moth Grapholita molesta via an Antennal Transcriptome Analysis. PLoS One 2015; 10:e0142193. [PMID: 26540284 PMCID: PMC4635014 DOI: 10.1371/journal.pone.0142193] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 10/19/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The oriental fruit moth, Grapholita molesta, is an extremely important oligophagous pest species of stone and pome fruits throughout the world. As a host-switching species, adult moths, especially females, depend on olfactory cues to a large extent in locating host plants, finding mates, and selecting oviposition sites. The identification of olfactory genes can facilitate investigation on mechanisms for chemical communications. METHODOLOGY/PRINCIPAL FINDING We generated transcriptome of female antennae of G.molesta using the next-generation sequencing technique, and assembled transcripts from RNA-seq reads using Trinity, SOAPdenovo-trans and Abyss-trans assemblers. We identified 124 putative olfactory genes. Among the identified olfactory genes, 118 were novel to this species, including 28 transcripts encoding for odorant binding proteins, 17 chemosensory proteins, 48 odorant receptors, four gustatory receptors, 24 ionotropic receptors, two sensory neuron membrane proteins, and one odor degrading enzyme. The identified genes were further confirmed through semi-quantitative reverse transcription PCR for transcripts coding for 26 OBPs and 17 CSPs. OBP transcripts showed an obvious antenna bias, whereas CSP transcripts were detected in different tissues. CONCLUSION Antennal transcriptome data derived from the oriental fruit moth constituted an abundant molecular resource for the identification of genes potentially involved in the olfaction process of the species. This study provides a foundation for future research on the molecules involved in olfactory recognition of this insect pest, and in particular, the feasibility of using semiochemicals to control this pest.
Collapse
Affiliation(s)
- Guangwei Li
- Key Laboratory of Plant Protection Resources and Pest Management (Northwest A&F University), Ministry of Education, Yangling, Shaanxi, People’s Republic of China
- Key Laboratory of Applied Entomology, Northwest A&F University, Yangling, Shaanxi, People’s Republic of China
| | - Juan Du
- Key Laboratory of Plant Protection Resources and Pest Management (Northwest A&F University), Ministry of Education, Yangling, Shaanxi, People’s Republic of China
- Key Laboratory of Applied Entomology, Northwest A&F University, Yangling, Shaanxi, People’s Republic of China
| | - Yiping Li
- Key Laboratory of Plant Protection Resources and Pest Management (Northwest A&F University), Ministry of Education, Yangling, Shaanxi, People’s Republic of China
- Key Laboratory of Applied Entomology, Northwest A&F University, Yangling, Shaanxi, People’s Republic of China
| | - Junxiang Wu
- Key Laboratory of Plant Protection Resources and Pest Management (Northwest A&F University), Ministry of Education, Yangling, Shaanxi, People’s Republic of China
- Key Laboratory of Applied Entomology, Northwest A&F University, Yangling, Shaanxi, People’s Republic of China
| |
Collapse
|
129
|
Sequence variation of Bemisia tabaci Chemosensory Protein 2 in cryptic species B and Q: New DNA markers for whitefly recognition. Gene 2015; 576:284-91. [PMID: 26481237 DOI: 10.1016/j.gene.2015.10.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/08/2015] [Accepted: 10/13/2015] [Indexed: 12/22/2022]
Abstract
Bemisia tabaci Gennadius biotypes B and Q are two of the most important worldwide agricultural insect pests. Genomic sequences of Type-2 B. tabaci chemosensory protein (BtabCSP2) were cloned and sequenced in B and Q biotypes, revealing key biotype-specific variations in the intron sequence. A Q260 sequence was found specifically in Q-BtabCSP2 and Cucumis melo LN692399, suggesting ancestral horizontal transfer of gene between the insect and the plant through bacteria. A cleaved amplified polymorphic sequences (CAPS) method was then developed to differentiate B and Q based on the sequence variation in exon of BtabCSP2 gene. The performances of CSP2-based CAPS for whitefly recognition were assessed using B. tabaci field collections from Shandong Province (P.R. China). Our SacII based CAPS method led to the same result compared to mitochondrial cytochrome oxidase-based CAPS method in the field collections. We therefore propose an explanation for CSP origin and a new rapid simple molecular method based on genomic DNA and chemosensory gene to differentiate accurately the B and Q whiteflies of the Bemisia complex around the world.
Collapse
|
130
|
Missbach C, Vogel H, Hansson BS, Groβe-Wilde E. Identification of Odorant Binding Proteins and Chemosensory Proteins in Antennal Transcriptomes of the Jumping BristletailLepismachilis y-signataand the FirebratThermobia domestica:Evidence for an Independent OBP–OR Origin. Chem Senses 2015; 40:615-26. [DOI: 10.1093/chemse/bjv050] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
131
|
Hojo MK, Ishii K, Sakura M, Yamaguchi K, Shigenobu S, Ozaki M. Antennal RNA-sequencing analysis reveals evolutionary aspects of chemosensory proteins in the carpenter ant, Camponotus japonicus. Sci Rep 2015; 5:13541. [PMID: 26310137 PMCID: PMC4550911 DOI: 10.1038/srep13541] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/30/2015] [Indexed: 11/17/2022] Open
Abstract
Chemical communication is essential for the coordination of complex organisation in ant societies. Recent comparative genomic approaches have revealed that chemosensory genes are diversified in ant lineages, and suggest that this diversification is crucial for social organisation. However, how such diversified genes shape the peripheral chemosensory systems remains unknown. In this study, we annotated and analysed the gene expression profiles of chemosensory proteins (CSPs), which transport lipophilic compounds toward chemosensory receptors in the carpenter ant, Camponotus japonicus. Transcriptome analysis revealed 12 CSP genes and phylogenetic analysis showed that 3 of these are lineage-specifically expanded in the clade of ants. RNA sequencing and real-time quantitative polymerase chain reaction revealed that, among the ant specific CSP genes, two of them (CjapCSP12 and CjapCSP13) were specifically expressed in the chemosensory organs and differentially expressed amongst ant castes. Furthermore, CjapCSP12 and CjapCSP13 had a ratio of divergence at non-synonymous and synonymous sites (dN/dS) greater than 1, and they were co-expressed with CjapCSP1, which is known to bind cuticular hydrocarbons. Our results suggested that CjapCSP12 and CjapCSP13 were functionally differentiated for ant-specific chemosensory events, and that CjapCSP1, CjapCSP12, and CjapCSP13 work cooperatively in the antennal chemosensilla of worker ants.
Collapse
Affiliation(s)
- Masaru K Hojo
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Kenichi Ishii
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Midori Sakura
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Katsushi Yamaguchi
- NIBB Core Research Facilities, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
| | - Shuji Shigenobu
- NIBB Core Research Facilities, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies, Okazaki, Japan
| | - Mamiko Ozaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| |
Collapse
|
132
|
Fang Y, Feng M, Han B, Qi Y, Hu H, Fan P, Huo X, Meng L, Li J. Proteome Analysis Unravels Mechanism Underling the Embryogenesis of the Honeybee Drone and Its Divergence with the Worker (Apis mellifera lingustica). J Proteome Res 2015; 14:4059-71. [PMID: 26260241 DOI: 10.1021/acs.jproteome.5b00625] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The worker and drone bees each contain a separate diploid and haploid genetic makeup, respectively. Mechanisms regulating the embryogenesis of the drone and its mechanistic difference with the worker are still poorly understood. The proteomes of the two embryos at three time-points throughout development were analyzed by applying mass spectrometry-based proteomics. We identified 2788 and 2840 proteins in the worker and drone embryos, respectively. The age-dependent proteome driving the drone embryogenesis generally follows the worker's. The two embryos however evolve a distinct proteome setting to prime their respective embryogenesis. The strongly expressed proteins and pathways related to transcriptional-translational machinery and morphogenesis at 24 h drone embryo relative to the worker, illustrating the earlier occurrence of morphogenesis in the drone than worker. These morphogenesis differences remain through to the middle-late stage in the two embryos. The two embryos employ distinct antioxidant mechanisms coinciding with the temporal-difference organogenesis. The drone embryo's strongly expressed cytoskeletal proteins signify key roles to match its large body size. The RNAi induced knockdown of the ribosomal protein offers evidence for the functional investigation of gene regulating of honeybee embryogenesis. The data significantly expand novel regulatory mechanisms governing the embryogenesis, which is potentially important for honeybee and other insects.
Collapse
Affiliation(s)
- Yu Fang
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing, 100093, China
| | - Mao Feng
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing, 100093, China
| | - Bin Han
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing, 100093, China
| | - Yuping Qi
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing, 100093, China
| | - Han Hu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing, 100093, China
| | - Pei Fan
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing, 100093, China
| | - Xinmei Huo
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing, 100093, China
| | - Lifeng Meng
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing, 100093, China
| | - Jianke Li
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing, 100093, China
| |
Collapse
|
133
|
Antony B, Soffan A, Jakše J, Alfaifi S, Sutanto KD, Aldosari SA, Aldawood AS, Pain A. Genes involved in sex pheromone biosynthesis of Ephestia cautella, an important food storage pest, are determined by transcriptome sequencing. BMC Genomics 2015; 16:532. [PMID: 26187652 PMCID: PMC4506583 DOI: 10.1186/s12864-015-1710-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 06/22/2015] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Insects use pheromones, chemical signals that underlie all animal behaviors, for communication and for attracting mates. Synthetic pheromones are widely used in pest control strategies because they are environmentally safe. The production of insect pheromones in transgenic plants, which could be more economical and effective in producing isomerically pure compounds, has recently been successfully demonstrated. This research requires information regarding the pheromone biosynthetic pathways and the characterization of pheromone biosynthetic enzymes (PBEs). We used Illumina sequencing to characterize the pheromone gland (PG) transcriptome of the Pyralid moth, Ephestia cautella, a destructive storage pest, to reveal putative candidate genes involved in pheromone biosynthesis, release, transport and degradation. RESULTS We isolated the E. cautella pheromone compound as (Z,E)-9,12-tetradecadienyl acetate, and the major pheromone precursors 16:acyl, 14:acyl, E14-16:acyl, E12-14:acyl and Z9,E12-14:acyl. Based on the abundance of precursors, two possible pheromone biosynthetic pathways are proposed. Both pathways initiate from C16:acyl-CoA, with one involving ∆14 and ∆9 desaturation to generate Z9,E12-14:acyl, and the other involving the chain shortening of C16:acyl-CoA to C14:acyl-CoA, followed by ∆12 and ∆9 desaturation to generate Z9,E12-14:acyl-CoA. Then, a final reduction and acetylation generates Z9,E12-14:OAc. Illumina sequencing yielded 83,792 transcripts, and we obtained a PG transcriptome of ~49.5 Mb. A total of 191 PBE transcripts, which included pheromone biosynthesis activating neuropeptides, fatty acid transport proteins, acetyl-CoA carboxylases, fatty acid synthases, desaturases, β-oxidation enzymes, fatty acyl-CoA reductases (FARs) and fatty acetyltransferases (FATs), were selected from the dataset. A comparison of the E. cautella transcriptome data with three other Lepidoptera PG datasets revealed that 45% of the sequences were shared. Phylogenetic trees were constructed for desaturases, FARs and FATs, and transcripts that clustered with the ∆14, ∆12 and ∆9 desaturases, PG-specific FARs and potential candidate FATs, respectively, were identified. Transcripts encoding putative pheromone degrading enzymes, and candidate pheromone carrier and receptor proteins expressed in the E. cautella PG, were also identified. CONCLUSIONS Our study provides important background information on the enzymes involved in pheromone biosynthesis. This information will be useful for the in vitro production of E. cautella sex pheromones and may provide potential targets for disrupting the pheromone-based communication system of E. cautella to prevent infestations.
Collapse
Affiliation(s)
- Binu Antony
- Department of Plant Protection, King Saud University, Chair of Date Palm Research, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia.
| | - Alan Soffan
- Department of Plant Protection, King Saud University, Chair of Date Palm Research, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia.
- Department of Plant Protection, King Saud University, EERU, Riyadh, Saudi Arabia.
| | - Jernej Jakše
- Agronomy Department, University of Ljubljana, Biotechnical Faculty, SI-1000, Ljubljana, Slovenia.
| | - Sulieman Alfaifi
- Department of Plant Protection, King Saud University, Chair of Date Palm Research, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia.
| | - Koko D Sutanto
- Department of Plant Protection, King Saud University, Chair of Date Palm Research, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia.
| | - Saleh A Aldosari
- Department of Plant Protection, King Saud University, Chair of Date Palm Research, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia.
| | | | - Arnab Pain
- BASE Division, KAUST, Thuwal, Jeddah, 23955-6900, Saudi Arabia.
| |
Collapse
|
134
|
Liu NY, Zhang T, Ye ZF, Li F, Dong SL. Identification and Characterization of Candidate Chemosensory Gene Families from Spodoptera exigua Developmental Transcriptomes. Int J Biol Sci 2015. [PMID: 26221071 PMCID: PMC4515815 DOI: 10.7150/ijbs.12020] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Insect chemosensory genes have been considered as potential molecular targets to develop alternative strategies for pest control. However, in Spodoptera exigua, a seriously polyphagous agricultural pest, only a small part of such genes have been identified and characterized to date. Here, using a bioinformatics screen a total of 79 chemosensory genes were identified from a public transcriptomic data of different developmental stages (eggs, 1st to 5th instar larvae, pupae, female and male adults), including 34 odorant binding proteins (OBPs), 20 chemosensory proteins (CSPs), 22 chemosensory receptors (10 odorant receptors (ORs), six gustatory receptors (GRs) and six ionotropic receptors (IRs)) and three sensory neuron membrane proteins (SNMPs). Notably, a new group of lepidopteran SNMPs (SNMP3 group) was found for the first time in S. exigua, and confirmed in four other moth species. Further, reverse transcription PCR (RT-PCR) and quantitative real time PCR (qPCR) were employed respectively to validate the sequences and determine the expression patterns of 69 identified chemosensory genes regarding to sexes, tissues and stages. Results showed that 67 of these genes could be detected and reconstructed in at least one tissue tested. Further, 60 chemosensory genes were expressed in adult antennae and 52 in larval heads with the antennae, whereas over half of the genes were also detected in non-olfactory tissues like egg and thorax. Particularly, S. exigua OBP2 showed a predominantly larval head-biased expression, and functional studies further indicated its potentially olfactory roles in guiding food searching of larvae. This work suggests functional diversities of S. exigua chemosensory genes and could greatly facilitate the understanding of olfactory system in S. exigua and other lepidopteran species.
Collapse
Affiliation(s)
- Nai-Yong Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China /Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China
| | - Ting Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China /Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China
| | - Zhan-Feng Ye
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China /Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China
| | - Fei Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China /Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China
| | - Shuang-Lin Dong
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China /Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China
| |
Collapse
|
135
|
Discovery of Chemosensory Genes in the Oriental Fruit Fly, Bactrocera dorsalis. PLoS One 2015; 10:e0129794. [PMID: 26070069 PMCID: PMC4466378 DOI: 10.1371/journal.pone.0129794] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 05/13/2015] [Indexed: 12/31/2022] Open
Abstract
The oriental fruit fly, Bactrocera dorsalis, is a devastating fruit fly pest in tropical and sub-tropical countries. Like other insects, this fly uses its chemosensory system to efficiently interact with its environment. However, our understanding of the molecular components comprising B. dorsalis chemosensory system is limited. Using next generation sequencing technologies, we sequenced the transcriptome of four B. dorsalis developmental stages: egg, larva, pupa and adult chemosensory tissues. A total of 31 candidate odorant binding proteins (OBPs), 4 candidate chemosensory proteins (CSPs), 23 candidate odorant receptors (ORs), 11 candidate ionotropic receptors (IRs), 6 candidate gustatory receptors (GRs) and 3 candidate sensory neuron membrane proteins (SNMPs) were identified. The tissue distributions of the OBP and CSP transcripts were determined by RT-PCR and a subset of nine genes were further characterized. The predicted proteins from these genes shared high sequence similarity to Drosophila melanogaster pheromone binding protein related proteins (PBPRPs). Interestingly, one OBP (BdorOBP19c) was exclusively expressed in the sex pheromone glands of mature females. RT-PCR was also used to compare the expression of the candidate genes in the antennae of male and female B. dorsalis adults. These antennae-enriched OBPs, CSPs, ORs, IRs and SNMPs could play a role in the detection of pheromones and general odorants and thus could be useful target genes for the integrated pest management of B. dorsalis and other agricultural pests.
Collapse
|
136
|
Li ZQ, Zhang S, Luo JY, Wang SB, Wang CY, Lv LM, Dong SL, Cui JJ. Identification and expression pattern of candidate olfactory genes in Chrysoperla sinica by antennal transcriptome analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2015; 15:28-38. [PMID: 26072463 DOI: 10.1016/j.cbd.2015.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/15/2015] [Accepted: 05/27/2015] [Indexed: 11/28/2022]
Abstract
Chrysoperla sinica is one of the most prominent natural enemies of many agricultural pests. Host seeking in insects is strongly mediated by olfaction. Understanding the sophisticated olfactory system of insect antennae is crucial for studying the physiological bases of olfaction and could also help enhance the effectiveness of C. sinica in biological control. Obtaining olfactory genes is a research priority for investigating the olfactory system in this species. However, no olfaction sequence information is available for C. sinica. Consequently, we sequenced female- and male-antennae transcriptome of C. sinica. Many candidate chemosensory genes were identified, including 12 odorant-binding proteins (OBPs), 19 chemosensory proteins (CSPs), 37 odorant receptors (ORs), and 64 ionotropic receptors from C. sinica. The expression patterns of 12 OBPs, 19 CSPs and 37 ORs were determined by RT-PCR, and demonstrated antennae-dominantly expression of most OBP and OR genes. Our finding provided large scale genes for further investigation on the olfactory system of C. sinica at the molecular level.
Collapse
Affiliation(s)
- Zhao-Qun Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China; Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Jun-Yu Luo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Si-Bao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China; Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Chun-Yi Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Li-Min Lv
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Shuang-Lin Dong
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jin-Jie Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China.
| |
Collapse
|
137
|
Li ZQ, Zhang S, Luo JY, Zhu J, Cui JJ, Dong SL. Expression Analysis and Binding Assays in the Chemosensory Protein Gene Family Indicate Multiple Roles in Helicoverpa armigera. J Chem Ecol 2015; 41:473-85. [PMID: 25893790 DOI: 10.1007/s10886-015-0574-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 02/04/2015] [Accepted: 03/06/2015] [Indexed: 11/29/2022]
Abstract
Chemosensory proteins (CSPs) have been proposed to capture and transport hydrophobic chemicals to receptors on sensory neurons. We identified and cloned 24 CSP genes to better understand the physiological function of CSPs in Helicoverpa armigera. Quantitative real-time polymerase chain reaction assays indicate that CSP genes are ubiquitously expressed in adult H. armigera tissues. Broad expression patterns in adult tissues suggest that CSPs are involved in a diverse range of cellular processes, including chemosensation as well as other functions not related to chemosensation. The H. armigera CSPs that were highly transcribed in sensory organs or pheromone glands (HarmCSPs 6, 9, 18, 19), were recombinantly expressed in bacteria to explore their function. Fluorescent competitive binding assays were used to measure the binding affinities of these CSPs against 85 plant volatiles and 4 pheromone components. HarmCSP6 displays high binding affinity for pheromone components, whereas the other three proteins do not show affinities for any of the compounds tested. HarmCSP6 is expressed in numerous cells located in or close to long sensilla trichodea on the antennae of both males and females. These results suggest that HarmCSP6 may be involved in transporting female sex pheromones in H. armigera.
Collapse
Affiliation(s)
- Zhao-Qun Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | | | | | | | | | | |
Collapse
|
138
|
Chemosensory gene families in adult antennae of Anomala corpulenta Motschulsky (Coleoptera: Scarabaeidae: Rutelinae). PLoS One 2015; 10:e0121504. [PMID: 25856077 PMCID: PMC4391716 DOI: 10.1371/journal.pone.0121504] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 01/20/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The metallic green beetle, Anomala corpulenta (Coleoptera: Scarabaeidae: Rutelinae), is a destructive pest in agriculture and horticulture throughout Asia, including China. Olfaction plays a crucial role in the survival and reproduction of A. corpulenta. As a non-model species, A. corpulenta is poorly understood, and information regarding the molecular mechanisms underlying olfaction in A. corpulenta and other scarab species is scant. METHODOLOGY/PRINCIPLE FINDINGS We assembled separate antennal transcriptome for male and female A. corpulenta using Illumina sequencing technology. The relative abundance of transcripts with gene ontology annotations, including those related to olfaction in males and females was highly similar. Transcripts encoding 15 putative odorant binding proteins, five chemosensory proteins, one sensory neuron membrane protein, 43 odorant receptors, eight gustatory receptors, and five ionotropic receptors were identified. The sequences of all of these chemosensory-related transcripts were confirmed using reverse transcription polymerase chain reaction (RT-PCR), and direct DNA sequencing. The expression patterns of 54 putative chemosensory genes were analyzed using quantitative real time RT-PCR (qRT-PCR). Antenna-specific expression was detected for many of these genes, suggesting that they may have important functions in semiochemical detection. CONCLUSIONS The identification of a large number of chemosensory proteins provides a major resource for the study of the molecular mechanism of odorant detection in A. corpulenta and its chemical ecology. The genes identified, especially those that were expressed at high levels in the antennae may represent novel molecular targets for the development of population control strategies based on the manipulation of chemoreception-driven behaviors.
Collapse
|
139
|
Xuan N, Guo X, Xie HY, Lou QN, Lu XB, Liu GX, Picimbon JF. Increased expression of CSP and CYP genes in adult silkworm females exposed to avermectins. INSECT SCIENCE 2015; 22:203-219. [PMID: 24677614 DOI: 10.1111/1744-7917.12116] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/30/2013] [Indexed: 06/03/2023]
Abstract
We analyzed 20 chemosensory protein (CSP) genes of the silkworm Bombyx mori. We found a high number of retrotransposons inserted in introns. We then analyzed expression of the 20 BmorCSP genes across tissues using quantitative real-time polymerase chain reaction (PCR). Relatively low expression levels of BmorCSPs were found in the gut and fat body tissues. We thus tested the effects of endectocyte insecticide abamectin (B1a and B1b avermectins) on BmorCSP gene expression. Quantitative real-time PCR experiments showed that a single brief exposure to insecticide abamectin increased dramatically CSP expression not only in the antennae but in most tissues, including gut and fat body. Furthermore, our study showed coordinate expression of CSPs and metabolic cytochrome P450 enzymes in a tissue-dependent manner in response to the insecticide. The function of CSPs remains unknown. Based on our results, we suggest a role in detecting xenobiotics that are then detoxified by cytochrome P450 anti-xenobiotic enzymes.
Collapse
Affiliation(s)
- Ning Xuan
- Biotechnology Research Center, Shandong Provincial Key Laboratory for Genetic Improvement Cultivation, Ecology and Physiology of Crops, Shandong Academy of Agricultural Sciences, Jinan
| | | | | | | | | | | | | |
Collapse
|
140
|
Wojciechowski M, Rafalski D, Kucharski R, Misztal K, Maleszka J, Bochtler M, Maleszka R. Insights into DNA hydroxymethylation in the honeybee from in-depth analyses of TET dioxygenase. Open Biol 2015; 4:rsob.140110. [PMID: 25100549 PMCID: PMC4150289 DOI: 10.1098/rsob.140110] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In mammals, a family of TET enzymes producing oxidized forms of 5-methylcytosine (5mC) plays an important role in modulating DNA demethylation dynamics. In contrast, nothing is known about the function of a single TET orthologue present in invertebrates. Here, we show that the honeybee TET (AmTET) catalytic domain has dioxygenase activity and converts 5mC to 5-hydroxymethylcytosine (5hmC) in a HEK293T cell assay. In vivo, the levels of 5hmC are condition-dependent and relatively low, but in testes and ovaries 5hmC is present at approximately 7–10% of the total level of 5mC, which is comparable to that reported for certain mammalian cells types. AmTET is alternatively spliced and highly expressed throughout development and in adult tissues with the highest expression found in adult brains. Our findings reveal an additional level of flexible genomic modifications in the honeybee that may be important for the selection of multiple pathways controlling contrasting phenotypic outcomes in this species. In a broader context, our study extends the current, mammalian-centred attention to TET-driven DNA hydroxymethylation to an easily manageable organism with attractive and unique biology.
Collapse
Affiliation(s)
- Marek Wojciechowski
- Laboratory of Structural Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Dominik Rafalski
- Laboratory of Structural Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Robert Kucharski
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Katarzyna Misztal
- Laboratory of Structural Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Joanna Maleszka
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Matthias Bochtler
- Laboratory of Structural Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Ryszard Maleszka
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| |
Collapse
|
141
|
Si-CSP9 regulates the integument and moulting process of larvae in the red imported fire ant, Solenopsis invicta. Sci Rep 2015; 5:9245. [PMID: 25784646 PMCID: PMC4363891 DOI: 10.1038/srep09245] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/25/2015] [Indexed: 01/18/2023] Open
Abstract
Chemosensory proteins (CSPs) have been predicted to be involved in development;
however, direct evidence for their involvement is lacking, and genetic basis is
largely unknown. To determine the function of the chemosensory protein 9
(Si-CSP9) gene in Solenopsis invicta, we used RNA interference to
silence Si-CSP9 in 3rd-instar larvae. The 3rd-instar larvae failed to shed
their cuticle after being fed Si-CSP9-directed siRNA, and expression
profiling of RNAi-treated and untreated control larvae showed that 375 genes were
differentially expressed. Pathway enrichment analysis revealed that 4 pathways
associated with larval development were significantly enriched. Blast analysis
revealed that one fatty acid amide hydrolase (FAAH) gene was up-regulated and
4 fatty acid synthase (FAT) genes and one protein kinase DC2 gene
(PKA) were down-regulated in the enriched pathways. Significantly higher
expression of these genes was found in 4th-instar larvae, and Pearson correlation
analysis of the expression patterns revealed significant relationships among
Si-CSP9, PKA, FAAH, and FAT1-4. Moreover, we confirmed that
expression levels of Si-CSP9, FAAH, and FAT1-4 were significantly
reduced and that the development of 3rd-instar larvae was halted with PKA
silencing. These results suggest that Si-CSP9 and PKA may be involved
in the network that contributes to development of 3rd-instar larvae.
Collapse
|
142
|
Sun L, Zhou JJ, Gu SH, Xiao HJ, Guo YY, Liu ZW, Zhang YJ. Chemosensillum immunolocalization and ligand specificity of chemosensory proteins in the alfalfa plant bug Adelphocoris lineolatus (Goeze). Sci Rep 2015; 5:8073. [PMID: 25627422 PMCID: PMC4308698 DOI: 10.1038/srep08073] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 01/05/2015] [Indexed: 11/09/2022] Open
Abstract
Insect chemosensory proteins (CSPs) are a family of small soluble proteins. To date, their physiological functions in insect olfaction remain largely controversial in comparison to odorant binding proteins (OBPs). In present study, we reported the antenna specific expression of three CSPs (AlinCSP4-6) from Adelphocoris lineolatus, their distinct chemosensillum distribution as well as ligand binding capability thus providing the evidence for the possible roles that they could play in semiochemical detection of the plant bug A. lineolatus. The results of qRT-PCR and western blot assay clearly showed that all of these three CSPs are highly expressed in the adult antennae, the olfactory organ of insects. Further cellular investigation of their immunolocalization revealed their dynamic protein expression profiles among different types of antennal sensilla. In a fluorescence competitive binding assay, the selective ligand binding was observed for AlinCSP4-6. In ad`dition, a cooperative interaction was observed between two co-expressed CSPs resulting in an increase of the binding affinities by a mixture of AlinCSP5 and AlinCSP6 to terpenoids which do not bind to individual CSPs. These findings in combination with our previous data for AlinCSP1-3 indicate a possible functional differentiation of CSPs in the A. lineolatus olfactory system.
Collapse
Affiliation(s)
- Liang Sun
- 1] State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China [2] Key Laboratory of Tea Plants Biology and Resources Utilization of Agriculture Ministry, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China [3] Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing-Jiang Zhou
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Shao-Hua Gu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hai-Jun Xiao
- 1] State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China [2] Institute of Entomology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yu-Yuan Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ze-Wen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
143
|
Dippel S, Oberhofer G, Kahnt J, Gerischer L, Opitz L, Schachtner J, Stanke M, Schütz S, Wimmer EA, Angeli S. Tissue-specific transcriptomics, chromosomal localization, and phylogeny of chemosensory and odorant binding proteins from the red flour beetle Tribolium castaneum reveal subgroup specificities for olfaction or more general functions. BMC Genomics 2014; 15:1141. [PMID: 25523483 PMCID: PMC4377858 DOI: 10.1186/1471-2164-15-1141] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 12/09/2014] [Indexed: 11/24/2022] Open
Abstract
Background Chemoreception is based on the senses of smell and taste that are crucial for animals to find new food sources, shelter, and mates. The initial step in olfaction involves the translocation of odorants from the periphery through the aqueous lymph of the olfactory sensilla to the odorant receptors most likely by chemosensory proteins (CSPs) or odorant binding proteins (OBPs). Results To better understand the roles of CSPs and OBPs in a coleopteran pest species, the red flour beetle Tribolium castaneum (Coleoptera, Tenebrionidae), we performed transcriptome analyses of male and female antennae, heads, mouthparts, legs, and bodies, which revealed that all 20 CSPs and 49 of the 50 previously annotated OBPs are transcribed. Only six of the 20 CSP are significantly transcriptionally enriched in the main chemosensory tissues (antenna and/or mouthparts), whereas of the OBPs all eight members of the antenna binding proteins II (ABPII) subgroup, 18 of the 20 classic OBP subgroup, the C + OBP, and only five of the 21 C-OBPs show increased chemosensory tissue expression. By MALDI-TOF-TOF MS protein fingerprinting, we confirmed three CSPs, four ABPIIs, three classic OBPs, and four C-OBPs in the antennae. Conclusions Most of the classic OBPs and all ABPIIs are likely involved in chemoreception. A few are also present in other tissues such as odoriferous glands and testes and may be involved in release or transfer of chemical signals. The majority of the CSPs as well as the C-OBPs are not enriched in antennae or mouthparts, suggesting a more general role in the transport of hydrophobic molecules. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1141) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ernst A Wimmer
- Department of Developmental Biology, Georg-August-University Goettingen, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, GZMB, Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, Goettingen 37077, Germany.
| | | |
Collapse
|
144
|
Ju Q, Li X, Jiang XJ, Qu MJ, Guo XQ, Han ZJ, Li F. Transcriptome and tissue-specific expression analysis of Obp and Csp genes in the dark black chafer. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2014; 87:177-200. [PMID: 25099623 DOI: 10.1002/arch.21188] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The dark black chafer, Holotrichia parallela, is an economically important pest in China and worldwide. Traps based on chemical communication are being developed as an alternative control measure to pesticides for this pest, and studies to reveal chemical communication mechanisms in this pest are highly desirable. To systematically analyze genes potentially involved in chemical communication in this pest, we generated a comprehensive transcriptome with combined samples derived from multiple tissues and developmental stages. A total of 43,967 nonredundant sequences (unigenes) with average length of 806 bp were obtained. These unigenes were annotated into different pathways using gene ontology analysis and cluster analysis of orthologous groups of proteins, and kyoto encyclopedia of genes and genomes. In total, 25 transcripts encoding odorant-binding proteins (OBPs) and 16 transcripts encoding chemosensory proteins (CSPs) were identified based on homology searches. Tissue-specific expression profile indicates that OBP17 and CSP7 are likely responsible for male sex pheromone recognition, whereas OBP1-4, OBP9, OBP13-14, OBP17-18, OBP20, OBP22, OBP25, CSP1-7, CSP11, and CSP12-15 are likely responsible for chemical communication between the beetle and environments. Our data shall provide a foundation for further research on the molecular aspects of chemical communication of this insect, and for comparative genomic studies with other species.
Collapse
Affiliation(s)
- Qian Ju
- Shandong Peanut Research Institute, Qingdao City, Shandong, China
| | | | | | | | | | | | | |
Collapse
|
145
|
Niu D, Zheng H, Corona M, Lu Y, Chen X, Cao L, Sohr A, Hu F. Transcriptome comparison between inactivated and activated ovaries of the honey bee Apis mellifera L. INSECT MOLECULAR BIOLOGY 2014; 23:668-681. [PMID: 25039886 DOI: 10.1111/imb.12114] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Ovarian activity not only influences fertility, but is also involved with the regulation of division of labour between reproductive and behavioural castes of female honey bees. In order to identify candidate genes associated with ovarian activity, we compared the gene expression patterns between inactivated and activated ovaries of queens and workers by means of high-throughput RNA-sequencing technology. A total of 1615 differentially expressed genes (DEGs) was detected between ovaries of virgin and mated queens, and more than 5300 DEGs were detected between inactivated and activated worker ovaries. Intersection analysis of DEGs amongst five libraries revealed that a similar set of genes (824) participated in the ovary activation of both queens and workers. A large number of these DEGs were predominantly related to cellular, cell and cell part, binding, biological regulation and metabolic processes. In addition, over 1000 DEGs were linked to more than 230 components of Kyoto Encyclopedia of Genes and Genomes pathways, including 25 signalling pathways. The reliability of the RNA-sequencing results was confirmed by means of quantitative real-time PCR. Our results provide new insights into the molecular mechanisms involved in ovary activation and reproductive division of labour.
Collapse
Affiliation(s)
- D Niu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
146
|
Pelosi P, Iovinella I, Felicioli A, Dani FR. Soluble proteins of chemical communication: an overview across arthropods. Front Physiol 2014; 5:320. [PMID: 25221516 PMCID: PMC4145409 DOI: 10.3389/fphys.2014.00320] [Citation(s) in RCA: 317] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/04/2014] [Indexed: 11/30/2022] Open
Abstract
Detection of chemical signals both in insects and in vertebrates is mediated by soluble proteins, highly concentrated in olfactory organs, which bind semiochemicals and activate, with still largely unknown mechanisms, specific chemoreceptors. The same proteins are often found in structures where pheromones are synthesized and released, where they likely perform a second role in solubilizing and delivering chemical messengers in the environment. A single class of soluble polypeptides, called Odorant-Binding Proteins (OBPs) is known in vertebrates, while two have been identified in insects, OBPs and CSPs (Chemosensory Proteins). Despite their common name, OBPs of vertebrates bear no structural similarity with those of insects. We observed that in arthropods OBPs are strictly limited to insects, while a few members of the CSP family have been found in crustacean and other arthropods, where however, based on their very limited numbers, a function in chemical communication seems unlikely. The question we address in this review is whether another class of soluble proteins may have been adopted by other arthropods to perform the role of OBPs and CSPs in insects. We propose that lipid-transporter proteins of the Niemann-Pick type C2 family could represent likely candidates and report the results of an analysis of their sequences in representative species of different arthropods.
Collapse
Affiliation(s)
- Paolo Pelosi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing, China
| | | | | | - Francesca R Dani
- Biology Department, University of Firenze Firenze, Italy ; CISM, Mass Spectrometry Centre, University of Firenze Firenze, Italy
| |
Collapse
|
147
|
McKenzie SK, Oxley PR, Kronauer DJC. Comparative genomics and transcriptomics in ants provide new insights into the evolution and function of odorant binding and chemosensory proteins. BMC Genomics 2014; 15:718. [PMID: 25159315 PMCID: PMC4161878 DOI: 10.1186/1471-2164-15-718] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 08/14/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The complex societies of ants and other social insects rely on sophisticated chemical communication. Two families of small soluble proteins, the odorant binding and chemosensory proteins (OBPs and CSPs), are believed to be important in insect chemosensation. To better understand the role of these proteins in ant olfaction, we examined their evolution and expression across the ants using phylogenetics and sex- and tissue-specific RNA-seq. RESULTS We find that subsets of both OBPs and CSPs are expressed in the antennae, contradicting the previous hypothesis that CSPs have replaced OBPs in ant olfaction. Both protein families have several highly conserved clades with a single ortholog in all eusocial hymenopterans, as well as clades with more dynamic evolution and many taxon-specific radiations. The dynamically evolving OBPs and CSPs have been hypothesized to function in chemical communication. Intriguingly, we find that seven members of the conserved clades are expressed specifically in the antennae of the clonal raider ant Cerapachys biroi, whereas only one dynamically evolving CSP is antenna specific. The orthologs of the conserved, antenna-specific C. biroi genes are also expressed in antennae of the ants Camponotus floridanus and Harpegnathos saltator, indicating that antenna-specific expression of these OBPs and CSPs is conserved across ants. Most members of the dynamically evolving clades in both protein families are expressed primarily in non-chemosensory tissues and thus likely do not fulfill chemosensory functions. CONCLUSIONS Our results identify candidate OBPs and CSPs that are likely involved in conserved aspects of ant olfaction, and suggest that OBPs and CSPs may not rapidly evolve to recognize species-specific signals.
Collapse
Affiliation(s)
- Sean K McKenzie
- Laboratory of Insect Social Evolution, The Rockefeller University, 1230 York Avenue, 10065 New York, NY, USA.
| | | | | |
Collapse
|
148
|
Fang Y, Feng M, Han B, Lu X, Ramadan H, Li J. In-depth proteomics characterization of embryogenesis of the honey bee worker (Apis mellifera ligustica). Mol Cell Proteomics 2014; 13:2306-20. [PMID: 24895377 DOI: 10.1074/mcp.m114.037846] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Identifying proteome changes of honey bee embryogenesis is of prime importance for unraveling the molecular mechanisms that they underlie. However, many proteomic changes during the embryonic period are not well characterized. We analyzed the proteomic alterations over the complete time course of honey bee worker embryogenesis at 24, 48, and 72 h of age, using mass spectrometry-based proteomics, label-free quantitation, and bioinformatics. Of the 1460 proteins identified the embryo of all three ages, the core proteome (proteins shared by the embryos of all three ages, accounting for 40%) was mainly involved in protein synthesis, metabolic energy, development, and molecular transporter, which indicates their centrality in driving embryogenesis. However, embryos at different developmental stages have their own specific proteome and pathway signatures to coordinate and modulate developmental events. The young embryos (<24 h) stronger expression of proteins related to nutrition storage and nucleic acid metabolism may correlate with the cell proliferation occurring at this stage. The middle aged embryos (24-48 h) enhanced expression of proteins associated with cell cycle control, transporters, antioxidant activity, and the cytoskeleton suggest their roles to support rudimentary organogenesis. Among these proteins, the biological pathways of aminoacyl-tRNA biosynthesis, β-alanine metabolism, and protein export are intensively activated in the embryos of middle age. The old embryos (48-72 h) elevated expression of proteins implicated in fatty acid metabolism and morphogenesis indicate their functionality for the formation and development of organs and dorsal closure, in which the biological pathways of fatty acid metabolism and RNA transport are highly activated. These findings add novel understanding to the molecular details of honey bee embryogenesis, in which the programmed activation of the proteome matches with the physiological transition observed during embryogenesis. The identified biological pathways and key node proteins allow for further functional analysis and genetic manipulation for both the honey bee embryos and other eusocial insects.
Collapse
Affiliation(s)
- Yu Fang
- From the ‡Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mao Feng
- From the ‡Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Han
- From the ‡Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoshan Lu
- From the ‡Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haitham Ramadan
- From the ‡Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianke Li
- From the ‡Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
149
|
RETRACTED ARTICLE: Involvement of a Specific Chemosensory Protein from Bactrocera dorsalis in Perceiving Host Plant Volatiles. J Chem Ecol 2014; 40:267-75. [DOI: 10.1007/s10886-014-0406-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/18/2013] [Accepted: 02/18/2014] [Indexed: 11/26/2022]
|
150
|
Liu YL, Guo H, Huang LQ, Pelosi P, Wang CZ. Unique function of a chemosensory protein in the proboscis of two Helicoverpa species. ACTA ACUST UNITED AC 2014; 217:1821-6. [PMID: 24625642 DOI: 10.1242/jeb.102020] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chemosensory proteins (CSPs) are soluble proteins found only in arthropods. Some of them fill the lumen of chemosensilla and are believed to play a role similar to that of odorant-binding proteins in the detection of semiochemicals. Other members of the CSP family have been reported to perform different functions, from delivery of pheromones to development. This report is focused on a member (CSP4) of the family that is highly and almost exclusively present in the proboscis of two sibling noctuid species, Helicoverpa armigera and H. assulta. We expressed the protein in bacteria and measured binding to terpenoids and related compounds. Using specific antibodies, we found that when the moths suck on a sugar solution, CSP4 is partly extruded from the proboscis. A solution of protein can also fill a hydrophobic tube of same length and diameter as the proboscis by capillary action. On this basis, we suggest that CSP4 acts as a wetting agent to reduce the surface tension of aqueous solutions and consequently the pressure involved in sucking.
Collapse
Affiliation(s)
- Yu-Ling Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hao Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ling-Qiao Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Paolo Pelosi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|