101
|
Wimmer K, Rosenbaum T, Messiaen L. Connections between constitutional mismatch repair deficiency syndrome and neurofibromatosis type 1. Clin Genet 2017; 91:507-519. [PMID: 27779754 DOI: 10.1111/cge.12904] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/18/2016] [Accepted: 10/20/2016] [Indexed: 12/13/2022]
Abstract
Constitutional mismatch repair (MMR) deficiency (CMMRD) is a rare childhood cancer susceptibility syndrome resulting from biallelic germline loss-of-function mutations in one of the MMR genes. Individuals with CMMRD have high risk to develop a broad spectrum of malignancies and frequently display features reminiscent of neurofibromatosis type 1 (NF1). Evaluation of the clinical findings of genetically proven CMMRD patients shows that not only multiple café-au-lait macules but also any of the diagnostic features of NF1 may be present in a CMMRD patient. This phenotypic overlap may lead to misdiagnosis of CMMRD patients as having NF1, which impedes adequate management of the patients and their families. The spectrum of CMMRD-associated childhood malignancies includes high-grade glioma, acute myeloid leukaemia or rhabdomyosarcoma, also reported as associated with NF1. Reported associations between NF1 and these malignancies are to a large extent based on studies that neither proved the presence of an NF1 germline mutation nor ruled-out CMMRD in the affected. Hence, these associations are challenged by our current knowledge of the phenotypic overlap between NF1 and CMMRD and should be re-evaluated in future studies. Recent advances in the diagnostics of CMMRD should render it possible to definitely state or refute this diagnosis in these individuals.
Collapse
Affiliation(s)
- K Wimmer
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - T Rosenbaum
- Department of Pediatrics, Sana Kliniken Duisburg, Wedau Kliniken, Duisburg, Germany
| | - L Messiaen
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
102
|
Meulepas JM, Ronckers CM, Merks J, Weijerman ME, Lubin JH, Hauptmann M. Confounding of the association between radiation exposure from CT scans and risk of leukemia and brain tumors by cancer susceptibility syndromes. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2016; 36:953-974. [PMID: 27893452 DOI: 10.1088/0952-4746/36/4/953] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Recent studies linking radiation exposure from pediatric computed tomography (CT) to increased risks of leukemia and brain tumors lacked data to control for cancer susceptibility syndromes (CSS). These syndromes might be confounders because they are associated with an increased cancer risk and may increase the likelihood of pediatric CT scans. We identify CSS predisposing to leukemia and brain tumors through a systematic literature search and summarize prevalence and risk. Since empirical evidence is lacking in published literature on patterns of CT use for most types of CSS, we estimate confounding bias of relative risks (RR) for categories of radiation exposure based on expert opinion about patterns of CT scans among CSS patients. We estimate that radiation-related RRs for leukemia are not meaningfully confounded by Down syndrome, Noonan syndrome and other CSS. Moreover, tuberous sclerosis complex, von Hippel-Lindau disease, neurofibromatosis type 1 and other CSS do not meaningfully confound RRs for brain tumors. Empirical data on the use of CT scans among CSS patients is urgently needed. Our assessment indicates that associations with radiation exposure from pediatric CT scans and leukemia or brain tumors reported in previous studies are unlikely to be substantially confounded by unmeasured CSS.
Collapse
Affiliation(s)
- Johanna M Meulepas
- Department of Epidemiology and Biostatistics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
103
|
Liu Q, Hesson LB, Nunez AC, Packham D, Hawkins NJ, Ward RL, Sloane MA. Pathogenic germline MCM9 variants are rare in Australian Lynch-like syndrome patients. Cancer Genet 2016; 209:497-500. [DOI: 10.1016/j.cancergen.2016.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 09/30/2016] [Accepted: 10/06/2016] [Indexed: 12/21/2022]
|
104
|
Baris HN, Barnes-Kedar I, Toledano H, Halpern M, Hershkovitz D, Lossos A, Lerer I, Peretz T, Kariv R, Cohen S, Half EE, Magal N, Drasinover V, Wimmer K, Goldberg Y, Bercovich D, Levi Z. Constitutional Mismatch Repair Deficiency in Israel: High Proportion of Founder Mutations in MMR Genes and Consanguinity. Pediatr Blood Cancer 2016; 63:418-27. [PMID: 26544533 DOI: 10.1002/pbc.25818] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 09/21/2015] [Indexed: 02/01/2023]
Abstract
BACKGROUND Heterozygous germline mutations in any of the mismatch repair (MMR) genes, MLH1, MSH2, MSH6, and PMS2, cause Lynch syndrome (LS), an autosomal dominant cancer predisposition syndrome conferring a high risk of colorectal, endometrial, and other cancers in adulthood. Offspring of couples where both spouses have LS have a 1:4 risk of inheriting biallelic MMR gene mutations. These cause constitutional MMR deficiency (CMMRD) syndrome, a severe recessively inherited cancer syndrome with a broad tumor spectrum including mainly hematological malignancies, brain tumors, and colon cancer in childhood and adolescence. Many CMMRD children also present with café au lait spots and axillary freckling mimicking neurofibromatosis type 1. PROCEDURE We describe our experience in seven CMMRD families demonstrating the role and importance of founder mutations and consanguinity on its prevalence. Clinical presentations included brain tumors, colon cancer, lymphoma, and small bowel cancer. RESULTS In children from two nonconsanguineous Ashkenazi Jewish (AJ) families, the common Ashkenazi founder mutations were detected; these were homozygous in one family and compound heterozygous in the other. In four consanguineous families of various ancestries, different homozygous mutations were identified. In a nonconsanguineous Caucasus/AJ family, lack of PMS2 was demonstrated in tumor and normal tissues; however, mutations were not identified. CONCLUSIONS CMMRD is rare, but, especially in areas where founder mutations for LS and consanguinity are common, pediatricians should be aware of it since they are the first to encounter these children. Early diagnosis will enable tailored cancer surveillance in the entire family and a discussion regarding prenatal genetic diagnosis.
Collapse
Affiliation(s)
- Hagit N Baris
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel.,Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Inbal Barnes-Kedar
- The Raphael Recanati Genetic Institute, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Israel
| | - Helen Toledano
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Pediatric Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Marisa Halpern
- Department of Pathology, Rabin Medical Center, Hasharon Hospital, Petach Tikva, Israel
| | - Dov Hershkovitz
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Pathology, Rambam Health Care Campus, Haifa, Israel
| | - Alexander Lossos
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Israela Lerer
- Department of Human Genetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Tamar Peretz
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Revital Kariv
- Department of Gastroenterology & Liver Disease, Sourasky Medical Center, Tel Aviv, Israel
| | - Shlomi Cohen
- The Pediatric Gastroenterology Unit, Sourasky Medical Center, Tel Aviv, Israel
| | - Elizabeth E Half
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Gastroenterology, Rambam Health Care Campus, Haifa, Israel
| | - Nurit Magal
- The Raphael Recanati Genetic Institute, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Israel
| | - Valerie Drasinover
- The Raphael Recanati Genetic Institute, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Israel
| | - Katharina Wimmer
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Yael Goldberg
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | - Zohar Levi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Gastroenterology Division, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Israel
| |
Collapse
|
105
|
Lung MS, Trainer AH, Campbell I, Lipton L. Familial colorectal cancer. Intern Med J 2016; 45:482-91. [PMID: 25955461 DOI: 10.1111/imj.12736] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 02/24/2015] [Indexed: 12/12/2022]
Abstract
Identifying individuals with a genetic predisposition to developing familial colorectal cancer (CRC) is crucial to the management of the affected individual and their family. In order to do so, the physician requires an understanding of the different gene mutations and clinical manifestations of familial CRC. This review summarises the genetics, clinical manifestations and management of the known familial CRC syndromes, specifically Lynch syndrome, familial adenomatous polyposis, MUTYH-associated neoplasia, juvenile polyposis syndrome and Peutz-Jeghers syndrome. An individual suspected of having a familial CRC with an underlying genetic predisposition should be referred to a familial cancer centre to enable pre-test counselling and appropriate follow up.
Collapse
Affiliation(s)
- M S Lung
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - A H Trainer
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Familial Cancer Centre, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Familial Cancer Centre, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - I Campbell
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - L Lipton
- Familial Cancer Centre, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
106
|
Aronson M, Gallinger S, Cohen Z, Cohen S, Dvir R, Elhasid R, Baris HN, Kariv R, Druker H, Chan H, Ling SC, Kortan P, Holter S, Semotiuk K, Malkin D, Farah R, Sayad A, Heald B, Kalady MF, Penney LS, Rideout AL, Rashid M, Hasadsri L, Pichurin P, Riegert-Johnson D, Campbell B, Bakry D, Al-Rimawi H, Alharbi QK, Alharbi M, Shamvil A, Tabori U, Durno C. Gastrointestinal Findings in the Largest Series of Patients With Hereditary Biallelic Mismatch Repair Deficiency Syndrome: Report from the International Consortium. Am J Gastroenterol 2016; 111:275-84. [PMID: 26729549 DOI: 10.1038/ajg.2015.392] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 11/01/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Hereditary biallelic mismatch repair deficiency (BMMRD) is caused by biallelic mutations in the mismatch repair (MMR) genes and manifests features of neurofibromatosis type 1, gastrointestinal (GI) polyposis, and GI, brain, and hematological cancers. This is the first study to characterize the GI phenotype in BMMRD using both retrospective and prospective surveillance data. METHODS The International BMMRD Consortium was created to collect information on BMMRD families referred from around the world. All patients had germline biallelic MMR mutations or lack of MMR protein staining in normal and tumor tissue. GI screening data were obtained through medical records with annual updates. RESULTS Thirty-five individuals from seven countries were identified with BMMRD. GI data were available on 24 of 33 individuals (73%) of screening age, totaling 53 person-years. The youngest age of colonic adenomas was 7, and small bowel adenoma was 11. Eight patients had 19 colorectal adenocarcinomas (CRC; median age 16.7 years, range 8-25), and 11 of 18 (61%) CRC were distal to the splenic flexure. Eleven patients had 15 colorectal surgeries (median 14 years, range 9-25). Four patients had five small bowel adenocarcinomas (SBC; median 18 years, range 11-33). Two CRC and two SBC were detected during surveillance within 6-11 months and 9-16 months, respectively, of last consecutive endoscopy. No patient undergoing surveillance died of a GI malignancy. Familial clustering of GI cancer was observed. CONCLUSIONS The prevalence and penetrance of GI neoplasia in children with BMMRD is high, with rapid development of carcinoma. Colorectal and small bowel surveillance should commence at ages 3-5 and 8 years, respectively.
Collapse
Affiliation(s)
- Melyssa Aronson
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Steven Gallinger
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Zane Cohen
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Shlomi Cohen
- Pediatric Gastro-Enterology Unit, Dana Dwek Children's Hospital, Tel Aviv Sourasky Medical Centre, Tel Aviv, Israel
| | - Rina Dvir
- Department of Pediatric Hemato-Oncology, Dana Dwek Children's Hospital, Tel Aviv Sourasky Medical Centre, Tel Aviv, Israel
| | - Ronit Elhasid
- Department of Pediatric Hemato-Oncology, Dana Dwek Children's Hospital, Tel Aviv Sourasky Medical Centre, Tel Aviv, Israel
| | - Hagit N Baris
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel, and Rappaport School of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Revital Kariv
- Department of Gastroenterology and Liver Disease, Tel Aviv Sourasky Medical Centre, Tel Aviv, Israel
| | | | - Helen Chan
- Hospital for Sick Children, Toronto, Ontario, Canada
| | - Simon C Ling
- Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Paul Kortan
- St Michael's Hospital, Toronto, Ontario, Canada
| | - Spring Holter
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Kara Semotiuk
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - David Malkin
- Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Roula Farah
- Saint George Hospital University Medical Center, Beirut, Lebanon
| | - Alain Sayad
- Lebanese American University Medical Centre, Beirut, Lebanon
| | | | | | | | | | | | | | | | | | | | - Doua Bakry
- Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hala Al-Rimawi
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Qasim Kholaif Alharbi
- Department of Pediatric Hematology/Oncology and Stem Cell Transplant, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | | | | | - Uri Tabori
- Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Carol Durno
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada.,Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
107
|
Lee K, Tosti E, Edelmann W. Mouse models of DNA mismatch repair in cancer research. DNA Repair (Amst) 2016; 38:140-146. [PMID: 26708047 PMCID: PMC4754788 DOI: 10.1016/j.dnarep.2015.11.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/06/2015] [Accepted: 11/30/2015] [Indexed: 12/31/2022]
Abstract
Germline mutations in DNA mismatch repair (MMR) genes are the cause of hereditary non-polyposis colorectal cancer/Lynch syndrome (HNPCC/LS) one of the most common cancer predisposition syndromes, and defects in MMR are also prevalent in sporadic colorectal cancers. In the past, the generation and analysis of mouse lines with knockout mutations in all of the known MMR genes has provided insight into how loss of individual MMR genes affects genome stability and contributes to cancer susceptibility. These studies also revealed essential functions for some of the MMR genes in B cell maturation and fertility. In this review, we will provide a brief overview of the cancer predisposition phenotypes of recently developed mouse models with targeted mutations in MutS and MutL homologs (Msh and Mlh, respectively) and their utility as preclinical models. The focus will be on mouse lines with conditional MMR mutations that have allowed more accurate modeling of human cancer syndromes in mice and that together with new technologies in gene targeting, hold great promise for the analysis of MMR-deficient intestinal tumors and other cancers which will drive the development of preventive and therapeutic treatment strategies.
Collapse
Affiliation(s)
- Kyeryoung Lee
- Department of Cell Biology, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, United States
| | - Elena Tosti
- Department of Cell Biology, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, United States
| | - Winfried Edelmann
- Department of Cell Biology, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, United States.
| |
Collapse
|
108
|
Successful matched sibling cord blood transplant for ALL in a child with constitutional mismatch repair deficiency syndrome. Bone Marrow Transplant 2016; 51:848-9. [PMID: 26808570 DOI: 10.1038/bmt.2015.353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
109
|
Jongmans MCJ, Loeffen JLCM, Waanders E, Hoogerbrugge PM, Ligtenberg MJL, Kuiper RP, Hoogerbrugge N. Recognition of genetic predisposition in pediatric cancer patients: An easy-to-use selection tool. Eur J Med Genet 2016; 59:116-25. [PMID: 26825391 DOI: 10.1016/j.ejmg.2016.01.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 01/03/2016] [Accepted: 01/24/2016] [Indexed: 02/01/2023]
Abstract
Genetic predisposition for childhood cancer is under diagnosed. Identifying these patients may lead to therapy adjustments in case of syndrome-related increased toxicity or resistant disease and syndrome-specific screening programs may lead to early detection of a further independent malignancy. Cancer surveillance might also be warranted for affected relatives and detection of a genetic mutation can allow for reproductive counseling. Here we present an easy-to-use selection tool, based on a systematic review of pediatric cancer predisposing syndromes, to identify patients who may benefit from genetic counseling. The selection tool involves five questions concerning family history, the type of malignancy, multiple primary malignancies, specific features and excessive toxicity, which results in the selection of those patients that may benefit from referral to a clinical geneticist.
Collapse
Affiliation(s)
- Marjolijn C J Jongmans
- Department of Human Genetics, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.
| | - Jan L C M Loeffen
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Esmé Waanders
- Department of Human Genetics, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | | | - Marjolijn J L Ligtenberg
- Department of Human Genetics, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Roland P Kuiper
- Department of Human Genetics, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Nicoline Hoogerbrugge
- Department of Human Genetics, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| |
Collapse
|
110
|
Jung AJ, Soskin S, Paris F, Lipsker D. Syndrome de McCune-Albright révélé par des taches café-au-lait blaschko-linéaires du dos. Ann Dermatol Venereol 2016; 143:21-6. [DOI: 10.1016/j.annder.2015.10.585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 05/15/2015] [Accepted: 10/02/2015] [Indexed: 10/22/2022]
|
111
|
Mismatch repair deficient-crypts in non-neoplastic colonic mucosa in Lynch syndrome: insights from an illustrative case. Fam Cancer 2015; 14:61-8. [PMID: 25173403 DOI: 10.1007/s10689-014-9751-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mono-allelic germline mutations in DNA mismatch repair (MMR) genes lead to Lynch syndrome (LS). Questions remain as to the timing of the inactivation of the wild-type allele in LS-associated tumorigenesis. Speculation exists that it happens after the neoplasia has been initiated. However, a recent study reported the presence of MMR-deficiency in non-neoplastic colonic crypts in LS; thus the possibility can be raised that these crypts may be tumor precursors, and as such, biallelic loss of MMR may occur prior to neoplasia. Here we report a unique case that showed findings supporting both of the two seemingly conflicting notions. The patient was a 40-year-old female with LS, MSH2 type, who underwent a segmental colectomy for an adenocarcinoma. By immunohistochemistry, the carcinoma lost MSH2/MSH6. Interestingly, there was also complete loss of MSH2/MSH6 in a distinct focus of 20 colonic crypts that were morphologically non-neoplastic, thus supporting the possibility of biallelic loss of MMR before initiation of neoplasia. However, in a separate adenoma, MMR was preserved in neoplastic glands with low grade dysplasia and lost only in glands with high grade dysplasia, i.e., MMR loss after tumor initiation. These are relevant findings with regard to the timing of MMR deficiency in LS tumorigenesis, and bring forth the possibility that varied tumorigenic pathways may exist. Additionally, we observed that the MMR-deficient non-neoplastic crypts harbored increased intraepithelial CD8-positive T-lymphocytes similar to the patient's carcinoma, providing a potential new venue for the study of the natural antitumor immune responses in LS individuals.
Collapse
|
112
|
Ripperger T, Schlegelberger B. Acute lymphoblastic leukemia and lymphoma in the context of constitutional mismatch repair deficiency syndrome. Eur J Med Genet 2015; 59:133-42. [PMID: 26743104 DOI: 10.1016/j.ejmg.2015.12.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/28/2015] [Accepted: 12/01/2015] [Indexed: 12/15/2022]
Abstract
Constitutional mismatch repair deficiency (CMMRD) syndrome is one of the rare diseases associated with a high risk of cancer. Causative mutations are found in DNA mismatch repair genes PMS2, MSH6, MSH2 or MLH1 that are well known in the context of Lynch syndrome. CMMRD follows an autosomal recessive inheritance trait and is characterized by childhood brain tumors and hematological malignancies as well as gastrointestinal cancer in the second and third decades of life. There is a high risk of multiple cancers, occurring synchronously and metachronously. In general, the prognosis is poor. About one third of CMMRD patients develop hematological malignancies as primary (sometimes the only) malignancy or as secondary neoplasm. T-cell non-Hodgkin lymphomas, mainly of mediastinal origin, are the most frequent hematological malignancies. Besides malignant diseases, non-neoplastic features are frequently observed, e.g. café-au-lait spots sometimes resembling neurofibromatosis type I, hypopigmented skin lesions, numerous adenomatous polyps, multiple pilomatricomas, or impaired immunoglobulin class switch recombination. Within the present review, we summarize previously published CMMRD patients with at least one hematological malignancy, provide an overview of steps necessary to substantiate the diagnosis of CMMRD, and refer to the recent most relevant literature.
Collapse
Affiliation(s)
- Tim Ripperger
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany.
| | | |
Collapse
|
113
|
Meulepas JM, Ronckers CM, Merks J, Weijerman ME, Lubin JH, Hauptmann M. Confounding of the Association between Radiation Exposure from CT Scans and Risk of Leukemia and Brain Tumors by Cancer Susceptibility Syndromes. Cancer Epidemiol Biomarkers Prev 2015; 25:114-26. [DOI: 10.1158/1055-9965.epi-15-0636] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/23/2015] [Indexed: 11/16/2022] Open
|
114
|
Abstract
Neurocutaneous syndromes are a heterogeneous group of congenital and hereditary disorders with manifestations in the skin and the nervous system, usually together with ocular features that represent diagnostic clues and potential sources of morbidity. Dermatologists and ophthalmologists often need to work together in identifying and managing patients with these conditions; herein, we focus on classic and under-recognized neurocutaneous syndromes. We begin with autosomal dominant genodermatoses characterized by hamartomas and tumors in the skin, eyes, and central nervous system: neurofibromatosis type 1, tuberous sclerosis complex, and PTEN hamartoma-tumor syndrome. This is followed by a discussion of two mosaic disorders, Sturge-Weber syndrome and neurocutaneous melanocytosis. In addition to providing an update on clinical presentations and evaluation of patients with these conditions, we review recent insights into their pathogenesis, drawing attention to relationships among the diseases on a molecular level and implications regarding treatment. We also highlight the major features of other neurocutaneous syndromes that have ocular findings plus pigmentary, vascular, hyperkeratotic, adnexal, connective tissue, photosensitive, and inflammatory manifestations in the skin.
Collapse
Affiliation(s)
- Karen A Chernoff
- Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY 10016, USA
| | - Julie V Schaffer
- Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
115
|
Kansal R, Li X, Shen J, Samuel D, Laningham F, Lee H, Panigrahi GB, Shuen A, Kantarci S, Dorrani N, Reiss J, Shintaku P, Deignan JL, Strom SP, Pearson CE, Vilain E, Grody WW. An infant withMLH3variants,FOXG1-duplication and multiple, benign cranial and spinal tumors: A clinical exome sequencing study. Genes Chromosomes Cancer 2015; 55:131-42. [DOI: 10.1002/gcc.22319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 08/13/2015] [Accepted: 08/14/2015] [Indexed: 12/27/2022] Open
Affiliation(s)
- Rina Kansal
- Pathology and Laboratory Medicine; University of California at Los Angeles, David Geffen School of Medicine; Los Angeles CA 90095
| | - Xinmin Li
- Pathology and Laboratory Medicine; University of California at Los Angeles, David Geffen School of Medicine; Los Angeles CA 90095
| | - Joseph Shen
- Medical Genetics and Metabolism; Valley Children's Hospital; Madera CA 93636
| | - David Samuel
- Hematology/Oncology, Valley Children's Hospital; Madera CA 93636
| | - Fred Laningham
- Department of Radiology; Valley Children's Hospital; Madera CA 93636
| | - Hane Lee
- Pathology and Laboratory Medicine; University of California at Los Angeles, David Geffen School of Medicine; Los Angeles CA 90095
| | - Gagan B. Panigrahi
- Program of Genetics & Genome Biology; The Hospital for Sick Children, Peter Gilgan Center for Research and Learning; Toronto Ontario MSG 0A4 Canada
| | - Andrew Shuen
- Program of Genetics & Genome Biology; The Hospital for Sick Children, Peter Gilgan Center for Research and Learning; Toronto Ontario MSG 0A4 Canada
- Program of Molecular Genetics, University of Toronto; Toronto, Ontario M5S 1A1 Canada
| | - Sibel Kantarci
- Pathology and Laboratory Medicine; University of California at Los Angeles, David Geffen School of Medicine; Los Angeles CA 90095
| | - Naghmeh Dorrani
- Pediatrics, University of California at Los Angeles, David Geffen School of Medicine; Los Angeles CA 90095
| | - Jean Reiss
- Pathology and Laboratory Medicine; University of California at Los Angeles, David Geffen School of Medicine; Los Angeles CA 90095
| | - Peter Shintaku
- Pathology and Laboratory Medicine; University of California at Los Angeles, David Geffen School of Medicine; Los Angeles CA 90095
| | - Joshua L. Deignan
- Pathology and Laboratory Medicine; University of California at Los Angeles, David Geffen School of Medicine; Los Angeles CA 90095
| | - Samuel P. Strom
- Pathology and Laboratory Medicine; University of California at Los Angeles, David Geffen School of Medicine; Los Angeles CA 90095
| | - Christopher E. Pearson
- Program of Genetics & Genome Biology; The Hospital for Sick Children, Peter Gilgan Center for Research and Learning; Toronto Ontario MSG 0A4 Canada
- Program of Molecular Genetics, University of Toronto; Toronto, Ontario M5S 1A1 Canada
| | - Eric Vilain
- Pediatrics, University of California at Los Angeles, David Geffen School of Medicine; Los Angeles CA 90095
- Human Genetics, University of California at Los Angeles, David Geffen School of Medicine; Los Angeles CA 90095
| | - Wayne W. Grody
- Pathology and Laboratory Medicine; University of California at Los Angeles, David Geffen School of Medicine; Los Angeles CA 90095
- Pediatrics, University of California at Los Angeles, David Geffen School of Medicine; Los Angeles CA 90095
- Human Genetics, University of California at Los Angeles, David Geffen School of Medicine; Los Angeles CA 90095
| |
Collapse
|
116
|
Reply to: Familial syndromes associated with intracranial tumours: a review. Childs Nerv Syst 2015; 31:1999-2001. [PMID: 26255151 DOI: 10.1007/s00381-015-2868-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 06/07/2015] [Indexed: 10/23/2022]
|
117
|
Mets S, Tryon R, Veach PM, Zierhut HA. Genetic Counselors' Experiences Regarding Communication of Reproductive Risks with Autosomal Recessive Conditions found on Cancer Panels. J Genet Couns 2015; 25:359-72. [PMID: 26454646 DOI: 10.1007/s10897-015-9892-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/21/2015] [Indexed: 12/11/2022]
Abstract
The development of hereditary cancer genetic testing panels has altered genetic counseling practice. Mutations within certain genes on cancer panels pose not only a cancer risk, but also a reproductive risk for autosomal recessive conditions such as Fanconi anemia, constitutional mismatch repair deficiency syndrome, and ataxia telangiectasia. This study aimed to determine if genetic counselors discuss reproductive risks for autosomal recessive conditions associated with genes included on cancer panels, and if so, under what circumstances these risks are discussed. An on-line survey was emailed through the NSGC list-serv. The survey assessed 189 cancer genetic counselors' experiences discussing reproductive risks with patients at risk to carry a mutation or variant of uncertain significance (VUS) in a gene associated with both an autosomal dominant cancer risk and an autosomal recessive syndrome. Over half (n = 82, 55 %) reported having discussed reproductive risks; the remainder (n = 66, 45 %) had not. Genetic counselors who reported discussing reproductive risks primarily did so when patients had a positive result and were of reproductive age. Reasons for not discussing these risks included when a patient had completed childbearing or when a VUS was identified. Most counselors discussed reproductive risk after obtaining results and not during the informed consent process. There is inconsistency as to if and when the discussion of reproductive risks is taking place. The wide variation in responses suggests a need to develop professional guidelines for when and how discussions of reproductive risk for autosomal recessive conditions identified through cancer panels should occur with patients.
Collapse
Affiliation(s)
- Sarah Mets
- Department of Genetics, Cell Biology, & Development, University of Minnesota, 321 Church Street, 6-160 Jackson Hall, Minneapolis, MN, 55455, USA
| | - Rebecca Tryon
- Fairview Health Services, Minneapolis, MN, 55455, USA
| | | | - Heather A Zierhut
- Department of Genetics, Cell Biology, & Development, University of Minnesota, 321 Church Street, 6-160 Jackson Hall, Minneapolis, MN, 55455, USA.
| |
Collapse
|
118
|
Urganci N, Genc DB, Kose G, Onal Z, Vidin OO. Colorectal Cancer due to Constitutional Mismatch Repair Deficiency Mimicking Neurofibromatosis I. Pediatrics 2015; 136:e1047-50. [PMID: 26391938 DOI: 10.1542/peds.2015-1426] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/08/2015] [Indexed: 11/24/2022] Open
Abstract
Colorectal carcinoma (CRC) is an extremely rare tumor of childhood that can be associated with cancer predisposition syndromes. A patient with CRC related to constitutional mismatch repair deficiency (CMMRD) syndrome with features of neurofibromatosis type 1 (NF-1) is presented here. A 13-year-old boy was admitted for a 4-month history of diarrhea and rectal bleeding. The patient had extensive café au lait spots, freckling, and Lisch nodules. He fulfilled the NF-1 diagnostic criteria. Colonoscopy showed numerous polyps and a colorectal mass lesion, of which a biopsy revealed adenocarcinoma, an uncommon pathology associated with NF-1. High microsatellite instability and homozygous mutation of PMS2 gene in tumor tissue and blood lymphocytes, respectively, confirmed the diagnosis of CMMRD. Unfortunately, because family history related to CMMRD was negative, the parents denied the diagnosis and refused the therapy, and the patient was lost to follow-up. CMMRD is a rare cancer predisposition syndrome with phenotypical features resembling NF-1. The disease may be suspected in the setting of NF-1 features and CRC, high-grade brain tumors, or hematologic malignancies. Lack of family history related to CMMRD may be a major obstacle to convincing parents of the presence of an inherited disease in their progeny.
Collapse
Affiliation(s)
- Nafiye Urganci
- Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey; and
| | - Dildar Bahar Genc
- Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey; and
| | - Gulsen Kose
- Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey; and
| | - Zerrin Onal
- Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Ozge Ozdemir Vidin
- Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey; and
| |
Collapse
|
119
|
Bodo S, Colas C, Buhard O, Collura A, Tinat J, Lavoine N, Guilloux A, Chalastanis A, Lafitte P, Coulet F, Buisine MP, Ilencikova D, Ruiz-Ponte C, Kinzel M, Grandjouan S, Brems H, Lejeune S, Blanché H, Wang Q, Caron O, Cabaret O, Svrcek M, Vidaud D, Parfait B, Verloes A, Knappe UJ, Soubrier F, Mortemousque I, Leis A, Auclair-Perrossier J, Frébourg T, Fléjou JF, Entz-Werle N, Leclerc J, Malka D, Cohen-Haguenauer O, Goldberg Y, Gerdes AM, Fedhila F, Mathieu-Dramard M, Hamelin R, Wafaa B, Gauthier-Villars M, Bourdeaut F, Sheridan E, Vasen H, Brugières L, Wimmer K, Muleris M, Duval A. Diagnosis of Constitutional Mismatch Repair-Deficiency Syndrome Based on Microsatellite Instability and Lymphocyte Tolerance to Methylating Agents. Gastroenterology 2015; 149:1017-29.e3. [PMID: 26116798 DOI: 10.1053/j.gastro.2015.06.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/21/2015] [Accepted: 06/13/2015] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Patients with bi-allelic germline mutations in mismatch repair (MMR) genes (MLH1, MSH2, MSH6, or PMS2) develop a rare but severe variant of Lynch syndrome called constitutional MMR deficiency (CMMRD). This syndrome is characterized by early-onset colorectal cancers, lymphomas or leukemias, and brain tumors. There is no satisfactory method for diagnosis of CMMRD because screens for mutations in MMR genes are noninformative for 30% of patients. MMR-deficient cancer cells are resistant to genotoxic agents and have microsatellite instability (MSI), due to accumulation of errors in repetitive DNA sequences. We investigated whether these features could be used to identify patients with CMMRD. METHODS We examined MSI by PCR analysis and tolerance to methylating or thiopurine agents (functional characteristics of MMR-deficient tumor cells) in lymphoblastoid cells (LCs) from 3 patients with CMMRD and 5 individuals with MMR-proficient LCs (controls). Using these assays, we defined experimental parameters that allowed discrimination of a series of 14 patients with CMMRD from 52 controls (training set). We then used the same parameters to assess 23 patients with clinical but not genetic features of CMMRD. RESULTS In the training set, we identified parameters, based on MSI and LC tolerance to methylation, that detected patients with CMMRD vs controls with 100% sensitivity and 100% specificity. Among 23 patients suspected of having CMMRD, 6 had MSI and LC tolerance to methylation (CMMRD highly probable), 15 had neither MSI nor LC tolerance to methylation (unlikely to have CMMRD), and 2 were considered doubtful for CMMRD based on having only 1 of the 2 features. CONCLUSION The presence of MSI and tolerance to methylation in LCs identified patients with CMMRD with 100% sensitivity and specificity. These features could be used in diagnosis of patients.
Collapse
Affiliation(s)
- Sahra Bodo
- INSERM, UMR_S 938 Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, équipe labellisée par la Ligue Nationle contre le Cancer, Paris, France; UPMC Univ Paris, Paris, France
| | - Chrystelle Colas
- INSERM, UMR_S 938 Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, équipe labellisée par la Ligue Nationle contre le Cancer, Paris, France; UPMC Univ Paris, Paris, France; AP-HP, Laboratoire d'Oncogénétique et d'Angiogénétique, GH Pitié-Salpétrière, Paris, France
| | - Olivier Buhard
- INSERM, UMR_S 938 Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, équipe labellisée par la Ligue Nationle contre le Cancer, Paris, France; UPMC Univ Paris, Paris, France
| | - Ada Collura
- INSERM, UMR_S 938 Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, équipe labellisée par la Ligue Nationle contre le Cancer, Paris, France; UPMC Univ Paris, Paris, France
| | - Julie Tinat
- Département de génétique, Hôpital universitaire, Rouen, France
| | - Noémie Lavoine
- Department of Children and Adolescents Oncology, Gustave Roussy Cancer Institute, Villejuif, France
| | - Agathe Guilloux
- INSERM, UMR_S 938 Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, équipe labellisée par la Ligue Nationle contre le Cancer, Paris, France; UPMC Univ Paris, Paris, France
| | - Alexandra Chalastanis
- INSERM, UMR_S 938 Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, équipe labellisée par la Ligue Nationle contre le Cancer, Paris, France; UPMC Univ Paris, Paris, France
| | - Philippe Lafitte
- INSERM, UMR_S 938 Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, équipe labellisée par la Ligue Nationle contre le Cancer, Paris, France; UPMC Univ Paris, Paris, France
| | - Florence Coulet
- UPMC Univ Paris, Paris, France; AP-HP, Laboratoire d'Oncogénétique et d'Angiogénétique, GH Pitié-Salpétrière, Paris, France
| | - Marie-Pierre Buisine
- Institut de Biochimie et Biologie moléculaire, Oncologie et Génétique Moléculaires, CHRU Lille, Lille, France; INSERM UMR837 et Université Lille, Lille, France
| | - Denisa Ilencikova
- 2nd Pediatric Department, Children's University Hospital, Comenius University, Bratislava, Slovakia
| | - Clara Ruiz-Ponte
- Fundación Pública Galega de Medicina Xenómica (FPGMX) SERGAS, Grupo de Medicina Xenómica, IDIS, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERer), Santiago de Compostela, Spain
| | | | | | - Hilde Brems
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Sophie Lejeune
- CHRU Lille, Service de génétique clinique, Lille, France
| | - Hélène Blanché
- CEPH, Fondation Jean Dausset, Institut de Génétique Moléculaire, Paris, France
| | - Qing Wang
- Plateforme de Génétique constitutionnelle HCL-CLB, Laboratoire de recherche translationnelle, Centre Léon Bérard, Lyon, France
| | - Olivier Caron
- Department of Medical Oncology, Gustave Roussy Cancer Institute, Villejuif, France
| | - Odile Cabaret
- Service de Génétique, Département de Biologie et Pathologie Médicales, Institut Gustave Roussy, Villejuif, France
| | - Magali Svrcek
- INSERM, UMR_S 938 Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, équipe labellisée par la Ligue Nationle contre le Cancer, Paris, France; UPMC Univ Paris, Paris, France; AP-HP, Hôpital Saint-Antoine, Service d'Anatomie et Cytologie Pathologiques, Paris, France
| | - Dominique Vidaud
- INSERM UMR745 Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Béatrice Parfait
- INSERM UMR745 Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Alain Verloes
- AP-HP, Département de Génétique and INSERM UMR 1141 PROTECT, Hôpital Robert Debré, Paris, France
| | - Ulrich J Knappe
- Department of Neurosurgery, Johannes Wesling Klinikum, Minden, Germany
| | - Florent Soubrier
- AP-HP, Département de génétique, GH Pitié-Salpêtrière, Paris, France
| | | | - Alexander Leis
- French Medical Institute for Children, Kabul, Afghanistan
| | - Jessie Auclair-Perrossier
- Plateforme de Génétique constitutionnelle HCL-CLB, Laboratoire de recherche translationnelle, Centre Léon Bérard, Lyon, France
| | | | - Jean-François Fléjou
- INSERM, UMR_S 938 Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, équipe labellisée par la Ligue Nationle contre le Cancer, Paris, France; UPMC Univ Paris, Paris, France; AP-HP, Hôpital Saint-Antoine, Service d'Anatomie et Cytologie Pathologiques, Paris, France
| | - Natacha Entz-Werle
- Pédiatrie Onco-Hématologie Pédiatrie CHRU Hautepierre UdS EA, Strasbourg, France
| | - Julie Leclerc
- Institut de Biochimie et Biologie moléculaire, Oncologie et Génétique Moléculaires, CHRU Lille, Lille, France; INSERM UMR837 et Université Lille, Lille, France
| | - David Malka
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France
| | | | - Yael Goldberg
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Anne-Marie Gerdes
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospital, Copenhagen, Denmark
| | - Faten Fedhila
- Service de médecine infantile, hôpital d'enfants de Tunis, Tunis, Tunisia
| | | | - Richard Hamelin
- INSERM, UMR_S 938 Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, équipe labellisée par la Ligue Nationle contre le Cancer, Paris, France; UPMC Univ Paris, Paris, France
| | - Badre Wafaa
- Department of Hepato-Gastro-Enterology, Ibn Rochd, Hospital University Center, Casablanca, Morocco
| | | | - Franck Bourdeaut
- Department of Pediatric Oncology and INSERM U830, Institut Curie, Paris, France
| | - Eamonn Sheridan
- Department of Molecular Medicine, University of Leeds, Leeds, United Kingdom
| | - Hans Vasen
- Department of Gastroenterology and Hepatology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Laurence Brugières
- Department of Children and Adolescents Oncology, Gustave Roussy Cancer Institute, Villejuif, France
| | - Katharina Wimmer
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Martine Muleris
- INSERM, UMR_S 938 Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, équipe labellisée par la Ligue Nationle contre le Cancer, Paris, France; UPMC Univ Paris, Paris, France.
| | - Alex Duval
- INSERM, UMR_S 938 Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, équipe labellisée par la Ligue Nationle contre le Cancer, Paris, France; UPMC Univ Paris, Paris, France.
| | | |
Collapse
|
120
|
Lavoine N, Colas C, Muleris M, Bodo S, Duval A, Entz-Werle N, Coulet F, Cabaret O, Andreiuolo F, Charpy C, Sebille G, Wang Q, Lejeune S, Buisine MP, Leroux D, Couillault G, Leverger G, Fricker JP, Guimbaud R, Mathieu-Dramard M, Jedraszak G, Cohen-Hagenauer O, Guerrini-Rousseau L, Bourdeaut F, Grill J, Caron O, Baert-Dusermont S, Tinat J, Bougeard G, Frébourg T, Brugières L. Constitutional mismatch repair deficiency syndrome: clinical description in a French cohort. J Med Genet 2015; 52:770-8. [DOI: 10.1136/jmedgenet-2015-103299] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/01/2015] [Indexed: 12/20/2022]
|
121
|
The effect of genotypes and parent of origin on cancer risk and age of cancer development in PMS2 mutation carriers. Genet Med 2015; 18:405-9. [PMID: 26110232 DOI: 10.1038/gim.2015.83] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/15/2015] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Lynch syndrome (LS), a heritable disorder with an increased risk of primarily colorectal cancer (CRC) and endometrial cancer (EC), can be caused by mutations in the PMS2 gene. We wished to establish whether genotype and/or parent-of-origin effects (POE) explain (part of) the reported variability in severity of the phenotype. METHODS European PMS2 mutation carriers (n = 381) were grouped and compared based on RNA expression and whether the mutation was inherited paternally or maternally. RESULTS Mutation carriers with loss of RNA expression (group 1) had a significantly lower age at CRC diagnosis (51.1 years vs. 60.0 years, P = 0.035) and a lower age at EC diagnosis (55.8 years vs. 61.0 years, P = 0.2, nonsignificant) compared with group 2 (retention of RNA expression). Furthermore, group 1 showed slightly higher, but nonsignificant, hazard ratios (HRs) for both CRC (HR: 1.31, P = 0.38) and EC (HR: 1.22, P = 0.72). No evidence for a significant parent-of-origin effect was found for either CRC or EC. CONCLUSIONS PMS2 mutation carriers with retention of RNA expression developed CRC 9 years later than those with loss of RNA expression. If confirmed, this finding would justify a delay in surveillance for these cases. Cancer risk was not influenced by a parent-of-origin effect.Genet Med 18 4, 405-409.
Collapse
|
122
|
Wimmer K, Brugières L, Duval A, Muleris M, Kratz CP, Vasen HFA. Constitutional or biallelic? Settling on a name for a recessively inherited cancer susceptibility syndrome. J Med Genet 2015; 53:226. [DOI: 10.1136/jmedgenet-2015-103249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/11/2015] [Indexed: 11/03/2022]
|
123
|
van der Klift HM, Jansen AML, van der Steenstraten N, Bik EC, Tops CMJ, Devilee P, Wijnen JT. Splicing analysis for exonic and intronic mismatch repair gene variants associated with Lynch syndrome confirms high concordance between minigene assays and patient RNA analyses. Mol Genet Genomic Med 2015; 3:327-45. [PMID: 26247049 PMCID: PMC4521968 DOI: 10.1002/mgg3.145] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/05/2015] [Accepted: 03/16/2015] [Indexed: 12/13/2022] Open
Abstract
A subset of DNA variants causes genetic disease through aberrant splicing. Experimental splicing assays, either RT-PCR analyses of patient RNA or functional splicing reporter minigene assays, are required to evaluate the molecular nature of the splice defect. Here, we present minigene assays performed for 17 variants in the consensus splice site regions, 14 exonic variants outside these regions, and two deep intronic variants, all in the DNA mismatch-repair (MMR) genes MLH1, MSH2, MSH6, and PMS2, associated with Lynch syndrome. We also included two deep intronic variants in APC and PKD2. For one variant (MLH1 c.122A>G), our minigene assay and patient RNA analysis could not confirm the previously reported aberrant splicing. The aim of our study was to further investigate the concordance between minigene splicing assays and patient RNA analyses. For 30 variants results from patient RNA analyses were available, either performed by our laboratory or presented in literature. Some variants were deliberately included in this study because they resulted in multiple aberrant transcripts in patient RNA analysis, or caused a splice effect other than the prevalent exon skip. While both methods were completely concordant in the assessment of splice effects, four variants exhibited major differences in aberrant splice patterns. Based on the present and earlier studies, together showing an almost 100% concordance of minigene assays with patient RNA analyses, we discuss the weight given to minigene splicing assays in the current criteria proposed by InSiGHT for clinical classification of MMR variants.
Collapse
Affiliation(s)
- Heleen M van der Klift
- Department of Human Genetics, Leiden University Medical Center Leiden, The Netherlands ; Department of Clinical Genetics, Leiden University Medical Center Leiden, The Netherlands
| | - Anne M L Jansen
- Department of Human Genetics, Leiden University Medical Center Leiden, The Netherlands
| | | | - Elsa C Bik
- Department of Clinical Genetics, Leiden University Medical Center Leiden, The Netherlands
| | - Carli M J Tops
- Department of Clinical Genetics, Leiden University Medical Center Leiden, The Netherlands
| | - Peter Devilee
- Department of Human Genetics, Leiden University Medical Center Leiden, The Netherlands ; Department of Pathology, Leiden University Medical Center Leiden, The Netherlands
| | - Juul T Wijnen
- Department of Human Genetics, Leiden University Medical Center Leiden, The Netherlands ; Department of Clinical Genetics, Leiden University Medical Center Leiden, The Netherlands
| |
Collapse
|
124
|
Durno CA, Sherman PM, Aronson M, Malkin D, Hawkins C, Bakry D, Bouffet E, Gallinger S, Pollett A, Campbell B, Tabori U. Phenotypic and genotypic characterisation of biallelic mismatch repair deficiency (BMMR-D) syndrome. Eur J Cancer 2015; 51:977-83. [PMID: 25883011 DOI: 10.1016/j.ejca.2015.02.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 02/11/2015] [Indexed: 01/13/2023]
Abstract
Lynch syndrome, the most common inherited colorectal cancer syndrome in adults, is an autosomal dominant condition caused by heterozygous germ-line mutations in DNA mismatch repair (MMR) genes MLH1, MSH2, MSH6 and PMS2. Inheriting biallelic (homozygous) mutations in any of the MMR genes results in a different clinical syndrome termed biallelic mismatch repair deficiency (BMMR-D) that is characterised by gastrointestinal tumours, skin lesions, brain tumours and haematologic malignancies. This recently described and under-recognised syndrome can present with adenomatous polyps leading to early-onset small bowel and colorectal adenocarcinoma. An important clue in the family history that suggests underling BMMR-D is consanguinity. Interestingly, pedigrees of BMMR-D patients typically show a paucity of Lynch syndrome cancers and most parents are unaffected. Therefore, a family history of cancers is often non-contributory. Detection of BMMR-D can lead to more appropriate genetic counselling and the implementation of targeted surveillance protocols to achieve earlier tumour detection that will allow surgical resection. This review describes an approach for diagnosis and management of these patients and their families.
Collapse
Affiliation(s)
- Carol A Durno
- Familial Gastrointestinal Cancer Registry at the Zane Cohen Centre for Digestive Disease, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada; Division of Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.
| | - Philip M Sherman
- Division of Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Melyssa Aronson
- Familial Gastrointestinal Cancer Registry at the Zane Cohen Centre for Digestive Disease, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - David Malkin
- Division of Haematology/Oncology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Cynthia Hawkins
- Division of Pathology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Doua Bakry
- Division of Haematology/Oncology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Eric Bouffet
- Division of Haematology/Oncology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Steven Gallinger
- Familial Gastrointestinal Cancer Registry at the Zane Cohen Centre for Digestive Disease, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Aaron Pollett
- Division of Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Brittany Campbell
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Uri Tabori
- Division of Haematology/Oncology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
125
|
PMS2 monoallelic mutation carriers: the known unknown. Genet Med 2015; 18:13-9. [PMID: 25856668 DOI: 10.1038/gim.2015.27] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/23/2015] [Indexed: 12/17/2022] Open
Abstract
Germ-line mutations in MLH1, MSH2, MSH6, and PMS2 have been shown to cause Lynch syndrome. The penetrance of the cancer and tumor spectrum has been repeatedly studied, and multiple professional societies have proposed clinical management guidelines for affected individuals. Several studies have demonstrated a reduced penetrance for monoallelic carriers of PMS2 mutations compared with the other mismatch repair (MMR) genes, but clinical management guidelines have largely proposed the same screening recommendations for all MMR gene carriers. The authors considered whether enough evidence existed to propose new screening guidelines specific to PMS2 mutation carriers with regard to age at onset and frequency of colonic screening. Published reports of PMS2 germ-line mutations were combined with unpublished cases from the authors' research registries and clinical practices, and a discussion of potential modification of cancer screening guidelines was pursued. A total of 234 monoallelic PMS2 mutation carriers from 170 families were included. Approximately 8% of those with colorectal cancer (CRC) were diagnosed before age 30, and each of these tumors presented on the left side of the colon. As it is currently unknown what causes the early onset of CRC in some families with monoallelic PMS2 germline mutations, the authors recommend against reducing cancer surveillance guidelines in families found having monoallelic PMS2 mutations in spite of the reduced penetrance.Genet Med 18 1, 13-19.
Collapse
|
126
|
Abstract
Lynch syndrome, which is now recognized as the most common hereditary colorectal cancer condition, is characterized by the predisposition to a spectrum of cancers, primarily colorectal cancer and endometrial cancer. We chronicle over a century of discoveries that revolutionized the diagnosis and clinical management of Lynch syndrome, beginning in 1895 with Warthin's observations of familial cancer clusters, through the clinical era led by Lynch and the genetic era heralded by the discovery of causative mutations in mismatch repair (MMR) genes, to ongoing challenges.
Collapse
Affiliation(s)
- Henry T Lynch
- Department of Preventive Medicine and Public Health, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, USA
| | - Carrie L Snyder
- Department of Preventive Medicine and Public Health, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, USA
| | - Trudy G Shaw
- Department of Preventive Medicine and Public Health, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, USA
| | - Christopher D Heinen
- Center for Molecular Medicine, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, Connecticut 06030-3101, USA
| | - Megan P Hitchins
- Department of Medicine (Oncology), Stanford Cancer Institute, Stanford University, Grant Building S169, 1291 Welch Road, Stanford, California 94305, USA
| |
Collapse
|
127
|
Abstract
Hereditary factors are involved in the development of a substantial proportion of all cases of colorectal cancer. Inherited forms of colorectal cancer are usually subdivided into polyposis syndromes characterized by the development of multiple colorectal polyps and nonpolyposis syndromes characterized by the development of few or no polyps. Timely identification of hereditary colorectal cancer syndromes is vital because patient participation in early detection programmes prevents premature death due to cancer. Polyposis syndromes are fairly easy to recognize, but some patients might have characteristics that overlap with other clinically defined syndromes. Comprehensive analysis of the genes known to be associated with polyposis syndromes helps to establish the final diagnosis in these patients. Recognizing Lynch syndrome is more difficult than other polyposis syndromes owing to the absence of pathognomonic features. Most investigators therefore recommend performing systematic molecular analysis of all newly diagnosed colorectal cancer using immunohistochemical methods. The implementation in clinical practice of new high-throughput methods for molecular analysis might further increase the identification of individuals at risk of hereditary colorectal cancer. This Review describes the clinical management of the various hereditary colorectal cancer syndromes and demonstrates the advantage of using a classification based on the underlying gene defects.
Collapse
Affiliation(s)
- Hans F A Vasen
- Department of Gastroenterology, Leiden University Medical Centre, Rijnsburgerweg 10, 2333 AA Leiden, Netherlands
| | - Ian Tomlinson
- Wellcome Trust Centre for Human Genetics and NIHR Comprehensive Biomedical Research Centre, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Antoni Castells
- Department of Gastroenterology, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERehd, Villaroel 170, 08036 Barcelona, Catalonia, Spain
| |
Collapse
|
128
|
Therkildsen C, Ladelund S, Rambech E, Persson A, Petersen A, Nilbert M. Glioblastomas, astrocytomas and oligodendrogliomas linked to Lynch syndrome. Eur J Neurol 2015; 22:717-24. [PMID: 25648859 DOI: 10.1111/ene.12647] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/12/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE Brain tumors represent a rare and relatively uncharacterized tumor type in Lynch syndrome. METHODS The national Danish Hereditary Nonpolyposis Colorectal Cancer Register was utilized to estimate the cumulative life-time risk for brain tumors in Lynch syndrome, and the mismatch repair (MMR) status in all tumors available was evaluated. RESULTS Primary brain tumors developed in 41/288 families at a median age of 41.5 (range 2-73) years. Biallelic MMR gene mutations were linked to brain tumor development in childhood. The risk of brain tumors was significantly higher (2.5%) in MSH2 gene mutation carriers compared to patients with mutations in MLH1 or MSH6. Glioblastomas predominated (56%), followed by astrocytomas (22%) and oligodendrogliomas (9%). MMR status was assessed in 10 tumors, eight of which showed MMR defects. None of these tumors showed immunohistochemical staining suggestive of the IDH1 R132H mutation. CONCLUSION In Lynch syndrome brain tumors occurred in 14% of the families with significantly higher risks for individuals with MSH2 gene mutations and development of childhood brain tumors in individuals with constitutional MMR defects.
Collapse
Affiliation(s)
- C Therkildsen
- Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark; Division of Oncology and Pathology, Institute of Clinical Sciences, Lund, Sweden
| | | | | | | | | | | |
Collapse
|
129
|
Pemov A, Sung H, Hyland PL, Sloan JL, Ruppert SL, Baldwin AM, Boland JF, Bass SE, Lee HJ, Jones KM, Zhang X, NISC Comparative Sequencing Program, Mullikin JC, Widemann BC, Wilson AF, Stewart DR. Genetic modifiers of neurofibromatosis type 1-associated café-au-lait macule count identified using multi-platform analysis. PLoS Genet 2014; 10:e1004575. [PMID: 25329635 PMCID: PMC4199479 DOI: 10.1371/journal.pgen.1004575] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 07/08/2014] [Indexed: 01/27/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant, monogenic disorder of dysregulated neurocutaneous tissue growth. Pleiotropy, variable expressivity and few NF1 genotype-phenotype correlates limit clinical prognostication in NF1. Phenotype complexity in NF1 is hypothesized to derive in part from genetic modifiers unlinked to the NF1 locus. In this study, we hypothesized that normal variation in germline gene expression confers risk for certain phenotypes in NF1. In a set of 79 individuals with NF1, we examined the association between gene expression in lymphoblastoid cell lines with NF1-associated phenotypes and sequenced select genes with significant phenotype/expression correlations. In a discovery cohort of 89 self-reported European-Americans with NF1 we examined the association between germline sequence variants of these genes with café-au-lait macule (CALM) count, a tractable, tumor-like phenotype in NF1. Two correlated, common SNPs (rs4660761 and rs7161) between DPH2 and ATP6V0B were significantly associated with the CALM count. Analysis with tiled regression also identified SNP rs4660761 as significantly associated with CALM count. SNP rs1800934 and 12 rare variants in the mismatch repair gene MSH6 were also associated with CALM count. Both SNPs rs7161 and rs4660761 (DPH2 and ATP6V0B) were highly significant in a mega-analysis in a combined cohort of 180 self-reported European-Americans; SNP rs1800934 (MSH6) was near-significant in a meta-analysis assuming dominant effect of the minor allele. SNP rs4660761 is predicted to regulate ATP6V0B, a gene associated with melanosome biology. Individuals with homozygous mutations in MSH6 can develop an NF1-like phenotype, including multiple CALMs. Through a multi-platform approach, we identified variants that influence NF1 CALM count. Neurofibromatosis type 1 (NF1) is a relatively common genetic disease that increases the chance to develop a variety of benign and malignant tumors. People with NF1 also typically feature a large number of birthmarks called café-au-lait macules. It is difficult to predict severity or specific problems in NF1. We sought to identify genes (other than NF1, the gene that causes the disease) that influence severity in NF1. We determined the number of café-au-lait macules in two groups of people with NF1. We measured the gene expression of about 10,000 genes in the cultured white blood cells from one group of people. We then sequenced a group of genes whose expression level was increased in people with higher numbers of café-au-lait macules. In the first group, we found common variants in genes MSH6 and near DPH2 and ATP6V0B that were significantly associated with the number of café-au-lait macules. Some of these variants were close to significant in the second group of people. The two variants near DPH2 and ATP6V0B were very significant when analysed in both groups combined. Our work is among the first to identify genetic variants that influence the severity of NF1.
Collapse
Affiliation(s)
- Alexander Pemov
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, United States of America
| | - Heejong Sung
- Genometrics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Paula L. Hyland
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, United States of America
| | - Jennifer L. Sloan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sarah L. Ruppert
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Andrea M. Baldwin
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joseph F. Boland
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, United States of America
| | - Sara E. Bass
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, United States of America
| | - Hyo Jung Lee
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, United States of America
| | - Kristine M. Jones
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, United States of America
| | - Xijun Zhang
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, United States of America
| | | | - James C. Mullikin
- NIH Intramural Sequencing Center, National Human Genome Research Institute, Rockville, Maryland, United States of America
| | - Brigitte C. Widemann
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alexander F. Wilson
- Genometrics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Douglas R. Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
130
|
Genik PC, Vyazunova I, Steffen LS, Bacher JW, Bielefeldt-Ohmann H, McKercher S, Ullrich RL, Fallgren CM, Weil MM, Ray FA. Leukemogenesis in heterozygous PU.1 knockout mice. Radiat Res 2014; 182:310-5. [PMID: 25076114 DOI: 10.1667/rr13738.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Most murine radiation-induced acute myeloid leukemias involve biallelic inactivation of the PU.1 gene, with one allele being lost through a radiation-induced chromosomal deletion and the other allele affected by a recurrent point mutation in codon 235 that is likely to be spontaneous. The short latencies of acute myeloid leukemias occurring in nonirradiated mice engineered with PU.1 conditional knockout or knockdown alleles suggest that once both copies of PU.1 have been lost any other steps involved in leukemogenesis occur rapidly. Yet, spontaneous acute myeloid leukemias have not been reported in mice heterozygous for a PU.1 knockout allele, an observation that conflicts with the understanding that the PU.1 codon 235 mutation is spontaneous. Here we describe experiments that show that the lack of spontaneous leukemia in PU.1 heterozygous knockout mice is not due to insufficient monitoring times or mouse numbers or the genetic background of the knockout mice. The results reveal that spontaneous leukemias that develop in mice of the mixed 129S2/SvPas and C57BL/6 background of knockout mice arise by a pathway that does not involve biallelic PU.1 mutation. In addition, the latency of radiation-induced leukemia in PU.1 heterozygous mice on a genetic background susceptible to radiation-induced leukemia indicates that the codon 235 mutation is not a rate-limiting step in radiation leukemogenesis driven by PU.1 loss.
Collapse
Affiliation(s)
- Paula C Genik
- a Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Stark Z, Campbell LJ, Mitchell C, James PA, Heath JA, Boussioutas A, Lynch C, Trainer AH. Clinical problem-solving. Spot diagnosis. N Engl J Med 2014; 370:2229-36. [PMID: 24897087 DOI: 10.1056/nejmcps1302661] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
132
|
Wimmer K, Kratz CP, Vasen HFA, Caron O, Colas C, Entz-Werle N, Gerdes AM, Goldberg Y, Ilencikova D, Muleris M, Duval A, Lavoine N, Ruiz-Ponte C, Slavc I, Burkhardt B, Brugieres L. Diagnostic criteria for constitutional mismatch repair deficiency syndrome: suggestions of the European consortium 'care for CMMRD' (C4CMMRD). J Med Genet 2014; 51:355-65. [PMID: 24737826 DOI: 10.1136/jmedgenet-2014-102284] [Citation(s) in RCA: 331] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Constitutional mismatch repair deficiency (CMMRD) syndrome is a distinct childhood cancer predisposition syndrome that results from biallelic germline mutations in one of the four MMR genes, MLH1, MSH2, MSH6 or PMS2. The tumour spectrum is very broad, including mainly haematological, brain and intestinal tract tumours. Patients show a variety of non-malignant features that are indicative of CMMRD. However, currently no criteria that should entail diagnostic evaluation of CMMRD exist. We present a three-point scoring system for the suspected diagnosis CMMRD in a paediatric/young adult cancer patient. Tumours highly specific for CMMRD syndrome are assigned three points, malignancies overrepresented in CMMRD two points and all other malignancies one point. According to their specificity for CMMRD and their frequency in the general population, additional features are weighted with 1-2 points. They include multiple hyperpigmented and hypopigmented skin areas, brain malformations, pilomatricomas, a second childhood malignancy, a Lynch syndrome (LS)-associated tumour in a relative and parental consanguinity. According to the scoring system, CMMRD should be suspected in any cancer patient who reaches a minimum of three points by adding the points of the malignancy and the additional features. The diagnostic steps to confirm or refute the suspected diagnosis are outlined. We expect that application of the suggested strategy for CMMRD diagnosis will increase the number of patients being identified at the time when they develop their first tumour. This will allow adjustment of the treatment modalities, offering surveillance strategies for second malignancies and appropriate counselling of the entire family.
Collapse
Affiliation(s)
- Katharina Wimmer
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Christian P Kratz
- Department of Pediatric Hematology & Oncology, Hannover Medical School, Hannover, Germany
| | - Hans F A Vasen
- Department of Gastroenterology & Hepatology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Olivier Caron
- Department of Medical Oncology, Gustave Roussy Cancer Institute, Villejuif, France
| | - Chrystelle Colas
- Department of Genetics, Pitié Salpêtrière Hospital, AP-HP, Paris, France INSERM, UMR_S 938, CDR Saint-Antoine, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France
| | - Natacha Entz-Werle
- Pédiatrie Onco-Hématologie-Pédiatrie III-CHRU Hautepierre UdS-EA 3430, Strasbourg, France
| | - Anne-Marie Gerdes
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospital, Copenhagen, Denmark
| | - Yael Goldberg
- Department of Oncology, Sharret Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Denisa Ilencikova
- 2nd Pediatric Department of Children University Hospital, Comenius University, Bratislava, Slovakia
| | - Martine Muleris
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France
| | - Alex Duval
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France
| | - Noémie Lavoine
- Department of Children and Adolescents Oncology, Gustave Roussy Cancer Institute, Villejuif, France
| | - Clara Ruiz-Ponte
- Fundación Pública Galega de Medicina Xenómica (FPGMX) SERGAS, Grupo de Medicina Xenómica, IDIS, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERer), Santiago de Compostela, Spain
| | - Irene Slavc
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Brigit Burkhardt
- Department of Pediatric Hematology and Oncology, University Children's Hospital, Münster, Germany
| | - Laurence Brugieres
- Department of Children and Adolescents Oncology, Gustave Roussy Cancer Institute, Villejuif, France
| | | |
Collapse
|
133
|
Sijmons RH, Greenblatt MS, Genuardi M. Gene variants of unknown clinical significance in Lynch syndrome. An introduction for clinicians. Fam Cancer 2014; 12:181-7. [PMID: 23525798 DOI: 10.1007/s10689-013-9629-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Clinicians referring patients for genetic testing for Lynch syndrome will sooner or later receive results for DNA Mismatch Repair (MMR) genes reporting DNA changes that are unclear from a clinical point of view. These changes are referred to as variants of unknown, or unclear, clinical significance (VUS). In contrast to clearly pathogenic mutations, VUS do not firmly diagnose Lynch syndrome at the molecular level and cannot be used to identify with certainty any of the patients' asymptomatic relatives as Lynch syndrome mutation carriers. The International database that collects MMR gene variants ( www.insight-group.org/mutations ) already lists more than 1,000 different VUSs and these variants are likely the tip of the iceberg. This paper aims at introducing non-geneticist clinicians to the topic of clinical MMR gene variant interpretation. Many lines of evidence are being used to classify VUS. Some are already familiar to clinicians and others may be less familiar but are expected to become important in clinical genetics in the coming years. Clinicians can play an important role in collecting the data needed to interpret the MMR variants detected in their patients.
Collapse
Affiliation(s)
- Rolf H Sijmons
- Department of Genetics, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, The Netherlands.
| | | | | |
Collapse
|
134
|
Vasen HFA, Ghorbanoghli Z, Bourdeaut F, Cabaret O, Caron O, Duval A, Entz-Werle N, Goldberg Y, Ilencikova D, Kratz CP, Lavoine N, Loeffen J, Menko FH, Muleris M, Sebille G, Colas C, Burkhardt B, Brugieres L, Wimmer K. Guidelines for surveillance of individuals with constitutional mismatch repair-deficiency proposed by the European Consortium "Care for CMMR-D" (C4CMMR-D). J Med Genet 2014; 51:283-93. [PMID: 24556086 DOI: 10.1136/jmedgenet-2013-102238] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Lynch syndrome (LS) is an autosomal dominant disorder caused by a defect in one of the DNA mismatch repair genes: MLH1, MSH2, MSH6 and PMS2. In the last 15 years, an increasing number of patients have been described with biallelic mismatch repair gene mutations causing a syndrome referred to as 'constitutional mismatch repair-deficiency' (CMMR-D). The spectrum of cancers observed in this syndrome differs from that found in LS, as about half develop brain tumours, around half develop digestive tract cancers and a third develop haematological malignancies. Brain tumours and haematological malignancies are mainly diagnosed in the first decade of life, and colorectal cancer (CRC) and small bowel cancer in the second and third decades of life. Surveillance for CRC in patients with LS is very effective. Therefore, an important question is whether surveillance for the most common CMMR-D-associated cancers will also be effective. Recently, a new European consortium was established with the aim of improving care for patients with CMMR-D. At a workshop of this group held in Paris in June 2013, one of the issues addressed was the development of surveillance guidelines. In 1968, criteria were proposed by WHO that should be met prior to the implementation of screening programmes. These criteria were used to assess surveillance in CMMR-D. The evaluation showed that surveillance for CRC is the only part of the programme that largely complies with the WHO criteria. The values of all other suggested screening protocols are unknown. In particular, it is questionable whether surveillance for haematological malignancies improves the already favourable outcome for patients with these tumours. Based on the available knowledge and the discussions at the workshop, the European consortium proposed a surveillance protocol. Prospective collection of all results of the surveillance is needed to evaluate the effectiveness of the programme.
Collapse
Affiliation(s)
- H F A Vasen
- Department of Gastroenterology & Hepatology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Peltomäki P. Epigenetic mechanisms in the pathogenesis of Lynch syndrome. Clin Genet 2014; 85:403-12. [PMID: 24443998 DOI: 10.1111/cge.12349] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/16/2014] [Accepted: 01/16/2014] [Indexed: 01/03/2023]
Abstract
Inherited defects in the DNA mismatch repair (MMR) system, MLH1, MSH2, MSH6, and PMS2 genes, underlie Lynch syndrome, one of the most prevalent cancer syndromes in man. The syndrome offers a model for cancers arising through MMR defects and microsatellite instability, which applies to ~ 15% of all colorectal, endometrial, and other cancers. Lynch syndrome also illustrates the significance of the epigenetic component in cancer development. Inactivation of tumor suppressor genes by epigenetic mechanisms is an acquired property of many tumors developing in Lynch syndrome. Furthermore, constitutional epimutations of MMR genes may explain a proportion of mutation-negative families lacking MLH1 or MSH2 protein expression in tumor tissue. This review provides an update of the molecular basis of Lynch syndrome by focusing on the role of epigenetic mechanisms in the pathogenesis of the disease.
Collapse
Affiliation(s)
- P Peltomäki
- Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| |
Collapse
|
136
|
Bakry D, Aronson M, Durno C, Rimawi H, Farah R, Alharbi QK, Alharbi M, Shamvil A, Ben-Shachar S, Mistry M, Constantini S, Dvir R, Qaddoumi I, Gallinger S, Lerner-Ellis J, Pollett A, Stephens D, Kelies S, Chao E, Malkin D, Bouffet E, Hawkins C, Tabori U. Genetic and clinical determinants of constitutional mismatch repair deficiency syndrome: report from the constitutional mismatch repair deficiency consortium. Eur J Cancer 2014; 50:987-96. [PMID: 24440087 DOI: 10.1016/j.ejca.2013.12.005] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 11/23/2013] [Accepted: 12/05/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Constitutional mismatch repair deficiency (CMMRD) is a devastating cancer predisposition syndrome for which data regarding clinical manifestations, molecular screening tools and management are limited. METHODS We established an international CMMRD consortium and collected comprehensive clinical and genetic data. Molecular diagnosis of tumour and germline biospecimens was performed. A surveillance protocol was developed and implemented. RESULTS Overall, 22/23 (96%) of children with CMMRD developed 40 different tumours. While childhood CMMRD related tumours were observed in all families, Lynch related tumours in adults were observed in only 2/14 families (p=0.0007). All children with CMMRD had café-au-lait spots and 11/14 came from consanguineous families. Brain tumours were the most common cancers reported (48%) followed by gastrointestinal (32%) and haematological malignancies (15%). Importantly, 12 (30%) of these were low grade and resectable cancers. Tumour immunohistochemistry was 100% sensitive and specific in diagnosing mismatch repair (MMR) deficiency of the corresponding gene while microsatellite instability was neither sensitive nor specific as a diagnostic tool (p<0.0001). Furthermore, screening of normal tissue by immunohistochemistry correlated with genetic confirmation of CMMRD. The surveillance protocol detected 39 lesions which included asymptomatic malignant gliomas and gastrointestinal carcinomas. All tumours were amenable to complete resection and all patients undergoing surveillance are alive. DISCUSSION CMMRD is a highly penetrant syndrome where family history of cancer may not be contributory. Screening tumours and normal tissues using immunohistochemistry for abnormal expression of MMR gene products may help in diagnosis and early implementation of surveillance for these children.
Collapse
Affiliation(s)
- Doua Bakry
- Division of Hematology/Oncology, The Hospital for Sick Children, Institute of Medical Sciences, The University of Toronto, Toronto, Ontario, Canada; Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Melyssa Aronson
- The Familial Gastrointestinal Cancer Registry at the Zane Cohen Centre for Digestive Disease and Department of Surgery, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Carol Durno
- The Familial Gastrointestinal Cancer Registry at the Zane Cohen Centre for Digestive Disease and Department of Surgery, Mount Sinai Hospital, Toronto, Ontario, Canada; Division of Gastroenterology, Nutrition and Hepatology, The Hospital for Sick Children, Toronto, Canada
| | - Hala Rimawi
- Faculty of Medicine, Jordan University of Science & Technology, Irbid, Jordan
| | - Roula Farah
- Saint George Hospital University Medical Center, Beirut, Lebanon
| | - Qasim Kholaif Alharbi
- King Fahad Specialist Hospital, Department of Pediatric Hematology/Oncology and Stem Cell Transplant, Dammam, Saudi Arabia
| | | | | | - Shay Ben-Shachar
- The Gilbert Israeli Neurofibromatosis Center (GINFC), Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Matthew Mistry
- Genetic and Genomic Program, Institute of Medical Sciences, The University of Toronto, Israel
| | - Shlomi Constantini
- Department of Pediatric Neurosurgery, Dana Children's Hospital, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Rina Dvir
- Pediatric Hemato-Oncology Department, Tel Aviv Medical Center, Tel-Aviv, Israel
| | | | - Steven Gallinger
- The Familial Gastrointestinal Cancer Registry at the Zane Cohen Centre for Digestive Disease and Department of Surgery, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Jordan Lerner-Ellis
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Canada; Dept of Lab Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Ontario Institute of Cancer Research, Genome Technologies Platform, Canada
| | - Aaron Pollett
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Canada; Dept of Lab Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Derek Stephens
- Dalla Lana School of Public Health University of Toronto, Canada; Clinical Research, The Hospital for Sick Children, Canada
| | | | | | - David Malkin
- Division of Hematology/Oncology, The Hospital for Sick Children, Institute of Medical Sciences, The University of Toronto, Toronto, Ontario, Canada; Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Eric Bouffet
- Division of Hematology/Oncology, The Hospital for Sick Children, Institute of Medical Sciences, The University of Toronto, Toronto, Ontario, Canada; Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada; Arthur and Sonia Labbatt Brain Tumor Research Center, Toronto, Ontario, Canada
| | - Cynthia Hawkins
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada; Department of Pathology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Uri Tabori
- Division of Hematology/Oncology, The Hospital for Sick Children, Institute of Medical Sciences, The University of Toronto, Toronto, Ontario, Canada; Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada; Arthur and Sonia Labbatt Brain Tumor Research Center, Toronto, Ontario, Canada.
| |
Collapse
|
137
|
Malkin D, Nichols KE, Zelley K, Schiffman JD. Predisposition to pediatric and hematologic cancers: a moving target. Am Soc Clin Oncol Educ Book 2014:e44-e55. [PMID: 24857136 DOI: 10.14694/edbook_am.2014.34.e44] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Our understanding of hereditary cancer syndromes in children, adolescents, and young adults continues to grow. In addition, we now recognize the wide variation in tumor spectrum found within each specific cancer predisposition syndrome including the risk for hematologic malignancies. An increased understanding of the genetic mutations, biologic consequences, tumor risk, and clinical management of these syndromes will improve patient outcome. In this article, we illustrate the diversity of molecular mechanisms by which these disorders develop in both children and adults with a focus on Li-Fraumeni syndrome, hereditary paraganglioma syndrome, DICER1 syndrome, and multiple endocrine neoplasia syndrome. This is followed by a detailed discussion of adult-onset tumors that can occur in the pediatric population including basal cell carcinoma, colorectal cancer, medullary thyroid cancer, and adrenal cortical carcinoma, and the underlying hereditary cancer syndromes that these tumors could indicate. Finally, the topic of leukemia predisposition syndromes is explored with a specific focus on the different categories of syndromes associated with leukemia risk (genetic instability/DNA repair syndromes, cell cycle/differentiation, bone marrow failure syndromes, telomere maintenance, immunodeficiency syndromes, and transcription factors/pure familial leukemia syndromes). Throughout this article, special attention is made to clinical recognition of these syndromes, genetic testing, and management with early tumor surveillance and screening.
Collapse
Affiliation(s)
- David Malkin
- From the Division of Hematology/Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada; Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA; and Division of Pediatric Hematology/Oncology, Department of Pediatrics and Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Kim E Nichols
- From the Division of Hematology/Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada; Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA; and Division of Pediatric Hematology/Oncology, Department of Pediatrics and Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Kristin Zelley
- From the Division of Hematology/Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada; Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA; and Division of Pediatric Hematology/Oncology, Department of Pediatrics and Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Joshua D Schiffman
- From the Division of Hematology/Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada; Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA; and Division of Pediatric Hematology/Oncology, Department of Pediatrics and Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| |
Collapse
|
138
|
Wimmer K, Wernstedt A. PMS2 gene mutational analysis: direct cDNA sequencing to circumvent pseudogene interference. Methods Mol Biol 2014; 1167:289-302. [PMID: 24823786 DOI: 10.1007/978-1-4939-0835-6_20] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The presence of highly homologous pseudocopies can compromise the mutation analysis of a gene of interest. In particular, when using PCR-based strategies, pseudogene co-amplification has to be effectively prevented. This is often achieved by using primers designed to be parental gene specific according to the reference sequence and by applying stringent PCR conditions. However, there are cases in which this approach is of limited utility. For example, it has been shown that the PMS2 gene exchanges sequences with one of its pseudogenes, named PMS2CL. This results in functional PMS2 alleles containing pseudogene-derived sequences at their 3'-end and in nonfunctional PMS2CL pseudogene alleles that contain gene-derived sequences. Hence, the paralogues cannot be distinguished according to the reference sequence. This shortcoming can be effectively circumvented by using direct cDNA sequencing. This approach is based on the selective amplification of PMS2 transcripts in two overlapping 1.6-kb RT-PCR products. In addition to avoiding pseudogene co-amplification and allele dropout, this method has also the advantage that it allows to effectively identify deletions, splice mutations, and de novo retrotransposon insertions that escape the detection of most DNA-based mutation analysis protocols.
Collapse
Affiliation(s)
- Katharina Wimmer
- Division of Human Genetics, Medical University Innsbruck, Peter-Mayr-Strasse 1, Innsbruck, 6020, Austria,
| | | |
Collapse
|
139
|
Thompson BA, Spurdle AB, Plazzer JP, Greenblatt MS, Akagi K, Al-Mulla F, Bapat B, Bernstein I, Capellá G, den Dunnen JT, du Sart D, Fabre A, Farrell MP, Farrington SM, Frayling IM, Frebourg T, Goldgar DE, Heinen CD, Holinski-Feder E, Kohonen-Corish M, Robinson KL, Leung SY, Martins A, Moller P, Morak M, Nystrom M, Peltomaki P, Pineda M, Qi M, Ramesar R, Rasmussen LJ, Royer-Pokora B, Scott RJ, Sijmons R, Tavtigian SV, Tops CM, Weber T, Wijnen J, Woods MO, Macrae F, Genuardi M. Application of a 5-tiered scheme for standardized classification of 2,360 unique mismatch repair gene variants in the InSiGHT locus-specific database. Nat Genet 2013; 46:107-115. [PMID: 24362816 DOI: 10.1038/ng.2854] [Citation(s) in RCA: 376] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/26/2013] [Indexed: 12/12/2022]
Abstract
The clinical classification of hereditary sequence variants identified in disease-related genes directly affects clinical management of patients and their relatives. The International Society for Gastrointestinal Hereditary Tumours (InSiGHT) undertook a collaborative effort to develop, test and apply a standardized classification scheme to constitutional variants in the Lynch syndrome-associated genes MLH1, MSH2, MSH6 and PMS2. Unpublished data submission was encouraged to assist in variant classification and was recognized through microattribution. The scheme was refined by multidisciplinary expert committee review of the clinical and functional data available for variants, applied to 2,360 sequence alterations, and disseminated online. Assessment using validated criteria altered classifications for 66% of 12,006 database entries. Clinical recommendations based on transparent evaluation are now possible for 1,370 variants that were not obviously protein truncating from nomenclature. This large-scale endeavor will facilitate the consistent management of families suspected to have Lynch syndrome and demonstrates the value of multidisciplinary collaboration in the curation and classification of variants in public locus-specific databases.
Collapse
Affiliation(s)
- Bryony A Thompson
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Medicine, University of Queensland, Brisbane, Australia
| | - Amanda B Spurdle
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - John-Paul Plazzer
- Department of Colorectal Medicine and Genetics, Royal Melbourne Hospital, Australia
| | - Marc S Greenblatt
- Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT, USA
| | - Kiwamu Akagi
- Division of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, Saitama, Japan
| | - Fahd Al-Mulla
- Department of Pathology, Faculty of Medicine, Health Sciences Center, Kuwait University, Safat, Kuwait
| | - Bharati Bapat
- Department of Lab Medicine and Pathobiology, University of Toronto, Canada
| | - Inge Bernstein
- Danish HNPCC Registry, Copenhagen, Denmark.,Surgical Gastroenterology Department, Aalborg University Hospital, Aalborg, Denmark
| | - Gabriel Capellá
- Hereditary Cancer Program, Catalan Institute of Oncology-IDIBELL, Barcelona, Spain
| | - Johan T den Dunnen
- Center of Human and Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Desiree du Sart
- Molecular Genetics Lab, Victorian Clinical Genetics Services, Murdoch Childrens Research Institute, Melbourne, Australia
| | - Aurelie Fabre
- INSERM UMR S910, Department of Medical Genetics and Functional Genomics, Marseille, France
| | - Michael P Farrell
- Department of Cancer Genetics, Mater Private Hospital, Dublin, Ireland
| | - Susan M Farrington
- Colon Cancer Genetics Group, Institute of Genetics and Molecular Medicine, University of Edinburgh, Scotland
| | - Ian M Frayling
- Institute of Medical Genetics, University Hospital of Wales, Cardiff, UK
| | - Thierry Frebourg
- Inserm U1079, Faculty of Medicine, Institute for Biomedical Research, University of Rouen, France
| | - David E Goldgar
- Department of Dermatology, University of Utah Medical School, Salt Lake City, UT, USA.,Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Christopher D Heinen
- Center for Molecular Medicine, UConn Health Center, Farmington, CT, USA.,Neag Comprehensive Cancer Center, UConn Health Center, Farmington, CT, USA
| | - Elke Holinski-Feder
- MGZ - Medizinisch Genetisches Zentrum, Munich, Germany.,Klinikum der Universität München, Campus Innenstadt, Medizinische Klinik und Poliklinik IV, Munich, Germany
| | - Maija Kohonen-Corish
- School of Medicine, University of Western Sydney, Sydney, Australia.,The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia.,St Vincent's Clinical School, University of NSW, Sydney, Australia
| | - Kristina Lagerstedt Robinson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Suet Yi Leung
- Hereditary Gastrointestinal Cancer Genetic Diagnosis Laboratory, Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Alexandra Martins
- Inserm U1079, University of Rouen, Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Pal Moller
- Research Group on Inherited Cancer, Department of Medical Genetics, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Monika Morak
- MGZ - Medizinisch Genetisches Zentrum, Munich, Germany.,Klinikum der Universität München, Campus Innenstadt, Medizinische Klinik und Poliklinik IV, Munich, Germany
| | - Minna Nystrom
- Division of Genetics, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Paivi Peltomaki
- Department of Medical Genetics, Haartman Institute, University of Helsinki, Finland
| | - Marta Pineda
- Hereditary Cancer Program, Catalan Institute of Oncology-IDIBELL, Barcelona, Spain
| | - Ming Qi
- Center for Genetic and Genomic Medicine, The First Affiliated Hospital of Zhejiang University School of Medicine, James Watson Institute of Genomic Sciences, Beijing Genome Institute, China.,University of Rochester Medical Center, NY, USA
| | - Rajkumar Ramesar
- MRC Human Genetics Research Unit, Division of Human Genetics, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, South Africa
| | | | | | - Rodney J Scott
- Discipline of Medical Genetics, Faculty of Health, University of Newcastle, The Hunter Medical Research Institute, NSW, Australia.,The Division of Molecular Medicine, Hunter Area Pathology Service, John Hunter Hospital, Newcastle, NSW, Australia
| | - Rolf Sijmons
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Carli M Tops
- Center of Human and Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Thomas Weber
- State University of New York at Downstate, Brooklyn, NY, USA
| | - Juul Wijnen
- Center of Human and Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Michael O Woods
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Finlay Macrae
- Department of Colorectal Medicine and Genetics, Royal Melbourne Hospital, Australia
| | - Maurizio Genuardi
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Italy.,Fiorgen Foundation for Pharmacogenomics, Sesto Fiorentino, Italy
| |
Collapse
|
140
|
Durno C, Pollett A, Gallinger S. Unifying diagnosis for adenomatous polyps, café-au-lait macules, and a brain mass? Gastroenterology 2013; 145:e3-4. [PMID: 24070729 DOI: 10.1053/j.gastro.2013.06.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/20/2013] [Accepted: 06/21/2013] [Indexed: 12/02/2022]
Affiliation(s)
- Carol Durno
- Zane Cohen Familial Gastrointestinal Cancer Registry and Department of Surgery, Mount Sinai Hospital, University of Toronto, Toronto, Canada; Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | | | | |
Collapse
|
141
|
Luoto KR, Kumareswaran R, Bristow RG. Tumor hypoxia as a driving force in genetic instability. Genome Integr 2013; 4:5. [PMID: 24152759 PMCID: PMC4016142 DOI: 10.1186/2041-9414-4-5] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 10/16/2013] [Indexed: 12/26/2022] Open
Abstract
Sub-regions of hypoxia exist within all tumors and the presence of intratumoral hypoxia has an adverse impact on patient prognosis. Tumor hypoxia can increase metastatic capacity and lead to resistance to chemotherapy and radiotherapy. Hypoxia also leads to altered transcription and translation of a number of DNA damage response and repair genes. This can lead to inhibition of recombination-mediated repair of DNA double-strand breaks. Hypoxia can also increase the rate of mutation. Therefore, tumor cell adaptation to the hypoxic microenvironment can drive genetic instability and malignant progression. In this review, we focus on hypoxia-mediated genetic instability in the context of aberrant DNA damage signaling and DNA repair. Additionally, we discuss potential therapeutic approaches to specifically target repair-deficient hypoxic tumor cells.
Collapse
Affiliation(s)
- Kaisa R Luoto
- Ontario Cancer Institute, Radiation Medicine Program, Princess Margaret Cancer Centre (University Health Network), Toronto, ON, Canada
| | - Ramya Kumareswaran
- Ontario Cancer Institute, Radiation Medicine Program, Princess Margaret Cancer Centre (University Health Network), Toronto, ON, Canada.,Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Radiation Medicine Program, Princess Margaret Cancer Centre (University Health Network), 610 University Avenue, Toronto, ON M5G2M9, Canada
| | - Robert G Bristow
- Ontario Cancer Institute, Radiation Medicine Program, Princess Margaret Cancer Centre (University Health Network), Toronto, ON, Canada.,Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Radiation Medicine Program, Princess Margaret Cancer Centre (University Health Network), 610 University Avenue, Toronto, ON M5G2M9, Canada
| |
Collapse
|
142
|
Bruwer Z, Algar U, Vorster A, Fieggen K, Davidson A, Goldberg P, Wainwright H, Ramesar R. Predictive genetic testing in children: constitutional mismatch repair deficiency cancer predisposing syndrome. J Genet Couns 2013; 23:147-55. [PMID: 24122200 DOI: 10.1007/s10897-013-9659-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 09/11/2013] [Indexed: 01/26/2023]
Abstract
Biallelic germline mutations in mismatch repair genes predispose to constitutional mismatch repair deficiency syndrome (CMMR-D). The condition is characterized by a broad spectrum of early-onset tumors, including hematological, brain and bowel and is frequently associated with features of Neurofibromatosis type 1. Few definitive screening recommendations have been suggested and no published reports have described predictive testing. We report on the first case of predictive testing for CMMR-D following the identification of two non-consanguineous parents, with the same heterozygous mutation in MLH1: c.1528C > T. The genetic counseling offered to the family, for their two at-risk daughters, is discussed with a focus on the ethical considerations of testing children for known cancer-causing variants. The challenges that are encountered when reporting on heterozygosity in a child younger than 18 years (disclosure of carrier status and risk for Lynch syndrome), when discovered during testing for homozygosity, are addressed. In addition, the identification of CMMR-D in a three year old, and the recommended clinical surveillance that was proposed for this individual is discussed. Despite predictive testing and presymptomatic screening, the sudden death of the child with CMMR-D syndrome occurred 6 months after her last surveillance MRI. This report further highlights the difficulty of developing guidelines, as a result of the rarity of cases and diversity of presentation.
Collapse
|
143
|
Bellacosa A. Developmental disease and cancer: biological and clinical overlaps. Am J Med Genet A 2013; 161A:2788-96. [PMID: 24123833 DOI: 10.1002/ajmg.a.36267] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 09/07/2013] [Indexed: 01/14/2023]
Abstract
Numerous parallelisms exist between development and cancer. In this article, I review some of the founding ideas linking development and cancer, and highlight clinical conditions exhibiting features of both developmental derangement and cancer predisposition, including cohesinopathies, rasopathies, phakomatoses, Proteus syndrome and other overgrowth disorders, recessive chromosome breakage syndromes, and dominant hereditary cancer syndromes. I suggest that these disorders encompass a continuous spectrum spanning clinical genetics and clinical oncology, and derive some general implications that might be useful in the future for the treatment of these diseases.
Collapse
Affiliation(s)
- Alfonso Bellacosa
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
144
|
de Miranda NFCC, Peng R, Georgiou K, Wu C, Falk Sörqvist E, Berglund M, Chen L, Gao Z, Lagerstedt K, Lisboa S, Roos F, van Wezel T, Teixeira MR, Rosenquist R, Sundström C, Enblad G, Nilsson M, Zeng Y, Kipling D, Pan-Hammarström Q. DNA repair genes are selectively mutated in diffuse large B cell lymphomas. ACTA ACUST UNITED AC 2013; 210:1729-42. [PMID: 23960188 PMCID: PMC3754869 DOI: 10.1084/jem.20122842] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
DNA repair mechanisms are fundamental for B cell development, which relies on the somatic diversification of the immunoglobulin genes by V(D)J recombination, somatic hypermutation, and class switch recombination. Their failure is postulated to promote genomic instability and malignant transformation in B cells. By performing targeted sequencing of 73 key DNA repair genes in 29 B cell lymphoma samples, somatic and germline mutations were identified in various DNA repair pathways, mainly in diffuse large B cell lymphomas (DLBCLs). Mutations in mismatch repair genes (EXO1, MSH2, and MSH6) were associated with microsatellite instability, increased number of somatic insertions/deletions, and altered mutation signatures in tumors. Somatic mutations in nonhomologous end-joining (NHEJ) genes (DCLRE1C/ARTEMIS, PRKDC/DNA-PKcs, XRCC5/KU80, and XRCC6/KU70) were identified in four DLBCL tumors and cytogenetic analyses revealed that translocations involving the immunoglobulin-heavy chain locus occurred exclusively in NHEJ-mutated samples. The novel mutation targets, CHEK2 and PARP1, were further screened in expanded DLBCL cohorts, and somatic as well as novel and rare germline mutations were identified in 8 and 5% of analyzed tumors, respectively. By correlating defects in a subset of DNA damage response and repair genes with genomic instability events in tumors, we propose that these genes play a role in DLBCL lymphomagenesis.
Collapse
Affiliation(s)
- Noel F C C de Miranda
- Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Lindsay H, Jubran RF, Wang L, Kipp BR, May WA. Simultaneous colonic adenocarcinoma and medulloblastoma in a 12-year-old with biallelic deletions in PMS2. J Pediatr 2013; 163:601-3. [PMID: 23582141 PMCID: PMC3862975 DOI: 10.1016/j.jpeds.2013.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/15/2013] [Accepted: 03/06/2013] [Indexed: 10/26/2022]
Abstract
We describe a 12-year-old girl, simultaneously presenting with colonic adenocarcinoma and medulloblastoma from bialleic deletions in the mismatch repair gene PMS2. Her distinctive physical and clinical findings are characteristic of constitutional mismatch repair deficiency syndrome. Earlier recognition of such findings may permit better screening and more effective treatment.
Collapse
Affiliation(s)
- Holly Lindsay
- Department of Pediatrics, Children’s Center for Cancer and Blood Diseases, University of Southern California, Los Angeles, CA, USA
| | - Rima F. Jubran
- Department of Pediatrics, Children’s Center for Cancer and Blood Diseases, University of Southern California, Los Angeles, CA, USA
| | - Larry Wang
- Department of Pathology, Children’s Hospital Los Angeles and Saban Research Institute; Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Benjamin R. Kipp
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - William A. May
- Department of Pediatrics, Children’s Center for Cancer and Blood Diseases, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
146
|
Abstract
While the majority of leukemia cases occur in the absence of any known predisposing factor, there are germline mutations that significantly increase the risk of developing hematopoietic malignancies in childhood. In this review article, we describe a number of these mutations and their clinical features. These predispositions can be broadly classified as those leading to bone marrow failure, those involving tumor suppressor genes, DNA repair defects, immunodeficiencies or other congenital syndromes associated with transient myeloid disorders. While leukemia can develop as a secondary event in the aforementioned syndromes, there are also several syndromes that specifically lead to the development of leukemia as their primary phenotype. Many of the genes discussed in this review can also be somatically mutated in other cancers, highlighting the importance of understanding shared alterations and mechanisms underpinning syndromic and sporadic leukemia.
Collapse
Affiliation(s)
- Elliot Stieglitz
- Department of Pediatrics, Benioff Children's Hospital, University of California San Francisco, USA
| | | |
Collapse
|
147
|
Ingham D, Diggle CP, Berry I, Bristow CA, Hayward BE, Rahman N, Markham AF, Sheridan EG, Bonthron DT, Carr IM. Simple detection of germline microsatellite instability for diagnosis of constitutional mismatch repair cancer syndrome. Hum Mutat 2013; 34:847-52. [PMID: 23483711 DOI: 10.1002/humu.22311] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 02/28/2013] [Indexed: 11/10/2022]
Abstract
Heterozygous mutations in DNA mismatch repair (MMR) genes result in predisposition to colorectal cancer (hereditary nonpolyposis colorectal cancer or Lynch syndrome). Patients with biallelic mutations in these genes, however, present earlier, with constitutional mismatch repair deficiency cancer syndrome (CMMRD), which is characterized by a spectrum of rare childhood malignancies and café-au-lait skin patches. The hallmark of MMR deficiency, microsatellite instability (MSI), is readily detectable in tumor DNA in Lynch syndrome, but is also present in constitutional DNA of CMMRD patients. However, detection of constitutional or germline MSI (gMSI) has hitherto relied on technically difficult assays that are not routinely applicable for clinical diagnosis. Consequently, we have developed a simple high-throughput screening methodology to detect gMSI in CMMRD patients based on the presence of stutter peaks flanking a dinucleotide repeat allele when amplified from patient blood DNA samples. Using the three different microsatellite markers, the gMSI ratio was determined in a cohort of normal individuals and 10 CMMRD patients, with biallelic germline mutations in PMS2 (seven patients), MSH2 (one patient), or MSH6 (two patients). Subjects with either PMS2 or MSH2 mutations were easily identified; however, this measure was not altered in patients with CMMRD due to MSH6 mutation.
Collapse
Affiliation(s)
- Danielle Ingham
- School of Medicine, University of Leeds, Leeds, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Chmara M, Wernstedt A, Wasag B, Peeters H, Renard M, Beert E, Brems H, Giner T, Bieber I, Hamm H, Sciot R, Wimmer K, Legius E. Multiple pilomatricomas with somatic CTNNB1 mutations in children with constitutive mismatch repair deficiency. Genes Chromosomes Cancer 2013; 52:656-64. [PMID: 23629955 DOI: 10.1002/gcc.22061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 03/12/2013] [Accepted: 03/13/2013] [Indexed: 11/09/2022] Open
Abstract
Constitutional mismatch repair deficiency (CMMR-D) due to biallelic germline mutations in one of four mismatch repair genes causes a childhood cancer syndrome characterized by a broad tumor spectrum including hematological malignancies, and brain and Lynch syndrome-associated tumors. Herein, we report three children who had in addition to CMMR-D-associated malignancies multiple pilomatricomas. These are benign skin tumors of hair matrical differentiation frequently associated with somatic activating mutations in the ß-catenin gene CTNNB1. In two of the children, the diagnosis of CMMR-D was confirmed by the identification of biallelic germline PMS2 mutations. In the third individual, we only found a heterozygous germline PMS2 mutation. In all nine pilomatricomas with basophilic cells, we detected CTNNB1 mutations. Our findings indicate that CTNNB1 is a target for mutations when mismatch repair is impaired due to biallelic PMS2 mutations. An elevated number of activating CTNNB1 alterations in hair matrix cells may explain the development of multiple pilomatricomas in CMMR-D patients. Of note, two of the children presented with multiple pilomatricomas and other nonmalignant features of CMMR-D before they developed malignancies. To offer surveillance programs to CMMR-D patients, it may be justified to suspect CMMR-D syndrome in individuals fulfilling multiple nonmalignant features of CMMR-D (including multiple pilomatricomas) and offer molecular testing in combination with interdisciplinary counseling.
Collapse
Affiliation(s)
- Magdalena Chmara
- Department of Human Genetics, KU Leuven, University Hospitals Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Abstract
The mismatch repair (MMR) system detects non-Watson-Crick base pairs and strand misalignments arising during DNA replication and mediates their removal by catalyzing excision of the mispair-containing tract of nascent DNA and its error-free resynthesis. In this way, MMR improves the fidelity of replication by several orders of magnitude. It also addresses mispairs and strand misalignments arising during recombination and prevents synapses between nonidentical DNA sequences. Unsurprisingly, MMR malfunction brings about genomic instability that leads to cancer in mammals. But MMR proteins have recently been implicated also in other processes of DNA metabolism, such as DNA damage signaling, antibody diversification, and repair of interstrand cross-links and oxidative DNA damage, in which their functions remain to be elucidated. This article reviews the progress in our understanding of the mechanism of replication error repair made during the past decade.
Collapse
Affiliation(s)
- Josef Jiricny
- Institute of Molecular Cancer Research, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
150
|
|