101
|
Kaur C, Kushwaha HR, Mustafiz A, Pareek A, Sopory SK, Singla-Pareek SL. Analysis of global gene expression profile of rice in response to methylglyoxal indicates its possible role as a stress signal molecule. FRONTIERS IN PLANT SCIENCE 2015; 6:682. [PMID: 26388885 PMCID: PMC4558467 DOI: 10.3389/fpls.2015.00682] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/17/2015] [Indexed: 05/21/2023]
Abstract
Methylglyoxal (MG) is a toxic metabolite produced primarily as a byproduct of glycolysis. Being a potent glycating agent, it can readily bind macromolecules like DNA, RNA, or proteins, modulating their expression and activity. In plants, despite the known inhibitory effects of MG on growth and development, still limited information is available about the molecular mechanisms and response pathways elicited upon elevation in MG levels. To gain insight into the molecular basis of MG response, we have investigated changes in global gene expression profiles in rice upon exposure to exogenous MG using GeneChip microarrays. Initially, growth of rice seedlings was monitored in response to increasing MG concentrations which could retard plant growth in a dose-dependent manner. Upon exposure to 10 mM concentration of MG, a total of 1685 probe sets were up- or down-regulated by more than 1.5-fold in shoot tissues within 16 h. These were classified into 10 functional categories. The genes involved in signal transduction such as, protein kinases and transcription factors, were significantly over-represented in the perturbed transcriptome, of which several are known to be involved in abiotic and biotic stress response indicating a cross-talk between MG-responsive and stress-responsive signal transduction pathways. Through in silico studies, we could predict 7-8 bp long conserved motif as a possible MG-responsive element (MGRE) in the 1 kb upstream region of genes that were more than 10-fold up- or down-regulated in the analysis. Since several perturbations were found in signaling cascades in response to MG, we hereby suggest that it plays an important role in signal transduction probably acting as a stress signal molecule.
Collapse
Affiliation(s)
- Charanpreet Kaur
- Plant Molecular Biology Group, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
| | - Hemant R. Kushwaha
- Synthetic Biology and Biofuels Group, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
| | - Ananda Mustafiz
- Plant Molecular Biology Group, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Sudhir K. Sopory
- Plant Molecular Biology Group, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
| | - Sneh L. Singla-Pareek
- Plant Molecular Biology Group, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
- *Correspondence: Sneh L. Singla-Pareek, Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
102
|
Fabiano CC, Tezotto T, Favarin JL, Polacco JC, Mazzafera P. Essentiality of nickel in plants: a role in plant stresses. FRONTIERS IN PLANT SCIENCE 2015; 6:754. [PMID: 26442067 PMCID: PMC4585283 DOI: 10.3389/fpls.2015.00754] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/03/2015] [Indexed: 05/19/2023]
Abstract
The element Ni is considered an essential plant micronutrient because it acts as an activator of the enzyme urease. Recent studies have shown that Ni may activate an isoform of glyoxalase I, which performs an important step in the degradation of methylglyoxal (MG), a potent cytotoxic compound naturally produced by cellular metabolism. Reduced glutathione (GSH) is consumed and regenerated in the process of detoxification of MG, which is produced during stress (stress-induced production). We examine the role of Ni in the relationship between the MG cycle and GSH homeostasis and suggest that Ni may have a key participation in plant antioxidant metabolism, especially in stressful situations.
Collapse
Affiliation(s)
- Caio C. Fabiano
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de CampinasCampinas, Brazil
| | - Tiago Tezotto
- Departamento de Produção Vegetal, Universidade de São Paulo, Escola Superior de Agricultura Luiz de QueirozPiracicaba, Brazil
| | - José L. Favarin
- Departamento de Produção Vegetal, Universidade de São Paulo, Escola Superior de Agricultura Luiz de QueirozPiracicaba, Brazil
| | - Joseph C. Polacco
- Interdisciplinary Plant Group, Department of Biochemistry, University of MissouriColumbia, MO, USA
| | - Paulo Mazzafera
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de CampinasCampinas, Brazil
- *Correspondence: Paulo Mazzafera, Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, CP 6109, Rua Monteiro Lobato 255, CEP 13083-862, Campinas, SP, Brazil
| |
Collapse
|
103
|
Detection of genomic loci associated with environmental variables using generalized linear mixed models. Genomics 2014; 105:69-75. [PMID: 25499197 DOI: 10.1016/j.ygeno.2014.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 11/27/2014] [Accepted: 12/05/2014] [Indexed: 11/21/2022]
Abstract
We tested the use of Generalized Linear Mixed Models to detect associations between genetic loci and environmental variables, taking into account the population structure of sampled individuals. We used a simulation approach to generate datasets under demographically and selectively explicit models. These datasets were used to analyze and optimize GLMM capacity to detect the association between markers and selective coefficients as environmental data in terms of false and true positive rates. Different sampling strategies were tested, maximizing the number of populations sampled, sites sampled per population, or individuals sampled per site, and the effect of different selective intensities on the efficiency of the method was determined. Finally, we apply these models to an Arabidopsis thaliana SNP dataset from different accessions, looking for loci associated with spring minimal temperature. We identified 25 regions that exhibit unusual correlations with the climatic variable and contain genes with functions related to temperature stress.
Collapse
|
104
|
Ghosh A, Pareek A, Sopory SK, Singla-Pareek SL. A glutathione responsive rice glyoxalase II, OsGLYII-2, functions in salinity adaptation by maintaining better photosynthesis efficiency and anti-oxidant pool. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:93-105. [PMID: 25039836 DOI: 10.1111/tpj.12621] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/14/2014] [Accepted: 07/16/2014] [Indexed: 05/04/2023]
Abstract
Glyoxalase II (GLY II), the second enzyme of glyoxalase pathway that detoxifies cytotoxic metabolite methylglyoxal (MG), belongs to the superfamily of metallo-β-lactamases. Here, detailed analysis of one of the uncharacterized rice glyoxalase II family members, OsGLYII-2 was conducted in terms of its metal content, enzyme kinetics and stress tolerance potential. Functional complementation of yeast GLY II mutant (∆GLO2) and enzyme kinetics data suggested that OsGLYII-2 possesses characteristic GLY II activity using S-lactoylglutathione (SLG) as the substrate. Further, Inductively Coupled Plasma Atomic Emission spectroscopy and modelled structure revealed that OsGLYII-2 contains a binuclear Zn/Fe centre in its active site and chelation studies indicated that these are essential for its activity. Interestingly, reconstitution of chelated enzyme with Zn(2+), and/or Fe(2+) could not reactivate the enzyme, while addition of Co(2+) was able to do so. End product inhibition study provides insight into the kinetics of GLY II enzyme and assigns hitherto unknown function to reduced glutathione (GSH). Ectopic expression of OsGLYII-2 in Escherichia coli and tobacco provides improved tolerance against salinity and dicarbonyl stress indicating towards its role in abiotic stress tolerance. Maintained levels of MG and GSH as well as better photosynthesis rate and reduced oxidative damage in transgenic plants under stress conditions seems to be the possible mechanism facilitating enhanced stress tolerance.
Collapse
Affiliation(s)
- Ajit Ghosh
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | | | | |
Collapse
|
105
|
Kaur C, Mustafiz A, Sarkar AK, Ariyadasa TU, Singla-Pareek SL, Sopory SK. Expression of abiotic stress inducible ETHE1-like protein from rice is higher in roots and is regulated by calcium. PHYSIOLOGIA PLANTARUM 2014; 152:1-16. [PMID: 24410953 DOI: 10.1111/ppl.12147] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 12/02/2013] [Accepted: 12/03/2013] [Indexed: 05/04/2023]
Abstract
ETHYLMALONIC ENCEPHALOPATHY PROTEIN 1 (ETHE1) encodes sulfur dioxygenase (SDO) activity regulating sulfide levels in living organisms. It is an essential gene and mutations in ETHE1 leads to ethylmalonic encephalopathy (EE) in humans and embryo lethality in Arabidopsis. At present, very little is known regarding the role of ETHE1 beyond the context of EE and almost nothing is known about factors affecting its regulation in plant systems. In this study, we have identified, cloned and characterized OsETHE1, a gene encoding ETHE1-like protein from Oryza sativa. ETHE1 proteins in general are most similar to glyoxalase II (GLYII) and hence OsETHE1 has been earlier annotated as OsGLYII1, a putative GLYII gene. Here we show that OsETHE1 lacks GLYII activity and is instead an ETHE1 homolog being localized in mitochondria like its human and Arabidopsis counterparts. We have isolated and analyzed 1618 bp OsETHE1 promoter (pOsETHE1) to examine the factors affecting OsETHE1 expression. For this, transcriptional promoter pOsETHE1: 5-bromo-5-chloro-3-indolyl-β-D-glucuronide (GUS) fusion construct was made and stably transformed into rice. GUS expression pattern of transgenic pOsETHE1:GUS plants reveal a high root-specific expression of OsETHE1. The pOsETHE1 activity was stimulated by Ca(II) and required light for induction. Moreover, pOsETHE1 activity was induced under various abiotic stresses such as heat, salinity and oxidative stress, suggesting a potential role of OsETHE1 in stress response.
Collapse
Affiliation(s)
- Charanpreet Kaur
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | | | | | | | | |
Collapse
|
106
|
Abstract
With the expansion of the world population, the environmental pollution and toxicity by chemicals raises concern. Rapid industrialization and urbanization processes has led to the incorporation of pollutants such as pesticides, petroleum products, acids and heavy metals in the natural resources like soil, water and air thus degrading not only the quality of the environment, but also affecting both plants and animals. Heavy metals including lead, nickel, cadmium, copper, cobalt, chromium and mercury are important environmental pollutants that cause toxic effects to plants; thus, lessening productivity and posing dangerous threats to the agro-ecosystems. They act as stress to plants and affect the plant physiology. In this review, we have summarized the effects of heavy metals on seeds of different plants affecting the germination process. Although reports exist on mechanisms by which the heavy metals act as stress and how plants have learnt to overcome, the future scope of this review remains in excavating the signaling mechanisms in germinating seeds in response to heavy metal stress.
Collapse
Affiliation(s)
- Sunil Kumar Sethy
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
| | | |
Collapse
|
107
|
Mustafiz A, Ghosh A, Tripathi AK, Kaur C, Ganguly AK, Bhavesh NS, Tripathi JK, Pareek A, Sopory SK, Singla-Pareek SL. A unique Ni2+ -dependent and methylglyoxal-inducible rice glyoxalase I possesses a single active site and functions in abiotic stress response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:951-63. [PMID: 24661284 DOI: 10.1111/tpj.12521] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/07/2014] [Accepted: 03/19/2014] [Indexed: 05/06/2023]
Abstract
The glyoxalase system constitutes the major pathway for the detoxification of metabolically produced cytotoxin methylglyoxal (MG) into a non-toxic metabolite D-lactate. Glyoxalase I (GLY I) is an evolutionarily conserved metalloenzyme requiring divalent metal ions for its activity: Zn(2+) in the case of eukaryotes or Ni(2+) for enzymes of prokaryotic origin. Plant GLY I proteins are part of a multimember family; however, not much is known about their physiological function, structure and metal dependency. In this study, we report a unique GLY I (OsGLYI-11.2) from Oryza sativa (rice) that requires Ni(2+) for its activity. Its biochemical, structural and functional characterization revealed it to be a monomeric enzyme, possessing a single Ni(2+) coordination site despite containing two GLY I domains. The requirement of Ni(2+) as a cofactor by an enzyme involved in cellular detoxification suggests an essential role for this otherwise toxic heavy metal in the stress response. Intriguingly, the expression of OsGLYI-11.2 was found to be highly substrate inducible, suggesting an important mode of regulation for its cellular levels. Heterologous expression of OsGLYI-11.2 in Escherichia coli and model plant Nicotiana tabacum (tobacco) resulted in improved adaptation to various abiotic stresses caused by increased scavenging of MG, lower Na(+) /K(+) ratio and maintenance of reduced glutathione levels. Together, our results suggest interesting links between MG cellular levels, its detoxification by GLY I, and Ni(2+) - the heavy metal cofactor of OsGLYI-11.2, in relation to stress response and adaptation in plants.
Collapse
Affiliation(s)
- Ananda Mustafiz
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Scavenging Systems for Reactive Carbonyls in the CyanobacteriumSynechocystissp. PCC 6803. Biosci Biotechnol Biochem 2014; 77:2441-8. [DOI: 10.1271/bbb.130554] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
109
|
Why don't plants have diabetes? Systems for scavenging reactive carbonyls in photosynthetic organisms. Biochem Soc Trans 2014; 42:543-7. [DOI: 10.1042/bst20130273] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the present paper, we review the toxicity of sugar- and lipid-derived RCs (reactive carbonyls) and the RC-scavenging systems observed in photosynthetic organisms. Similar to heterotrophs, photosynthetic organisms are exposed to the danger of RCs produced in sugar metabolism during both respiration and photosynthesis. RCs such as methylglyoxal and acrolein have toxic effects on the photosynthetic activity of higher plants and cyanobacteria. These toxic effects are assumed to occur uniquely in photosynthetic organisms, suggesting that RC-scavenging systems are essential for their survival. The aldo–keto reductase and the glyoxalase systems mainly scavenge sugar-derived RCs in higher plants and cyanobacteria. 2-Alkenal reductase and alkenal/alkenone reductase catalyse the reduction of lipid-derived RCs in higher plants. In cyanobacteria, medium-chain dehydrogenases/reductases are the main scavengers of lipid-derived RCs.
Collapse
|
110
|
Kaur C, Vishnoi A, Ariyadasa TU, Bhattacharya A, Singla-Pareek SL, Sopory SK. Episodes of horizontal gene-transfer and gene-fusion led to co-existence of different metal-ion specific glyoxalase I. Sci Rep 2013; 3:3076. [PMID: 24220130 PMCID: PMC3826101 DOI: 10.1038/srep03076] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 10/04/2013] [Indexed: 02/05/2023] Open
Abstract
Glyoxalase pathway plays an important role in stress adaptation and many clinical disorders. The first enzyme of this pathway, glyoxalase I (GlxI), uses methylglyoxal as a substrate and requires either Ni(II)/Co(II) or Zn(II) for activity. Here we have investigated the origin of different metal ion specificities of GlxI and subsequent pattern of inheritance during evolution. Our results suggest a primitive origin of single-domain Ni dependent GlxI [Ni-GlxI]. This subsequently evolved into Zn activated GlxI [Zn-GlxI] in deltaproteobacteria. However, origin of eukaryotic Zn-GlxI is different and can be traced to GlxI from Candidatus pelagibacter and Sphingomonas. In eukaryotes GlxI has evolved as two-domain protein but the corresponding Zn form is lost in plants/higher eukaryotes. In plants gene expansion has given rise to multiple two-domain Ni-GlxI which are differentially regulated under abiotic stress conditions. Our results suggest that different forms of GlxI have evolved to help plants adapt to stress.
Collapse
Affiliation(s)
- Charanpreet Kaur
- 1] International Centre for Genetic Engineering and Biotechnology Aruna Asaf Ali Marg 110 067 New Delhi, India [2] [3]
| | | | | | | | | | | |
Collapse
|
111
|
Anstead JA, Hartson SD, Thompson GA. The broccoli (Brassica oleracea) phloem tissue proteome. BMC Genomics 2013; 14:764. [PMID: 24195484 PMCID: PMC3833381 DOI: 10.1186/1471-2164-14-764] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 10/30/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The transport of sugars, hormones, amino acids, proteins, sugar alcohols, and other organic compounds from the sites of synthesis to the sites of use or storage occurs through the conducting cells of the phloem. To better understand these processes a comprehensive understanding of the proteins involved is required. While a considerable amount of data has been obtained from proteomic analyses of phloem sap, this has mainly served to identify the soluble proteins that are translocated through the phloem network. RESULTS In order to obtain more comprehensive proteomic data from phloem tissue we developed a simple dissection procedure to isolate phloem tissue from Brassica oleracea. The presence of a high density of phloem sieve elements was confirmed using light microscopy and fluorescently labeled sieve element-specific antibodies. To increase the depth of the proteomic analysis for membrane bound and associated proteins, soluble proteins were extracted first and subsequent extractions were carried out using two different detergents (SDS and CHAPSO). Across all three extractions almost four hundred proteins were identified and each extraction method added to the analysis demonstrating the utility of an approach combining several extraction protocols. CONCLUSIONS The phloem was found to be enriched in proteins associated with biotic and abiotic stress responses and structural proteins. Subsequent expression analysis identified a number of genes that appear to be expressed exclusively or at very high levels in phloem tissue, including genes that are known to express specifically in the phloem as well as novel phloem genes.
Collapse
Affiliation(s)
- James A Anstead
- College of Agricultural Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
112
|
Kwon K, Choi D, Hyun JK, Jung HS, Baek K, Park C. Novel glyoxalases fromArabidopsis thaliana. FEBS J 2013; 280:3328-39. [DOI: 10.1111/febs.12321] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 04/30/2013] [Accepted: 05/01/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Kyu Kwon
- Department of Biological Sciences; Korea Advanced Institute of Science and Technology; Yuseong-gu Daejeon Korea
| | - Dongwook Choi
- Department of Biological Sciences; Korea Advanced Institute of Science and Technology; Yuseong-gu Daejeon Korea
| | - Jae Kyung Hyun
- Division of Electron Microscopic Research; Korea Basic Science Institute; Daejeon Korea
| | - Hyun Suk Jung
- Division of Electron Microscopic Research; Korea Basic Science Institute; Daejeon Korea
| | - Kwanghee Baek
- Department of Genetic Engineering and Graduate School of Biotechnology; Kyung Hee University; Yongin Korea
| | - Chankyu Park
- Department of Biological Sciences; Korea Advanced Institute of Science and Technology; Yuseong-gu Daejeon Korea
| |
Collapse
|
113
|
Zhao L, Zhang N, Ma PF, Liu Q, Li DZ, Guo ZH. Phylogenomic analyses of nuclear genes reveal the evolutionary relationships within the BEP clade and the evidence of positive selection in Poaceae. PLoS One 2013; 8:e64642. [PMID: 23734211 PMCID: PMC3667173 DOI: 10.1371/journal.pone.0064642] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/16/2013] [Indexed: 11/23/2022] Open
Abstract
BEP clade of the grass family (Poaceae) is composed of three subfamilies, i.e. Bambusoideae, Ehrhartoideae, and Pooideae. Controversies on the phylogenetic relationships among three subfamilies still persist in spite of great efforts. However, previous evidence was mainly provided from plastid genes with only a few nuclear genes utilized. Given different evolutionary histories recorded by plastid and nuclear genes, it is indispensable to uncover their relationships based on nuclear genes. Here, eleven species with whole-sequenced genome and six species with transcriptomic data were included in this study. A total of 121 one-to-one orthologous groups (OGs) were identified and phylogenetic trees were reconstructed by different tree-building methods. Genes which might have undergone positive selection and played important roles in adaptive evolution were also investigated from 314 and 173 one-to-one OGs in two bamboo species and 14 grass species, respectively. Our results support the ((B, P) E) topology with high supporting values. Besides, our findings also indicate that 24 and nine orthologs with statistically significant evidence of positive selection are mainly involved in abiotic and biotic stress response, reproduction and development, plant metabolism and enzyme etc. from two bamboo species and 14 grass species, respectively. In summary, this study demonstrates the power of phylogenomic approach to shed lights on the evolutionary relationships within the BEP clade, and offers valuable insights into adaptive evolution of the grass family.
Collapse
Affiliation(s)
- Lei Zhao
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ning Zhang
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Peng-Fei Ma
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Qi Liu
- Institute of Genomic Medicine, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - De-Zhu Li
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhen-Hua Guo
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
114
|
Wu C, Ma C, Pan Y, Gong S, Zhao C, Chen S, Li H. Sugar beet M14 glyoxalase I gene can enhance plant tolerance to abiotic stresses. JOURNAL OF PLANT RESEARCH 2013; 126:415-25. [PMID: 23203352 DOI: 10.1007/s10265-012-0532-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 09/20/2012] [Indexed: 05/06/2023]
Abstract
Glyoxalase I is the first enzyme of the glyoxalase system that can detoxify methylglyoxal, a cytotoxic compound increased rapidly under stress conditions. Here we report cloning and characterization of a glyoxalase I from sugar beet M14 line (an interspecific hybrid between a wild species Beta corolliflora Zoss and a cultivated species B. vulgaris L). The full-length gene BvM14-glyoxalase I has 1,449 bp in length with an open reading frame of 1,065 bp encoding 354 amino acids. Sequence analysis shows the conserved glyoxalase I domains, metal and glutathione binding sites and secondary structure (α-helixes and β-sheets). The BvM14-glyoxalase I gene was ubiquitously expressed in different tissues of sugar beet M14 line and up-regulated in response to salt, mannitol and oxidative stresses. Heterologous expression of BvM14-glyoxalase I could increase E. coli tolerance to methylglyoxal. Transgenic tobacco plants constitutively expressing BvM14-glyoxalase I were generated. Both leaf discs and seedlings showed significant tolerance to methylglyoxal, salt, mannitol and H2O2. These results suggest an important role of BvM14-glyoxalase I in cellular detoxification and tolerance to abiotic stresses.
Collapse
Affiliation(s)
- Chuan Wu
- College of Life Sciences, Heilongjiang University, Harbin, China.
| | | | | | | | | | | | | |
Collapse
|
115
|
Gómez Ojeda A, Corrales Escobosa AR, Wrobel K, Yanez Barrientos E, Wrobel K. Effect of Cd(ii) and Se(iv) exposure on cellular distribution of both elements and concentration levels of glyoxal and methylglyoxal in Lepidium sativum. Metallomics 2013; 5:1254-61. [DOI: 10.1039/c3mt00058c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
116
|
Sharma S, Mustafiz A, Singla-Pareek SL, Shankar Srivastava P, Sopory SK. Characterization of stress and methylglyoxal inducible triose phosphate isomerase (OscTPI) from rice. PLANT SIGNALING & BEHAVIOR 2012; 7:1337-45. [PMID: 22902706 PMCID: PMC3493422 DOI: 10.4161/psb.21415] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
As compared with plant system, triose phosphate isomerase (TPI), a crucial enzyme of glycolysis, has been well studied in animals. In order to characterize TPI in plants, a full-length cDNA encoding OscTPI was cloned from rice and expressed in E. coli. The recombinant OscTPI was purified to homogeneity and it showed Km value of 0.1281 ± 0.025 µM, and the Vmax value of 138.7 ± 16 µmol min (-1) mg (-1) which is comparable to the kinetic values studied in other plants. The OscTPI was found to be exclusively present in the cytoplasm when checked with the various methods. Functional assay showed that OscTPI could complement a TPI mutation in yeast. Real time PCR analysis revealed that OscTPI transcript level was regulated in response to various abiotic stresses. Interestingly, it was highly induced under different concentration of methylglyoxal (MG) stress in a concentration dependent manner. There was also a corresponding increase in the protein and the enzyme activity of OscTPI both in shoot and root tissues under MG stress. Our result shows that increases in MG leads to the increase in TPI which results in decrease of DHAP and consequently decrease in the level of toxic MG.
Collapse
Affiliation(s)
- Shweta Sharma
- Plant Molecular Biology; International Centre for Genetic Engineering and Biotechnology; New Delhi, India
| | - Ananda Mustafiz
- Plant Molecular Biology; International Centre for Genetic Engineering and Biotechnology; New Delhi, India
| | - Sneh L. Singla-Pareek
- Plant Molecular Biology; International Centre for Genetic Engineering and Biotechnology; New Delhi, India
| | | | - Sudhir Kumar Sopory
- Plant Molecular Biology; International Centre for Genetic Engineering and Biotechnology; New Delhi, India
- Correspondence to: Sudhir Kumar Sopory,
| |
Collapse
|
117
|
Lundquist PK, Davis JI, van Wijk KJ. ABC1K atypical kinases in plants: filling the organellar kinase void. TRENDS IN PLANT SCIENCE 2012; 17:546-55. [PMID: 22694836 PMCID: PMC3926664 DOI: 10.1016/j.tplants.2012.05.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/10/2012] [Accepted: 05/12/2012] [Indexed: 05/20/2023]
Abstract
Surprisingly few protein kinases have been demonstrated in chloroplasts or mitochondria. Here, we discuss the activity of bc(1) complex kinase (ABC1K) protein family, which we suggest locate in mitochondria and plastids, thus filling the kinase void. The ABC1Ks are atypical protein kinases and their ancestral function is the regulation of quinone synthesis. ABC1Ks have proliferated from one or two members in non-photosynthetic organisms to more than 16 members in algae and higher plants. In this review, we reconstruct the evolutionary history of the ABC1K family, provide a functional domain analysis for angiosperms and a nomenclature for ABC1Ks in Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa) and maize (Zea mays). Finally, we hypothesize that targets of ABC1Ks include enzymes of prenyl-lipid metabolism as well as components of the organellar gene expression machineries.
Collapse
Affiliation(s)
- Peter K Lundquist
- Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
118
|
Kumar R, Mustafiz A, Sahoo KK, Sharma V, Samanta S, Sopory SK, Pareek A, Singla-Pareek SL. Functional screening of cDNA library from a salt tolerant rice genotype Pokkali identifies mannose-1-phosphate guanyl transferase gene (OsMPG1) as a key member of salinity stress response. PLANT MOLECULAR BIOLOGY 2012; 79:555-68. [PMID: 22644442 DOI: 10.1007/s11103-012-9928-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 05/13/2012] [Indexed: 05/19/2023]
Abstract
Salinity, one of the most deleterious stresses, affects growth and overall yield of crop plants. To identify new "candidate genes" having potential role in salinity tolerance, we have carried out 'functional screening' of a cDNA library (made from a salt tolerant rice-Pokkali). Based on this screening, we identified a cDNA clone that was allowing yeast cells to grow in the presence of 1.2 M NaCl. Sequencing and BLAST search identified it as mannose-1-phosphate guanyl transferase (OsMPG1) gene from rice. Analysis of rice genome sequence database indicated the presence of 3 additional genes for MPG. Out of four, three MPG genes viz. OsMPG1, 3 and 4 were able to functionally complement yeast MPG mutant -YDL055C. We have carried out detailed transcript profiling of all members of MPG family by qRT-PCR using two contrasting rice genotypes (IR64 and Pokkali) under different abiotic stresses (salinity, drought, oxidative stress, heat stress, cold or UV light). These MPG genes showed differential expression under various abiotic stresses with two genes (OsMPG1 and 3) showing high induction in response to multiple stresses. Analysis of rice microarray data indicated higher expression levels for OsMPG1 in specific tissues such as roots, leaves, shoot apical meristem and different stages of panicle and seed development, thereby indicating its developmental regulation. Functional validation of OsMPG1 carried out by overexpression in the transgenic tobacco revealed its involvement in enhancing salinity stress tolerance.
Collapse
Affiliation(s)
- Ritesh Kumar
- Plant Molecular Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | | | | | | | | | |
Collapse
|
119
|
The role of glyoxalases for sugar stress and aging, with relevance for dyskinesia, anxiety, dementia and Parkinson's disease. Aging (Albany NY) 2011; 3:5-9. [PMID: 21248374 PMCID: PMC3047129 DOI: 10.18632/aging.100258] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|