101
|
Where Land and Water Meet: Making Amphibian Breeding Sites Attractive for Amphibians. DIVERSITY 2022. [DOI: 10.3390/d14100834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The protection of wetlands is a cornerstone in the conservation of pond-breeding amphibians. Because protected wetlands are rarely natural areas, but are often man-made, at least in Europe, it is important that they are well managed to fulfill their intended function. Appropriate management requires knowledge of the ecology of the species, particularly habitat requirements. Here, we combine species monitoring data and habitat mapping data in an analysis where our goal was to describe the factors that determine the occupancy of amphibian species in federally protected amphibian breeding sites. As expected, every species had its own habitat requirements, often a combination of both a terrestrial and aquatic habitat (i.e., landscape complementation). In most species, occupancy was strongly positively affected with the amount of aquatic habitat, but predicted occupancy probabilities were low because the amount of aquatic habitat was low in most sites. The area or proportion of ruderal vegetation also had positive effects on multiple species, while other types of terrestrial habitat (e.g., meadows) led to low occupancy probabilities. The total area of the protected breeding sites was never included in a final model and connectivity was important only for one species (Triturus cristatus). The latter finding implies that the quality of the landscape between breeding sizes is more important than distance per se, while the former implies that the area of some specific habitats within breeding sites is crucial for high occupancies. Thus, increasing the amount of aquatic habitats and likewise terrestrial habitats within protected areas would make them more likely to achieve their conservation objectives. Our study is an example of how the joint analysis of monitoring data and habitat data (based on mapping in the field) can lead to evidence-based suggestions on how to improve conservation practice.
Collapse
|
102
|
Earhart ML, Blanchard TS, Harman AA, Schulte PM. Hypoxia and High Temperature as Interacting Stressors: Will Plasticity Promote Resilience of Fishes in a Changing World? THE BIOLOGICAL BULLETIN 2022; 243:149-170. [PMID: 36548973 DOI: 10.1086/722115] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
AbstractDetermining the resilience of a species or population to climate change stressors is an important but difficult task because resilience can be affected both by genetically based variation and by various types of phenotypic plasticity. In addition, most of what is known about organismal responses is for single stressors in isolation, but environmental change involves multiple environmental factors acting in combination. Here, our goal is to summarize what is known about phenotypic plasticity in fishes in response to high temperature and low oxygen (hypoxia) in combination across multiple timescales, to ask how much resilience plasticity may provide in the face of climate change. There are relatively few studies investigating plasticity in response to these environmental stressors in combination; but the available data suggest that although fish have some capacity to adjust their phenotype and compensate for the negative effects of acute exposure to high temperature and hypoxia through acclimation or developmental plasticity, compensation is generally only partial. There is very little known about intergenerational and transgenerational effects, although studies on each stressor in isolation suggest that both positive and negative impacts may occur. Overall, the capacity for phenotypic plasticity in response to these two stressors is highly variable among species and extremely dependent on the specific context of the experiment, including the extent and timing of stressor exposure. This variability in the nature and extent of plasticity suggests that existing phenotypic plasticity is unlikely to adequately buffer fishes against the combined stressors of high temperature and hypoxia as our climate warms.
Collapse
|
103
|
Yao M, Zhang S, Lu Q, Chen X, Zhang SY, Kong Y, Zhao J. Fishing for fish environmental DNA: Ecological applications, methodological considerations, surveying designs, and ways forward. Mol Ecol 2022; 31:5132-5164. [PMID: 35972241 DOI: 10.1111/mec.16659] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 12/15/2022]
Abstract
Vast global declines of freshwater and marine fish diversity and population abundance pose serious threats to both ecosystem sustainability and human livelihoods. Environmental DNA (eDNA)-based biomonitoring provides robust, efficient, and cost-effective assessment of species occurrences and population trends in diverse aquatic environments. Thus, it holds great potential for improving conventional surveillance frameworks to facilitate fish conservation and fisheries management. However, the many technical considerations and rapid developments underway in the eDNA arena can overwhelm researchers and practitioners new to the field. Here, we systematically analysed 416 fish eDNA studies to summarize research trends in terms of investigated targets, research aims, and study systems, and reviewed the applications, rationales, methodological considerations, and limitations of eDNA methods with an emphasis on fish and fisheries research. We highlighted how eDNA technology may advance our knowledge of fish behaviour, species distributions, population genetics, community structures, and ecological interactions. We also synthesized the current knowledge of several important methodological concerns, including the qualitative and quantitative power eDNA has to recover fish biodiversity and abundance, and the spatial and temporal representations of eDNA with respect to its sources. To facilitate ecological applications implementing fish eDNA techniques, recent literature was summarized to generate guidelines for effective sampling in lentic, lotic, and marine habitats. Finally, we identified current gaps and limitations, and pointed out newly emerging research avenues for fish eDNA. As methodological optimization and standardization improve, eDNA technology should revolutionize fish monitoring and promote biodiversity conservation and fisheries management that transcends geographic and temporal boundaries.
Collapse
Affiliation(s)
- Meng Yao
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Shan Zhang
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Qi Lu
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Xiaoyu Chen
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Si-Yu Zhang
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Yueqiao Kong
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Jindong Zhao
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
104
|
Danaher C, Newbold T, Cardille J, Chapman ASA. Prioritizing conservation in sub-Saharan African lakes based on freshwater biodiversity and algal bloom metrics. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13914. [PMID: 35435285 PMCID: PMC9796571 DOI: 10.1111/cobi.13914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/25/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
As agricultural land use and climate change continue to pose increasing threats to biodiversity in sub-Saharan Africa, efforts are being made to identify areas where trade-offs between future agricultural development and terrestrial biodiversity conservation are expected to be greatest. However, little research so far has focused on freshwater biodiversity conservation in the context of agricultural development in sub-Saharan Africa. We aimed to identify lakes and lake areas where freshwater biodiversity is most likely to be affected by eutrophication and Harmful Algal Blooms (i.e., when algae multiply to the extent that they have toxic effects on people and freshwater fauna), some of the most important emerging threats to freshwater ecosystems worldwide, especially with the onset of climate change. Using novel remote-sensing techniques, we identified lakes that demonstrated high biodiversity and algal bloom levels. We calculated the richness of freshwater species and the normalized difference chlorophyll index (NDCI) to prioritize lakes in Ghana, Ethiopia, Zambia, and bordering countries, of high priority for conservation. We identified 169 priority lakes and lake areas for conservation, based on high levels of biodiversity exposed to potentially harmful algal blooms. Zambia had the most lakes identified as conservation priorities (76% of its small lakes and five 100-km2 areas in large lakes). Many of the conservation priority lakes and lake areas identified in this study were in transboundary watersheds; thus, collaborative water resource management and conservation at the watershed scale is needed. The use of remote-sensing tools to prioritize freshwater systems for conservation according to algal-bloom risk is vital in remote, undersampled world regions, especially given the increasing threat posed to freshwater biodiversity by rapidly expanding agriculture and climate change.
Collapse
Affiliation(s)
- Cody Danaher
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
- Department of Natural Resource Sciences and Bieler School of EnvironmentMcGill UniversityMontrealQuébecCanada
| | - Tim Newbold
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
| | - Jeffrey Cardille
- Department of Natural Resource Sciences and Bieler School of EnvironmentMcGill UniversityMontrealQuébecCanada
| | - Abbie S. A. Chapman
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
- UCL Institute for Sustainable ResourcesLondonUK
| |
Collapse
|
105
|
Tadmor-Levi R, Cummings D, Borovski T, Shapira R, Marcos-Hadad E, David L. A method for quick and efficient identification of cichlid species by high resolution DNA melting analysis of minibarcodes. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1010838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Freshwater bodies are key in supporting aquatic and terrestrial life. Ecological balance of freshwater habitats is very vulnerable, hence, often significantly disrupted by climatic changes and anthropogenic acts. In Israel, due to its relatively arid climate, many freshwater resources have been disrupted and still are under great pressure. The Sea of Galilee is the largest surface freshwater body in the Middle East and a habitat to unique populations of several fishes, including six cichlid species. Studies on the ecology of these fish and their conservation require effective monitoring tools. In this study, a simple and efficient molecular method was developed to identify the species of these lake cichlids using high resolution melting analysis of mini DNA barcodes. The species of an individual sample can be identified by a single tube PCR reaction. This assay successfully identified sequence differences both among and within species. Here, this method identified the species for 279 small cichlid fry that could not be morphologically identified, allowing to estimate relative species abundance and map their distribution in time and location. The results are key to understand not only the ecology of young stages but also their recruitment potential to adult fish populations and their sustainability. This method can be readily implemented in further ecological studies and surveys related to these species, in the lake and its surroundings, as a tool to enhance understanding and protection of these species.
Collapse
|
106
|
Nederstigt TAP, Peijnenburg WJGM, Schrama M, van Ommen JR, Vijver MG. Impacts of a novel controlled-release TiO 2-coated (nano-) formulation of carbendazim and its constituents on freshwater macroinvertebrate communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156554. [PMID: 35691359 DOI: 10.1016/j.scitotenv.2022.156554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/02/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Recently, the delivery of pesticides through novel controlled-release (nano-)formulations has been proposed intending to reduce (incidental) pesticide translocation to non-target sites. Concerns have however been raised with regards to the potentially enhanced toxicity of controlled-release (nano-)formulations to non-target organisms and ecosystems. We evaluated long-term (i.e. 1 and 3 month-) impacts of a novel controlled-release pesticide formulation (nano-TiO2-coated carbendazim) and its individual and combined constituents (i.e. nano-sized TiO2 and carbendazim) on naturally established freshwater macroinvertebrate communities. In doing so, we simultaneously assessed impacts of nano-sized TiO2 (nTiO2), currently one of the most used and emitted engineered nanomaterials world-wide. We determined ecological impacts on diversity (i.e. β-diversity), structure (i.e. rank abundance parameters), and functional composition (i.e. feeding guilds & trophic groups) of communities and underlying effects at lower organizational levels (i.e. population dynamics of individual taxa). Freshwater macroinvertebrate communities were negligibly impacted by nTiO2 at environmentally realistic concentrations. The controlled-release (nano-)formulation significantly delayed release of carbendazim to the water column. Nevertheless, conventional- (i.e. un-coated-) and nTiO2-coated carbendazim induced a similar set of adverse impacts at all investigated levels of ecological organization and time points. Our findings show fundamental restructuring of the taxonomic- and functional composition of macroinvertebrate communities as a result of low-level pesticide exposure, and thereby highlight the need for mitigating measures to reduce pesticide-induced stress on freshwater ecosystems.
Collapse
Affiliation(s)
- Tom A P Nederstigt
- Institute of Environmental Sciences, University of Leiden, Leiden, the Netherlands.
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences, University of Leiden, Leiden, the Netherlands; National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Maarten Schrama
- Institute of Environmental Sciences, University of Leiden, Leiden, the Netherlands
| | - J Ruud van Ommen
- Department of Chemical Engineering, TU Delft Process & Product Technology Institute, Delft University of Technology, Delft, the Netherlands
| | - Martina G Vijver
- Institute of Environmental Sciences, University of Leiden, Leiden, the Netherlands
| |
Collapse
|
107
|
Li Q, Deng M, Li W, Pan Y, Lai G, Liu Y, Devlin AT, Wang W, Zhan S. Habitat configuration of the Yangtze finless porpoise in Poyang Lake under a shifting hydrological regime. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155954. [PMID: 35580683 DOI: 10.1016/j.scitotenv.2022.155954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Habitats of freshwater cetaceans are under increasing threats of deterioration globally. A complete understanding of long-term variations of habitat configurations is therefore critical. Poyang Lake in China contains a large and stable population of the Yangtze finless porpoise, a critically endangered freshwater cetacean species. However, constant water decline and intensified human activities in the lake since 2000 have led to uncertainty for porpoise conservation. We address this issue via remote sensing and hydrodynamic modeling of nine environmental variables during different seasons over the past two decades. The MaxEnt model was used to extrapolate changes in likely habitat configurations of the porpoise, and MARXAN algorithms delineated habitat protection priorities in different seasons. Results illustrate that flow velocity, water depth, Chl-a concentration, distance to grassland and boats greatly affect the porpoise distribution. Shifts in these environmental variables can lead to significant habitat decreases in all seasons. In particular, unstable hydrological regimes may force the porpoises to live in habitats with lower water depths for suitable flow velocity conditions in the dry season, and habitats are increasingly infringed by grassland and mudflats. High protection priority areas such as the northern channel and the estuaries of the tributaries urgently need long-term systematic and targeted surveys of ecosystem functionality and flexible management of anthropogenic activities. Combining remote sensing with hydrodynamic and species distribution models can also assist in understanding the situation of other aquatic species.
Collapse
Affiliation(s)
- Qiyue Li
- College of Geography and Environment, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Mingming Deng
- College of Geography and Environment, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Wenya Li
- College of Geography and Environment, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yue Pan
- College of Geography and Environment, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Geying Lai
- College of Geography and Environment, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; The Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| | - Ying Liu
- College of Geography and Environment, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; The Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Adam Thomas Devlin
- College of Geography and Environment, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Weiping Wang
- Department of agriculture and Rural Affairs of Jiangxi Province, Nanchang, Jiangxi 330000, China
| | - Shupin Zhan
- Department of agriculture and Rural Affairs of Jiangxi Province, Nanchang, Jiangxi 330000, China
| |
Collapse
|
108
|
Rangaswamy B, Ji CW, Kim WS, Park JW, Kim YJ, Kwak IS. Profiling Analysis of Filter Feeder Polypedilum (Chironomidae) Gut Contents Using eDNA Metabarcoding Following Contrasting Habitat Types-Weir and Stream. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10945. [PMID: 36078662 PMCID: PMC9517803 DOI: 10.3390/ijerph191710945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
We analyzed the dietary composition of Polypedilum larvae among two contrasting habitats (river and weir). Our approach was (i) to apply eDNA-based sampling to reveal the gut content of the chironomid larvae, (ii) the diversity of gut contents in the two aquatic habitats, and (iii) assessment of habitat sediment condition with the food sources in the gut. The most abundant food was Chlorophyta in the gut of the river (20%) and weir (39%) chironomids. The average ratio of fungi, protozoa, and zooplankton in river chironomids gut was 5.9%, 7.2%, and 3.8%, while it was found decreased to 1.2%, 2.5%, and 0.1% in weir chironomids. Aerobic fungi in river midge guts were 3.6% and 10.34% in SC and IS, while they were in the range of 0.34-2.58% in weir midges. The hierarchical clustering analysis showed a relationship of environmental factors with food contents. Abiotic factors (e.g., pH) in the river and weir habitats correlated the clustered pattern with phytoplankton and minor groups of fungi. This study could help understand the food source diversity in the chironomid and habitat environmental conditions by using eDNA metabarcoding as an effective tool to determine dietary composition.
Collapse
Affiliation(s)
- Boobal Rangaswamy
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, Korea
| | - Chang Woo Ji
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, Korea
| | - Won-Seok Kim
- Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, Korea
| | - Jae-Won Park
- Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, Korea
| | - Yong Jun Kim
- Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, Korea
| | - Ihn-Sil Kwak
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, Korea
- Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, Korea
| |
Collapse
|
109
|
Healy BD, Budy P, Conner MM, Omana Smith EC. Life and death in a dynamic environment: Invasive trout, floods, and intraspecific drivers of translocated populations. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022. [PMID: 35403769 DOI: 10.6084/m9.figshare.c.5805593.v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Understanding the relative strengths of intrinsic and extrinsic factors regulating populations is a long-standing focus of ecology and critical to advancing conservation programs for imperiled species. Conservation could benefit from an increased understanding of factors influencing vital rates (somatic growth, recruitment, survival) in small, translocated populations, which is lacking owing to difficulties in long-term monitoring of rare species. Translocations, here defined as the transfer of wild-captured individuals from source populations to new habitats, are widely used for species conservation, but outcomes are often minimally monitored, and translocations that are monitored often fail. To improve our understanding of how translocated populations respond to environmental variation, we developed and tested hypotheses related to intrinsic (density dependent) and extrinsic (introduced rainbow trout Oncorhynchus mykiss, stream flow and temperature regime) causes of vital rate variation in endangered humpback chub (Gila cypha) populations translocated to Colorado River tributaries in the Grand Canyon (GC), USA. Using biannual recapture data from translocated populations over 10 years, we tested hypotheses related to seasonal somatic growth, and recruitment and population growth rates with linear mixed-effects models and temporal symmetry mark-recapture models. We combined data from recaptures and resights of dispersed fish (both physical captures and continuously recorded antenna detections) from throughout GC to test survival hypotheses, while accounting for site fidelity, using joint live-recapture/live-resight models. While recruitment only occurred in one site, which also drove population growth (relative to survival), evidence supported hypotheses related to density dependence in growth, survival, and recruitment, and somatic growth and recruitment were further limited by introduced trout. Mixed-effects models explained between 67% and 86% of the variation in somatic growth, which showed increased growth rates with greater flood-pulse frequency during monsoon season. Monthly survival was 0.56-0.99 and 0.80-0.99 in the two populations, with lower survival during periods of higher intraspecific abundance and low flood frequency. Our results suggest translocations can contribute toward the recovery of large-river fishes, but continued suppression of invasive fishes to enhance recruitment may be required to ensure population resilience. Furthermore, we demonstrate the importance of flooding to population demographics in food-depauperate, dynamic, invaded systems.
Collapse
Affiliation(s)
- Brian D Healy
- Department of Watershed Sciences and the Ecology Center, Utah State University, Logan, Utah, USA
- Native Fish Ecology and Conservation Program, Division of Science and Resource Management, Grand Canyon National Park, National Park Service, Flagstaff, Arizona, USA
| | - Phaedra Budy
- Department of Watershed Sciences and the Ecology Center, Utah State University, Logan, Utah, USA
- United States Geological Survey, Utah Cooperative Fish and Wildlife Research Unit, Department of Watershed Sciences, Utah State University, Logan, Utah, USA
| | - Mary M Conner
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, Utah, USA
| | - Emily C Omana Smith
- Native Fish Ecology and Conservation Program, Division of Science and Resource Management, Grand Canyon National Park, National Park Service, Flagstaff, Arizona, USA
| |
Collapse
|
110
|
Healy BD, Budy P, Conner MM, Omana Smith EC. Life and death in a dynamic environment: Invasive trout, floods, and intraspecific drivers of translocated populations. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2635. [PMID: 35403769 PMCID: PMC9541007 DOI: 10.1002/eap.2635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 01/25/2022] [Accepted: 02/24/2022] [Indexed: 05/14/2023]
Abstract
Understanding the relative strengths of intrinsic and extrinsic factors regulating populations is a long-standing focus of ecology and critical to advancing conservation programs for imperiled species. Conservation could benefit from an increased understanding of factors influencing vital rates (somatic growth, recruitment, survival) in small, translocated populations, which is lacking owing to difficulties in long-term monitoring of rare species. Translocations, here defined as the transfer of wild-captured individuals from source populations to new habitats, are widely used for species conservation, but outcomes are often minimally monitored, and translocations that are monitored often fail. To improve our understanding of how translocated populations respond to environmental variation, we developed and tested hypotheses related to intrinsic (density dependent) and extrinsic (introduced rainbow trout Oncorhynchus mykiss, stream flow and temperature regime) causes of vital rate variation in endangered humpback chub (Gila cypha) populations translocated to Colorado River tributaries in the Grand Canyon (GC), USA. Using biannual recapture data from translocated populations over 10 years, we tested hypotheses related to seasonal somatic growth, and recruitment and population growth rates with linear mixed-effects models and temporal symmetry mark-recapture models. We combined data from recaptures and resights of dispersed fish (both physical captures and continuously recorded antenna detections) from throughout GC to test survival hypotheses, while accounting for site fidelity, using joint live-recapture/live-resight models. While recruitment only occurred in one site, which also drove population growth (relative to survival), evidence supported hypotheses related to density dependence in growth, survival, and recruitment, and somatic growth and recruitment were further limited by introduced trout. Mixed-effects models explained between 67% and 86% of the variation in somatic growth, which showed increased growth rates with greater flood-pulse frequency during monsoon season. Monthly survival was 0.56-0.99 and 0.80-0.99 in the two populations, with lower survival during periods of higher intraspecific abundance and low flood frequency. Our results suggest translocations can contribute toward the recovery of large-river fishes, but continued suppression of invasive fishes to enhance recruitment may be required to ensure population resilience. Furthermore, we demonstrate the importance of flooding to population demographics in food-depauperate, dynamic, invaded systems.
Collapse
Affiliation(s)
- Brian D. Healy
- Department of Watershed Sciences and the Ecology CenterUtah State UniversityLoganUtahUSA
- Native Fish Ecology and Conservation Program, Division of Science and Resource ManagementGrand Canyon National Park, National Park ServiceFlagstaffArizonaUSA
| | - Phaedra Budy
- Department of Watershed Sciences and the Ecology CenterUtah State UniversityLoganUtahUSA
- United States Geological Survey, Utah Cooperative Fish and Wildlife Research Unit, Department of Watershed SciencesUtah State UniversityLoganUtahUSA
| | - Mary M. Conner
- Department of Wildland Resources and the Ecology CenterUtah State UniversityLoganUtahUSA
| | - Emily C. Omana Smith
- Native Fish Ecology and Conservation Program, Division of Science and Resource ManagementGrand Canyon National Park, National Park ServiceFlagstaffArizonaUSA
| |
Collapse
|
111
|
Meza-Vargas V, Faustino-Fuster DR, Marchena J, Faustino-Meza N, Ortega H. Fishes from Chira River basin, Piura, Peru. REVISTA PERUANA DE BIOLOGÍA 2022. [DOI: 10.15381/rpb.v29i3.21993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Chira River is located on the north coast of Peru. The lack of knowledge of the ichthyofauna from coastal drainages from Peru is noteworthy. The aim of this study is to characterize the ichthyofauna along the Chira River basin in terms of diversity and altitudinal range distribution. The material examined belongs to the Ichthyological collection of the Natural History Museum (MUSM). The diversity of fishes is composed of 27 species belonging to 19 families and ten orders. Siluriformes and Characiformes were the most diverse, consisting of 22% (six species) for each one. Five species are new records for the Chira River (three natives and two non-natives). Six marine species and seven exotic species were recorded as well. The altitudinal distribution patterns for all species were registered. This study increases the known diversity of freshwater fishes from Pacific Drainage Rivers in Peru, and it could be used for management and conservation plans.
Collapse
|
112
|
Eloranta AP, Kjærstad G, Power M, Lakka HK, Arnekleiv JV, Finstad AG. Impacts of piscicide-induced fish removal on resource use and trophic diversity of lake invertebrates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155364. [PMID: 35469880 DOI: 10.1016/j.scitotenv.2022.155364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/31/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Chemical eradication of non-native species has become a widely used method to mitigate the potential negative impacts of altered competitive or predatory dynamics on biodiversity and natural ecosystem processes. However, the responses of non-target species can vary from rapid full recovery to delayed or absent recolonization, and little is known about the potential shifts in resource use and trophic diversity of native species following chemical treatments. We used a before-after-control-impact approach to study the effects of rotenone piscicide treatment on abundance and trophic niche of benthic invertebrates in three untreated and three treated lakes in central Norway, the latter group hosting non-native roach (Rutilus rutilus) and pike (Esox lucius) prior to rotenone treatment. Based on community composition data, the relative abundance of invertebrate grazers and collectors decreased while that of predators increased following fish removal in the treated lakes. The stable isotope data indicated minor shifts in resource use of, and trophic diversity among, benthic invertebrate communities. While the predatory dragonfly larvae (Odonata) and grazer snails (Lymnaeidae) showed increased δ13C values indicating increased reliance on littoral benthic algae, the collector mayfly larvae (Leptophlebia) showed decreased δ13C values following fish removal in treated lakes. Grazer snails also showed a shift to a lower trophic position, while the predatory dragonflies and collector mayflies showed no changes in δ15N values following fish removal. The community-level isotopic niches of benthic invertebrates showed no consistent changes, although the sample-size corrected and Bayesian estimates of standard ellipse areas (SEAC and SEAB) slightly increased in two of the three treated lakes due to an increased range in δ15N. In conclusion, our study findings indicate some changes in species assemblages but minor shifts in the resource use and trophic diversity of benthic invertebrate communities following fish removal in rotenone treated lakes.
Collapse
Affiliation(s)
- Antti P Eloranta
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014, Finland; Norwegian Institute for Nature Research, P.O. Box 5685 Torgarden, NO-7485 Trondheim, Norway.
| | - Gaute Kjærstad
- Department of Natural History, NTNU University Museum, Erling Skakkes gate 47A, NO-7013 Trondheim, Norway
| | - Michael Power
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada
| | - Hanna-Kaisa Lakka
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014, Finland; Department of Natural History, NTNU University Museum, Erling Skakkes gate 47A, NO-7013 Trondheim, Norway
| | - Jo Vegar Arnekleiv
- Department of Natural History, NTNU University Museum, Erling Skakkes gate 47A, NO-7013 Trondheim, Norway
| | - Anders G Finstad
- Department of Natural History, NTNU University Museum, Erling Skakkes gate 47A, NO-7013 Trondheim, Norway
| |
Collapse
|
113
|
Cooke SJ, Frempong‐Manso A, Piczak ML, Karathanou E, Clavijo C, Ajagbe SO, Akeredolu E, Strauch AM, Piccolo J. A freshwater perspective on the United Nations decade for ecosystem restoration. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Steven J. Cooke
- Department of Biology and Institute of Environmental and Interdisciplinary Science Carleton University Ottawa Ontario Canada
| | - Acacia Frempong‐Manso
- Department of Biology and Institute of Environmental and Interdisciplinary Science Carleton University Ottawa Ontario Canada
| | - Morgan L. Piczak
- Department of Biology and Institute of Environmental and Interdisciplinary Science Carleton University Ottawa Ontario Canada
| | - Eirini Karathanou
- Biology Department Aristotle University of Thessaloniki Thessaloniki Greece
| | | | - Stephen O. Ajagbe
- Department of Wildlife and Ecotourism Department Forestry Research Institute of Nigeria Ibadan Nigeria
| | | | - Ayron M. Strauch
- Department of Natural Resources and Environmental Management University of Hawai‘i Honolulu Hawaii USA
| | - John Piccolo
- Department of Environmental and Life Sciences, River Ecology and Management Research Group RivEM Karlstad University Karlstad Sweden
| |
Collapse
|
114
|
Laini A, Burgazzi G, Chadd R, England J, Tziortzis I, Ventrucci M, Vezza P, Wood PJ, Viaroli P, Guareschi S. Using invertebrate functional traits to improve flow variability assessment within European rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155047. [PMID: 35395295 DOI: 10.1016/j.scitotenv.2022.155047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/28/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Rivers are among the most threatened ecosystems worldwide and are experiencing rapid biodiversity loss. Flow alteration due to climate change, water abstraction and augmentation is a severe stressor on many aquatic communities. Macroinvertebrates are widely used for biomonitoring river ecosystems although current taxonomic approaches used to characterise ecological responses to flow have limitations in terms of generalisation across biogeographical regions. A new macroinvertebrate trait-based index, Flow-T, derived from ecological functional information (flow velocity preferences) currently available for almost 500 invertebrate taxa at the European scale is presented. The index was tested using data from rivers spanning different biogeographic and hydro-climatic regions from the UK, Cyprus and Italy. The performance of Flow-T at different spatial scales and its relationship with an established UK flow assessment tool, the Lotic-invertebrate Index for Flow Evaluation (LIFE), was assessed to determine the transferability of the approach internationally. Flow-T was strongly correlated with the LIFE index using both presence-absence and abundance weighted data from all study areas (r varying from 0.46 to 0.96). When applied at the river reach scale, Flow-T was effective in identifying communities associated with distinct mesohabitats characterised by their hydraulic characteristics (e.g., pools, riffles, glides). Flow-T can be derived using both presence/absence and abundance data and can be easily adapted to varying taxonomic resolutions. The trait-based approach facilitates research using the entire European invertebrate fauna and can potentially be applied in regions where information on taxa-specific flow velocity preferences is not currently available. The inter-regional and continental scale transferability of Flow-T may help water resource managers gauge the effects of changes in flow regime on instream communities at varying spatial scales.
Collapse
Affiliation(s)
- Alex Laini
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parma, Italy; Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.
| | - Gemma Burgazzi
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parma, Italy; Institute for Environmental Sciences, Quantitative Landscape Ecology, University of Koblenz-Landau, Landau, Germany
| | - Richard Chadd
- Environment Agency of England, Stepping Stone Walk, Winfrey Avenue, Spalding, Lincolnshire, UK
| | - Judy England
- Environment Agency, Red Kite House, Howbery Park, Crowmarsh Gifford, Wallingford, UK
| | - Iakovos Tziortzis
- Water Development Department, Ministry of Agriculture, Rural Development and Environment, Nicosia, Cyprus
| | - Massimo Ventrucci
- Department of Statistical Sciences, University of Bologna, Bologna, Italy
| | - Paolo Vezza
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Turin, Italy
| | - Paul J Wood
- Geography and Environment, Loughborough University, Loughborough, UK
| | - Pierluigi Viaroli
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parma, Italy
| | - Simone Guareschi
- Geography and Environment, Loughborough University, Loughborough, UK; Doñana Biological Station (EBD-CSIC), Seville, Spain
| |
Collapse
|
115
|
Cottey A. Climate and nature emergency: From scientists' warnings to sufficient action. PUBLIC UNDERSTANDING OF SCIENCE (BRISTOL, ENGLAND) 2022; 31:818-826. [PMID: 35638190 PMCID: PMC9344531 DOI: 10.1177/09636625221100076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Scientists' warnings of a climate and ecological emergency have been published recently. They have been criticised as being unattractive to non-scientists. Here, the criticisms are reviewed and comments presented. The path is long between primary research and the daily concerns of hard-to-reach people (e.g., those who are impoverished). It is enough that expert scientists express their findings accurately and intelligibly to all who are receptive. Outside the ranks of the specialist experts, there are many - intellectuals of all kinds, journalists, politicians, business people, and concerned citizens - who are well placed to contribute to the generation of a worldwide groundswell of practical action. The full range of discourse on the ecological issues is divided into four registers: used in primary research; dissemination of specialists' thinking to non-specialists; discussion with those engaged in public affairs; and discussion with those who face obstacles to becoming engaged with the issues.
Collapse
Affiliation(s)
- Alan Cottey
- Alan Cottey, School of Chemistry, University of East Anglia, Norwich NR4 7TJ, UK.
| |
Collapse
|
116
|
Marrón-Becerra A, Hermoso-Salazar M. Morphological comparison and description of five new species of Hyalella (Crustacea: Amphipoda) from Veracruz and Mexico City. J NAT HIST 2022. [DOI: 10.1080/00222933.2022.2078241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Aurora Marrón-Becerra
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, Mexico
| | - Margarita Hermoso-Salazar
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, Mexico
- Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), Tlalpan, Ciudad de México, Mexico
| |
Collapse
|
117
|
Tsavdaridou AI, Almpanidou V, Mazaris AD. Novel climates in European river sub-basins pose a challenge for the persistence of freshwater fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154696. [PMID: 35318063 DOI: 10.1016/j.scitotenv.2022.154696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/03/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Understanding how climate change would affect biota inhabiting sensitive and highly valuable ecosystems, spanning broad regions, is essential to anticipate implications for biodiversity and humans, and to identify management and mitigation measures. Traditionally, assessments to evaluate climatic risks over broad regions and for many species implement models that allow the projection of a climate-driven redistribution of biodiversity. Still, the wealth and quality of the background information (e.g., species presence data) constrain the accuracy and representativeness of such frameworks. As an alternative, here, we developed a twofold approach to assess the vulnerability of 86 European freshwater fish. We accounted for shifts in a multidimensional climatic space of broader hydrological units that host freshwater bodies in Europe. We then linked metrics of their climatic stability with groups of species, which were generated from six intrinsic traits that shape species adaptive capacity to climate change. Our results demonstrated that the climate of all (n = 538) river sub-basins hosted in the European Union territory would change by 2100, with more than 10% of them being projected to gain completely novel climates. Sub-basins predicted to lose more than 90% of their current climatic space were mainly identified in the area around the Baltic Sea, but also in Mediterranean regions (i.e., Iberian Peninsula). Important numbers of fish species with life history strategies that are considered susceptible to climate change were identified in sub-basins that were predicted to completely lose their current climatic conditions. Clearly, the climate of valuable freshwater ecosystems is changing, affecting species and their communities in varying ways. The risk is high, and is not limited to specific regions; thus, new effective strategies and measures are needed to conserve freshwater fish and their habitats across Europe.
Collapse
Affiliation(s)
- Anastasia I Tsavdaridou
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece.
| | - Vasiliki Almpanidou
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Antonios D Mazaris
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| |
Collapse
|
118
|
Dominated Taxonomic and Phylogenetic Turnover but Functional Nestedness of Wetland Bird Beta Diversity in North China. LAND 2022. [DOI: 10.3390/land11071090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The decomposition of taxonomic, phylogenetic, and functional beta diversity into their turnover and nestedness components could provide novel insights into biodiversity conservation, e.g., provide implications for the Single Large Or Several Small reserves debate (SLOSS debate). Due to dramatic climate change and massive anthropogenic activities in recent decades in North China, the wetlands and the associated biodiversity in this region have declined significantly. This study applied the taxonomic, phylogenetic, and functional beta diversity decomposition for the first time in wetland bird communities in North China, aiming to propose scientific and comprehensive suggestions for bird diversity conservation in this region. A paired t-test was used to compare the differences between taxonomic, phylogenetic, and functional turnover, and their nestedness components. In addition, a spearman correlation analysis was used to assess the associations between each explanatory variable (differences in mean annual temperature and mean annual precipitation, as well as spatial distances) and each beta diversity index. A total of 546 bird species were found in 38 wetlands in North China, with three critically endangered species, 19 endangered species, 22 vulnerable species, and 61 near threatened species. The number of threatened species (critically endangered, endangered, and vulnerable) found in these lakes was about 30% of all threatened species in China. The results showed that taxonomic and phylogenetic beta diversity among wetland bird communities in North China was mainly dominated by turnover, while functional beta diversity was mainly dominated by nestedness. Importantly, the phylogenetic and functional results showed similar patterns even after controlling for the effects of taxonomic beta diversity. In addition, the taxonomic and phylogenetic turnover was more associated with both climate variables and spatial distances than other components. The contrasting patterns among the taxonomic, phylogenetic, and functional decompositions of wetland bird communities in North China indicate that distinctive conservation strategies should be considered for different biodiversity dimensions. Specifically, the conservation of taxonomic and phylogenetic bird diversity in this region should focus on multiple wetlands, while the conservation of bird functional diversity should focus on a single wetland with high functional diversity.
Collapse
|
119
|
Citizen Science Impact on Environmental Monitoring towards SDGs Indicators: The CASE of SIMILE Project. SUSTAINABILITY 2022. [DOI: 10.3390/su14138107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study presents the ongoing activities of citizen science (CS) monitoring of lake water quality that was developed in the SIMILE project. After presenting the tools and the initiatives that were implemented to gather volunteer contributions, the CS data are analyzed: to understand the main factors driving the contribution provided by citizens, through a proximity analysis using hierarchical clustering; to evaluate their added value and complementary nature in view of the proposed integrated lake monitoring with respect to remote sensing (RS) water quality parameters maps and in situ high-frequency monitoring (HFM) data that were acquired in the framework of SIMILE project, through an intercomparison of temperature data; and to highlight water quality patterns in the lakes under study. It is then discussed how the project outcomes could directly or indirectly contribute to the measurement of specific Sustainable Development Goals (SDGs) indicators highlighting the potential impact of CS activities. The conclusions highlight the complementary nature of CS and the need of supporting activities for a continuous lake water quality monitoring. The possibility for the partner local authorities to maintain the CS monitoring establishing a Citizen Observatory (CO) and the opportunity to extend the SIMILE approach to neighboring lakes and beyond is also discussed.
Collapse
|
120
|
Heino J, García Girón J, Hämäläinen H, Hellsten S, Ilmonen J, Karjalainen J, Mäkinen T, Nyholm K, Ropponen J, Takolander A, Tolonen KT. Assessing the conservation priority of freshwater lake sites based on taxonomic, functional and environmental uniqueness. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Jani Heino
- Finnish Environment Institute, Freshwater Centre Oulu Finland
| | - Jorge García Girón
- Finnish Environment Institute, Freshwater Centre Oulu Finland
- Ecology Research Unit University of León León Spain
| | - Heikki Hämäläinen
- Department of Biological and Environmental Science University of Jyväskylä Jyväskylä Finland
| | - Seppo Hellsten
- Finnish Environment Institute, Freshwater Centre Oulu Finland
| | | | - Juha Karjalainen
- Department of Biological and Environmental Science University of Jyväskylä Jyväskylä Finland
| | | | - Kristiina Nyholm
- Department of Biological and Environmental Science University of Jyväskylä Jyväskylä Finland
| | - Janne Ropponen
- Finnish Environment Institute, Freshwater Centre Jyväskylä Finland
| | - Antti Takolander
- Finnish Environment Institute, Marine Research Centre Helsinki Finland
| | - Kimmo T. Tolonen
- Finnish Environment Institute, Freshwater Centre Jyväskylä Finland
| |
Collapse
|
121
|
Zahmatkesh S, Klemeš JJ, Bokhari A, Wang C, Sillanpaa M, Amesho K. Reducing Chemical Oxygen Demand from Low Strength Wastewater: A Novel Application of Fuzzy Logic Based Simulation in MATLAB. Comput Chem Eng 2022. [DOI: 10.1016/j.compchemeng.2022.107944] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
122
|
Teaching and Learning about Bee Extinction through Project-Based Learning (PBL): Its Impact on the Classroom Climate (CL) among Eighth Grader Students. SUSTAINABILITY 2022. [DOI: 10.3390/su14127477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Environmental education is essential in order to curb the current dramatic loss of biodiversity. Students’ commitment to protect local biodiversity is an important goal of education in order to develop and promote sustainable environmental education elsewhere. The main focus of biodiversity education has been to create the knowledge, interest, and skills needed to solve various problems in biodiversity with respect to the local context. This study, which investigated 8th grade students who were taught by the project-based learning (PBL) method, sheds light on the subject of biodiversity (specifically bee extinction); it shows its impact on the classroom climate (CL). This method combines many activities on the subject of bee extinction, such as extracurricular learning and watching videos, in addition to classroom activities where bee extinction is learned experientially; its impact on the CL was investigated. The research tool used was a structured questionnaire (WHIMC; What Happened In My Class); it consisted of 35 questions that examined students’ perceptions of the CL when they learned an entire study unit on bee extinction by the PBL method. The research results indicated that the PBL method, used in studying bee extinction, after performing the activity in all of its dimensions, had a very positive effect on the CL for the experimental group (N = 62), but not among the students in the control group, i.e., the group that continued to study by the traditional teaching method. This was shown, for example, regarding social cohesion (t(57) = 21.85; p < 0.001); students’ perceptions in the experimental group (M = 4.56; SD = 0.32) were more positive than their perceptions in the control group (M = 2.41; SD = 0.42).
Collapse
|
123
|
Zangl L, Schäffer S, Daill D, Friedrich T, Gessl W, Mladinić M, Sturmbauer C, Wanzenböck J, Weiss SJ, Koblmüller S. A comprehensive DNA barcode inventory of Austria's fish species. PLoS One 2022; 17:e0268694. [PMID: 35679240 PMCID: PMC9182252 DOI: 10.1371/journal.pone.0268694] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/04/2022] [Indexed: 11/19/2022] Open
Abstract
Austria is inhabited by more than 80 species of native and non-native freshwater fishes. Despite considerable knowledge about Austrian fish species, the latest Red List of threatened species dates back 15 years and a systematic genetic inventory of Austria's fish species does not exist. To fulfill this deficit, we employed DNA barcoding to generate an up-to-date and comprehensive genetic reference database for Austrian fish species. In total, 639 newly generated cytochrome c oxidase subunit 1 (COI) sequences were added to the 377 existing records from the BOLD data base, to compile a near complete reference dataset. Standard sequence similarity analyses resulted in 83 distinct clusters almost perfectly reflecting the expected number of species in Austria. Mean intraspecific distances of 0.22% were significantly lower than distances to closest relatives, resulting in a pronounced barcoding gap and unique Barcode Index Numbers (BINs) for most of the species. Four cases of BIN sharing were detected, pointing to hybridization and/or recent divergence, whereas in Phoxinus spp., Gobio spp. and Barbatula barbatula intraspecific splits, multiple BINs and consequently cryptic diversity were observed. The overall high identification success and clear genetic separation of most of the species confirms the applicability and accuracy of genetic methods for bio-surveillance. Furthermore, the new DNA barcoding data pinpoints cases of taxonomic uncertainty, which need to be addressed in further detail, to more precisely assort genetic lineages and their local distribution ranges in a new National Red-List.
Collapse
Affiliation(s)
- Lukas Zangl
- Institute of Biology, University of Graz, Graz, Austria
- Universalmuseum Joanneum, Studienzentrum Naturkunde, Graz, Austria
| | | | - Daniel Daill
- Institute of Biology, University of Graz, Graz, Austria
- Consultants in Aquatic Ecology and Engineering—blattfisch e.U., Wels, Austria
| | - Thomas Friedrich
- Institute of Hydrobiology and Aquatic Ecosystem Management, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Marija Mladinić
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | | | - Josef Wanzenböck
- Research Department for Limnology, Mondsee, University of Innsbruck, Mondsee, Austria
| | | | | |
Collapse
|
124
|
Dulsat-Masvidal M, Ciudad C, Infante O, Mateo R, Lacorte S. Pilot monitoring scheme of water pollutants in Important Bird and Biodiversity Areas. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113562. [PMID: 35487175 DOI: 10.1016/j.ecoenv.2022.113562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
In this study we have established a monitoring scheme to determine the presence and distribution of widely used pharmaceuticals, pesticides, organophosphate esters (OPEs) and perfluoroalkyl substances (PFAS) in water bodies from Important Bird and Biodiversity Areas (IBAs) from Spain. The monitoring scheme included the georeferenced sampling of rocky mountain, Atlantic forest, riparian forest, Mediterranean forest, agricultural, inland aquatic and coastal aquatic IBAs, with the aim to evaluate the impact of widely used chemicals in those aquatic resources. Water samples were extracted using a generic solid-phase extraction protocol and analyzed by 3 analytical methods based on liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Quality parameters such as compound recovery, intra and inter-day variation, linearity and limits of detection were calculated in order to validate the methods. In addition, the ionization conditions and the optimization of the most appropriate transitions permitted unequivocal identification. Once the sampling and analytical procedure was set-up, 59 target compounds were monitored in 63 samples. Pharmaceutical, followed by pesticides, OPEs and PFAS were widespread along all IBAs studied at concentrations from 0.5 to 41083 ng/L. Overall, this study highlights the need to monitor the presence of contaminants in areas of high ecological interest to contribute to pollution control and mitigation towards protection of biodiversity.
Collapse
Affiliation(s)
- Maria Dulsat-Masvidal
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Carlos Ciudad
- SEO/BirdLife, Melquiades Biencinto, 34, 28053 Madrid, Spain
| | | | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, 13005 Ciudad Real, Spain
| | - Silvia Lacorte
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
125
|
Crook DA, Morrongiello JR, King AJ, Adair BJ, Grubert MA, Roberts BH, Douglas MM, Saunders TM. Environmental drivers of recruitment in a tropical fishery: Monsoonal effects and vulnerability to water abstraction. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2563. [PMID: 35138679 DOI: 10.1002/eap.2563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/19/2021] [Accepted: 09/22/2021] [Indexed: 06/14/2023]
Abstract
Fisheries and natural water resources across the world are under increasing pressure from human activity, including fishing and irrigated agriculture. There is an urgent need for information on the climatic/hydrologic drivers of fishery productivity that can be readily applied to management. We use a generalized linear mixed model framework of catch curve regression to resolve the key climatic/hydrological drivers of recruitment in Barramundi Lates calcarifer using biochronological (otolith aging) data collected from four river-estuary systems in the Northern Territory, Australia. These models were then used to generate estimates of the year class strength (YCS) outcomes of different water abstraction scenarios (ranging from 10% to 40% abstraction per season/annum) for two of the rivers in low, moderate, and high discharge years. Barramundi YCS displayed strong interannual variation and was positively correlated with regional monsoon activity in all four rivers. River-specific analyses identified strong relationships between YCS and several river-specific hydrology variables, including wet and dry season discharge and flow duration. Water abstraction scenario models based on YCS-hydrology relationships predicted reductions of >30% in YCS in several cases, suggesting that increased water resource development in the future may pose risks for Barramundi recruitment and fishery productivity. Our study demonstrates the importance of the tropical monsoon as a driver of Barramundi recruitment and the potential for detrimental impacts of increased water abstraction on fishery productivity. The biochronological and statistical approaches we used have the potential to be broadly applied to inform policy and management of water resource and fisheries.
Collapse
Affiliation(s)
- David A Crook
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
- Centre for Freshwater Ecosystems, La Trobe University, Wodonga, Victoria, Australia
| | - John R Morrongiello
- School of Biosciences, University of Melbourne, Parkville, Victoria, Australia
| | - Alison J King
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
- Centre for Freshwater Ecosystems, La Trobe University, Wodonga, Victoria, Australia
| | - Brendan J Adair
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Mark A Grubert
- Department of Industry, Tourism and Trade, Berrimah, Northern Territory, Australia
| | - Brien H Roberts
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Michael M Douglas
- NESP Northern Australia Environmental Resources Hub, School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Thor M Saunders
- Department of Industry, Tourism and Trade, Berrimah, Northern Territory, Australia
| |
Collapse
|
126
|
Birkholz M, Malti DE, Hartmann S, Neubauer P. Separation of Heterotrophic Microalgae Crypthecodinium cohnii by Dielectrophoresis. Front Bioeng Biotechnol 2022; 10:855035. [PMID: 35677299 PMCID: PMC9169251 DOI: 10.3389/fbioe.2022.855035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Microalgae constitute an abundant source of poly-unsaturated fatty acids which are applied in various biotechnological fields such as pharmaceuticals and food supplement. Separating microalgae cells with respect to their lipid content would establish a relevant at-line analytical technique. The present study demonstrates an electrical approach for the separation of the lipid-producing microalgae Crypthecodinium cohnii using the effect of dielectrophoresis (DEP) in a microfluidic flow cell. Microalgae were cultivated for 8 days, while cell growth was characterized by optical density, dry cell weight, glucose concentration and lipid content via fluorescence microscopy. The size distribution of cells during cultivation was thoroughly investigated, since the DEP force scales with cell volume, but also depends on lipid content via cell electrophysiological constants. Thus, the challenge was to deconvolute one separation effect from the other, while the electrical cell constants of C. cohnii are not known yet. The DEP-dependent separation was realized by slanted top-bottom electrodes with the flowing cell suspension between them. Turning on the voltage deflected the cells from their initial path as determined by the streaming and thus changed their direction of flow. The separation efficiency of DEP was tested for various electrical field strengths and its performance was determined by quantitative analysis of optical and fluorescence videos. It could be shown for all size groups that the most lipid-containing cells were always subject to DEP separation and that the method is thus not only suitable for process analysis, but also for strain selection of the most productive cell lines.
Collapse
Affiliation(s)
- Mario Birkholz
- IHP—Leibniz-Institut für Innovative Mikroelektronik, Frankfurt, Germany
- *Correspondence: Mario Birkholz,
| | - Danai Eleni Malti
- Department of Biotechnology, Chair of Bioprocess Engineering, Technische Universität Berlin, Berlin, Germany
| | - Stephan Hartmann
- Department of Biotechnology, Chair of Bioprocess Engineering, Technische Universität Berlin, Berlin, Germany
| | - Peter Neubauer
- Department of Biotechnology, Chair of Bioprocess Engineering, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
127
|
Gray E, Cappelli G, Gammell MP, Roden CM, Lally HT. A review of dystrophic lake and pool habitat in Europe: An Irish perspective. J Nat Conserv 2022. [DOI: 10.1016/j.jnc.2022.126189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
128
|
Washko S, Willby N, Law A. How beavers affect riverine aquatic macroinvertebrates: a review. PeerJ 2022; 10:e13180. [PMID: 35509966 PMCID: PMC9059751 DOI: 10.7717/peerj.13180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/07/2022] [Indexed: 01/12/2023] Open
Abstract
Background As ecosystem engineers, the construction of dams by beavers alters stream habitat physically and biologically, making them a species of interest for habitat restoration. Beaver-created habitat changes affect a wide range of aquatic invertebrate species. However, despite numerous individual studies of how beavers affect aquatic macroinvertebrate assemblages, there has been no evaluation of the consensus of these effects across studies. Methodology We collated and examined studies comparing beaver-created ponds to nearby lotic reaches to determine general trends in aquatic macroinvertebrate richness, density, biomass, and functional composition between habitats. From this evidence, we highight knowledge gaps in how beaver activity affects aquatic macroinvertebrates. Results Overall, in the majority of studies, aquatic macroinvertebrate richness was higher in nearby lotic reaches compared to beaver-created ponds, but richness at coarser scales (gamma diversity) increased with the addition of beaver ponds due to increased habitat heterogeneity. Functional feeding group (FFG) patterns were highly context-dependent, though predator taxa were generally more abundant in beaver ponds than adjacent lotic reaches. Site-specific geomorphological changes, coupled with dam or riparian zone characteristics and resulting differences in basal food resources likely shape other FFG responses. Conclusions We identify a lack of long-term studies at single or multiple sites and conclude that fine-scale approaches may improve our understanding of the dynamics of macroinvertebrates within the freshwater realm and beyond. Due to the context-dependent nature of each study, further systematic studies of beaver engineering effects across a wider variety of environmental conditions and wetland types will also help inform land and species management decisions, such as where to prioritize protection of beaver habitats in the face of a global freshwater biodiversity crisis, or where to restore beaver populations to deliver maximum benefit.
Collapse
Affiliation(s)
- Susan Washko
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, United States
| | - Nigel Willby
- Biological and Environmental Sciences, University of Stirling, Stirling, Scotland, United Kingdom
| | - Alan Law
- Biological and Environmental Sciences, University of Stirling, Stirling, Scotland, United Kingdom
| |
Collapse
|
129
|
McElhinney JMWR, Catacutan MK, Mawart A, Hasan A, Dias J. Interfacing Machine Learning and Microbial Omics: A Promising Means to Address Environmental Challenges. Front Microbiol 2022; 13:851450. [PMID: 35547145 PMCID: PMC9083327 DOI: 10.3389/fmicb.2022.851450] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Microbial communities are ubiquitous and carry an exceptionally broad metabolic capability. Upon environmental perturbation, microbes are also amongst the first natural responsive elements with perturbation-specific cues and markers. These communities are thereby uniquely positioned to inform on the status of environmental conditions. The advent of microbial omics has led to an unprecedented volume of complex microbiological data sets. Importantly, these data sets are rich in biological information with potential for predictive environmental classification and forecasting. However, the patterns in this information are often hidden amongst the inherent complexity of the data. There has been a continued rise in the development and adoption of machine learning (ML) and deep learning architectures for solving research challenges of this sort. Indeed, the interface between molecular microbial ecology and artificial intelligence (AI) appears to show considerable potential for significantly advancing environmental monitoring and management practices through their application. Here, we provide a primer for ML, highlight the notion of retaining biological sample information for supervised ML, discuss workflow considerations, and review the state of the art of the exciting, yet nascent, interdisciplinary field of ML-driven microbial ecology. Current limitations in this sphere of research are also addressed to frame a forward-looking perspective toward the realization of what we anticipate will become a pivotal toolkit for addressing environmental monitoring and management challenges in the years ahead.
Collapse
Affiliation(s)
- James M. W. R. McElhinney
- Applied Genomics Laboratory, Center for Membranes and Advanced Water Technology, Khalifa University, Abu Dhabi, United Arab Emirates
| | | | - Aurelie Mawart
- Applied Genomics Laboratory, Center for Membranes and Advanced Water Technology, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Ayesha Hasan
- Applied Genomics Laboratory, Center for Membranes and Advanced Water Technology, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Jorge Dias
- EECS, Center for Autonomous Robotic Systems, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
130
|
Chiarello M, Bucholz JR, McCauley M, Vaughn SN, Hopper GW, Sánchez González I, Atkinson CL, Lozier JD, Jackson CR. Environment and Co-occurring Native Mussel Species, but Not Host Genetics, Impact the Microbiome of a Freshwater Invasive Species ( Corbicula fluminea). Front Microbiol 2022; 13:800061. [PMID: 35444631 PMCID: PMC9014210 DOI: 10.3389/fmicb.2022.800061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/21/2022] [Indexed: 11/18/2022] Open
Abstract
The Asian clam Corbicula fluminea (Family: Cyneridae) has aggressively invaded freshwater habitats worldwide, resulting in dramatic ecological changes and declines of native bivalves such as freshwater mussels (Family: Unionidae), one of the most imperiled faunal groups. Despite increases in our knowledge of invasive C. fluminea biology, little is known of how intrinsic and extrinsic factors, including co-occurring native species, influence its microbiome. We investigated the gut bacterial microbiome across genetically differentiated populations of C. fluminea in the Tennessee and Mobile River Basins in the Southeastern United States and compared them to those of six co-occurring species of native freshwater mussels. The gut microbiome of C. fluminea was diverse, differed with environmental conditions and varied spatially among rivers, but was unrelated to host genetic variation. Microbial source tracking suggested that the gut microbiome of C. fluminea may be influenced by the presence of co-occurring native mussels. Inferred functions from 16S rRNA gene data using PICRUST2 predicted a high prevalence and diversity of degradation functions in the C. fluminea microbiome, especially the degradation of carbohydrates and aromatic compounds. Such modularity and functional diversity of the microbiome of C. fluminea may be an asset, allowing to acclimate to an extensive range of nutritional sources in invaded habitats, which could play a vital role in its invasive success.
Collapse
Affiliation(s)
- Marlène Chiarello
- Department of Biology, University of Mississippi, Oxford, MS, United States
| | - Jamie R Bucholz
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Mark McCauley
- Department of Biology, University of Mississippi, Oxford, MS, United States
| | - Stephanie N Vaughn
- Department of Biology, University of Mississippi, Oxford, MS, United States
| | - Garrett W Hopper
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | | | - Carla L Atkinson
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Jeffrey D Lozier
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Colin R Jackson
- Department of Biology, University of Mississippi, Oxford, MS, United States
| |
Collapse
|
131
|
Papa F, Crétaux JF, Grippa M, Robert E, Trigg M, Tshimanga RM, Kitambo B, Paris A, Carr A, Fleischmann AS, de Fleury M, Gbetkom PG, Calmettes B, Calmant S. Water Resources in Africa under Global Change: Monitoring Surface Waters from Space. SURVEYS IN GEOPHYSICS 2022; 44:43-93. [PMID: 35462853 PMCID: PMC9019293 DOI: 10.1007/s10712-022-09700-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/05/2022] [Indexed: 05/04/2023]
Abstract
Abstract The African continent hosts some of the largest freshwater systems worldwide, characterized by a large distribution and variability of surface waters that play a key role in the water, energy and carbon cycles and are of major importance to the global climate and water resources. Freshwater availability in Africa has now become of major concern under the combined effect of climate change, environmental alterations and anthropogenic pressure. However, the hydrology of the African river basins remains one of the least studied worldwide and a better monitoring and understanding of the hydrological processes across the continent become fundamental. Earth Observation, that offers a cost-effective means for monitoring the terrestrial water cycle, plays a major role in supporting surface hydrology investigations. Remote sensing advances are therefore a game changer to develop comprehensive observing systems to monitor Africa's land water and manage its water resources. Here, we review the achievements of more than three decades of advances using remote sensing to study surface waters in Africa, highlighting the current benefits and difficulties. We show how the availability of a large number of sensors and observations, coupled with models, offers new possibilities to monitor a continent with scarce gauged stations. In the context of upcoming satellite missions dedicated to surface hydrology, such as the Surface Water and Ocean Topography (SWOT), we discuss future opportunities and how the use of remote sensing could benefit scientific and societal applications, such as water resource management, flood risk prevention and environment monitoring under current global change. Article Highlights The hydrology of African surface water is of global importance, yet it remains poorly monitored and understoodComprehensive review of remote sensing and modeling advances to monitor Africa's surface water and water resourcesFuture opportunities with upcoming satellite missions and to translate scientific advances into societal applications.
Collapse
Affiliation(s)
- Fabrice Papa
- LEGOS, Université de Toulouse, IRD, CNES, CNRS, UPS, 31400 Toulouse, France
- Institute of Geosciences, Universidade de Brasília (UnB), 70910-900 Brasília, Brazil
| | | | - Manuela Grippa
- GET, Université de Toulouse, IRD, CNES, CNRS, UPS, 31400 Toulouse, France
| | - Elodie Robert
- LETG, CNRS, Université de Nantes, 44312 Nantes, France
| | - Mark Trigg
- School of Civil Engineering, University of Leeds, Leeds, LS2 9DY United Kingdom
| | - Raphael M. Tshimanga
- Congo Basin Water Resources Research Center (CRREBaC) and Department of Natural Resources Management, University of Kinshasa (UNIKIN), Kinshasa, Democratic Republic of the Congo
| | - Benjamin Kitambo
- LEGOS, Université de Toulouse, IRD, CNES, CNRS, UPS, 31400 Toulouse, France
- Congo Basin Water Resources Research Center (CRREBaC) and Department of Natural Resources Management, University of Kinshasa (UNIKIN), Kinshasa, Democratic Republic of the Congo
- Department of Geology, University of Lubumbashi (UNILU), Route Kasapa, Lubumbashi, Democratic Republic of the Congo
| | - Adrien Paris
- LEGOS, Université de Toulouse, IRD, CNES, CNRS, UPS, 31400 Toulouse, France
- Hydro Matters, 31460 Le Faget, France
| | - Andrew Carr
- School of Civil Engineering, University of Leeds, Leeds, LS2 9DY United Kingdom
| | - Ayan Santos Fleischmann
- Hydraulic Research Institute (IPH), Federal University of Rio Grande do Sul (UFRGS), 91501-970 Porto Alegre, Brazil
- Instituto de Desenvolvimento Sustentável Mamirauá, 69553-225 Tefé, AM Brazil
| | - Mathilde de Fleury
- GET, Université de Toulouse, IRD, CNES, CNRS, UPS, 31400 Toulouse, France
| | | | - Beatriz Calmettes
- Collecte Localisation Satellites (CLS), 31520 Ramonville Saint-Agne, France
| | - Stephane Calmant
- LEGOS, Université de Toulouse, IRD, CNES, CNRS, UPS, 31400 Toulouse, France
- Institute de Recherche pour le Développement (IRD), Cayenne IRD Center, 97323 French Guiana, France
| |
Collapse
|
132
|
Graciano RCD, Oliveira RS, Santos IM, Yazbeck GM. Genomic Resources for Salminus brasiliensis. Front Genet 2022; 13:855718. [PMID: 35419039 PMCID: PMC8995856 DOI: 10.3389/fgene.2022.855718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
The Neotropical region bears the most diverse freshwater fish fauna on the planet and is the stage for dramatic conservation struggles. Initiatives aiming for conservation of a single emblematic fish, a flagship species, to which different onlookers relate on a cultural/personal level, holds promise towards engagement and conservation actions benefiting whole biological communities and ecosystems. Here, we present the first comprehensive genomic resources for Salminus brasiliensis, a potential flagship Neotropical species. This fish faces pressing conservation issues, as well as taxonomic uncertainty, being a main species relevant to angling and commercial fisheries. We make available 178 million Illumina paired-end reads, 90 bases long, comprising 16 Gb (≈15X coverage) of filtered data, obtained from a primary genomic library of 500-bp fragments. We present the first de novo genomic assembly for S. brasiliensis, with ∼1 Gb (N50 = 10,889), as well as the coding genome annotation of 12,962 putative genes from assembled genomic fragments over 10 kb, most of which could be identified from the Ostariophysi GenBank database. We also provide a genome-wide panel for more than 80,000 predicted microsatellite loci for low-cost, fast and abundant DNA marker development for this species. A total of 47, among 52 candidates, empirically assayed microsatellites were confirmed as polymorphic in this fish. All genomic data produced for S. brasiliensis is hereby made publicly accessible. With the disclosure of these results, we intend to foster general biology studies and to provide tools to be applied immediately in conservation and aquaculture in this candidate flagship Neotropical species.
Collapse
Affiliation(s)
- Raissa Cristina Dias Graciano
- Laboratório de Recursos Genéticos, Programa de Pós Graduação Em Biotecnologia, Universidade Federal de São João Del Rei, São João Del Rei, Brazil
| | - Rafael Sachetto Oliveira
- Departamento de Ciência da Computação, Universidade Federal de São João Del Rei, São João Del Rei, Brazil
| | - Isllas Miguel Santos
- Laboratório de Recursos Genéticos, Departamento de Zootecnia, Universidade Federal de São João Del Rei, São João Del Rei, Brazil
| | - Gabriel M Yazbeck
- Laboratório de Recursos Genéticos, Programa de Pós Graduação Em Biotecnologia, Universidade Federal de São João Del Rei, São João Del Rei, Brazil.,Laboratório de Recursos Genéticos, Departamento de Zootecnia, Universidade Federal de São João Del Rei, São João Del Rei, Brazil
| |
Collapse
|
133
|
Increased Water Abstraction and Climate Change Have Substantial Effect on Morphometry, Salinity, and Biotic Communities in Lakes: Examples from the Semi-Arid Burdur Basin (Turkey). WATER 2022. [DOI: 10.3390/w14081241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Global warming and altered precipitation patterns are predicted to intensify the water loss in semi-arid and arid regions, and such regions in Turkey will be particularly affected. Moreover, water abstraction, not least for irrigation purposes, is expected to increase markedly, posing major threats to the water balance of the lakes and thus their biodiversity. Among the closed basins in Turkey, the Burdur Closed Basin (BCB), located in the southwest of Turkey, is expected to be most affected. The BCB includes several types of aquatic ecosystems which support high biodiversity, including one Ramsar site, six Important Bird Areas, and a considerable richness of native and endemic fish species. Therefore, it is essential to analyze the potential environmental impacts of climate change and increased water abstraction on BCB lakes and their biotic communities. Here, we combined historical data on ecosystems as well as meteorological, remote sensing, and ground-truth data to analyze the changes in the temperature and precipitation of the BCB, water surface areas, and land use, as well as the potential effects on waterbird and fish communities. We calculated the water budget to elucidate water availability in the basin over the last few decades and predicted future conditions based on rainfall and temperature forecasts using climate models. The Standardized Precipitation–Evapotranspiration Index (SPEI) was used to relate the water surface area to precipitation and temperature change in the basin. Crop-farming irrigation in the BCB has increased notably since 2004, leading to intensive water abstraction from the lakes and their inflows, as well as from ground water, to meet the increased demand for irrigation. The water abstraction from the lakes, inflows to the lakes, and the groundwater in the basin has increased the water loss in the catchment substantially. Remotely sensed data on lake surface areas showed a major shrinkage of shallow lakes in the last 40 years. Moreover, the largest lake in the basin, Lake Burdur, lost nearly half of its surface area, which is worrisome since the shallower areas are the most suitable for supporting high biodiversity. Climate models (CNRM-ESM2-1GCM for temperature and GFDL-ESM4-GCM for precipitation) suggest that from 2070, the BCB will face long-term, moderate-to-severe dry periods. This, and the increased demand for water for irrigation, along with climate change, may accelerate the drying of these lakes in the near future with devastating effects on the lake ecosystems and their biodiversity.
Collapse
|
134
|
Moranta J, Torres C, Murray I, Hidalgo M, Hinz H, Gouraguine A. Transcending capitalism growth strategies for biodiversity conservation. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13821. [PMID: 34405455 DOI: 10.1111/cobi.13821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
The unlimited economic growth that fuels capitalism's metabolism has profoundly transformed a large portion of Earth. The resulting environmental destruction has led to an unprecedented rate of biodiversity loss. Following large-scale losses of habitats and species, it was recognized that biodiversity is crucial to maintaining functional ecosystems. We sought to continue the debate on the contradictions between economic growth and biodiversity in the conservation science literature and thus invite scholars to engage in reversing the biodiversity crisis through acknowledging the impacts of economic growth. In the 1970s, a global agenda was set to develop different milestones related to sustainable development, including green-blue economic growth, which despite not specifically addressing biodiversity reinforced the idea that economic development based on profit is compatible with the planet's ecology. Only after biodiversity loss captured the attention of environmental sciences researchers in the early 2000s was a global biodiversity agenda implemented. The agenda highlights biodiversity conservation as a major international challenge and recognizes that the main drivers of biodiversity loss derive from economic activities. The post-2000 biodiversity agendas, including the 2030 Agenda for Sustainable Development and the post-2020 Convention on Biological Diversity Global Strategy Framework, do not consider the negative impacts of growth-oriented strategies on biodiversity. As a result, global biodiversity conservation priorities are governed by the economic value of biodiversity and its assumed contribution to people's welfare. A large body of empirical evidence shows that unlimited economic growth is the main driver of biodiversity loss in the Anthropocene; thus, we strongly argue for sustainable degrowth and a fundamental shift in societal values. An equitable downscaling of the physical economy can improve ecological conditions, thus reducing biodiversity loss and consequently enhancing human well-being.
Collapse
Affiliation(s)
- Joan Moranta
- Ecosystem Oceanography Group (GRECO), Centre Oceanogràfic de Balears (IEO, CSIC), Palma, Spain
- Alimentta, Think Tank para la Transición Alimentaria, Palma, Spain
| | - Cati Torres
- Applied Economics Department, Universitat de les Illes Balears, Palma, Spain
| | - Ivan Murray
- Department of Geography, Universitat de les Illes Balears, Palma, Spain
| | - Manuel Hidalgo
- Ecosystem Oceanography Group (GRECO), Centre Oceanogràfic de Balears (IEO, CSIC), Palma, Spain
| | - Hilmar Hinz
- Department of Ecology and Marine Resources, Instituto Mediterráneo de Estudios Avanzados IMEDEA (CSIC-UIB), Esporles, Spain
| | - Adam Gouraguine
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
135
|
Chakona A, Jordaan MS, Raimondo DC, Bills RI, Skelton PH, van der Colff D. Diversity, distribution and extinction risk of native freshwater fishes of South Africa. JOURNAL OF FISH BIOLOGY 2022; 100:1044-1061. [PMID: 35170047 DOI: 10.1111/jfb.15011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/08/2021] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Extinction risk for 101 valid species and 18 unique genetic lineages of native freshwater fishes of South Africa was assessed in 2016 following the IUCN Red List criteria. An additional five species (three new species that were described and two species that were revalidated subsequent to the 2016 assessments) were assessed in the present study. A synthesis of the outcome of the assessments of the 106 valid species and 18 genetic lineages indicates that 45 (36%) of South Africa's freshwater fish taxa are threatened (7 Critically Endangered, 25 Endangered, 13 Vulnerable). Of the remaining taxa, 17 (14%) are listed as Near Threatened, 57 (46%) are Least Concern and five (4%) are Data Deficient. More than 60% of the endemic taxa are threatened. The Cape Fold Ecoregion has the highest proportion of threatened taxa (67%) due to the existence of a unique assemblage of narrow-range endemic species. Galaxias and Pseudobarbus have the highest number of highly threatened taxa as most of the species and lineages in these genera are classified as either CR or EN. Major threats to the native freshwater fishes of the country are invasive fish species, deterioration of water quality, impoundments and excessive water abstraction, land use changes and modification of riverine habitats. Immediate conservation efforts should focus on securing remnant populations of highly threatened taxa and preventing deterioration in threat status, because recovery is rare. Accurate delimitation of species boundaries, mapping their distribution ranges, improved knowledge of pressures and long-term monitoring of population trends need to be prioritised to generate credible data for the 2026 IUCN threat status assessments and designation of important fish areas as part of the National Freshwater Ecosystem Priority Areas (NFEPA) initiative.
Collapse
Affiliation(s)
- Albert Chakona
- NRF-South African Institute for Aquatic Biodiversity (NRF-SAIAB), Makhanda (Grahamstown), South Africa
- Department of Ichthyology and Fisheries Science, Rhodes University, Makhanda (Grahamstown), South Africa
| | - Martine S Jordaan
- NRF-South African Institute for Aquatic Biodiversity (NRF-SAIAB), Makhanda (Grahamstown), South Africa
- CapeNature Biodiversity Capabilities Unit, Stellenbosch
- Center of Excellence for Invasion Biology, CapeNature Biodiversity Capabilities Unit, Stellenbosch
| | - Domitilla C Raimondo
- South African National Biodiversity Institute Threatened Species Program, Kirstenbosch National Botanical Gardens, Cape Town
| | - Roger I Bills
- NRF-South African Institute for Aquatic Biodiversity (NRF-SAIAB), Makhanda (Grahamstown), South Africa
| | - Paul H Skelton
- NRF-South African Institute for Aquatic Biodiversity (NRF-SAIAB), Makhanda (Grahamstown), South Africa
| | - Dewidine van der Colff
- Center of Excellence for Invasion Biology, CapeNature Biodiversity Capabilities Unit, Stellenbosch
- South African National Biodiversity Institute Threatened Species Program, Kirstenbosch National Botanical Gardens, Cape Town
| |
Collapse
|
136
|
Velásquez C, Rudolph E, Oyanedel A, Alanís Y, Henríquez-Antipa LA. The burrowing crayfish Parastacus pugnax (Decapoda: Parastacidae) in the Semiarid Region of Chile: findings of a naturalized or threatened population? NEOTROPICAL BIODIVERSITY 2022. [DOI: 10.1080/23766808.2022.2049173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Carlos Velásquez
- Departamento de Repoblación y Cultivo, Instituto de Fomento Pesquero (IFOP), Coquimbo, Chile
| | | | - Alejandra Oyanedel
- Departamento de Medio Ambiente, Instituto de Fomento Pesquero (IFOP), Puerto Montt, Chile
| | - Yeriko Alanís
- Departamento de Repoblación y Cultivo, Instituto de Fomento Pesquero (IFOP), Coquimbo, Chile
| | | |
Collapse
|
137
|
Dalu T, Cuthbert RN, Moyo S, Wasserman RJ, Chari LD, Weyl OLF, Jackson MC. Invasive carp alter trophic niches of consumers and basal resources in African reservoirs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152625. [PMID: 34963595 DOI: 10.1016/j.scitotenv.2021.152625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Environmental pollution and biological invasions are key drivers of biodiversity change. However, the effects of invasion and pollution on food webs remain largely unexplored. Here, we used stable isotopes to examine the effects of common carp Cyprinus carpio and pollution on trophic dynamics in six small reservoirs. Our results revealed that the trophic niche widths of invertebrates, vertebrates, and invasive carp did not significantly differ among reservoirs with different pollution statuses. However, we found low niche conservatism among reservoirs, suggesting that while niche width may remain consistent, there is a shift in the position of the niches in isotopic space under both pollution and invasion scenarios. Niche conservatism among reservoirs was generally higher in invertebrates, but this was also regardless of reservoir condition (i.e. presence or absence of pollution and invasion). These results suggest that invasion by species coupled with organic pollution may cause subtle yet differing effects on components of a food web (basal end-members, invertebrates and vertebrates). Our findings provide a baseline measure of the potential in the development of detection and response strategies for carp invasions and organic pollution.
Collapse
Affiliation(s)
- Tatenda Dalu
- School of Biology and Environmental Sciences, University of Mpumalanga, Nelspruit 1200, South Africa; South African Institute for Aquatic Biodiversity, Makhanda 6140, South Africa; Wissenschaftskolleg zu Berlin Institute for Advanced Study, Berlin 14193, Germany.
| | - Ross N Cuthbert
- South African Institute for Aquatic Biodiversity, Makhanda 6140, South Africa; GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, 24105 Kiel, Germany
| | - Sydney Moyo
- Department of Biology and Program in Environmental Studies and Sciences, Rhodes College, Memphis, TN 38112, USA
| | - Ryan J Wasserman
- Department of Zoology and Entomology, Rhodes University, Makhanda 6140, South Africa; South African Institute for Aquatic Biodiversity, Makhanda 6140, South Africa
| | - Lenin D Chari
- Department of Zoology and Entomology, Rhodes University, Makhanda 6140, South Africa; Centre for Biological Control, Department of Zoology and Entomology, Rhodes University, Makhanda 6140, South Africa
| | - Olaf L F Weyl
- South African Institute for Aquatic Biodiversity, Makhanda 6140, South Africa
| | - Michelle C Jackson
- Department of Zoology, University of Oxford, Oxford OX1 3SZ, United Kingdom
| |
Collapse
|
138
|
Cepic M, Bechtold U, Wilfing H. Modelling human influences on biodiversity at a global scale–A human ecology perspective. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2021.109854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
139
|
Pilotto F, Haubrock PJ, Sundermann A, Lorenz AW, Haase P. Decline in niche specialization and trait β-diversity in benthic invertebrate communities of Central European low-mountain streams over 25 years. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151770. [PMID: 34801496 DOI: 10.1016/j.scitotenv.2021.151770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/09/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Biotic homogenization is one of the key aspects of the current biodiversity crisis. Here we analyzed the trends of three facets of niche homogenization, i.e. niche specialization, trait α-diversity and spatial β-diversity, over a period of 25 years (1990-2014) using a large dataset of 3782 stream benthic invertebrate samples collected from central European low-mountain streams. We studied a set of traits describing the ecological niche of species and their functions: body size, feeding groups, substrate preferences, flow preferences, stream zonation preferences and saprobity. Trait composition changed significantly during the study period, and we identified an overall increase in niche homogenization. Specifically, community niche specialization significantly decreased by 20.3% over the 25-year period, with declines ranging from -16.0 to -40.9% for zonation-, flow-, substrate-preferences, body size and feeding traits. Trait diversity did not change significantly, although we recorded significant decreases by -14.2% and -10.2% for flow- and substrate-preference and increases by 5.8% and 22.6% for feeding traits and zonation preference over the study period. Trait spatial β-diversity significantly decreased by -53.0%, with substrate-preference, feeding groups and flow-preference traits declining from -61.9% to -75.3% over the study period. This increased niche homogenization is likely driven by the increase of down-stream typical taxa, which are favored by warming temperatures. Further, it is in apparent contradiction with the recorded increase in abundance (+35.9%) and taxonomic richness (+39.2%) over the same period. Even such increases do not safeguard communities from undergoing niche homogenization, indicating that recovery processes may differ with regard to community taxonomic composition and traits. Our results emphasize the complexity of community responses to global change and warrant caution when founding conclusions based solely on single community metrics.
Collapse
Affiliation(s)
- Francesca Pilotto
- Environmental Archaeology Lab, Department of Historical, Philosophical and Religious Studies, Umeå University, Biblioteksgränd 3, 907 36 Umeå, Sweden; Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Clamecystrasse 12, 63571 Gelnhausen, Germany.
| | - Phillip J Haubrock
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Clamecystrasse 12, 63571 Gelnhausen, Germany; University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Andrea Sundermann
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Clamecystrasse 12, 63571 Gelnhausen, Germany; Goethe University Frankfurt am Main, Faculty of Biology, Department Aquatic Ecotoxicology, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Armin W Lorenz
- University of Duisburg-Essen, Faculty of Biology, Department Aquatic Ecology, Universitätsstrasse 5, 45141 Essen, Germany
| | - Peter Haase
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Clamecystrasse 12, 63571 Gelnhausen, Germany; University of Duisburg-Essen, Faculty of Biology, Universitätsstrasse 5, 45141 Essen, Germany
| |
Collapse
|
140
|
Vanham D, Alfieri L, Feyen L. National water shortage for low to high environmental flow protection. Sci Rep 2022; 12:3037. [PMID: 35194115 PMCID: PMC8864015 DOI: 10.1038/s41598-022-06978-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/08/2022] [Indexed: 11/09/2022] Open
Abstract
Global freshwater biodiversity has been decreasing rapidly, requiring the restoration and maintenance of environmental flows (EFs) in streams and rivers. EFs provide many ecosystem services that benefit humans. Reserving such EFs for aquatic ecosystems, implies less renewable water availability for direct human water use such as agriculture, industry, cities and energy. Here we show that, depending on the level of EF protection, global annual renewable water availability for humans decreases between 41 and 80% compared to when not reserving EFs. With low EF protection, currently 53 countries experience different levels of water shortage, which increases to 101 countries for high EF protection. Countries will carefully have to balance the amount of water allocated to humans and the environment.
Collapse
Affiliation(s)
- Davy Vanham
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| | | | - Luc Feyen
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| |
Collapse
|
141
|
Catchment-Scale Participatory Mapping Identifies Stakeholder Perceptions of Land and Water Management Conflicts. LAND 2022. [DOI: 10.3390/land11020300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Competing socioecological demands and pressures on land and water resources have the potential to increase land use conflict. Understanding ecosystem service provisioning and trade-offs, competing land uses, and conflict between stakeholder groups in catchments is therefore critical to inform catchment management and the sustainable use of natural resources. We developed a novel stakeholder engagement methodology that incorporates participatory conflict mapping in three catchments with a short questionnaire to identify the perceptions of 43 participants from four key land and water management stakeholder groups: environmental regulators, water industry practitioners, the farm advisor community, and academics. The participatory mapping exercise produced heat maps of perceived conflict and land use competition, providing spatial detail of the complex combination of land use issues faced by catchment managers. Distinct, localised hotspots were identified in areas under pressure from flooding, abstraction, and urbanisation; as well as more dispersed issues of relevance at the landscape scale, such as from farming, forestry, energy production, and tourism. Subsequent regression modelling linked perceived conflict to land cover maps and identified coastal, urban, and grassland areas as the most likely land cover types associated with conflict in the study catchments. Our approach to participatory conflict mapping provides a novel platform for catchment management and can facilitate increased cooperation among different catchment stakeholders. In turn, land and water management conflicts can be recognised and their underlying drivers and likely solutions identified in an effort to better manage competing demands on catchment resources.
Collapse
|
142
|
Monitoring and Management of Inland Waters: Insights from the Most Inhabited Italian Region. ENVIRONMENTS 2022. [DOI: 10.3390/environments9020027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Monitoring of freshwaters allows the detection of the impacts of multiple anthropic uses and activities on aquatic ecosystems, and an eco-sustainable management of natural resources could limit these impacts. In this work, we highlighted two main issues affecting inland waters, referring to findings from the most inhabited Italian region (Lombardy, approximately 10 M inhabitants): the first issue is lake pollution by old generation pesticides, the second is river development for hydropower. In both cases, some management strategies reducing the anthropic impacts on freshwaters were discussed: organic farming and biocontrol as an alternative to diffuse pollution by agrochemicals; environmental flows and controlled sediment flushing operations to limit the hydropower impact on rivers. Although the two mentioned issues were discussed separately in this paper, the management of water resources should be carried out in a comprehensive way, accounting for the multiple impacts affecting freshwater ecosystems, including those related to the climate changes.
Collapse
|
143
|
Zhang S, Zheng Y, Zhan A, Dong C, Zhao J, Yao M. Environmental DNA captures native and non-native fish community variations across the lentic and lotic systems of a megacity. SCIENCE ADVANCES 2022; 8:eabk0097. [PMID: 35148174 PMCID: PMC8836804 DOI: 10.1126/sciadv.abk0097] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Globally, urbanization poses a major threat to terrestrial biodiversity, yet its impact on fish diversity is poorly understood, mainly because of surveying difficulties. In this study, environmental DNA metabarcoding was used to survey fish communities at 109 lentic and lotic sites across Beijing, and how environmental variables affect fish biodiversity at fine urban spatial scales was investigated. We identified 52 native and 23 non-native taxa, with lentic and lotic waters harboring both common and habitat-specific species. Water quality strongly affected native fish diversity, especially in lentic systems, but had little influence on non-native diversity. Fish diversity showed little response to urban land cover variation, but the relative sequence abundance of non-natives in lotic waters increased linearly with distance from the city center. Our findings illustrate the complex effects of urbanization on native versus non-native fishes in different aquatic habitats and highlight the distinctive considerations needed to conserve urban aquatic biodiversity.
Collapse
Affiliation(s)
- Shan Zhang
- School of Life Sciences, Peking University, Beijing 100871, China
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yitao Zheng
- School of Life Sciences, Peking University, Beijing 100871, China
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Chunxia Dong
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Jindong Zhao
- School of Life Sciences, Peking University, Beijing 100871, China
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Meng Yao
- School of Life Sciences, Peking University, Beijing 100871, China
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- Corresponding author. ,
| |
Collapse
|
144
|
Stehle S, Manfrin A, Feckler A, Graf T, Joschko TJ, Jupke J, Noss C, Rösch V, Schirmel J, Schmidt T, Zubrod JP, Schulz R. Structural and functional development of twelve newly established floodplain pond mesocosms. Ecol Evol 2022; 12:e8674. [PMID: 35309751 PMCID: PMC8902662 DOI: 10.1002/ece3.8674] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 11/24/2022] Open
Abstract
Ecosystems are complex structures with interacting abiotic and biotic processes evolving with ongoing succession. However, limited knowledge exists on the very initial phase of ecosystem development and colonization. Here, we report results of a comprehensive ecosystem development monitoring for twelve floodplain pond mesocosms (FPM; 23.5 m × 7.5 m × 1.5 m each) located in south-western Germany. In total, 20 abiotic and biotic parameters, including structural and functional variables, were monitored for 21 months after establishment of the FPMs. The results showed evolving ecosystem development and primary succession in all FPMs, with fluctuating abiotic conditions over time. Principal component analyses and redundancy analyses revealed season and succession time (i.e., time since ecosystem establishment) to be significant drivers of changes in environmental conditions. Initial colonization of both aquatic (i.e., water bodies) and terrestrial (i.e., riparian land areas) parts of the pond ecosystems occurred within the first month, with subsequent season-specific increases in richness and abundance for aquatic and terrestrial taxa over the entire study period. Abiotic environmental conditions and aquatic and terrestrial communities showed increasing interpond variations over time, that is, increasing heterogeneity among the FPMs due to natural environmental divergence. However, both functional variables assessed (i.e., aquatic and terrestrial litter decomposition) showed opposite patterns as litter decomposition rates slightly decreased over time and interpond differences converged with successional ecosystem developments. Overall, our results provide rare insights into the abiotic and biotic conditions and processes during the initial stages of freshwater ecosystem formation, as well as into structural and functional developments of the aquatic and terrestrial environment of newly established pond ecosystems.
Collapse
Affiliation(s)
- Sebastian Stehle
- Eusserthal Ecosystem Research StationUniversity Koblenz‐LandauEusserthalGermany
- iES LandauInstitute for Environmental SciencesUniversity Koblenz‐LandauLandauGermany
| | - Alessandro Manfrin
- iES LandauInstitute for Environmental SciencesUniversity Koblenz‐LandauLandauGermany
| | - Alexander Feckler
- Eusserthal Ecosystem Research StationUniversity Koblenz‐LandauEusserthalGermany
- iES LandauInstitute for Environmental SciencesUniversity Koblenz‐LandauLandauGermany
| | - Tobias Graf
- Eusserthal Ecosystem Research StationUniversity Koblenz‐LandauEusserthalGermany
| | - Tanja J. Joschko
- Eusserthal Ecosystem Research StationUniversity Koblenz‐LandauEusserthalGermany
| | - Jonathan Jupke
- iES LandauInstitute for Environmental SciencesUniversity Koblenz‐LandauLandauGermany
| | - Christian Noss
- iES LandauInstitute for Environmental SciencesUniversity Koblenz‐LandauLandauGermany
- Federal Waterways Engineering and Research InstituteKarlsruheGermany
| | - Verena Rösch
- iES LandauInstitute for Environmental SciencesUniversity Koblenz‐LandauLandauGermany
| | - Jens Schirmel
- Eusserthal Ecosystem Research StationUniversity Koblenz‐LandauEusserthalGermany
- iES LandauInstitute for Environmental SciencesUniversity Koblenz‐LandauLandauGermany
| | - Thomas Schmidt
- Eusserthal Ecosystem Research StationUniversity Koblenz‐LandauEusserthalGermany
- iES LandauInstitute for Environmental SciencesUniversity Koblenz‐LandauLandauGermany
| | - Jochen P. Zubrod
- iES LandauInstitute for Environmental SciencesUniversity Koblenz‐LandauLandauGermany
- Zubrod Environmental Data ScienceLandauGermany
| | - Ralf Schulz
- Eusserthal Ecosystem Research StationUniversity Koblenz‐LandauEusserthalGermany
- iES LandauInstitute for Environmental SciencesUniversity Koblenz‐LandauLandauGermany
| |
Collapse
|
145
|
de Guzman I, Altieri P, Elosegi A, Pérez-Calpe AV, von Schiller D, González JM, Brauns M, Montoya JM, Larrañaga A. Water diversion and pollution interactively shape freshwater food webs through bottom-up mechanisms. GLOBAL CHANGE BIOLOGY 2022; 28:859-876. [PMID: 34862833 PMCID: PMC7614049 DOI: 10.1111/gcb.16026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 06/03/2023]
Abstract
Water diversion and pollution are two pervasive stressors in river ecosystems that often co-occur. Individual effects of both stressors on basal resources available to stream communities have been described, with diversion reducing detritus standing stocks and pollution increasing biomass of primary producers. However, interactive effects of both stressors on the structure and trophic basis of food webs remain unknown. We hypothesized that the interaction between both stressors increases the contribution of the green pathway in stream food webs. Given the key role of the high-quality, but less abundant, primary producers, we also hypothesized an increase in food web complexity with larger trophic diversity in the presence of water diversion and pollution. To test these hypotheses, we selected four rivers in a range of pollution subject to similar water diversion schemes, and we compared food webs upstream and downstream of the diversion. We characterized food webs by means of stable isotope analysis. Both stressors directly changed the availability of basal resources, with water diversion affecting the brown food web by decreasing detritus stocks, and pollution enhancing the green food web by promoting biofilm production. The propagation of the effects at the base of the food web to higher trophic levels differed between stressors. Water diversion had little effect on the structure of food webs, but pollution increased food chain length and trophic diversity, and reduced trophic redundancy. The effects at higher trophic levels were exacerbated when combining both stressors, as the relative contribution of biofilm to the stock of basal resources increased even further. Overall, we conclude that moderate pollution increases food web complexity and that the interaction with water abstraction seems to amplify this effect. Our study shows the importance of assessing the interaction between stressors to create predictive tools for a proper management of ecosystems.
Collapse
Affiliation(s)
- Ioar de Guzman
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Paula Altieri
- Instituto de Limnología Dr. Raúl A. Ringuelet, Laboratorio de Bentos, CCT La Plata-CONICET-UNLP, La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Naturales y Museo/FCNyM, Universidad Nacional de La Plata/UNLP, La Plata, Buenos Aires, Argentina
| | - Arturo Elosegi
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Ana Victoria Pérez-Calpe
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Daniel von Schiller
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | - Jose M. González
- Department of Biology and Geology, Physics and Inorganic Chemistry, Rey Juan Carlos University, Móstoles, Spain
| | - Mario Brauns
- Department of River Ecology, Helmholtz Centre for Environmental Research-UFZ, Magdeburg, Germany
| | - José M. Montoya
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, French National Center for Scientific Research, Moulis, France
| | - Aitor Larrañaga
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
146
|
Goertzen D, Schneider AK, Eggers TO, Suhling F. Temporal changes of biodiversity in urban running waters – Results of a twelve-year monitoring study. Basic Appl Ecol 2022. [DOI: 10.1016/j.baae.2021.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
147
|
Improved Chironomid Barcode Database Enhances Identification of Water Mite Dietary Content. DIVERSITY 2022. [DOI: 10.3390/d14020065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chironomids are one of the most biodiverse and abundant members of freshwater ecosystems. They are a food source for many organisms, including fish and water mites. The accurate identification of chironomids is essential for many applications in ecological research, including determining which chironomid species are present in the diets of diverse predators. Larval and adult chironomids from diverse habitats, including lakes, rivers, inland gardens, coastal vegetation, and nearshore habitats of the Great Lakes, were collected from 2012 to 2019. After morphological identification of chironomids, DNA was extracted and cytochrome oxidase I (COI) barcodes were PCR amplified and sequenced. Here we describe an analysis of biodiverse adult and larval chironomids in the Great Lakes region of North America based on new collections to improve chironomid identification by curating a chironomid DNA barcode database, thereby expanding the diversity and taxonomic specificity of DNA reference libraries for the Chironomidae family. In addition to reporting many novel chironomid DNA barcodes, we demonstrate here the use of this chironomid COI barcode database to improve the identification of DNA barcodes of prey in the liquefied diets of water mites. The species identifications of the COI barcodes of chironomids ingested by Lebertia davidcooki and L. quinquemaculosa are more diverse for L. davidcooki and include Parachironomus abortivus, Cryptochironomus ponderosus. Parachironomus tenuicaudatus, Glyptotendipes senilis, Dicrotendipes modestus, Chironomus riparius, Chironomus entis/plumosus, Chironomus maturus, Chironomus crassicaudatus, Endochironomus subtendens, Cricotopus sylvestris, Cricotopus festivellus, Orthocladius obumbratus, Tanypus punctipennis, Rheotanytarsus exiguus gr., and Paratanytarsus nr. bituberculatus.
Collapse
|
148
|
Makwinja R, Mengistou S, Kaunda E, Alamirew T. Willingness to pay for the ecological restoration of an inland freshwater shallow lake: case of Lake Malombe, Malawi. Heliyon 2022; 8:e08676. [PMID: 35028459 PMCID: PMC8741457 DOI: 10.1016/j.heliyon.2021.e08676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/07/2021] [Accepted: 12/22/2021] [Indexed: 11/28/2022] Open
Abstract
Lake Malombe is ranked among the most vulnerable inland freshwater shallow lakes in Malawi. The lake has lost over US$79.83 million ecosystem service values from 1999 to 2019 due to rapid population growth, increased poverty, landscape transformation, and over exploitation-hampering the effort to achieve United Nations (UN) Sustainable Development Goals (SDGs), in particular, life underwater (SDG 14), life on land (SDG 15), climate action (SDG 13), and no poverty (SDG 1) and Aichi Biodiversity Targets. In line with the 2021–2030 United Nations' Declaration on massive upscaling of the ecosystems restoration effort, this study applied the contingent valuation method (CVM) and binary logistic regression model to determine the public's willingness to pay (WTP) for ecosystem restoration and the influencing factors. The aim was to integrate science into policy framework to achieve a sustainable flow of ecosystem services (ESs). Qualitative data were collected by employing focus group discussion, key informant interviews, and field observation. Quantitative data were collected using structured questionnaires covering 420 households. The results revealed that 56% of the respondents were willing to pay an average of US$28.42/household/year. These respondents believed that the initiative would improve lake ESs, fish biodiversity, income level, water quality and mitigate climate change impact. Age, gender, literacy, income, social trust, institutional trust, access to extension services, period stay in the area, household distance from the lake, lake ecological dynamics impact, having the hope of reviving the lake health ecological status, perception of having lake ecological restoration program, participation in lake restoration program, access to food from the lake, involved in fishing and Lake Malombe primary livelihood sources significantly (p < 0.05) influenced WTP. This study provides a reference point to policymakers to undertake cost-benefit analysis and develop a practical policy response framework to reverse the situation and achieve United Nations Sustainable Development Goals and Aichi Biodiversity Targets. 420 WTP questionnaires were analyzed. Mean WTP was $28.42/yr. Many factors influenced WTP.
Collapse
Affiliation(s)
- Rodgers Makwinja
- African Centre of Excellence for Water Management, College of Natural and Computational Sciences, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia.,Ministry of Forestry and Natural Resources, Fisheries Department, Senga Bay Fisheries Research Center, P. O. Box 316, Salima, Malawi
| | - Seyoum Mengistou
- African Centre of Excellence for Water Management, College of Natural and Computational Sciences, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia
| | - Emmanuel Kaunda
- African Centre of Excellence in Aquaculture and Fisheries (AquaFish), Lilongwe University of Agriculture and Natural Resources, P. O. Box 219, Lilongwe, Malawi
| | - Tena Alamirew
- Ethiopian Institute of Water Resource, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia
| |
Collapse
|
149
|
Bogotá-Gregory JD, DoNascimiento C, Lima FCT, Acosta-Santos A, Villa-Navarro FA, Urbano-Bonilla A, Mojica JI, Agudelo E. Fishes from the Colombian Amazonia region: species composition from the river systems within the rainforest biome. BIOTA NEOTROPICA 2022. [DOI: 10.1590/1676-0611-bn-2022-1392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Abstract The Colombian Amazon region is part of the Neotropical rainforest (humid forest biome) covering an area of 483,163 km2 and includes tributaries of both the Amazon and Orinoco River basins. The aquatic ecosystems found there include: rivers and alluvial plains originating in Andean headwaters, on eroded soils of tropical forests in the lowlands, and Guiana Shield formations, comprising a dense fluvial drainage network in the lowlands, with Paleogene/Neogene geological formations (terra firme streams in higher places that don’t usually flood) and Paleozoic (shield streams); and Andean and Guiana Shield streams above 200–250 m a.s.l. We present here an exhaustive compilation of published information, supported by fish collections, consisting of a list of 1104 species distributed in 375 genera, 53 families, and 16 orders. We include occurrence data of these species in each sub-basin. The presence/absence species matrix was analyzed using a dendrogram and non-metric multidimensional scaling (NMDS) analysis to identify patterns of similarity between basins and sub-basins. We evaluated species composition between basins and among the different geological origins using PERMANOVA. The dendrogram shows co-occurrences of 404 species in the two basins. It also shows two clear groupings of the sub-basins of the Amazon (except Guainía-Negro drainages) and those of the Orinoco. Within the Amazon Basin, there are two nodes according to the geological origin: systems of Andean origin and those of the lowlands. The dendrogram results are consistent with the NMDS analysis, which shows a clear grouping according to the connectivity of the basins; the Guainía-Negro is included in the Amazon basin. Species distribution patterns were supported by the PERMANOVA, and differed significantly between basins (F = 4.3, R = 0.26, P = 0.003) and geological origin (F = 3.6, R = 0.23, P = 0.003). The number of species in this study represents almost a fifth of the ichthyofauna of the Neotropics and about a third of that of the Amazon River basin; clearly supporting Colombia’s status among the countries with the greatest diversity of freshwater fish species of the planet. We include here a significant number of new records (75 spp), provide a first approximation of the distribution patterns, and a framework for future biogeographical studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Edwin Agudelo
- Instituto Amazónico de Investigaciones Científicas-SINCHI, Colombia
| |
Collapse
|
150
|
Barros ACVF, Pereira AD, Garcia DAZ, Jarduli LR, Vidotto-Magnoni AP, Orsi ML. Fish defaunation in reservoirs of the Lower Paranapanema River basin, Brazil. BIOTA NEOTROPICA 2022. [DOI: 10.1590/1676-0611-bn-2022-1412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Abstract Until now no study has used a defaunation index to quantify the decline of Neotropical freshwater fishes in environments fragmented by dams and reservoirs. So, we applied this index to 143 native fish in five reservoirs in the Lower Paranapanema River, that is situated in one of the Brazilian aquatic environments most impacted by anthropic degradation. Fish species were classified according to their functional groups, which were selected according to the biological characteristics that may reflect in defaunation events. The biggest reservoir in area with more tributaries and forest cover showed lowest defaunation index. The functional groups of fishes more affected by defaunation included species characterized by periphytivores, invertivores and algivores, non-migratory habit, with external fertilization, and parental care. Although reservoirs have different characteristics, this method can be tested in any other hydrographic basin. The results suggested continued conservation efforts to preserve the integrity of tributaries and the native fishes in reservoirs and pointed out the importance of maintaining native vegetation cover and fish restocking programs in the reservoirs with the highest defaunation values. Our finding can be use as the first data source for future studies using this defaunation index.
Collapse
Affiliation(s)
| | - Alan Deivid Pereira
- Universidade Estadual de Londrina, Brasil; Universidade Estadual do Paraná, Brasil
| | | | - Lucas Ribeiro Jarduli
- Universidade Estadual de Londrina, Brasil; Centro Universitário das Faculdades Integradas de Ourinhos, Brasil
| | | | | |
Collapse
|