101
|
Perez-Puyana V, Cuartero P, Jiménez-Rosado M, Martínez I, Romero A. Physical crosslinking of pea protein-based bioplastics: Effect of heat and UV treatments. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
102
|
Forghani B, Mayers JJ, Albers E, Undeland I. Cultivation of microalgae - Chlorella sorokiniana and Auxenochlorella protothecoides - in shrimp boiling water residues. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
103
|
Oxidative Stress in Far Eastern Mussel Mytilus trossulus (Gould, 1850) Exposed to Combined Polystyrene Microspheres (µPSs) and CuO-Nanoparticles (CuO-NPs). JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10050707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ingress of nanoparticles of metal oxides and microfragments of synthetic polymers (microplastics) into a marine environment causes unpredictable consequences. The effects of such particles cannot be predicted due to a lack of ecotoxicological information. In this research, a series of laboratory experiments were conducted on the combined effects of CuO-nanoparticles (CuO-NPs) and polystyrene microspheres (µPSs) on the development of oxidative stress processes in the marine filter-feeder mollusk Mytilus trossulus. Biomarkers of oxidative stress, including the lysosome membrane stability of hematocytes (LMS), the index of antioxidant activity (IAA), the levels of malonaldehyde (MDA) and protein carbonyls (PCs), and DNA damage in digestive gland cells, were measured after 5 days of exposure. Based on a battery of biochemical markers, it was shown that oxidative stress was induced at varying degrees in the experimental mollusks when exposed to CuO-NPs and µPSs both separately and in combination. In contrast, the single-treatment effect on the lysosomal membrane was enhanced by the combined CuO-NPs and µPSs (from 77.14 ± 8.56 to 42 ± 4.26 min). In addition, exposure to both the compounds alone and in combination decreased the IAA (from 22.87 ± 1.25, to 19.55 ± 0.21, 10.73 ± 0.53, and 12.06 ± 1.62 nM/mg protein, respectively). The PC level significantly increased only after CuO-NP exposure (from 0.496 ± 0.02 to 0.838 ± 0.03 μM/mg protein). Furthermore, the results showed that the investigated particles, both alone and in combination, promoted DNA damage in digestive gland cells (from 2.02 ± 0.52 to 5.15 ± 0.37, 18.29 ± 2.14, and 10.72 ± 2.53%, respectively), indicating that these compounds are genotoxic. Overall, the results obtained suggest that oxidative stress is the leading factor in the negative effects of CuO-NPs and µPSs. Considering the exceptional role of genome integrity in the functioning of biological systems, the revealed damages in the DNA molecule structure should be attributed to the most important manifestations of the toxicity of these two forms of marine pollution.
Collapse
|
104
|
Combining pressing and alkaline extraction to increase protein yield from Ulva fenestrata biomass. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
105
|
Inferring Population Structure from Early Life Stage: The Case of the European Anchovy in the Sicilian and Maltese Shelves. WATER 2022. [DOI: 10.3390/w14091427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The European anchovy is an important fishing resource in the Sicilian Channel that supports a high recruitment success variability. The presence of two spawning areas, the drifting of the larvae along the currents and the different oceanographic conditions within the region suggest the presence of different larvae subpopulations. Morphometric and biochemical approaches have been used to analyze the differences among larvae collected. The amino acid composition discriminates two larval groups closely related to the spawning regions: Adventure Bank and the shelf between the South of Sicily and Malta. In addition, there are morphometric and growth differences between recently hatched larvae in these two regions, reinforcing the hypothesis of two larval subpopulations and suggesting differences in the parental reproduction effort. Between the South of Sicily and Malta there are growth and biochemical composition differences since larvae from the Maltese coast present a higher protein content and a bigger growth rate than those from Sicily, pointing out that Malta is an area with a better nutritional condition environment. No differences in the growth rate have been observed between the Adventure Bank area and the Maltese shelf, therefore, a diverse nutritional condition cannot be suggested between these two areas despite the Maltese larvae having a higher protein content present.
Collapse
|
106
|
Avendaño-Monsalve MC, Mendoza-Martínez AE, Ponce-Rojas JC, Poot-Hernández AC, Rincón-Heredia R, Funes S. Positively charged amino acids at the N terminus of select mitochondrial proteins mediate early recognition by import proteins αβ'-NAC and Sam37. J Biol Chem 2022; 298:101984. [PMID: 35487246 PMCID: PMC9136113 DOI: 10.1016/j.jbc.2022.101984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 11/04/2022] Open
Abstract
A major challenge in eukaryotic cells is the proper distribution of nuclear-encoded proteins to the correct organelles. For a subset of mitochondrial proteins, a signal sequence at the N terminus (matrix-targeting sequence [MTS]) is recognized by protein complexes to ensure their proper translocation into the organelle. However, the early steps of mitochondrial protein targeting remain undeciphered. The cytosolic chaperone nascent polypeptide–associated complex (NAC), which in yeast is represented as the two different heterodimers αβ-NAC and αβ′-NAC, has been proposed to be involved during the early steps of mitochondrial protein targeting. We have previously described that the mitochondrial outer membrane protein Sam37 interacts with αβ′-NAC and together promote the import of specific mitochondrial precursor proteins. In this work, we aimed to detect the region in the MTS of mitochondrial precursors relevant for their recognition by αβ′-NAC during their sorting to the mitochondria. We used targeting signals of different mitochondrial proteins (αβ′-NAC-dependent Oxa1 and αβ′-NAC-independent Mdm38) and fused them to GFP to study their intracellular localization by biochemical and microscopy methods, and in addition followed their import kinetics in vivo. Our results reveal the presence of a positively charged amino acid cluster in the MTS of select mitochondrial precursors, such as Oxa1 and Fum1, which are crucial for their recognition by αβ′-NAC. Furthermore, we explored the presence of this cluster at the N terminus of the mitochondrial proteome and propose a set of precursors whose proper localization depends on both αβ′-NAC and Sam37.
Collapse
Affiliation(s)
- Maria Clara Avendaño-Monsalve
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Cd.Mx., Mexico
| | - Ariann E Mendoza-Martínez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Cd.Mx., Mexico
| | - José Carlos Ponce-Rojas
- Department of Molecular, Cellular, and Developmental Biology, University of California at Santa Barbara, Santa Barbara, California, USA
| | - Augusto César Poot-Hernández
- Unidad de Bioinformática y Manejo de la Información, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Cd.Mx., Mexico
| | - Ruth Rincón-Heredia
- Unidad de Imagenología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Cd.Mx., Mexico
| | - Soledad Funes
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Cd.Mx., Mexico.
| |
Collapse
|
107
|
Asen ND, Aluko RE. Physicochemical and Functional Properties of Membrane-Fractionated Heat-Induced Pea Protein Aggregates. Front Nutr 2022; 9:852225. [PMID: 35399668 PMCID: PMC8984611 DOI: 10.3389/fnut.2022.852225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
This study was carried out to investigate the effect of heat pre-treatment of pea proteins at different pH values on the formation of functional protein aggregates. A 10% (w/v) aqueous mixture of pea protein concentrate (PPC) was adjusted to pH 3.0, 5.0, 7.0, or 9.0 followed by heating at 100°C for 30 min, cooled and centrifuged. The supernatant was sequentially passed through 30 and 50 kDa molecular weight cut-off membranes to collect the <30, 30–50, and >50 kDa fractions. The >50 kDa fractions from pH 3.0 (FT3), 5.0 (FT5), 7.0 (FT7), and 9.0 (FT9) treatments had >60% protein content in contrast to the ≤20% for the <30 and 30–50 kDa fractions. Therefore, the >50 kDa fractions were collected and then compared to the untreated PPC for some physicochemical and functional properties. Protein aggregation was confirmed as the denaturation temperature for FT3 (124.30°C), FT5 (190.66oC), FT7 (206.33oC) and FT9 (203.17oC) was significantly (p < 0.05) greater than that of PPC (74.45oC). Scanning electron microscopy showed that FT5 had a compact structure like PPC while FT3, FT7, and FT9 contained a more continuous network. In comparison to PPC, the >50 kDa fractions showed improved solubility (>60%), oil holding capacity (~100%), protein content (~7%), foam capacity (>10%), foam stability (>7%), water holding capacity (>16%) and surface hydrophobicity (~50%). Least gelation concentration of PPC (18%), FT3 (25%), FT5 (22%), FT7 (22%), and FT9 (25%) was improved to 16, 18, 20, 16, and 18%, respectively, after addition of NaCl.
Collapse
Affiliation(s)
- Nancy D. Asen
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
- The Richardson Center for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, MB, Canada
- *Correspondence: Rotimi E. Aluko
| |
Collapse
|
108
|
Bedi S, Morris J, Shah A, Hart RC, Jerome WG, Aller SG, Tang C, Vaisar T, Bornfeldt KE, Segrest JP, Heinecke JW, Davidson WS. Conformational flexibility of apolipoprotein A-I amino- and carboxy-termini is necessary for lipid binding but not cholesterol efflux. J Lipid Res 2022; 63:100168. [PMID: 35051413 PMCID: PMC8953623 DOI: 10.1016/j.jlr.2022.100168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/03/2022] [Accepted: 01/11/2022] [Indexed: 11/25/2022] Open
Abstract
Because of its critical role in HDL formation, significant efforts have been devoted to studying apolipoprotein A-I (APOA1) structural transitions in response to lipid binding. To assess the requirements for the conformational freedom of its termini during HDL particle formation, we generated three dimeric APOA1 molecules with their termini covalently joined in different combinations. The dimeric (d)-APOA1C-N mutant coupled the C-terminus of one APOA1 molecule to the N-terminus of a second with a short alanine linker, whereas the d-APOA1C-C and d-APOA1N-N mutants coupled the C-termini and the N-termini of two APOA1 molecules, respectively, using introduced cysteine residues to form disulfide linkages. We then tested the ability of these constructs to generate reconstituted HDL by detergent-assisted and spontaneous phospholipid microsolubilization methods. Using cholate dialysis, we demonstrate WT and all APOA1 mutants generated reconstituted HDL particles of similar sizes, morphologies, compositions, and abilities to activate lecithin:cholesterol acyltransferase. Unlike WT, however, the mutants were incapable of spontaneously solubilizing short chain phospholipids into discoidal particles. We found lipid-free d-APOA1C-N and d-APOA1N-N retained most of WT APOA1's ability to promote cholesterol efflux via the ATP binding cassette transporter A1, whereas d-APOA1C-C exhibited impaired cholesterol efflux. Our data support the double belt model for a lipid-bound APOA1 structure in nascent HDL particles and refute other postulated arrangements like the "double super helix." Furthermore, we conclude the conformational freedom of both the N- and C-termini of APOA1 is important in spontaneous microsolubilization of bulk phospholipid but is not critical for ABCA1-mediated cholesterol efflux.
Collapse
Affiliation(s)
- Shimpi Bedi
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Jamie Morris
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Amy Shah
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rachel C Hart
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - W Gray Jerome
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Stephen G Aller
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chongren Tang
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Tomas Vaisar
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Karin E Bornfeldt
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Jere P Segrest
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jay W Heinecke
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
109
|
Sanda GM, Toma L, Barbalata T, Moraru OE, Niculescu LS, Sima AV, Stancu CS. Clusterin, paraoxonase 1, and myeloperoxidase alterations induce high-density lipoproteins dysfunction and contribute to peripheral artery disease; aggravation by type 2 diabetes mellitus. Biofactors 2022; 48:454-468. [PMID: 34741558 DOI: 10.1002/biof.1800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/06/2021] [Indexed: 12/24/2022]
Abstract
Peripheral artery disease (PAD) is an atherosclerotic disorder affecting arteries of the lower limbs, the major risk factors including dyslipidemia and diabetes mellitus (DM). We aimed to identify alterations of the proteins in high-density lipoproteins (HDL) associated with HDL dysfunction in PAD patients. HDL2 and HDL3 were isolated from plasma of PAD patients with/without DM (PAD-DM/PAD) and healthy subjects (N). Apolipoprotein AI (ApoAI), ApoAII, ApoCIII, clusterin (CLU), paraoxonase 1 (PON1), myeloperoxidase (MPO), and ceruloplasmin (CP) were measured in HDL2 /HDL3 and plasma. Oxidation and glycation of the analyzed proteins were assessed as malondialdehyde-protein adducts (MDA) and advanced glycation end-products (AGE), respectively. The anti-inflammatory effect of HDL3 was estimated as its potential to reduce monocyte adhesion to tumor necrosis factor α-activated endothelial cells. We show that in PAD patients compared to N subjects: (i) HDL2 presented increased levels of MDA-PON1, AGE-PON1, AGE-ApoAI, ApoAII, ApoCIII, and CP levels, and decreased PON1 levels; (ii) HDL3 had increased levels of MDA- and AGE-CLU and -ApoAI, MDA-PON1, ApoCIII, CLU, MPO, CP, and reduced PON1 levels. All these alterations were exacerbated by DM. These changes were more pronounced in HDL3 , which had reduced anti-inflammatory potential in PAD and became pro-inflammatory in PAD-DM. In PAD patients' plasma, CLU levels and MPO specific activity increased, while PON1 specific activity decreased. In conclusion, HDL function is altered in PAD patients due to multiple modifications of associated proteins that are aggravated by DM. Plasma CLU, MPO, and PON1 could constitute indicators of HDL dysfunction and contribute to risk stratification in PAD patients.
Collapse
Affiliation(s)
- Gabriela M Sanda
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Laura Toma
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Teodora Barbalata
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Oriana E Moraru
- Emergency Clinical Hospital "Prof. Dr. Agrippa Ionescu", Ilfov County, Romania
| | - Loredan S Niculescu
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Anca V Sima
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Camelia S Stancu
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| |
Collapse
|
110
|
Osemwota EC, Alashi AM, Aluko RE. Physicochemical and functional properties of albumin, globulin and glutelin fractions of green lentil seed. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Etinosa C. Osemwota
- Department of Food and Human Nutritional Sciences University of Manitoba Winnipeg Manitoba Canada
| | - Adeola M. Alashi
- Department of Food and Human Nutritional Sciences University of Manitoba Winnipeg Manitoba Canada
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences University of Manitoba Winnipeg Manitoba Canada
- The Richardson Centre for Functional Foods and Nutraceuticals University of Manitoba Winnipeg Manitoba Canada
| |
Collapse
|
111
|
Antimicrobial Activity of Zymomonas mobilis Is Related to Its Aerobic Catabolism and Acid Resistance. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Zymomonas mobilis is an ethanologenic, facultatively anaerobic alpha-proteobacterium, known for its inhibitory effect on the growth of a wide variety of microorganisms. This property might be interesting for the design of novel antimicrobials, yet it has negative implications for biotechnology, as it hinders the use of Z. mobilis as a producer microorganism in cocultivation. So far, the chemical nature of its inhibitory compound(s) has not been established. In the present study, we demonstrate that the putative inhibitor is a low-molecular-weight (below 3 kDa), thermostable compound, resistant to protease treatment, which is synthesized under aerobic conditions in Z. mobilis strains via the active respiratory chain. It is also synthesized by aerated nongrowing, glucose-consuming cells in the presence of chloramphenicol, thus ruling out its bacteriocin-like peptide nature. The inhibitory activity is pH-dependent and strongly correlated with the accumulation of propionate and acetate in the culture medium. Although, in Z. mobilis, the synthesis pathways of these acids still need to be identified, the acid production depends on respiration, and is much less pronounced in the non-respiring mutant strain, which shows low inhibitory activity. We conclude that propionate and acetate play a central role in the antimicrobial effects of Z. mobilis, which itself is known to bear high resistance to organic acids.
Collapse
|
112
|
Wang Y, Wei W, Dai X, Ni BJ. Corncob ash boosts fermentative hydrogen production from waste activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151064. [PMID: 34673056 DOI: 10.1016/j.scitotenv.2021.151064] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
With the increasing demand for sustainable development, the recycling and utilization of wastes has received widespread attention. This study proposed a green method of using one waste, corncob ash, to boost microbial the production of hydrogen from another waste, waste activated sludge, during anaerobic fermentation. The corncob ash dosage and the fermentative hydrogen production was positively correlated, and the maximum production of hydrogen reached up to 46.8 ± 1.0 mL/g VS, which was about 3.5 times that of the control group without corncob ash dosage (17.0 ± 0.9 mL/g VS). Mechanistic studies found that corncob ash was beneficial to the solubilization, hydrolysis and acetogenesis processes involved in fermentative hydrogen production process. The microbial community analysis indicated that corncob ash enriched more hydrolytic microorganisms (e.g., Bacteroides sp. and Leptolinea sp.), and has less impact on acidifying microorganisms, compared to the control group. The strategy of using corncob ash to boost the production of hydrogen during anaerobic waste activated sludge fermentation proposed in this study might provide a new waste-control-waste paradigm, making sludge disposal and wastewater treatment more sustainable.
Collapse
Affiliation(s)
- Yun Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|
113
|
Physicochemical and Functional Properties of 2S, 7S, and 11S Enriched Hemp Seed Protein Fractions. Molecules 2022; 27:molecules27031059. [PMID: 35164322 PMCID: PMC8840737 DOI: 10.3390/molecules27031059] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 01/27/2023] Open
Abstract
The hemp seed contains protein fractions that could serve as useful ingredients for food product development. However, utilization of hemp seed protein fractions in the food industry can only be successful if there is sufficient information on their levels and functional properties. Therefore, this work provides a comparative evaluation of the structural and functional properties of hemp seed protein isolate (HPI) and fractions that contain 2S, 7S, or 11S proteins. HPI and protein fractions were isolated at pH values of least solubility. Results showed that the dominant protein was 11S, with a yield of 72.70 ± 2.30%, while 7S and 2S had values of 1.29 ± 0.11% and 3.92 ± 0.15%, respectively. The 2S contained significantly (p < 0.05) higher contents of sulfhydryl groups at 3.69 µmol/g when compared to 7S (1.51 µmol/g), 11S (1.55 µmol/g), and HPI (1.97 µmol/g). The in vitro protein digestibility of the 2S (72.54 ± 0.52%) was significantly (p < 0.05) lower than those of the other isolated proteins. The intrinsic fluorescence showed that the 11S had a more rigid structure at pH 3.0, which was lost at higher pH values. We conclude that the 2S fraction has superior solubility, foaming capacity, and emulsifying activity when compared to the 7S, 11S, and HPI.
Collapse
|
114
|
Zhang J, Abdollahi M, Alminger M, Undeland I. Cross-processing herring and salmon co-products with agricultural and marine side-streams or seaweeds produces protein isolates more stable towards lipid oxidation. Food Chem 2022; 382:132314. [PMID: 35149464 DOI: 10.1016/j.foodchem.2022.132314] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/10/2022] [Accepted: 01/29/2022] [Indexed: 11/04/2022]
Abstract
Herring and salmon filleting co-products were pH-shift processed together with seven antioxidant-containing raw materials ("helpers") including lingonberry-, apple-, oat-, barley- and shrimp-co-products, and two seaweeds (Saccharina latissima, Ulva fenestrata) to produce protein isolates stable towards lipid oxidation. Malondialdehyde (MDA) and 4-hydroxy-(E)-2-hexenal (HHE) levels revealed that all helpers, except shrimp shells, to different extents retarded lipid oxidation both during pH-shift-processing and ice storage. The three helpers performing best were: lingonberry press-cake > apple pomace ∼ Ulva. Color of protein isolates was affected by helper-derived pigments (e.g., anthocyanins, carotenoids, chlorophyll) and lipid oxidation-induced changes (e.g., metHb-formation, pigment-bleaching). In conclusion, combining fish co-products with other food side-streams or seaweeds during pH-shift processing appears a promising new tool to minimize lipid oxidation of protein isolates, both during their production and subsequent storage. Lingonberry press-cake was the most efficient helper but provided dark color which may narrow product development possibilities, something which requires further attention.
Collapse
Affiliation(s)
- Jingnan Zhang
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden.
| | - Mehdi Abdollahi
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| | - Marie Alminger
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| | - Ingrid Undeland
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden.
| |
Collapse
|
115
|
Blackholly LR, Harris NJ, Findlay HE, Booth PJ. Cell-Free Expression to Probe Co-Translational Insertion of an Alpha Helical Membrane Protein. Front Mol Biosci 2022; 9:795212. [PMID: 35187078 PMCID: PMC8847741 DOI: 10.3389/fmolb.2022.795212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/11/2022] [Indexed: 01/23/2023] Open
Abstract
The majority of alpha helical membrane proteins fold co-translationally during their synthesis on the ribosome. In contrast, most mechanistic folding studies address refolding of full-length proteins from artificially induced denatured states that are far removed from the natural co-translational process. Cell-free translation of membrane proteins is emerging as a useful tool to address folding during translation by a ribosome. We summarise the benefits of this approach and show how it can be successfully extended to a membrane protein with a complex topology. The bacterial leucine transporter, LeuT can be synthesised and inserted into lipid membranes using a variety of in vitro transcription translation systems. Unlike major facilitator superfamily transporters, where changes in lipids can optimise the amount of correctly inserted protein, LeuT insertion yields are much less dependent on the lipid composition. The presence of a bacterial translocon either in native membrane extracts or in reconstituted membranes also has little influence on the yield of LeuT incorporated into the lipid membrane, except at high reconstitution concentrations. LeuT is considered a paradigm for neurotransmitter transporters and possesses a knotted structure that is characteristic of this transporter family. This work provides a method in which to probe the formation of a protein as the polypeptide chain is being synthesised on a ribosome and inserting into lipids. We show that in comparison with the simpler major facilitator transporter structures, LeuT inserts less efficiently into membranes when synthesised cell-free, suggesting that more of the protein aggregates, likely as a result of the challenging formation of the knotted topology in the membrane.
Collapse
Affiliation(s)
| | | | | | - Paula J. Booth
- Department of Chemistry, King’s College London, London, United Kingdom
| |
Collapse
|
116
|
Henao Ossa JS, Wagner JR, Palazolo GG. Impact of environmental stresses on the stability of acidic oil-in-water emulsions prepared with tofu whey concentrates. Curr Res Food Sci 2022; 5:498-505. [PMID: 35265858 PMCID: PMC8898758 DOI: 10.1016/j.crfs.2022.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/14/2022] [Accepted: 02/19/2022] [Indexed: 11/17/2022] Open
Abstract
The emulsifying properties of tofu-whey concentrates (TWCs) at pH 3.0, 4.0, and 5.0, and the stability of the resultant oil-in-water emulsions against freeze-thawing (24 h, −20 °C) and controlled or mechanical stress (orbital stirring at 275 rpm, 40 min) were addressed. TWCs were prepared from tofu-whey by heating at 50 °C (8.0 kPa) or 80 °C (24.0 kPa), dialysis (4 °C, 48 h), and freeze-drying, giving the samples TWC50 and TWC80, respectively. The particle size and interfacial properties at the oil/water interface were measured. Emulsions were prepared by mixing the TWC aqueous dispersions (1.0% protein w/w) and refined sunflower oil (25.0% w/w) by high-speed and ultrasound homogenization. The preparation of TWCs at higher temperatures (80 °C) promoted the formation of species of larger particle size, a slight decrease of interfacial activity, and the adsorption of more rigid biopolymer structures associated with an increase of film viscoelasticity in interfacial rheology measurements. The emulsifying properties of both concentrates were enhanced with decreasing pH (5.0–3.0), through a significant decrease of particle size (D4,3) and flocculation degree (FD), but only those prepared with TWC80 exhibited higher stability to freeze-thawing and mechanical stress at pH 3.0. This could be ascribed to a combination of low initial D4,3 and FD values, high protein load, and the presence of rigid species that impart high viscoelasticity to the oil/water interface. These results would be of great importance for the utilization of TWCs as food emulsifiers in acidic systems to impart high stability to environmental stresses. Tofu whey concentrates (TWCs) were prepared by heating (50 °C, 80 °C) at reduced pressure. The emulsifying properties of TWC50 and TWC80 were evaluated at pH 3.0, 4.0 and 5.0. The emulsifying properties of TWC50 and TWC80 were enhanced at pH 3.0. For TWC80 emulsions, the freeze-thaw stability was enhanced at pH 3.0. TWC80 emulsions showed a high stability to mechanical stress at pH 3.0.
Collapse
|
117
|
Francija E, Lukic I, Petrovic Z, Brkic Z, Mitic M, Radulovic J, Adzic M. GluN2A-ERK-mTOR pathway confers a vulnerability to LPS-induced depressive-like behaviour. Behav Brain Res 2022; 417:113625. [PMID: 34637854 PMCID: PMC9878822 DOI: 10.1016/j.bbr.2021.113625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 01/28/2023]
Abstract
Inflammation plays a key role in the pathogenesis of the major depressive disorder. Namely, neuroinflammation can induce the production of neuroactive metabolites that interfere with N-methyl-D-aspartate receptors (NMDAR)-mediated glutamatergic neurotransmission and contribute to depressive-like behaviour. On the other hand, mammalian target of rapamycin (mTOR) activity with synaptogenic effects is the main mediator of antidepressant effects of several potent NMDAR antagonists. In this study, we investigated the specific role of GluN2A subunits of NMDAR on the activity of mTOR signaling and behaviour in lipopolysaccharide (LPS)-induces model of depression. The results showed that mice lacking GluN2A subunit did not display depressive-like behavior after the immune challenge, opposite to LPS-treated wild-type mice. Specifically, in GluN2A knockout mice, we estimated the activity of the mTOR pathway in the hippocampus and prefrontal cortex (PFC) by measuring synaptic levels of upstream regulators (p-Akt, p-ERK, and p-GSK3β) and downstream effectors (p-mTOR, and p-p70S6K) of mTOR activity. In addition, we assessed the changes in the levels of two important synaptic markers, GluA1 and PSD-95. Contrary to downregulated mTOR signaling and decreased synaptic markers in LPS-treated wild-type animals, the resilience of GluN2A KO mice to depressive-like behaviour was paralleled with sustained mTOR signaling activity synaptic stability in hippocampus and PFC. Finally, we disclosed that resistance of GluN2A knockouts to LPS-induced depressive-like behavior was ERK-dependent. These findings demonstrate that GluN2A-ERK-mTOR signaling is a vulnerability factor of inflammation-related depressive behaviour, making this signaling pathway the promising target for developing novel antidepressants.
Collapse
Affiliation(s)
- Ester Francija
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade
| | - Iva Lukic
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade
| | - Zorica Petrovic
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Zeljka Brkic
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade
| | - Milos Mitic
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade
| | - Jelena Radulovic
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Miroslav Adzic
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade,corresponding author: Miroslav Adzic, Ph.D., Full Research Professor, Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences - National Institute, of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia, P.O. Box 522-MBE090, 11001 Belgrade, Serbia, Phone: +381 11 340-8304,
| |
Collapse
|
118
|
Liposomal Formulation of a PLA2-Sensitive Phospholipid-Allocolchicinoid Conjugate: Stability and Activity Studies In Vitro. Int J Mol Sci 2022; 23:ijms23031034. [PMID: 35162957 PMCID: PMC8835198 DOI: 10.3390/ijms23031034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 01/15/2023] Open
Abstract
To assess the stability and efficiency of liposomes carrying a phospholipase A2-sensitive phospholipid-allocolchicinoid conjugate (aC-PC) in the bilayer, egg phosphatidylcholine and 1-palmitoyl-2-oleoylphosphatidylglycerol-based formulations were tested in plasma protein binding, tubulin polymerization inhibition, and cytotoxicity assays. Liposomes L-aC-PC10 containing 10 mol. % aC-PC in the bilayer bound less plasma proteins and were more stable in 50% plasma within 4 h incubation, according to calcein release and FRET-based assays. Liposomes with 25 mol. % of the prodrug (L-aC-PC25) were characterized by higher storage stability judged by their hydrodynamic radius evolution yet enhanced deposition of blood plasma opsonins on their surface according to SDS-PAGE and immunoblotting. Notably, inhibition of tubulin polymerization was found to require that the prodrug should be hydrolyzed to the parent allocolchicinoid. The L-aC-PC10 and L-aC-PC25 formulations demonstrated similar tubulin polymerization inhibition and cytotoxic activities. The L-aC-PC10 formulation should be beneficial for applications requiring liposome accumulation at tumor or inflammation sites.
Collapse
|
119
|
Proton motive force underpins respiration-mediated potentiation of aminoglycoside lethality in pathogenic Escherichia coli. Arch Microbiol 2022; 204:120. [PMID: 34989857 PMCID: PMC8739286 DOI: 10.1007/s00203-021-02710-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 11/24/2022]
Abstract
It is well known that loss of aerobic respiration in Gram-negative bacteria can diminish the efficacy of a variety of bactericidal antibiotics, which has lead to subsequent demonstrations that the formation of reactive oxygen species (ROS) and the proton motive force (PMF) can both play a role in antibiotic toxicity. The susceptibility of Gram-negative bacteria to aminoglycoside antibiotics, particularly gentamicin, has previously been linked to both the production of ROS and the rate of antibiotic uptake that is mediated by the PMF, although the relative contributions of ROS and PMF to aminoglycoside toxicity has remained poorly understood. Herein, gentamicin was shown to elicit a very modest increase in ROS levels in an aerobically grown Escherichia coli clinical isolate. The well-characterised uncoupler 2,4-dinitrophenol (DNP) was used to disrupt the PMF, which resulted in a significant decrease in gentamicin lethality towards E. coli. DNP did not significantly alter respiratory oxygen consumption, supporting the hypothesis that this uncoupler does not increase ROS production via elevated respiratory oxidase activity. These observations support the hypothesis that maintenance of PMF rather than induction of ROS production underpins the mechanism for how the respiratory chain potentiates the toxicity of aminoglycosides. This was further supported by the demonstration that the uncoupler DNP elicits a dramatic decrease in gentamicin lethality under anaerobic conditions. Together, these data strongly suggest that maintenance of the PMF is the dominant mechanism for the respiratory chain in potentiating the toxic effects of aminoglycosides.
Collapse
|
120
|
Tanambell H, Møller AH, Corredig M, Dalsgaard TK. RuBisCO from alfalfa – native subunits preservation through sodium sulfite addition and reduced solubility after acid precipitation followed by freeze-drying. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
121
|
Tretiakova DS, Alekseeva AS, Onishchenko NR, Boldyrev IA, Egorova NS, Vasina DV, Gushchin VA, Chernov AS, Telegin GB, Kazakov VA, Plokhikh KS, Konovalova MV, Svirshchevskaya EV, Vodovozova EL. Proof-of-Concept Study of Liposomes with a Set of SARS-CoV-2 Viral Peptidic T-Cell Epitopes as a Vaccine. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022; 48. [PMCID: PMC9977101 DOI: 10.1134/s1068162022060255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Potential nonameric epitopes of CD8+ T lymphocytes were selected from the composition of structural, accessory, and nonstructural proteins of the SARS-CoV-2 virus (13 peptides) and a 15-mer epitope of CD4+ T lymphocytes, from the S-protein, based on the analysis of publications on genome-wide immunoinformatic analysis of T-cell epitopes of the virus (Wuhan strain), as well as a number of clinical studies of immunodominant epitopes among patients recovering from COVID-19 disease. The peptides were synthesized and five compositions of 6–7 peptides were included in liposomes from egg phosphatidylcholine and cholesterol (~200 nm size) obtained by extrusion. After double subcutaneous immunization of conventional mice, activation of cellular immunity was assessed by the level of cytokine synthesis by splenocytes in vitro in response to stimulation with relevant peptide compositions. Liposomal formulation exhibiting the best result in terms of the formation of specific cellular immunity in response to vaccination was selected for further experiments. Evaluation of the protective efficacy of this formulation in an infectious mouse model showed a positive trend in the frequency of occurrence of hyaline-like membranes in the lumen of the alveoli, as well as a somewhat lower severity of microcirculatory disorders. The latter circumstance can potentially help reduce the severity of the disease and prevent its adverse outcomes. A method to produce liposome preparations with peptide compositions for long-term storage is under development.
Collapse
Affiliation(s)
- D. S. Tretiakova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - A. S. Alekseeva
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - N. R. Onishchenko
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - I. A. Boldyrev
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - N. S. Egorova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - D. V. Vasina
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098 Moscow, Russia
| | - V. A. Gushchin
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098 Moscow, Russia
| | - A. S. Chernov
- Pushchino Branch of Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - G. B. Telegin
- Pushchino Branch of Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - V. A. Kazakov
- Pushchino Branch of Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - K. S. Plokhikh
- National Research Center Kurchatov Institute, 123182 Moscow, Russia
| | - M. V. Konovalova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - E. V. Svirshchevskaya
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - E. L. Vodovozova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
122
|
Whitacre BE, Howles P, Street S, Morris J, Swertfeger D, Davidson WS. Apolipoprotein E content of VLDL limits LPL-mediated triglyceride hydrolysis. J Lipid Res 2022; 63:100157. [PMID: 34863862 PMCID: PMC8953696 DOI: 10.1016/j.jlr.2021.100157] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 12/20/2022] Open
Abstract
High levels of circulating triglycerides (TGs), or hypertriglyceridemia, are key components of metabolic diseases, such as type 2 diabetes, metabolic syndrome, and CVD. As TGs are carried by lipoproteins in plasma, hypertriglyceridemia can result from overproduction or lack of clearance of TG-rich lipoproteins (TRLs) such as VLDLs. The primary driver of TRL clearance is TG hydrolysis mediated by LPL. LPL is regulated by numerous TRL protein components, including the cofactor apolipoprotein C-II, but it is not clear how their effects combine to impact TRL hydrolysis across individuals. Using a novel assay designed to mimic human plasma conditions in vitro, we tested the ability of VLDL from 15 normolipidemic donors to act as substrates for human LPL. We found a striking 10-fold difference in hydrolysis rates across individuals when the particles were compared on a protein or a TG basis. While VLDL TG contents moderately correlated with hydrolysis rate, we noticed substantial variations in non-apoB proteins within these particles by MS. The ability of LPL to hydrolyze VLDL TGs did not correlate with apolipoprotein C-II content, but it was strongly inversely correlated with apolipoprotein E (APOE) and, to a lesser extent, apolipoprotein A-II. Addition of exogenous APOE inhibited LPL lipolysis in a dose-dependent manner. The APOE3 and (particularly) APOE4 isoforms were effective at limiting LPL hydrolysis, whereas APOE2 was not. We conclude that APOE on VLDL modulates LPL activity and could be a relevant factor in the pathogenesis of metabolic disease.
Collapse
Affiliation(s)
- Brynne E Whitacre
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Philip Howles
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Scott Street
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Jamie Morris
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Debi Swertfeger
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
123
|
Asen ND, Badamasi AT, Gborigo JT, Aluko RE, Girgih AT. Comparative Evaluation of the Antioxidant Properties of Whole Peanut Flour, Defatted Peanut Protein Meal, and Peanut Protein Concentrate. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.765364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Defatted peanut meal is a low value agro-industrial residue from peanut oil production with potential use as a value addition food ingredient. In this study, peanuts were roasted at 100°C for 5 min, de-skinned and milled into whole peanut flour (WPF) from which the defatted meal (DPM) was prepared by acetone extraction and the peanut protein concentrate (PPC) obtained from the DPM using isoelectric pH precipitation. The protein content, amino acid profile, total phenolic content (TPC), total flavonoid content (TFC) and in vitro antioxidant properties of the peanut samples were then determined. Results showed that DPM had a TPC of 0.12 ± 0.02 mg gallic acid equivalent (GAE)/g, which was significantly (p < 0.05) higher than and twice the levels in WPF and PPC (0.06 ± 0.03 mg GAE/g). However, WPF had TFC of 0.21 ± 0.01 μg quercetin equivalent (QE)/g, which was significantly (p < 0.05) higher than DPM (0.16 ± 0.03 μg QE/g) and PPC (0.11 ± 0.05 μg QE/g). However, PPC had superior amino acid profile in addition to stronger radical scavenging and metal chelation activities than WPF and DPM. The results suggest that PPC is a protein rich product that could be utilized as an ingredient in food product fortification to enhance nutritional quality and in the formulation of functional foods with antioxidant benefits.
Collapse
|
124
|
Felix M, Cermeño M, FitzGerald RJ. Structure and in vitro bioactive properties of O/W emulsions generated with fava bean protein hydrolysates. Food Res Int 2021; 150:110780. [PMID: 34865795 DOI: 10.1016/j.foodres.2021.110780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/27/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022]
Abstract
The use of plant-derived proteins in the generation of food products is gaining popularity as an alternative to proteins of animal origin. This study described the emulsifying and bioactive properties of fava bean protein hydrolysates (FBH) generated at low and high degree of hydrolysis (DH), i.e., FBH8 (low DH: 8.4 ± 0.3) and FBH210 (high DH: 15.6 ± 0.7) when adjusted to three different pHs (3.0, 5.0 and 8.0). Overall, FBH8, had more favourable emulsifying properties compared to the FBH210. The emulsion generated with FBH8 at pH 8.0 also had the highest antioxidant activity when measured by the oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays with values of 1108.6 ± 3.8 and 1159.9 ± 20.5 μmol Trolox Eq·g-1 emulsion, respectively. The antioxidant activity of the emulsions, in most cases, remained unchanged following in vitro simulated gastrointestinal digestion. Both the FBH8 and FBH210 emulsions following in vitro simulated gastrointestinal digestion were able to inhibit the activities of dipeptidyl peptidase-IV (DPP-IV) and angiotensin converting enzyme (ACE) with ∼45% and 65% inhibition, respectively. These results indicated that hydrolysates from fava bean may find use for the generation of bioactive emulsions.
Collapse
Affiliation(s)
- Manuel Felix
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, Ireland
| | - Maria Cermeño
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, Ireland
| | - Richard J FitzGerald
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, Ireland.
| |
Collapse
|
125
|
González-Balderas R, Velasquez-Orta S, Felix M, Bengoechea C, Yañez Noguez I, Orta Ledesma M. Identification and effect of ozone and ultrasound pretreatments on Desmodesmus sp. and Tetradesmus obliquus proteins. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
126
|
Juul L, Danielsen M, Nebel C, Steinhagen S, Bruhn A, Jensen S, Undeland I, Dalsgaard T. Ulva fenestrata protein – Comparison of three extraction methods with respect to protein yield and protein quality. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
127
|
Forghani B, Sørensen ADM, Fredeus G, Skaaning K, Johannesson J, Sloth JJ, Undeland I. Biochemical Characterization and Storage Stability of Process Waters from Industrial Shrimp Production. ACS OMEGA 2021; 6:30960-30970. [PMID: 34849440 PMCID: PMC8619652 DOI: 10.1021/acsomega.1c03304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Shrimp boiling water (SBW) and shrimp peeling water (SPW), generated during shrimp processing, were characterized in terms of crude composition, volatile compounds, as well as nutritional and potentially toxic elements over a 13 month sampling period. The storage stability of both waters was also evaluated. Results showed that SBW contained on median 14.8 g/L protein and 2.2 g/L total fatty acids with up to 50% comprising eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Astaxanthin esters, which dominated the total astaxanthin, were 2.8 mg/L on median. SPW, on the other hand, contained on median 1.0 g/L of protein, 0.21 g/L of total fatty acids, and 1.2 mg/L astaxanthin esters. For both side-streams, essential amino acids were up to 50% of total amino acids. For SBW and SPW, the most abundant nutritional elements were Na, K, P, Ca, Cu, and Zn. The contents of all potentially toxic elements were below the detection limits, except for As. SBW was more stable at 4 °C compared to SPW as shown, e.g., by thiobarbituric acid reactive substances and relative changes in total volatile basic nitrogen. The extensive compositional mapping of SBW/SPW provides crucial knowledge necessary in the exploitation and value-adding of such side-streams into food or feed products.
Collapse
Affiliation(s)
- Bita Forghani
- Food
and Nutrition Science, Biology and Biological Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | | | - Gustaf Fredeus
- Food
and Nutrition Science, Biology and Biological Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Kenneth Skaaning
- National
Food Institute, Technical University of
Denmark, Kgs. Lyngby 2800, Denmark
| | | | - Jens J. Sloth
- National
Food Institute, Technical University of
Denmark, Kgs. Lyngby 2800, Denmark
| | - Ingrid Undeland
- Food
and Nutrition Science, Biology and Biological Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| |
Collapse
|
128
|
Wang D, Qi B, Xu Q, Zhang S, Xie F, Li Y. Effect of salt ions on an ultrasonically modified soybean lipophilic protein nanoemulsion. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Diqiong Wang
- College of Food Science Northeast Agricultural University Harbin Heilongjiang 150030 China
| | - Baokun Qi
- College of Food Science Northeast Agricultural University Harbin Heilongjiang 150030 China
| | - Qingqing Xu
- College of Food Science Northeast Agricultural University Harbin Heilongjiang 150030 China
| | - Shuang Zhang
- College of Food Science Northeast Agricultural University Harbin Heilongjiang 150030 China
| | - Fengying Xie
- College of Food Science Northeast Agricultural University Harbin Heilongjiang 150030 China
| | - Yang Li
- College of Food Science Northeast Agricultural University Harbin Heilongjiang 150030 China
- Heilongjiang Institute of Green Food Science Harbin Heilongjiang 150030 China
| |
Collapse
|
129
|
Brenes-Álvarez M, Olmedo-Verd E, Vioque A, Muro-Pastor AM. A nitrogen stress-inducible small RNA regulates CO2 fixation in Nostoc. PLANT PHYSIOLOGY 2021; 187:787-798. [PMID: 34608966 PMCID: PMC8491059 DOI: 10.1093/plphys/kiab309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/09/2021] [Indexed: 05/09/2023]
Abstract
In the absence of fixed nitrogen, some filamentous cyanobacteria differentiate heterocysts, specialized cells devoted to fixing atmospheric nitrogen (N2). This differentiation process is controlled by the global nitrogen regulator NtcA and involves extensive metabolic reprogramming, including shutdown of photosynthetic CO2 fixation in heterocysts, to provide a microaerobic environment suitable for N2 fixation. Small regulatory RNAs (sRNAs) are major post-transcriptional regulators of gene expression in bacteria. In cyanobacteria, responding to nitrogen deficiency involves transcribing several nitrogen-regulated sRNAs. Here, we describe the participation of nitrogen stress-inducible RNA 4 (NsiR4) in post-transcriptionally regulating the expression of two genes involved in CO2 fixation via the Calvin cycle: glpX, which encodes bifunctional sedoheptulose-1,7-bisphosphatase/fructose-1,6-bisphosphatase (SBPase), and pgk, which encodes phosphoglycerate kinase (PGK). Using a heterologous reporter assay in Escherichia coli, we show that NsiR4 interacts with the 5'-untranslated region (5'-UTR) of glpX and pgk mRNAs. Overexpressing NsiR4 in Nostoc sp. PCC 7120 resulted in a reduced amount of SBPase protein and reduced PGK activity, as well as reduced levels of both glpX and pgk mRNAs, further supporting that NsiR4 negatively regulates these two enzymes. In addition, using a gfp fusion to the nsiR4 promoter, we show stronger expression of NsiR4 in heterocysts than in vegetative cells, which could contribute to the heterocyst-specific shutdown of Calvin cycle flux. Post-transcriptional regulation of two Calvin cycle enzymes by NsiR4, a nitrogen-regulated sRNA, represents an additional link between nitrogen control and CO2 assimilation.
Collapse
Affiliation(s)
- Manuel Brenes-Álvarez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville E-41092, Spain
| | - Elvira Olmedo-Verd
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville E-41092, Spain
| | - Agustín Vioque
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville E-41092, Spain
| | - Alicia M. Muro-Pastor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville E-41092, Spain
- Author for communication:
| |
Collapse
|
130
|
Zhang Q, Zeng L, Fu X, Pan F, Shi X, Wang T. Comparison of anaerobic co-digestion of pig manure and sludge at different mixing ratios at thermophilic and mesophilic temperatures. BIORESOURCE TECHNOLOGY 2021; 337:125425. [PMID: 34157435 DOI: 10.1016/j.biortech.2021.125425] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
The objective of this study is to assess the effects of the mixing ratio on the methane production and digestate dewaterability of co-digestion of pig manure (P) and sludge (S). Batch experiments were carried out at five different P/S mixing ratios at mesophilic and thermophilic temperatures. Compared to sludge anaerobic digestion, co-digestion of pig manure with sludge increased methane yield 83.0%-136.5% at mesophilic temperature and 31.3%-68.0% at thermophilic temperature. The normalized capillary suction time (NCST) and total solids (TS) of sediment (centrifugal dewatering) increased when pig manure proportion of substrate increased. The NCST at thermophilic temperatures (4.87-17.58 s g-1-TSS) was higher than that at mesophilic temperatures (1.89-10.95 s g-1-TSS). However, the TS of sediment was close at thermophilic and mesophilic temperatures. The results indicated that anaerobic co-digestion of pig manure and sludge at a proper mixing ratio (P/S = 2:1) provides a good choice for energy recovery and land utilization.
Collapse
Affiliation(s)
- Qingfang Zhang
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Liyuan Zeng
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Xin Fu
- Jiangxi Province Engineering Research Center of Ecological Chemical Industry (Jiujiang University), Jiujiang 332005, China
| | - Feng Pan
- Jiangxi Province Engineering Research Center of Ecological Chemical Industry (Jiujiang University), Jiujiang 332005, China
| | - Xiaofeng Shi
- Xi'an Scientific Research Institute of Environmental Protection, Xi'an 710061, China
| | - Tianfeng Wang
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China; Jiangxi Province Engineering Research Center of Ecological Chemical Industry (Jiujiang University), Jiujiang 332005, China.
| |
Collapse
|
131
|
Spanoghe J, Vermeir P, Vlaeminck SE. Microbial food from light, carbon dioxide and hydrogen gas: Kinetic, stoichiometric and nutritional potential of three purple bacteria. BIORESOURCE TECHNOLOGY 2021; 337:125364. [PMID: 34120062 DOI: 10.1016/j.biortech.2021.125364] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
The urgency for a protein transition towards more sustainable solutions is one of the major societal challenges. Microbial protein is one of the alternative routes, in which land- and fossil-free production should be targeted. The photohydrogenotrophic growth of purple bacteria, which builds on the H2- and CO2-economy, is unexplored for its microbial protein potential. The three tested species (Rhodobacter capsulatus, Rhodobacter sphaeroides and Rhodopseudomonas palustris) obtained promising growth rates (2.3-2.7 d-1 at 28°C) and protein productivities (0.09-0.12 g protein L-1 d-1), rendering them likely faster and more productive than microalgae. The achieved protein yields (2.6-2.9 g protein g-1 H2) transcended the ones of aerobic hydrogen oxidizing bacteria. Furthermore, all species provided full dietary protein matches for humans and their fatty acid content was dominated by vaccenic acid (82-86%). Given its kinetic and nutritional performance we recommend to consider Rhodobacter capsulatus as a high-potential sustainable source of microbial food.
Collapse
Affiliation(s)
- Janne Spanoghe
- Research Group of Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, Antwerpen 2020, Belgium
| | - Pieter Vermeir
- Laboratory for Chemical Analysis, Department of Green Chemistry and Technology, Ghent University, Valentin Vaerwyckweg 1, Gent 9000, Belgium
| | - Siegfried E Vlaeminck
- Research Group of Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, Antwerpen 2020, Belgium.
| |
Collapse
|
132
|
Lee HW, Lu Y, Zhang Y, Fu C, Huang D. Physicochemical and functional properties of red lentil protein isolates from three origins at different pH. Food Chem 2021; 358:129749. [PMID: 33933978 DOI: 10.1016/j.foodchem.2021.129749] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/20/2021] [Accepted: 04/03/2021] [Indexed: 12/23/2022]
Abstract
Red lentils (Lens culinaris) present an attractive raw material for meat mimics due to its red-coloured proteins, abundance, high protein and low cost. However, data on its functional properties at various pH remain scarce. In this study, the physicochemical and functional properties of red lentil proteins (RLP) from three origins (USA, Nepal and Turkey), isolated by isoelectric precipitation, were evaluated. Amino acid profiles, water holding (ranging from 3.1 to 3.5 g/g) and oil absorption (ranging from 5.8 to 7.3 g/g) capacities of RLP samples were significantly different (p < 0.05). RLP consisted of legumin and vicilin, and comprised predominantly glutamine/glutamic acid (ranging from 8.72 to 10.55 g/100 g). Surface charge, protein solubility, foaming and emulsifying properties were the lowest and poorest at pH 5.2 (isoelectric point). Overall, good functional properties of RLP under high acidity and alkalinity conditions make it a promising protein for mimicking a wide range of meats.
Collapse
Affiliation(s)
- Hui Wen Lee
- Department of Food Science and Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore.
| | - Yuyun Lu
- Department of Food Science and Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore.
| | - Yuyu Zhang
- Beijing Key Laboratory of Flavour Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Caili Fu
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, China.
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, China.
| |
Collapse
|
133
|
Nissen SH, Schmidt JM, Gregersen S, Hammershøj M, Møller AH, Danielsen M, Stødkilde L, Nebel C, Dalsgaard TK. Increased solubility and functional properties of precipitated Alfalfa protein concentrate subjected to pH shift processes. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
134
|
Trigo JP, Engström N, Steinhagen S, Juul L, Harrysson H, Toth GB, Pavia H, Scheers N, Undeland I. In vitro digestibility and Caco-2 cell bioavailability of sea lettuce (Ulva fenestrata) proteins extracted using pH-shift processing. Food Chem 2021; 356:129683. [PMID: 33845254 DOI: 10.1016/j.foodchem.2021.129683] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/05/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023]
Abstract
Seaweed is a promising sustainable source of vegan protein as its farming does not require arable land, pesticides/insecticides, nor freshwater supply. However, to be explored as a novel protein source the content and nutritional quality of protein in seaweed need to be improved. We assessed the influence of pH-shift processing on protein degree of hydrolysis (%DH), protein/peptide size distribution, accessibility, and cell bioavailability of Ulva fenestrata proteins after in vitro gastrointestinal digestion. pH-shift processing of Ulva, which concentrated its proteins 3.5-times, significantly improved the %DH from 27.7±2.6% to 35.7±2.1% and the amino acid accessibility from 56.9±4.1% to 72.7±0.6%. Due to the higher amino acid accessibility, the amount of most amino acids transported across the cell monolayers was higher in the protein extracts. Regarding bioavailability, both Ulva and protein extracts were as bioavailable as casein. The protein/peptide molecular size distribution after digestion did not disclose a clear association with bioavailability.
Collapse
Affiliation(s)
- João P Trigo
- Department of Biology and Biological Engineering - Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden.
| | - Niklas Engström
- Department of Biology and Biological Engineering - Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| | - Sophie Steinhagen
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Laboratorievägen 10, SE 452 96 Strömstad, Sweden
| | - Louise Juul
- Faculty of Technical Sciences, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark
| | - Hanna Harrysson
- Department of Biology and Biological Engineering - Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| | - Gunilla B Toth
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Laboratorievägen 10, SE 452 96 Strömstad, Sweden
| | - Henrik Pavia
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Laboratorievägen 10, SE 452 96 Strömstad, Sweden
| | - Nathalie Scheers
- Department of Biology and Biological Engineering - Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| | - Ingrid Undeland
- Department of Biology and Biological Engineering - Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden.
| |
Collapse
|
135
|
Jiménez‐Rosado M, Maigret J, Lourdin D, Guerrero A, Romero A. Injection molding versus extrusion in the manufacturing of soy protein‐based bioplastics with zinc incorporated. J Appl Polym Sci 2021. [DOI: 10.1002/app.51630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mercedes Jiménez‐Rosado
- Departamento de Ingeniería Química, Facultad de Química Escuela Politécnica Superior ‐ Universidad de Sevilla Sevilla Spain
| | - Jean‐Eudes Maigret
- Biopolymers Interactions Assemblies Research Unit 1268 (BIA) INRAE, UR BIA Nantes France
| | - Denis Lourdin
- Biopolymers Interactions Assemblies Research Unit 1268 (BIA) INRAE, UR BIA Nantes France
| | - Antonio Guerrero
- Departamento de Ingeniería Química, Facultad de Química Escuela Politécnica Superior ‐ Universidad de Sevilla Sevilla Spain
| | - Alberto Romero
- Departamento de Ingeniería Química, Facultad de Química Escuela Politécnica Superior ‐ Universidad de Sevilla Sevilla Spain
| |
Collapse
|
136
|
Osemwota EC, Alashi AM, Aluko RE. Comparative Study of the Structural and Functional Properties of Membrane-Isolated and Isoelectric pH Precipitated Green Lentil Seed Protein Isolates. MEMBRANES 2021; 11:694. [PMID: 34564511 PMCID: PMC8471907 DOI: 10.3390/membranes11090694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 01/01/2023]
Abstract
The demand for isolated seed proteins continues to increase but functionality in food systems can be greatly dependent on the extraction method. In this work, we report the physicochemical and functional properties of lentil seed proteins isolated using various protocols. Lentil flour was defatted followed by protein extraction using isoelectric pH precipitation (ISO) as well as NaOH (MEM_NaOH) and NaCl (MEM_NaCl) extractions coupled with membrane ultrafiltration. The MEM_NaCl had significantly (p < 0.05) higher protein content (90.28%) than the ISO (86.13%) and MEM_NaOH (82.55%). At pH 3-5, the ISO was less soluble (2.26-11.84%) when compared to the MEM_NaOH (25.74-27.22%) and MEM_NaCl (27.78-40.98%). However, the ISO had higher yield and protein digestibility (48.45% and 89.82%) than MEM_NaOH (35.05% and 77.87%) and MEM_NaCl (13.35% and 77.61%), respectively. Near-UV circular dichroism spectra showed that the MEM_NaOH had loose tertiary conformation at pH 3, 5, 7 and 9 while ISO and MEM_NaCl had more compact structures at pH 7 and 9. The three protein isolates formed better emulsions (lower oil droplet sizes) at pH 7 and 9 when compared to pH 3 and 5. In contrast, foaming capacity was better at pH 5 than pH 3, 7, and 9.
Collapse
Affiliation(s)
- Etinosa C. Osemwota
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (E.C.O.); (A.M.A.)
| | - Adeola M. Alashi
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (E.C.O.); (A.M.A.)
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (E.C.O.); (A.M.A.)
- The Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
137
|
Impact of pH-shift processing combined with ultrasonication on structural and functional properties of proteins isolated from rainbow trout by-products. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106768] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
138
|
Santamaría-Gómez J, Rubio MÁ, López-Igual R, Romero-Losada AB, Delgado-Chaves FM, Bru-Martínez R, Romero-Campero FJ, Herrero A, Ibba M, Ochoa de Alda JAG, Luque I. Role of a cryptic tRNA gene operon in survival under translational stress. Nucleic Acids Res 2021; 49:8757-8776. [PMID: 34379789 PMCID: PMC8421152 DOI: 10.1093/nar/gkab661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 07/12/2021] [Accepted: 07/22/2021] [Indexed: 01/08/2023] Open
Abstract
As compared to eukaryotes, bacteria have a reduced tRNA gene set encoding between 30 and 220 tRNAs. Although in most bacterial phyla tRNA genes are dispersed in the genome, many species from distinct phyla also show genes forming arrays. Here, we show that two types of arrays with distinct evolutionary origins exist. This work focuses on long tRNA gene arrays (L-arrays) that encompass up to 43 genes, which disseminate by horizontal gene transfer and contribute supernumerary tRNA genes to the host. Although in the few cases previously studied these arrays were reported to be poorly transcribed, here we show that the L-array of the model cyanobacterium Anabaena sp. PCC 7120, encoding 23 functional tRNAs, is largely induced upon impairment of the translation machinery. The cellular response to this challenge involves a global reprogramming of the transcriptome in two phases. tRNAs encoded in the array are induced in the second phase of the response, directly contributing to cell survival. Results presented here show that in some bacteria the tRNA gene set may be partitioned between a housekeeping subset, which constantly sustains translation, and an inducible subset that is generally silent but can provide functionality under particular conditions.
Collapse
Affiliation(s)
- Javier Santamaría-Gómez
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Seville E-41092, Spain
| | - Miguel Ángel Rubio
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Seville E-41092, Spain.,Center for RNA Biology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA.,Department of Microbiology, The Ohio State University, 318 West 12th Avenue, Columbus, OH 43210, USA
| | - Rocío López-Igual
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Seville E-41092, Spain
| | - Ana B Romero-Losada
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Seville E-41092, Spain.,Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Seville E-41012, Spain
| | - Fernando M Delgado-Chaves
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Seville E-41092, Spain
| | - Roque Bru-Martínez
- Department of Agrochemistry and Biochemistry, Faculty of Science, University of Alicante, Alicante E- 03690, Spain
| | - Francisco J Romero-Campero
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Seville E-41092, Spain.,Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Seville E-41012, Spain
| | - Antonia Herrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Seville E-41092, Spain
| | - Michael Ibba
- Center for RNA Biology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA.,Department of Microbiology, The Ohio State University, 318 West 12th Avenue, Columbus, OH 43210, USA.,Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA 92866, USA
| | - Jesús A G Ochoa de Alda
- Didáctica de las Ciencias Experimentales, Facultad de Formación del Profesorado, Universidad de Extremadura, Cáceres E-10003, Spain
| | - Ignacio Luque
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Seville E-41092, Spain
| |
Collapse
|
139
|
Ma XY, Chen XX, Ma MY, Xu Y, Wu XM, Mu GQ, Zhu XM. Lutein transport systems loaded with rice protein-based self-assembled nanoparticles. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
140
|
Diodato S, Comoglio L, Camilion C, Amin O, Marcovecchio J. Integrated biomarker response in Mytilus chilensis exposed to untreated urban discharges along the coast of Ushuaia Bay (Beagle Channel, Argentina). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39892-39906. [PMID: 33768459 DOI: 10.1007/s11356-021-13587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
The short-term effects of coastal untreated effluents from Ushuaia Bay, Beagle Channel, on the biochemical and physiological biomarkers of Mytilus chilensis were assessed. An integrated biomarker response (IBR) index was calculated as a helpful tool to represent the general stress of the experimental organisms. Cultured mussels were exposed during 96 h to three coastal sites impacted by sewage effluents. At the beginning (T0) and every 24 h, mussels were subsampled from each site and different biochemical and physiological biomarkers were determined. There was no mortality registered in the experiments during the 96 h. However, biochemical and physiological biomarkers presented significant variations. Lipid peroxidation mean levels in mussels decreased in mantle and increased in digestive gland with respect to T0 in almost all cases. Acetylcholinesterase activity was inhibited in all sites, reaching a maximal decrease of 35% with respect to T0. Catalase remained stable and glutathione-S-transferase was activated. Oxygen consumption and ammonia excretion rates increased in organisms from two sites and, consequently, O:N ratio decreased, denoting a symptom of stress. IBR values showed the existence of different stress levels between exposed and unexposed mussels. These results exhibited an alteration of the general metabolism of mussels exposed for a short period of time to untreated coastal wastewater, suggesting the use of these organisms as early indicators of changes in the environmental quality of coastal waters of Ushuaia Bay.
Collapse
Affiliation(s)
- Soledad Diodato
- Laboratorio de Ecología Terrestre y Acuática, Grupo de Ecosistemas Acuáticos e Indicadores Ambientales, Centro Austral de Investigaciones Científicas (CADIC), CONICET, B. Houssay 200, V9410, Ushuaia, Argentina.
- Instituto de Ciencias Polares, Ambiente y Recursos Naturales, Universidad Nacional de Tierra del Fuego (UNTDF), Fuegia Basket 251, V9410, Ushuaia, Argentina.
| | | | - Carolina Camilion
- Instituto de Ciencias Polares, Ambiente y Recursos Naturales, Universidad Nacional de Tierra del Fuego (UNTDF), Fuegia Basket 251, V9410, Ushuaia, Argentina
| | | | - Jorge Marcovecchio
- Laboratorio de Química Marina, Instituto Argentino de Oceanografía (IADO), CONICET-UNS, Camino La Carrindanga Km 7.5, B8000FWB, Bahía Blanca, Argentina
- Universidad Tecnológica Nacional - FRBB, 11 de abril 461, B8000, Bahía Blanca, Argentina
- Universidad FASTA, Avellaneda 3341, B7600, Mar del Plata, Argentina
| |
Collapse
|
141
|
Improvement of ultrasound microwave-assisted enzymatic production and high hydrostatic pressure on emulsifying, rheological and interfacial characteristics of sweet potato protein hydrolysates. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106684] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
142
|
Characterization of the Free and Membrane-Associated Fractions of the Thylakoid Lumen Proteome in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms22158126. [PMID: 34360890 PMCID: PMC8346976 DOI: 10.3390/ijms22158126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
The thylakoid lumen houses proteins that are vital for photosynthetic electron transport, including water-splitting at photosystem (PS) II and shuttling of electrons from cytochrome b6f to PSI. Other lumen proteins maintain photosynthetic activity through biogenesis and turnover of PSII complexes. Although all lumen proteins are soluble, these known details have highlighted interactions of some lumen proteins with thylakoid membranes or thylakoid-intrinsic proteins. Meanwhile, the functional details of most lumen proteins, as well as their distribution between the soluble and membrane-associated lumen fractions, remain unknown. The current study isolated the soluble free lumen (FL) and membrane-associated lumen (MAL) fractions from Arabidopsis thaliana, and used gel- and mass spectrometry-based proteomics methods to analyze the contents of each proteome. These results identified 60 lumenal proteins, and clearly distinguished the difference between the FL and MAL proteomes. The most abundant proteins in the FL fraction were involved in PSII assembly and repair, while the MAL proteome was enriched in proteins that support the oxygen-evolving complex (OEC). Novel proteins, including a new PsbP domain-containing isoform, as well as several novel post-translational modifications and N-termini, are reported, and bi-dimensional separation of the lumen proteome identified several protein oligomers in the thylakoid lumen.
Collapse
|
143
|
Melchior JT, Street SE, Vaisar T, Hart R, Jerome J, Kuklenyik Z, Clouet-Foraison N, Thornock C, Bedi S, Shah AS, Segrest JP, Heinecke JW, Davidson WS. Apolipoprotein A-I modulates HDL particle size in the absence of apolipoprotein A-II. J Lipid Res 2021; 62:100099. [PMID: 34324889 PMCID: PMC8385444 DOI: 10.1016/j.jlr.2021.100099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/01/2021] [Accepted: 07/15/2021] [Indexed: 11/30/2022] Open
Abstract
Human high-density lipoproteins (HDL) are a complex mixture of structurally-related nanoparticles that perform distinct physiological functions. We previously showed human HDL containing apolipoprotein A-I (APOA1) but not apolipoprotein A-II (APOA2), designated LpA-I, is composed primarily of two discretely sized populations. Here, we isolated these particles directly from human plasma by antibody affinity chromatography, separated them by high-resolution size exclusion chromatography and performed a deep molecular characterization of each species. The large and small LpA-I populations were spherical with mean diameters of 109 Å and 91 Å, respectively. Unexpectedly, isotope dilution MS/MS with [15N]-APOA1 in concert with quantitation of particle concentration by calibrated ion mobility analysis demonstrated that the large particles contained fewer APOA1 molecules than the small particles; the stoichiometries were 3.0 and 3.7 molecules of APOA1 per particle, respectively. MS/MS experiments showed that the protein cargo of large LpA-I particles was more diverse. Human HDL and isolated particles containing both APOA1 and APOA2 exhibit a much wider range and variation of particle sizes than LpA-I, indicating that APOA2 is likely the major contributor to HDL size heterogeneity. We propose a ratchet model based on the trefoil structure of APOA1 whereby the helical cage maintaining particle structure has two 'settings' - large and small - that accounts for these findings. This understanding of the determinants of HDL particle size and protein cargo distribution serves as a basis for determining the roles of HDL subpopulations in metabolism and disease states.
Collapse
Affiliation(s)
- John T Melchior
- Center for Lipid and Arteriosclerosis Science, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237; Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99354
| | - Scott E Street
- Center for Lipid and Arteriosclerosis Science, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237
| | - Tomas Vaisar
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98109
| | - Rachel Hart
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Jay Jerome
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Zsuzsanna Kuklenyik
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341
| | - Noemie Clouet-Foraison
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98109
| | - Carissa Thornock
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98109
| | - Shimpi Bedi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99354
| | - Amy S Shah
- Division of Endocrinology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio 45229
| | - Jere P Segrest
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Jay W Heinecke
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98109
| | - W Sean Davidson
- Center for Lipid and Arteriosclerosis Science, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237.
| |
Collapse
|
144
|
Rodríguez-Salgueiro S, Ocaña-Nápoles L, Oyarzábal-Yera A, González-Núñez L, Breña-Betancourt G, Pérez-Pino MF, Medina-Pírez JA, Jiménez-Despaigne S, Molina-Cuevas V. Benefits of D-005, a lipid extract from Acrocomia crispa fruits, in the prevention of acute kidney injury induced by nephrotoxicity in rats. ACTA ACUST UNITED AC 2021; 44:9-18. [PMID: 34289007 PMCID: PMC8943882 DOI: 10.1590/2175-8239-jbn-2021-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/12/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Aminoglycoside-induced acute kidney injury (AKI) is a pathology closely linked to oxidative and inflammatory reactions. Taking into account the previous reported antioxidant and anti-inflammatory effects of D-005, a lipid extract obtained from Cuban palm Acrocomia crispa (Arecaceae) fruits, this work aimed to evaluate the effects of D-005 on kanamycin-induced AKI. METHODS Male Wistar rats were divided into 7 groups: negative control (vehicle, Tween 65/H2O) and six groups treated with kanamycin to induce AKI: positive control (vehicle), D-005 (25, 100, 200, and 400 mg/kg) and grape seed extract (GSE, 200 mg/kg). D-005, vehicle, and GSE oral treatments were administered once daily for seven days, 1 h before kanamycin (500 mg/kg, i.p.). Serum uric acid and urea concentrations, renal histopathology, and oxidative markers (malondialdehyde (MDA), sulfhydryl (SH) groups, and catalase (CAT) activity) were assessed. RESULTS D-005 significantly reduced uric acid and urea levels, starting from D-005 100 mg/kg. Histopathologically, D-005, at all the tested doses, protected renal parenchyma structures (glomeruli, proximal tubules, and interstitium). These findings were accompanied by a significant reduction of MDA and SH group concentrations as well as restoration of CAT activity. The highest percentages of inhibition were obtained with the dose of 400 mg/kg. GSE, the reference substance, also prevented kanamycin-induced biochemical and histopathological changes, as well as reduced MDA and SH groups and restored CAT activity. CONCLUSION The administration of repeated oral doses of D-005 significantly protected against kanamycin-induced AKI, which could be associated with the antioxidant and anti-inflammatory effects of this extract.
Collapse
Affiliation(s)
- Sandra Rodríguez-Salgueiro
- Centro Nacional de Investigación Científica, Departamento de Farmacología, Havana, Cuba.,Facultad Latinoamericana de Medicina, Departamento de Ciencias Morfológicas, Havana, Cuba
| | - Leyanis Ocaña-Nápoles
- Centro Nacional de Investigación Científica, Departamento de Farmacología, Havana, Cuba
| | - Ambar Oyarzábal-Yera
- Centro Nacional de Investigación Científica, Departamento de Farmacología, Havana, Cuba
| | - Lucía González-Núñez
- Facultad Latinoamericana de Medicina, Departamento de Ciencias Morfológicas, Havana, Cuba
| | | | | | - José A Medina-Pírez
- Centro Nacional de Investigación Científica, Departamento de Farmacología, Havana, Cuba
| | | | - Vivian Molina-Cuevas
- Centro Nacional de Investigación Científica, Departamento de Farmacología, Havana, Cuba
| |
Collapse
|
145
|
Structural and Functional Impairments of Reconstituted High-Density Lipoprotein by Incorporation of Recombinant β-Amyloid42. Molecules 2021; 26:molecules26144317. [PMID: 34299592 PMCID: PMC8303321 DOI: 10.3390/molecules26144317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 11/17/2022] Open
Abstract
Beta (β)-amyloid (Aβ) is a causative protein of Alzheimer’s disease (AD). In the pathogenesis of AD, the apolipoprotein (apo) A-I and high-density lipoprotein (HDL) metabolism is essential for the clearance of Aβ. In this study, recombinant Aβ42 was expressed and purified via the pET-30a expression vector and E.coli production system to elucidate the physiological effects of Aβ on HDL metabolism. The recombinant human Aβ protein (51 aa) was purified to at least 95% purity and characterized in either the lipid-free and lipid-bound states with apoA-I. Aβ was incorporated into the reconstituted HDL (rHDL) (molar ratio 95:5:1, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC):cholesterol:apoA-I) with various apoA-I:Aβ ratios from 1:0 to 1:0.5, 1:1 and 1:2. With an increasing molar ratio of Aβ, the α-helicity of apoA-I was decreased from 62% to 36% with a red shift of the Trp wavelength maximum fluorescence from 337 to 340 nm in apoA-I. The glycation reaction of apoA-I was accelerated further by the addition of Aβ. The treatment of fructose and Aβ caused more multimerization of apoA-I in the lipid-free state and in HDL. The phospholipid-binding ability of apoA-I was impaired severely by the addition of Aβ in a dose-dependent manner. The phagocytosis of LDL into macrophages was accelerated more by the presence of Aβ with the production of more oxidized species. Aβ severely impaired tissue regeneration, and a microinjection of Aβ enhanced embryotoxicity. In conclusion, the beneficial functions of apoA-I and HDL were severely impaired by the addition of Aβ via its detrimental effect on secondary structure. The impairment of HDL functionality occurred more synergistically by means of the co-addition of fructose and Aβ.
Collapse
|
146
|
Nedzvetsky VS, Masiuk DM, Gasso VY, Yermolenko SV, Huslystyi AO, Spirina VA. Low doses of imidacloprid induce disruption of intercellular adhesion and initiate proinflammatory changes in Caco-2 cells. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Imidacloprid is the most widely used pesticide of the neonicotinoid class. Neonicotinoid toxicities against various insects are well known. Nevertheless, there are rising evidences that neonicotinoids exert cytotoxic effects on different non-target organisms including mammals, fish, birds etc. Besides, depending on pesticide application, the exposed plants absorb some part of used neonicotinoids and their residues are detected in agricultural products worldwide. Thus, the continuous consumption of fruits and vegetables contaminated with neonicotinoids is a high risk factor for humans despite the low doses. Intestine epithelial cells are the first targets of the neonicotinoid cytotoxicity in humans because of its direct way of administration. The epithelial cells provide the barrier function of the intestinal system via specialized intercellular adhesion. The effects of imidacloprid on the intestine barrier function and inflammatory cytokines production are still unknown. In the present study, we exposed the human Caucasian colon adenocarcinoma (Caco-2) epithelial cells to low doses (0.10–0.75 µg/mL) of imidacloprid in order to assess the expression of tight and adherens junctions proteins, occludin and E-cadherin, and production of proinflammatory cytokine TNF α and iNOS. Imidacloprid induced dose-dependent decline in both occludin and E-cadherin levels. By contrast, TNF-α and iNOS contents were upregulated in imidacloprid-exposed Caco-2 cells. Decrease in tight and adherens junctions proteins indicates that the barrier function of intestine epithelial cells could be damaged by imidacloprid administration. In addition, TNF-α and iNOS upregulation indicates that imidacloprid is potent to activate proinflammatory response in enterocytes. Thus, imidacloprid can affect intestine barrier function through the increase of proinflammatory cytokine production and decrease in adhesiveness of enterocytes. The further assessment of the role of adhesion proteins and inflammatory cytokines in neonicotinoid pesticide cytotoxicity as it affects enterocyte barrier function is required to highlight the risk factor of use of neonicotinoids.
Collapse
|
147
|
Effect of high pressure processing and heat treatment on the gelation properties of blue crab meat proteins. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111389] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
148
|
Istomina A, Yelovskaya O, Chelomin V, Karpenko A, Zvyagintsev A. Antioxidant activity of Far Eastern bivalves in their natural habitat. MARINE ENVIRONMENTAL RESEARCH 2021; 169:105383. [PMID: 34116384 DOI: 10.1016/j.marenvres.2021.105383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/26/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
The activities of the key antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GP) and glutathione reductase (GR) as well as levels of reduced glutathione (GSH) and integral antioxidant activity (IAA), were studied in the digestive glands and gills of 14 bivalve species. Species and tissue differences of the antioxidant (AO) systems of the investigated mollusks were discussed in connection with their physiological and biochemical peculiarities. This article describes the role of the AO system of mollusks in adaptation to natural habitat conditions and shows the relationship of AO activity with the maximum habitat depth (MHD) and maximum lifespan (MLS) of these species.
Collapse
Affiliation(s)
- Aleksandra Istomina
- Il'ichev Pacific Oceanological Institute, Far East Branch, Russian Academy of Sciences (POI FEB RAS), Vladivostok, Russia.
| | - Olesya Yelovskaya
- Il'ichev Pacific Oceanological Institute, Far East Branch, Russian Academy of Sciences (POI FEB RAS), Vladivostok, Russia
| | - Viktor Chelomin
- Il'ichev Pacific Oceanological Institute, Far East Branch, Russian Academy of Sciences (POI FEB RAS), Vladivostok, Russia
| | - Alexander Karpenko
- A.V. Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences (NSCMB FEB RAS), Vladivostok, Russia
| | - Aleksandr Zvyagintsev
- A.V. Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences (NSCMB FEB RAS), Vladivostok, Russia
| |
Collapse
|
149
|
Vinel PK, Grobovoy SI, Sinitskii AI, Kolesnikov OL. Modification of a spectrophotometric method for assessment of monoamine oxidase activity with 2,4-dinitrophenylhydrazine as a derivatizing reagent. Anal Biochem 2021; 629:114294. [PMID: 34197779 DOI: 10.1016/j.ab.2021.114294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/28/2021] [Accepted: 06/23/2021] [Indexed: 11/18/2022]
Abstract
The aim of the study was to modify a simple and widely used spectrophotometric assay for MAO activity evaluation with 2,4-dinitrophenylhydrazine. A modified procedure includes molar absorption coefficients of 2,4-DNP-hydrazone benzaldehyde and 2,4-DNP-hydrazone 5-hydroxyindolylacetaldehyde as 2.3 × 104mol-1l cm-1 and 1.0 × 104 mol-1l cm-1, respectively. Such an approach allows to express specific enzyme activity as nmol product formed/min/mg protein.
Collapse
Affiliation(s)
- Polina K Vinel
- South Ural State Medical University, 64 Vorovskogo st., 454092, Chelyabinsk, Russia.
| | - S I Grobovoy
- South Ural State Medical University, 64 Vorovskogo st., 454092, Chelyabinsk, Russia
| | - A I Sinitskii
- South Ural State Medical University, 64 Vorovskogo st., 454092, Chelyabinsk, Russia
| | - O L Kolesnikov
- South Ural State Medical University, 64 Vorovskogo st., 454092, Chelyabinsk, Russia
| |
Collapse
|
150
|
Famuwagun AA, Alashi AM, Gbadamosi SO, Taiwo KA, Oyedele D, Adebooye OC, Aluko RE. Effect of Protease Type and Peptide Size on the In Vitro Antioxidant, Antihypertensive and Anti-Diabetic Activities of Eggplant Leaf Protein Hydrolysates. Foods 2021; 10:foods10051112. [PMID: 34069802 PMCID: PMC8157255 DOI: 10.3390/foods10051112] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/27/2022] Open
Abstract
Solanum macrocarpon (eggplant) leaf protein isolate (ELI) was hydrolyzed using four different enzymes to produce hydrolysates from alcalase (AH), chymotrypsin (CH) pepsin (PH) and trypsin (TH). CH had an overall stronger antioxidant property and was separated using ultrafiltration membranes into <1, 1–3 and 3–5 kDa peptide fractions. Gel-permeation chromatography confirmed conversion of the ELI (average of 22 kDa) into protein hydrolysates that contained smaller peptides (<6 kDa). A total of 23 peptides consisting of tri and tetrapeptides were identified from the CH, which is a wider spectrum when compared to seven for AH and four each for TH and PH. CH exhibited stronger scavenging activities against DPPH and hydroxyl radicals. CH and TH exhibited the strongest inhibitions against angiotensin-converting enzyme. In contrast, AH was the strongest inhibitor of α-amylase while AH and PH had strong inhibitory activities against α-glucosidase when compared with other hydrolysates. Ultrafiltration fractionation produced peptides that were stronger (p < 0.05) scavengers of DPPH, and hydroxyl radicals, in addition to better metal-chelating and enzyme inhibition agents. The study concluded that the eggplant protein hydrolysates and the UF fractions may find applications in tackling oxidative stress-related diseases and conditions involving excessive activities of the metabolic enzymes.
Collapse
Affiliation(s)
- Akinsola A. Famuwagun
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (A.M.A.); (S.O.G.); (R.E.A.)
- Department of Food Science & Technology, Obafemi Awolowo University, Ile-Ife 220002, Nigeria;
- Correspondence: ; Tel.: +234-7038688258
| | - Adeola M. Alashi
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (A.M.A.); (S.O.G.); (R.E.A.)
| | - Saka O. Gbadamosi
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (A.M.A.); (S.O.G.); (R.E.A.)
| | - Kehinde A. Taiwo
- Department of Food Science & Technology, Obafemi Awolowo University, Ile-Ife 220002, Nigeria;
| | - Durodoluwa Oyedele
- Department of Soil and Land Resources Management, Faculty of Agriculture, Obafemi Awolowo University, Ile-Ife 220002, Nigeria;
| | - Odunayo C. Adebooye
- Department of Agronomy, Faculty of Agriculture, Obafemi Awolowo University, Ile-Ife 220002, Nigeria;
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (A.M.A.); (S.O.G.); (R.E.A.)
| |
Collapse
|