101
|
Cheng KY, Noble MEM, Skamnaki V, Brown NR, Lowe ED, Kontogiannis L, Shen K, Cole PA, Siligardi G, Johnson LN. The role of the phospho-CDK2/cyclin A recruitment site in substrate recognition. J Biol Chem 2006; 281:23167-79. [PMID: 16707497 DOI: 10.1074/jbc.m600480200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Phospho-CDK2/cyclin A, a kinase that is active in cell cycle S phase, contains an RXL substrate recognition site that is over 40 A from the catalytic site. The role of this recruitment site, which enhances substrate affinity and catalytic efficiency, has been investigated using peptides derived from the natural substrates, namely CDC6 and p107, and a bispeptide inhibitor in which the gamma-phosphate of ATP is covalently attached by a linker to the CDC6 substrate peptide. X-ray studies with a 30-residue CDC6 peptide in complex with pCDK2/cyclin A showed binding of a dodecamer peptide at the recruitment site and a heptapeptide at the catalytic site, but no density for the linking 11 residues. Kinetic studies established that the CDC6 peptide had an 18-fold lower Km compared with heptapeptide substrate and that this effect required the recruitment peptide to be covalently linked to the substrate peptide. X-ray studies with the CDC6 bispeptide showed binding of the dodecamer at the recruitment site and the modified ATP in two alternative conformations at the catalytic site. The CDC6 bispeptide was a potent inhibitor competitive with both ATP and peptide substrate of pCDK2/cyclin A activity against a heptapeptide substrate (Ki = 0.83 nm) but less effective against RXL-containing substrates. We discuss how localization at the recruitment site (KD 0.4 microm) leads to increased catalytic efficiency and the design of a potent inhibitor. The notion of a flexible linker between the sites, which must have more than a minimal number of residues, provides an explanation for recognition and discrimination against different substrates.
Collapse
Affiliation(s)
- Kin-Yip Cheng
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Huang PH, Leu HB, Chen JW, Wu TC, Lu TM, Yu-An Ding P, Lin SJ. Decreased heparin cofactor II activity is associated with impaired endothelial function determined by brachial ultrasonography and predicts cardiovascular events. Int J Cardiol 2006; 114:152-8. [PMID: 16650906 DOI: 10.1016/j.ijcard.2005.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 11/11/2005] [Accepted: 12/05/2005] [Indexed: 11/22/2022]
Abstract
BACKGROUND Heparin cofactor II (HCII) could inactivate thrombin after binding to dermatan sulfate at injured arterial walls, and has been shown to be a novel and independent antiatherosclerotic factor. However, the relation between plasma HCII activity and peripheral vascular endothelial function remains unclear. METHODS A total of 199 patients (mean age, 63+/-14 years) were enrolled and followed up for a median period of 24 months. Endothelial function was assessed using brachial ultrasonography to determine endothelium dependent flow-mediated vasodilation (FMD). Cox regression analyses were conducted for the 199 subjects, with cardiovascular events being defined as myocardial infarction (MI), percutaneous coronary intervention (PCI), coronary artery bypass grafting (CABG), ischemic stroke, and peripheral artery revascularization. RESULTS A total of 31 patients (16%) had cardiovascular events. Patients with cardiovascular events had significantly lower HCII activity (112+/-34 versus 127+/-34%, p=0.027) and lower antithrombin III (ATIII) activity (82+/-12 versus 88+/-13%, p=0.014) than those without events. By multivariate analysis, age (p=0.012), hsCRP (p=0.020) and HCII activity (p=0.035) were correlated with FMD. Kaplan-Meier analysis was performed and showed plasma HCII (p=0.036) and ATIII activities (p=0.005) were predictors of cardiovascular events. By Cox regression analysis, plasma HCII activity (p=0.026) could be an independent predictor of future cardiovascular events, but not ATIII. CONCLUSIONS The present study demonstrates that plasma HCII activity is positively correlated with endothelial vasodilator function. Furthermore, plasma HCII activity could be a predictor of future cardiovascular events in patients with suspected coronary artery disease, suggesting its role in atherosclerosis.
Collapse
Affiliation(s)
- Po-Hsun Huang
- Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
103
|
Bode W. Structure and interaction modes of thrombin. Blood Cells Mol Dis 2006; 36:122-30. [PMID: 16480903 DOI: 10.1016/j.bcmd.2005.12.027] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Accepted: 12/19/2005] [Indexed: 11/30/2022]
Abstract
Any vascular injury triggers the burst-like release of the trypsin-like serine proteinase alpha-thrombin. Thrombin, the main executioner of the coagulation cascade, exhibits procoagulant as well as anticoagulant and antifibrinolytic properties, very specifically interacting with a number of protein substrates, receptors, cofactors, inhibitors, carbohydrates, and modulators. A large number of crystal structures of alpha-thrombin have shown that the thrombin surface can be subdivided into several functional regions, which recognize different substrates, inhibitors, and mediators with high specificity.
Collapse
Affiliation(s)
- Wolfram Bode
- Proteinase Research Group, Max-Planck-Institute für Biochemie, Am Klopferspitz 18, D-82152 Martinsried, Germany.
| |
Collapse
|
104
|
Johnson D, Adams T, Li W, Huntington J. Crystal structure of wild-type human thrombin in the Na+-free state. Biochem J 2006; 392:21-8. [PMID: 16201969 PMCID: PMC1317660 DOI: 10.1042/bj20051217] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Regulation of thrombin activity is critical for haemostasis and the prevention of thrombosis. Thrombin has several procoagulant substrates, including fibrinogen and platelet receptors, and essential cofactors for stimulating its own formation. However, thrombin is also capable of serving an anticoagulant function by activating protein C. The specificity of thrombin is primarily regulated by binding to the cofactor TM (thrombomodulin), but co-ordination of Na+ can also affect thrombin activity. The Na+-free form is often referred to as 'slow' because of reduced rates of cleavage of procoagulant substrates, but the slow form is still capable of rapid activation of protein C in the presence of TM. The molecular basis of the slow proteolytic activity of thrombin has remained elusive, in spite of two decades of solution studies and many published crystallographic structures. In the present paper, we report the first structure of wild-type unliganded human thrombin grown in the absence of co-ordinating Na+. The Na+-binding site is observed in a highly ordered position 6 A (1 A=0.1 nm) removed from that seen in the Na+-bound state. The movement of the Na+ loop results in non-catalytic hydrogen-bonding in the active site and blocking of the S1 and S2 substrate-binding pockets. Similar, if more dramatic, changes were observed in a previous structure of the constitutively slow thrombin variant E217K. The slow behaviour of thrombin in solutions devoid of Na+ can now be understood in terms of an equilibrium between an inert species, represented by the crystal structure described in the present paper, and an active form, where the addition of Na+ populates the active state.
Collapse
Affiliation(s)
- Daniel J. D. Johnson
- University of Cambridge, Department of Haematology, Division of Structural Medicine, Thrombosis Research Unit, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 2XY, U.K
| | - Ty E. Adams
- University of Cambridge, Department of Haematology, Division of Structural Medicine, Thrombosis Research Unit, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 2XY, U.K
| | - Wei Li
- University of Cambridge, Department of Haematology, Division of Structural Medicine, Thrombosis Research Unit, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 2XY, U.K
| | - James A. Huntington
- University of Cambridge, Department of Haematology, Division of Structural Medicine, Thrombosis Research Unit, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 2XY, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
105
|
Castro HC, Monteiro RQ, Assafim M, Loureiro NIV, Craik C, Zingali RB. Ecotin modulates thrombin activity through exosite-2 interactions. Int J Biochem Cell Biol 2006; 38:1893-900. [PMID: 16843700 DOI: 10.1016/j.biocel.2006.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 04/09/2006] [Accepted: 05/10/2006] [Indexed: 10/24/2022]
Abstract
Ecotin is a Escherichia coli-derived protein that has been characterized as a potent inhibitor of serine-proteases. This protein is highly effective against several mammalian enzymes, which includes pancreatic and neutrophil-derived elastases, chymotrypsin, trypsin, factor Xa, and kallikrein. In this work we showed that ecotin binds to human alpha-thrombin via its secondary binding site, and modulates thrombin catalytic activity. Formation of wild type ecotin-alpha-thrombin complex was observed by native PAGE and remarkably, gel filtration chromatography showed an unusual 2:1 ecotin:enzyme stoichiometry. Analysis of the protease inhibitor effects on thrombin biological activities showed that (i) it decreases the inhibition of thrombin by heparin/antithrombin complex (IC50=3.2 microM); (ii) it produces a two-fold increase in the thrombin-induced fibrinogen clotting; and (iii) it inhibits thrombin-induced platelet aggregation (IC50=4.5 microM). Allosteric changes on thrombin structure were then evaluated. Complex formation with ecotin caused a three-fold increase in the rate of thrombin inhibition by BPTI, suggesting a displacement of the enzyme's 60-loop. In addition, ecotin modulated the enzyme's catalytic site, as demonstrated by changes in the fluorescence emission of fluorescein-FPRCK-alpha-thrombin (EC50=3.5 microM). Finally, solid phase competition assays demonstrated that heparin and prothrombin fragment 2 prevents thrombin interaction with ecotin. Altogether, these observations strongly support an ecotin interaction with thrombin anion-binding exosite-2, resulting in modulation of its biological activities. At this point, ecotin might be useful as a new tool for studying thrombin allosteric modulation.
Collapse
Affiliation(s)
- Helena C Castro
- LaBioMol, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Outeiro São João Batista, Niterói, RJ 24001-970, Brazil
| | | | | | | | | | | |
Collapse
|
106
|
Maurer MC, Trumbo TA, Isetti G, Turner BT. Probing interactions between the coagulants thrombin, Factor XIII, and fibrin(ogen). Arch Biochem Biophys 2005; 445:36-45. [PMID: 16364233 DOI: 10.1016/j.abb.2005.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Revised: 11/12/2005] [Accepted: 11/14/2005] [Indexed: 11/18/2022]
Abstract
Thrombin cleaves fibrinopeptides A and B from fibrinogen leading to the formation of a fibrin network that is later covalently crosslinked by Factor XIII (FXIII). Thrombin helps activate FXIII by catalyzing hydrolysis of the FXIII activation peptides (AP). In the current work, the role of exosites in the ternary thrombin-FXIII-fibrin(ogen) complex was further explored. Hydrolysis studies indicate that thrombin predominantly utilizes its active site region to bind extended Factor XIII AP (FXIII AP 33-64 and 28-56) leaving the anion-binding exosites for fibrin(ogen) binding. The presence of fibrin-I leads to improvements in the K(m) for hydrolysis of FXIII AP (28-41), whereas peptides based on the cardioprotective FXIII V34L sequence exhibit less reliance on this cofactor. Surface plasmon resonance measurements reveal that d-Phe-Pro-Arg-chloromethylketone-thrombin binds to fibrinogen faster than to FXIII a(2) and dissociates from fibrinogen more slowly than from FXIII a(2). This system of thrombin exosite interactions with differing affinities promotes efficient clot formation.
Collapse
Affiliation(s)
- Muriel C Maurer
- Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, KY 40292, USA.
| | | | | | | |
Collapse
|
107
|
Affiliation(s)
- W Bode
- Proteinase Research Group, Max-Planck-Institute of Biochemistry, Am Klopferspitz, Martinsried, Germany.
| |
Collapse
|
108
|
Panizzi P, Friedrich R, Fuentes-Prior P, Richter K, Bock PE, Bode W. Fibrinogen substrate recognition by staphylocoagulase.(pro)thrombin complexes. J Biol Chem 2005; 281:1179-87. [PMID: 16230339 PMCID: PMC2291351 DOI: 10.1074/jbc.m507956200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thrombin generation and fibrinogen (Fbg) clotting are the ultimate proteolytic reactions in the blood coagulation pathway. Staphylocoagulase (SC), a protein secreted by the human pathogen Staphylococcus aureus, activates prothrombin (ProT) without proteolysis. The SC.(pro)thrombin complex recognizes Fbg as a specific substrate, converting it directly into fibrin. The crystal structure of a fully active SC fragment containing residues 1-325 (SC-(1-325)) bound to human prethrombin 2 showed previously that SC inserts its Ile(1)-Val(2) N terminus into the Ile(16) pocket of prethrombin 2, inducing a functional active site in the cognate zymogen conformationally. Exosite I of alpha-thrombin, the Fbg recognition site, and proexosite I on ProT are blocked by domain 2 of SC-(1-325). In the present studies, active site-labeled fluorescent ProT analogs were used to quantitate Fbg binding to the SC-(1-325).ProT complex. Fbg binding and cleavage are mediated by expression of a new Fbg-binding exosite on the SC-(1-325).ProT complex, resulting in formation of an (SC-(1-325).ProT)(2).Fbg pentameric complex with a dissociation constant of 8-34 nm. In both crystal structures, the SC-(1-325).(pre)thrombin complexes form dimers, with both proteinases/zymogens facing each other over a large U-shaped cleft, through which the Fbg substrate could thread. On this basis, a molecular model of the pentameric (SC-(1-325).thrombin)(2).Fbg encounter complex was generated, which explains the coagulant properties and efficient Fbg conversion. The results provide new insight into the mechanism that mediates high affinity Fbg binding and cleavage as a substrate of SC.(pro)thrombin complexes, a process that is central to the molecular pathology of S. aureus endocarditis.
Collapse
Affiliation(s)
- Peter Panizzi
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Rainer Friedrich
- Proteinase Research Group, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Pablo Fuentes-Prior
- Cardiovascular Research Center, Institut Català de Ciències Cardiovasculars-Consejo Superior de Investigaciones Cientificas, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Klaus Richter
- Department of Biotechnology, Technical University Munich, D-85747 Garching, Germany
| | - Paul E. Bock
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
- To whom correspondence should be addressed: Dept. of Pathology, Vanderbilt University School of Medicine, C3321A Medical Center North, Nashville, TN 37232-2561. Tel.: 615-343-9863; Fax: 615-322-1855; E-mail:
| | - Wolfram Bode
- Proteinase Research Group, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| |
Collapse
|
109
|
Gronewold TMA, Glass S, Quandt E, Famulok M. Monitoring complex formation in the blood-coagulation cascade using aptamer-coated SAW sensors. Biosens Bioelectron 2005; 20:2044-52. [PMID: 15741074 DOI: 10.1016/j.bios.2004.09.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Accepted: 09/08/2004] [Indexed: 11/24/2022]
Abstract
Specific binding of the anticoagulants heparin and antithrombin III to the blood clotting cascade factor human thrombin was recorded as a function of time with a Love-wave biosensor array consisting of five sensor elements. Two of the sensor elements were used as references. Three sensor elements were coated with RNA or DNA aptamers for specific binding of human thrombin. The affinity between the aptamers and thrombin, measured using the biosensor, was within the same range as the value of K(D) measured by filter binding experiments. Consecutive binding of the thrombin inhibitors heparin, antithrombin III or the heparin-antithrombin III complex to the immobilized thrombin molecules, and binding of a ternary complex of heparin, anithrombin III, and thrombin to aptamers was evaluated. The experiments showed attenuation of binding to thrombin due to heparin-antithrombin III complex formation. Binding of heparin activated the formation of the inhibitory complex of antithrombin III with thrombin about 2.7-fold. Binding of the DNA aptamer to exosite II appeared to inhibit heparin binding to exosite I.
Collapse
Affiliation(s)
- T M A Gronewold
- Center of Advanced European Studies and Research, Aptamer Biosensors, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | | | | | | |
Collapse
|
110
|
Abstract
Thrombin is the final protease generated in the blood coagulation cascade, and is the only factor capable of cleaving fibrinogen to create a fibrin clot. Unlike every other coagulation protease, thrombin is composed solely of its serine protease domain, so that once formed it can diffuse freely to encounter a large number of potential substrates. Thus thrombin serves many functions in hemostasis through the specific cleavage of at least a dozen substrates. The solution of the crystal structure of thrombin some 15 years ago revealed a deep active site cleft and two adjacent basic exosites, and it was clear that thrombin must utilize these unique features in recognizing its substrates. Just how this occurs is still being investigated, but recent data from thrombin mutant libraries and crystal structures combine to paint the clearest picture to date of the molecular determinants of substrate recognition by thrombin. In almost all cases, both thrombin exosites are involved, either through direct interaction with the substrate protein or through indirect interaction with a third cofactor molecule. The purpose of this article is to summarize recent biochemical and structural data in order to provide insight into the thrombin molecular recognition events at the heart of hemostasis.
Collapse
Affiliation(s)
- J A Huntington
- Department of Haematology, Cambridge Institute for Medical Research, Division of Structural Medicine, Thrombosis Research Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
111
|
Abstract
Fibrinogen molecules are comprised of two sets of disulfide-bridged Aalpha-, Bbeta-, and gamma-chains. Each molecule contains two outer D domains connected to a central E domain by a coiled-coil segment. Fibrin is formed after thrombin cleavage of fibrinopeptide A (FPA) from fibrinogen Aalpha-chains, thus initiating fibrin polymerization. Double-stranded fibrils form through end-to-middle domain (D:E) associations, and concomitant lateral fibril associations and branching create a clot network. Fibrin assembly facilitates intermolecular antiparallel C-terminal alignment of gamma-chain pairs, which are then covalently 'cross-linked' by factor XIII ('plasma protransglutaminase') or XIIIa to form 'gamma-dimers'. In addition to its primary role of providing scaffolding for the intravascular thrombus and also accounting for important clot viscoelastic properties, fibrin(ogen) participates in other biologic functions involving unique binding sites, some of which become exposed as a consequence of fibrin formation. This review provides details about fibrinogen and fibrin structure, and correlates this information with biological functions that include: (i) suppression of plasma factor XIII-mediated cross-linking activity in blood by binding the factor XIII A2B2 complex. (ii) Non-substrate thrombin binding to fibrin, termed antithrombin I (AT-I), which down-regulates thrombin generation in clotting blood. (iii) Tissue-type plasminogen activator (tPA)-stimulated plasminogen activation by fibrin that results from formation of a ternary tPA-plasminogen-fibrin complex. Binding of inhibitors such as alpha2-antiplasmin, plasminogen activator inhibitor-2, lipoprotein(a), or histidine-rich glycoprotein, impairs plasminogen activation. (iv) Enhanced interactions with the extracellular matrix by binding of fibronectin to fibrin(ogen). (v) Molecular and cellular interactions of fibrin beta15-42. This sequence binds to heparin and mediates platelet and endothelial cell spreading, fibroblast proliferation, and capillary tube formation. Interactions between beta15-42 and vascular endothelial (VE)-cadherin, an endothelial cell receptor, also promote capillary tube formation and angiogenesis. These activities are enhanced by binding of growth factors like fibroblast growth factor-2 (FGF-2) and vascular endothelial growth factor (VEGF), and cytokines like interleukin (IL)-1. (vi) Fibrinogen binding to the platelet alpha(IIb)beta3 receptor, which is important for incorporating platelets into a developing thrombus. (vii) Leukocyte binding to fibrin(ogen) via integrin alpha(M)beta2 (Mac-1), which is a high affinity receptor on stimulated monocytes and neutrophils.
Collapse
Affiliation(s)
- M W Mosesson
- The Blood Research Institute, The Blood Center of Southeastern Wisconsin, Milwaukee, WI 53201-2178, USA.
| |
Collapse
|
112
|
Mosesson MW, Hernandez I, Siebenlist KR. Evidence that catalytically-inactivated thrombin forms non-covalently linked dimers that bridge between fibrin/fibrinogen fibers and enhance fibrin polymerization. Biophys Chem 2005; 110:93-100. [PMID: 15223147 DOI: 10.1016/j.bpc.2004.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Revised: 01/22/2004] [Accepted: 01/22/2004] [Indexed: 11/25/2022]
Abstract
Phe-pro-arg-chloromethyl ketone-inhibited alpha-thrombin [FPR alpha-thr] retains its fibrinogen recognition site (exosite 1), augments fibrin/fibrinogen [fibrin(ogen)] polymerization, and increases the incorporation of fibrin into clots. There are two 'low-affinity' thrombin-binding sites in each central E domain of fibrin, plus a non-substrate 'high affinity' gamma' chain thrombin-binding site on heterodimeric 'fibrin(ogen) 2' molecules (gamma(A), gamma'). 'Fibrin(ogen) 1' (gamma(A), gamma(A)) containing only low-affinity thrombin-binding sites, showed concentration-dependent FPR alpha-thr enhancement of polymerization, thus indicating that low-affinity sites are sufficient for enhancing polymerization. FPR gamma-thr, whose exosite 1 is non-functional, did not enhance polymerization of either fibrin(ogen)s 1 or 2 and DNA aptamer HD-1, which binds specifically to exosite 1, blocked FPR alpha-thr enhanced polymerization of both types of fibrin(ogen) (1>2). These results showed that exosite 1 is the critical element in thrombin that mediates enhanced fibrin polymerization. Des B beta 1-42 fibrin(ogen) 1, containing defective 'low-affinity' binding sites, was subdued in its FPR alpha-thr-mediated reactivity, whereas des B beta 1-42 fibrin(ogen) 2 (gamma(A), gamma') was more reactive. Thus, the gamma' chain thrombin-binding site contributes to enhanced FPR alpha-thr mediated polymerization and acts through a site on thrombin that is different from exosite 1, possibly exosite 2. Overall, the results suggest that during fibrin clot formation, catalytically-inactivated FPR alpha-thr molecules form non-covalently linked thrombin dimers, which serve to enhance fibrin polymerization by bridging between fibrin(ogen) molecules, mainly through their low affinity sites.
Collapse
Affiliation(s)
- M W Mosesson
- The Blood Research Institute of the Blood Center of Southeastern Wisconsin, P.O. Box 2178, Milwaukee, WI 53201-2178, USA.
| | | | | |
Collapse
|
113
|
Abstract
Although heparin has been a cornerstone of treatment for the prevention of thrombosis, it is limited by its adverse effects and unpredictable bioavailability. Direct thrombin inhibitors are a novel class of drugs that have been developed as an effective alternative mode of anticoagulation in patients who suffer from heparin-induced thrombocytopaenia, and for the management of thromboembolic disorders and acute coronary syndromes. The main disadvantages of the direct thrombin inhibitors are the lack of an antidote or readily available clinical monitoring. The mechanism of action, the properties of direct thrombin inhibitors and their potential to replace currently available anticoagulants are reviewed.
Collapse
Affiliation(s)
- P C A Kam
- Department of Anaesthesia, University of New South Wales, St George Hospital, Kogarah, NSW 2217, Australia.
| | | | | |
Collapse
|
114
|
Lollar P. Pathogenic antibodies to coagulation factors. Part II. Fibrinogen, prothrombin, thrombin, factor V, factor XI, factor XII, factor XIII, the protein C system and von Willebrand factor. J Thromb Haemost 2005; 3:1385-91. [PMID: 15978096 DOI: 10.1111/j.1538-7836.2005.01228.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- P Lollar
- AFLAC Cancer Center and Blood Disorders Service, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
115
|
Serrano SMT, Maroun RC. Snake venom serine proteinases: sequence homology vs. substrate specificity, a paradox to be solved. Toxicon 2005; 45:1115-32. [PMID: 15922778 DOI: 10.1016/j.toxicon.2005.02.020] [Citation(s) in RCA: 247] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Snake venom glands synthesize a variety of serine proteinases capable of affecting the haemostatic system. They act on macromolecular substrates of the coagulation, fibrinolytic, and kallikrein-kinin systems, and on platelets to cause an imbalance of the haemostatic system of the prey. In this review we describe their biochemical/biophysical characteristics, biological activities as well as aspects of their evolution and structure-activity relationship.
Collapse
Affiliation(s)
- Solange M T Serrano
- Laboratório Especial de Toxinologia Aplicada-CAT-CEPID, Instituto Butantan, Av. Vital Brasil 1500, 05503-900 São Paulo-SP, Brazil.
| | | |
Collapse
|
116
|
Tyndall JDA, Nall T, Fairlie DP. Proteases universally recognize beta strands in their active sites. Chem Rev 2005; 105:973-99. [PMID: 15755082 DOI: 10.1021/cr040669e] [Citation(s) in RCA: 304] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joel D A Tyndall
- Centre for Drug Design and Development, Institute for Molecular Bioscience, University of Queensland, Brisbane, Qld 4072, Australia.
| | | | | |
Collapse
|
117
|
Ascenzi P, Bocedi A, Bolli A, Fasano M, Notari S, Polticelli F. Allosteric modulation of monomeric proteins*. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 33:169-176. [PMID: 21638571 DOI: 10.1002/bmb.2005.494033032470] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Multimeric proteins (e.g. hemoglobin) are considered to be the prototypes of allosteric enzymes, whereas monomeric proteins (e.g. myoglobin) usually are assumed to be nonallosteric. However, the modulation of the functional properties of monomeric proteins by heterotropic allosteric effectors casts doubts on this assumption. Here, the allosteric properties of sperm whale myoglobin, human serum albumin, and human α-thrombin, generally considered as molecular models of monomeric proteins, are summarized.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Dipartimento di Biologia and Laboratorio Interdipartimentale di Microscopia Elettronica, Università "Roma Tre," Viale Guglielmo Marconi 446, I-00146 Roma, Italy; Istituto Nazionale per le Malattie Infettive I.R.C.C.S. "Lazzaro Spallanzani," Via Portuense 292, I-00149 Roma, Italy.
| | | | | | | | | | | |
Collapse
|
118
|
Abstract
Activation of prothrombin to mature thrombin occurs by the proteolytic action of the prothrombinase complex consisting of a serine proteinase factor Xa, and cofactors factor Va, Ca(2+) ions and phospholipids. Several exogenous prothrombin activators are found in snake venom. They are classified into four groups based on their cofactor requirements. Group A and B prothrombin activators are metalloproteinases whereas group C and D prothrombin activators are serine proteinases. Group C prothrombin activators resemble the mammalian factor Xa-factor Va complex, while Group D activators are structurally and functionally similar to factor Xa. This review provides a detailed description of the current knowledge on all prothrombin activators and highlights several intriguing questions that are yet to be answered.
Collapse
Affiliation(s)
- R Manjunatha Kini
- Protein Science Laboratory, Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
119
|
Srivastava S, Goswami LN, Dikshit DK. Progress in the design of low molecular weight thrombin inhibitors. Med Res Rev 2005; 25:66-92. [PMID: 15389730 DOI: 10.1002/med.20016] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Intravascular thrombosis and its complication, embolism, is a leading cause of morbidity and mortality throughout the world. Past few decades have seen a great deal of progress in the development of antithrombotic agents, though the current treatment options are limited to heparin, LMW heparins, and warfarin. Detailed understanding of the biochemical and biophysical mechanisms of activation and regulation of blood coagulation have helped in developing specific inhibitors of enzymes, especially thrombin, within the coagulation cascade. Thrombin plays a central role in the coagulation cascade and so has become the primary target for the development of antithrombotic drugs. The review covers the main pharmacological aspects of haemostasis and thrombosis and provides an update on low molecular weight thrombin inhibitors along with the limitations of the prevalent antithrombotic agents. Recent developments in small molecule inhibitors of Protease Activated Receptor-1 (PAR-1) which can be helpful for the treatment of thrombotic and vascular proliferative disorders, have also been discussed.
Collapse
Affiliation(s)
- Stuti Srivastava
- Medicinal Chemistry Division, Central Drug Research Institute, Lucknow, India
| | | | | |
Collapse
|
120
|
Monteiro RQ, Campana PT, Melo PA, Bianconi ML. Suramin interaction with human alpha-thrombin: inhibitory effects and binding studies. Int J Biochem Cell Biol 2005; 36:2077-85. [PMID: 15203120 DOI: 10.1016/j.biocel.2004.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Revised: 03/19/2004] [Accepted: 03/19/2004] [Indexed: 11/15/2022]
Abstract
Suramin is a hexasulfonated naphthylurea commonly used as antitrypanosomial drug and more recently for the treatment of malignant tumors. Here we show that suramin binds to human alpha-thrombin inhibiting both the hydrolysis of the synthetic substrate S-2238 (IC50 = 40 microM), and the thrombin-induced fibrinogen clotting (IC50 = 20 microM). The latter is completely reversed by albumin (30 mg mL(-1)) suggesting that, at therapeutic concentrations, suramin is unable to affect alpha-thrombin activity in the plasma. Kinetic analysis showed that suramin acts as a non-competitive inhibitor decreasing Vmax without changing the Km for S-2238 hydrolysis. Calorimetric studies revealed two distinct binding sites for suramin in alpha-thrombin. In addition, circular dichroism studies showed that suramin causes significant changes in alpha-thrombin tertiary structure, without affecting the secondary structure content. Interaction with alpha-thrombin resulted in an increased fluorescence emission of the drug. Complex formation was strongly affected by high ionic strength suggesting the involvement of electrostatic interactions. Altogether our data suggest that part of the biological activities of suramin might be related to alpha-thrombin inhibition at extra-vascular sites.
Collapse
Affiliation(s)
- Robson Q Monteiro
- Departamento de Bioquímica Médica, ICB/CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | | | | | | |
Collapse
|
121
|
Kaiser B, Callas D, Walenga JM, Fareed J. Synthetic and recombinant antithrombin drugs. Expert Opin Investig Drugs 2005; 7:963-85. [PMID: 15992009 DOI: 10.1517/13543784.7.6.963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
As the final enzyme in the activation of the coagulation system, the serine protease, thrombin, is believed to be an important target for the development of new anticoagulant/antithrombotic drugs. Direct thrombin inhibitors are either derived from natural sources, such as hirudin or are chemically synthesised, such as argatroban. The coupling of hirudin or parts of it with other entities leads to novel agents with different pharmacokinetic and pharmacodynamic characteristics, such as polyethylene glycol (PEG)-hirudin or the hirulogs. Due to the reversible or irreversible inactivation of the enzyme, thrombin inhibitors exert strong anticoagulant effects that can be measured in global clotting assays. Furthermore, these compounds inhibit thrombin-induced platelet reactions and influence other cellular, receptor-mediated actions of thrombin, e.g., on vascular cells. Directly acting thrombin inhibitors prevent blood clotting and are also capable of inhibiting clot-associated thrombin; however, they do not effectively block the further generation of the enzyme. Comprehensive experimental studies suggest that thrombin inhibitors may be effective drugs in a wide range of intravascular thrombus formation, also including the inhibition of vascular restenosis. Recent clinical trials revealed the effectiveness of direct thrombin inhibitors in various thrombotic and cardiovascular indications, but also a tendency to an increased risk of bleeding complications. At present, thrombin inhibitors are the most promising class of drugs for the initial therapy of patients with heparin-induced thrombocytopaenia (HIT) or the heparin-induced thrombocytopaenia and thrombosis syndrome (HITTS). They are also useful for the management of venous thrombosis and for acute ischaemic syndromes as well as for invasive procedures. However, with regard to the long-term outcome, a superiority of thrombin inhibitors over heparin has not yet been demonstrated. Several important issues, such as monitoring, pharmacological antagonism and drug interactions will also play an important role in the development of these new drugs. Further clinical trials are required to confirm the effectiveness of direct thrombin inhibitors in the prophylaxis and treatment of various thromboembolic and cardiovascular disorders.
Collapse
Affiliation(s)
- B Kaiser
- Friedrich Schiller University Jena, Center for Vascular Biology and Medicine Erfurt, Germany.
| | | | | | | |
Collapse
|
122
|
Lu G, Chhum S, Krishnaswamy S. The affinity of protein C for the thrombin.thrombomodulin complex is determined in a primary way by active site-dependent interactions. J Biol Chem 2005; 280:15471-8. [PMID: 15705565 DOI: 10.1074/jbc.m500881200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interaction of thrombin (IIa) with thrombomodulin (TM) is essential for the efficient activation of protein C (PC). Interactions between PC and extended surfaces, likely contributed by TM within the IIa.TM complex, have been proposed to play a key role in PC activation. Initial velocities of PC activation at different concentrations of PC and TM could be accounted for by a model that did not require consideration of direct binding interactions between PC and TM. Reversible inhibitors directed toward the active site of IIa within the IIa.TM complex behaved as classic competitive inhibitors of both peptidyl substrate cleavage as well as PC activation. The ability of these small molecule inhibitors to block PC binding to the enzyme points to a principal role for active site-dependent substrate recognition in determining the affinity of IIa.TM for its protein substrate. Selective abrogation of active site docking by mutation of the P1 Arg in PC to Gln yielded an uncleavable derivative (PC(R15Q)). PC(R15Q) was a poor inhibitor (K(i) >or= 30 microm) of PC activation as well as peptidyl substrate cleavage by IIa.TM. Thus, inhibition by PC(R15Q) most likely results from its ability to weakly interfere with active site function rather than by blocking extended interactions with the enzyme complex. The data suggest a primary role for active site-dependent substrate recognition in driving the affinity of the IIa.TM complex for its protein substrate. Interactions between PC and extended surfaces contributed by IIa and/or TM within the IIa.TM complex likely contribute in a secondary or minor way to protein substrate affinity.
Collapse
Affiliation(s)
- Genmin Lu
- Joseph Stokes Research Institute, Children's Hospital of Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
123
|
Frenkel EP, Shen YM, Haley BB. The Direct Thrombin Inhibitors: Their Role and Use for Rational Anticoagulation. Hematol Oncol Clin North Am 2005; 19:119-45, vi-vii. [PMID: 15639111 DOI: 10.1016/j.hoc.2004.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Major clinical advantages are achieved when direct thrombin inhibitors are used in venous thromboembolism. These agents provide more reliable anticoagulant response patterns because they are not significantly bound to plasma proteins and few, if any, drug-drug interactions are seen. The studies to date confirm that not all direct thrombin inhibitors are the same. The new reversible, short-acting catalytic site-specific drugs provide an excellent safety profile and high degree of efficacy for the prophylaxis and treatment of venous thromboembolism and pulmonary embolic states. The availability of the oral prodrug ximelagatran allows reproducible, effective, and safe direct thrombin inhibition without the requirement for coagulation laboratory monitoring; it appears destined to be the oral anticoagulant of the future.
Collapse
Affiliation(s)
- Eugene P Frenkel
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical School, 2201 Inwood Road, Dallas, TX 75235-8852, USA.
| | | | | |
Collapse
|
124
|
Oyama E, Takahashi H. Amino acid sequence of a thrombin like enzyme, elegaxobin II, from the venom of Trimeresurus elegans (Sakishima-Habu). Toxicon 2005; 44:711-21. [PMID: 15500847 DOI: 10.1016/j.toxicon.2004.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Accepted: 07/06/2004] [Indexed: 10/26/2022]
Abstract
The amino acid sequence of a thrombin like enzyme , named elegaxobin II, isolated from the venom of Trimeresurus elegans (Sakishima-habu) was determined by Edman sequencing of the peptides which was derived from digests with cyanogen bromide, achromobacter protease I, trypsin, endoproteinase Asp-N, and chymotrypsin. Elegaxobin II consisted of 233 amino acids and showed conservation of the catalytic amino acid residues (His(57), Asp(102), and Ser(195)) of chymotrypsin family serine protease in its amino acid sequence. The carboxyterminal amino acid, Leu, was determined using carboxypeptidase Y. This enzyme contains glucosamine and an N-linked glycosylation site. Elegaxobin II was 91% homologous in sequence to elegaxobin and protease I from the same snake venom, and it was 67, 75, 31 and 26% homologous in sequences to flavoxobin, KN-BJ 2, human kallikrein and bovine thrombin, respectively. Elegaxobin II lacked thrombin's ETW (146-148) loop, as well as its functionally important YPPW (60-insertion loop).
Collapse
Affiliation(s)
- Etsuko Oyama
- Department of Hygenic Chemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | | |
Collapse
|
125
|
Abstract
Thrombin is the final protease in the blood coagulation cascade and serves both pro- and anticoagulant functions through the cleavage of several targets. The ability of thrombin to specifically recognize a wide range of substrates derives from interactions that occur outside of the active site of thrombin. Thrombin possesses two anion binding exosites, which mediate many of its interactions with cofactors and substrates, and although many structures of thrombin have been solved, few such interactions have been described in molecular detail. Glycosaminoglycan binding to exosite II of thrombin plays a major role in switching off the procoagulant functions of thrombin by mediating its irreversible inhibition by circulating serpins and by its binding to the endothelial cell surface receptor thrombomodulin. Here we report the 1.85-A structure of human alpha-thrombin bound to a heparin fragment of eight monosaccharide units in length. The asymmetric unit is composed of two thrombin dimers, each sharing a single heparin octasaccharide chain. The observed interactions are fully consistent with previous mutagenesis studies and illustrate on a molecular level the cofactor interaction that is critical for the restriction of clotting to the site of blood vessel injury.
Collapse
Affiliation(s)
- Wendy J Carter
- University of Cambridge, Department of Haematology, Division of Structural Medicine, Thrombosis Research Unit, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 2XY, United Kingdom
| | | | | |
Collapse
|
126
|
Abstract
Macromolecular substrate recognition and serine proteinase specificity lie at the heart of the tightly regulated hemostatic response. Mechanisms established for the less specific serine proteinases of digestion have played a dominant role in guiding investigations of the basis for the narrow specificities exhibited by the coagulation enzymes. These concepts have also dominated the development of specific inhibitors of coagulation for therapeutic purposes. Studies of the enzymology and physical biochemistry of prothrombinase challenge these prevailing ideas by establishing a principal role for exosites within the enzyme in determining substrate recognition and directing the action of the enzyme on its biological substrate. Mechanisms by which narrow protein substrate specificity is achieved by prothrombinase also apply to several other reactions of coagulation. These strategies are increasingly evident in the action of other families of enzymes that act with high specificity on protein substrates. Exosite-driven enzymic function probably represents a widely employed biological strategy for the achievement of high macromolecular substrate specificity.
Collapse
Affiliation(s)
- S Krishnaswamy
- Joseph Stokes Research Institute, Children's Hospital of Philadelphia & Department of Pediatrics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
127
|
Gurm HS, Bhatt DL. Thrombin, an ideal target for pharmacological inhibition: a review of direct thrombin inhibitors. Am Heart J 2005; 149:S43-53. [PMID: 15644793 DOI: 10.1016/j.ahj.2004.10.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hitinder S Gurm
- Department of Cardiovascular Medicine, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | |
Collapse
|
128
|
Li DW, Lee IS, Sim JS, Toida T, Linhardt RJ, Kim YS. Long duration of anticoagulant activity and protective effects of acharan sulfate in vivo. Thromb Res 2004; 113:67-73. [PMID: 15081567 DOI: 10.1016/j.thromres.2004.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2003] [Revised: 02/04/2004] [Accepted: 02/04/2004] [Indexed: 11/15/2022]
Abstract
INTRODUCTION We previously reported that a new glycosaminoglycan, acharan sulfate (AS) from the African giant snail Achatina fulica showed anticoagulant activity in vitro, but was much less active when compared to heparin. In the present study, the anticoagulant activity of AS was investigated in vivo. METHODS AS and heparin were administered to mice and rats in various doses and the anticoagulant activities were measured by aPTT assay. Both were also compared in a thrombin-induced lethality animal model. As one of the possible mechanisms, AS-thrombin interaction was studied by using surface plasmon resonance spectroscopy. RESULTS Intravenous administration of AS to mice prolonged the clotting time (aPTT) in a time and dose-dependent manner. Although the anticoagulant activity was low in rats, it steadily increased over 5 h after administration of AS (30 mg/kg). In contrast, the increase in aPTT induced by 5 mg/kg of heparin was restored to a normal level after 3 h. In a thrombin-induced lethality model in mice, AS (20 mg/kg) protected against lethality by 80%, while heparin (20 mg/kg) did not show any protective activity beyond 3.5 h post-administration. AS could be also detected in plasma even 5 h after i.v. administration to rats. The binding constant (K(D)) of AS to thrombin was 7.27 x 10(-6) M, corresponding to moderate binding affinity. CONCLUSIONS These results show that the longer duration of AS in blood could prolong the clotting time determined by aPTT and offering protection against thrombin-induced lethality. One possible mechanism may result from AS-thrombin interaction.
Collapse
Affiliation(s)
- Da-Wei Li
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 28 Yeonkun-Dong, Jongno-Ku, Seoul 110-460, South Korea
| | | | | | | | | | | |
Collapse
|
129
|
Huang CC, Cao Z, Chang HT, Tan W. Protein−Protein Interaction Studies Based on Molecular Aptamers by Affinity Capillary Electrophoresis. Anal Chem 2004; 76:6973-81. [PMID: 15571349 DOI: 10.1021/ac049158i] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein-DNA/protein-protein interactions play critical roles in many biological processes. We report here the investigation of protein-protein interactions using molecular aptamers with affinity capillary electrophoresis (ACE). A human alpha-thrombin binding aptamer was labeled with 6-carboxyfluorescein and exploited as a selective fluorescent probe for studying thrombin-protein interactions using capillary electrophoresis with laser-induced fluorescence. A 15-mer binding DNA aptamer can be separated into two peaks in CE that correspond to the linear aptamer (L-Apt) and the thrombin-binding G-quadruplex structure in the presence of K(+) or Ba(2+). In a bare capillary, the peak area of G-quadruplex aptamer (G-Apt) was found to decrease with the addition of thrombin while that of L-Apt remained unchanged. Even though the peak of the G-Apt/thrombin binding complex is broad due to a weaker binding affinity between aptamer and thrombin, we were still able to quantify the thrombin and anti-thrombin proteins (human anti-thrombin III, AT III) based on the peak areas of free G-Apt. The detection limits of thrombin and AT III were 9.8 and 2.1 nM, respectively. The aptamer-based competitive ACE assay has also been applied to quantify thrombin-anti-thrombin III interaction and to monitor this reaction in real time. The addition of poly(ethylene glycol) to the sample matrix stabilized the complex of the G-Aptthrombin. This assay can be used to study the interactions between thrombin and proteins that do not disrupt G-Apt binding property at Exosit I site of the thrombin. Our aptamer-based ACE assay can be an effective approach for studying protein-protein interactions and for analyzing binding site and binding constant information in protein-protein and protein-DNA interaction studies.
Collapse
Affiliation(s)
- Chih-Ching Huang
- Center for Research at Bio/nano Interface, Department of Chemistry and Shands Cancer Center, McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, USA
| | | | | | | |
Collapse
|
130
|
Lima LMTR, Zingali RB, Foguel D, Monteiro RQ. New insights into conformational and functional stability of human alpha-thrombin probed by high hydrostatic pressure. ACTA ACUST UNITED AC 2004; 271:3580-7. [PMID: 15317594 DOI: 10.1111/j.0014-2956.2004.04295.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effects of high hydrostatic pressure (HHP) and urea on conformational transitions of human alpha-thrombin structure were studied by fluorescence spectroscopy and by measuring the catalytic activity of the enzyme. Treatment of thrombin with urea produced a progressive red shift in the center of mass of the intrinsic fluorescence emission spectrum, with a maximum displacement of 650 cm(-1). HHP (270 MPa) shifted the centre of mass by only 370 cm(-1). HHP combined with a subdenaturing urea concentration (1.5 m) displaced the centre of mass by approximately 750 cm(-1). The binding of the fluorescent probe bis(8-anilinonaphthalene-1-sulfonate) to thrombin was increased by 1.8-, 4.0-, and 2.7-fold after treatment with high urea concentration, HHP or HHP combined with urea, respectively, thus suggesting that all treatments convert the enzyme to partially folded intermediates with exposed hydrophobic regions. On the other hand, treatment of thrombin with urea (but not HHP) combined with dithiothreitol progressively displaced the fluorescent probe, thus suggesting that this condition converts the enzyme to a completely unfolded state. Urea and HHP also led to different conformations when changes in the thrombin catalytic site environment were assessed using the fluorescence emission of fluorescein-d-Phe-Pro-Arg-cloromethylketone-alpha-thrombin: addition of urea up to 2 m gradually decreased the fluorescence emission of the probe to 65% of the initial intensity, whereas HHP caused a progressive increase in fluorescence. Hydrolysis of the synthetic substrate S-2238 was enhanced (35%) in 2 m urea and gradually abolished at higher concentrations, while HHP (270 MPa) inhibited the enzyme's catalytic activity by 45% and abolished it when 1.5 m urea was also present. Altogether, analysis of urea and HHP effects on thrombin structure and activity indicates the formation of dissimilar intermediate states during denaturation by these agents.
Collapse
Affiliation(s)
- Luis Mauricio T R Lima
- Departamento de Medicamentos Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Brazil.
| | | | | | | |
Collapse
|
131
|
O'Keeffe D, Olson ST, Gasiunas N, Gallagher J, Baglin TP, Huntington JA. The heparin binding properties of heparin cofactor II suggest an antithrombin-like activation mechanism. J Biol Chem 2004; 279:50267-73. [PMID: 15371417 DOI: 10.1074/jbc.m408774200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The serpin heparin cofactor II (HCII) is a glycosaminoglycan-activated inhibitor of thrombin that circulates at a high concentration in the blood. The antithrombotic effect of heparin, however, is due primarily to the specific interaction of a fraction of heparin chains with the related serpin antithrombin (AT). What currently prevents selective therapeutic activation of HCII is the lack of knowledge of the determinants of glycosaminoglycan binding specificity. In this report we investigate the heparin binding properties of HCII and conclude that binding is nonspecific with a minimal heparin length of 13 monosaccharide units required and affinity critically dependent on ionic strength. Rapid kinetics of heparin binding indicate an induced fit mechanism that involves a conformational change in HCII. Thus, HCII binds to heparin in a manner analogous to the interaction of AT with low affinity heparin. A fully allosteric 2000-fold heparin activation of thrombin inhibition by HCII is demonstrated for heparin chains up to 26 monosaccharide units in length. We conclude that the heparin-binding mechanism of HCII is closely analogous to that of AT and that the induced fit mechanism suggests the potential design or discovery of specific HCII agonists.
Collapse
Affiliation(s)
- Denis O'Keeffe
- University of Cambridge, Department of Haematology, Division of Structural Medicine, Thrombosis Research Unit, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge CB2 2XY, United Kingdom
| | | | | | | | | | | |
Collapse
|
132
|
Yang L, Manithody C, Rezaie AR. Heparin-activated antithrombin interacts with the autolysis loop of target coagulation proteases. Blood 2004; 104:1753-9. [PMID: 15178583 DOI: 10.1182/blood-2004-03-1092] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractA unique pentasaccharide fragment of heparin can enhance the reactivity of antithrombin with coagulation proteases factors IXa and Xa by 300- to 600-fold through a conformational activation of the serpin, without having a significant effect on the reactivity of antithrombin with thrombin. In this study, it was hypothesized that differences in the structure of the autolysis loop of coagulation proteases (residues 143-154 in chymotrypsin numbering) may be responsible for their differential reactivity with the native and heparin-activated antithrombin. To test this hypothesis, the autolysis loops of both thrombin and the anticoagulant serine protease-activated protein C were replaced with the corresponding loop of factor Xa. Inhibition studies revealed that in contrast to the approximately 1.5-fold difference in the reactivity of thrombin with antithrombin in the absence and presence of pentasaccharide, the difference in reactivity was increased to approximately 37-fold for the mutant thrombin. In the case of the activated protein C mutant, similar to factor Xa, pentasaccharide accelerated the reaction 375-fold. These results suggest that structural differences in the autolysis loop of coagulation proteases play a key role in their differential reactivity with the native and heparin-activated conformations of antithrombin. (Blood. 2004;104:1753-1759)
Collapse
Affiliation(s)
- Likui Yang
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, 1402 S Grand Blvd, St Louis, MO 63104, USA
| | | | | |
Collapse
|
133
|
Mlinsek G, Novic M, Kotnik M, Solmajer T. Enzyme Binding Selectivity Prediction: α-Thrombin vs Trypsin Inhibition. ACTA ACUST UNITED AC 2004; 44:1872-82. [PMID: 15446847 DOI: 10.1021/ci0401017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the present work we explore the possibility of an in-depth computational analysis of available experimental X-ray structures in the specific case of a series of alpha-thrombin and trypsin complexes with their respective inhibitors for the development of a novel scoring function based on molecular electrostatic potential computed at the contact surface in the enzyme-inhibitor molecular complex. We subsequently employ the chemometrical approach to determine which are the interactions in the large volume of data that determine the resulting experimental binding constant between ligand and receptor. The results of the model evaluated with molecules in the independent validation set show that a reasonable average error of 1.30 log units of the difference between experimental and calculated binding constants was achieved in the system thrombin-trypsin, which is comparable with those of methods from the literature. Furthermore, by a careful preparation of the Kohonen top layer in the artificial neural network approach that is normally perceived as a "black box device", we have been able to follow the implications of the structure of the inhibitor-enzyme complex for the inhibitor's binding constant. The method appears to be suitable for evaluation of selectivity in structurally similar enzymatic systems, which is currently an important problem in drug design.
Collapse
Affiliation(s)
- G Mlinsek
- Laboratories of Molecular Modeling and NMR Spectroscopy and of Chemometrics, National Institute of Chemistry, Hajdrihova 19, P.O. Box 660, 1001 Ljubljana, Slovenia
| | | | | | | |
Collapse
|
134
|
Li W, Johnson DJD, Esmon CT, Huntington JA. Structure of the antithrombin-thrombin-heparin ternary complex reveals the antithrombotic mechanism of heparin. Nat Struct Mol Biol 2004; 11:857-62. [PMID: 15311269 DOI: 10.1038/nsmb811] [Citation(s) in RCA: 302] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Accepted: 06/18/2004] [Indexed: 11/09/2022]
Abstract
The maintenance of normal blood flow depends completely on the inhibition of thrombin by antithrombin, a member of the serpin family. Antithrombin circulates at a high concentration, but only becomes capable of efficient thrombin inhibition on interaction with heparin or related glycosaminoglycans. The anticoagulant properties of therapeutic heparin are mediated by its interaction with antithrombin, although the structural basis for this interaction is unclear. Here we present the crystal structure at a resolution of 2.5 A of the ternary complex between antithrombin, thrombin and a heparin mimetic (SR123781). The structure reveals a template mechanism with antithrombin and thrombin bound to the same heparin chain. A notably close contact interface, comprised of extensive active site and exosite interactions, explains, in molecular detail, the basis of the antithrombotic properties of therapeutic heparin.
Collapse
Affiliation(s)
- Wei Li
- University of Cambridge, Department of Haematology, Division of Structural Medicine, Thrombosis Research Unit, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 2XY, UK
| | | | | | | |
Collapse
|
135
|
Rezaie AR. Kinetics of factor Xa inhibition by recombinant tick anticoagulant peptide: both active site and exosite interactions are required for a slow- and tight-binding inhibition mechanism. Biochemistry 2004; 43:3368-75. [PMID: 15035608 DOI: 10.1021/bi036177y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recombinant tick anticoagulant peptide (rTAP) is a competitive slow- and tight-binding inhibitor of factor Xa (FXa) with a reported equilibrium dissociation constant (K(I)) of approximately 0.2 nM. The inhibitory characteristics and the high selectivity of rTAP for FXa are believed to arise from the ability of the inhibitor to specifically interact with the residues of both the active site as well as those remote from the active site pocket of the protease. To localize the rTAP-interactive sites on FXa, the kinetics of inhibition of wild-type and 18 different mutants of recombinant FXa by the inhibitor were studied by either a discontinuous assay method employing the tight-binding quadratic equation or a continuous assay method employing the slow-binding kinetic approach. It was discovered that K(I) values for the interaction of rTAP with four FXa mutants (Tyr(99) --> Thr, Phe(174) --> Asn, Arg(143) --> Ala, and a Na(+)-binding loop mutant in which residues 220-225 of FXa were replaced with the corresponding residues of thrombin) were elevated by 2-3 orders of magnitude for each mutant. Further studies revealed that the characteristic slow type of inhibition by rTAP was also eliminated for the mutants. These findings suggest that the interaction of rTAP with the P2-binding pocket, the autolysis loop, and the Na(+)-binding loop is primarily responsible for its high specificity of FXa inhibition by a slow- and tight-binding mechanism.
Collapse
Affiliation(s)
- Alireza R Rezaie
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA.
| |
Collapse
|
136
|
Kirchhofer D, Yao X, Peek M, Eigenbrot C, Lipari MT, Billeci KL, Maun HR, Moran P, Santell L, Wiesmann C, Lazarus RA. Structural and functional basis of the serine protease-like hepatocyte growth factor beta-chain in Met binding and signaling. J Biol Chem 2004; 279:39915-24. [PMID: 15218027 DOI: 10.1074/jbc.m404795200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hepatocyte growth factor (HGF), a plasminogen-related growth factor, is the ligand for Met, a receptor tyrosine kinase implicated in development, tissue regeneration, and invasive tumor growth. HGF acquires signaling activity only upon proteolytic cleavage of single-chain HGF into its alpha/beta heterodimer, similar to zymogen activation of structurally related serine proteases. Although both chains are required for activation, only the alpha-chain binds Met with high affinity. Recently, we reported that the protease-like HGF beta-chain binds to Met with low affinity (Stamos, J., Lazarus, R. A., Yao, X., Kirchhofer, D., and Wiesmann, C. (2004) EMBO J. 23, 2325-2335). Here we demonstrate that the zymogen-like form of HGF beta also binds Met, albeit with 14-fold lower affinity than the protease-like form, suggesting optimal interactions result from conformational changes upon cleavage of the single-chain form. Extensive mutagenesis of the HGF beta region corresponding to the active site and activation domain of serine proteases showed that 17 of the 38 purified two-chain HGF mutants resulted in impaired cell migration or Met phosphorylation but no loss in Met binding. However, reduced biological activities were well correlated with reduced Met binding of corresponding mutants of HGF beta itself in assays eliminating dominant alpha-chain binding contributions. Moreover, the crystal structure of HGF beta determined at 2.53 A resolution provides a structural context for the mutagenesis data. The functional Met binding site is centered on the "active site region" including "triad" residues Gln(534) [c57], Asp(578) [c102], and Tyr(673) [c195] and neighboring "activation domain" residues Val(692), Pro(693), Gly(694), Arg(695), and Gly(696) [c214-c219]. Together they define a region that bears remarkable resemblance to substrate processing regions of serine proteases. Models of HGF-dependent Met receptor activation are discussed.
Collapse
Affiliation(s)
- Daniel Kirchhofer
- Department of Physiology, Genentech, Inc., South San Francisco, California 94080, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Carter WJ, Myles T, Gibbs CS, Leung LL, Huntington JA. Crystal structure of anticoagulant thrombin variant E217K provides insights into thrombin allostery. J Biol Chem 2004; 279:26387-94. [PMID: 15075325 DOI: 10.1074/jbc.m402364200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thrombin is the ultimate protease of the blood clotting cascade and plays a major role in its own regulation. The ability of thrombin to exhibit both pro- and anti-coagulant properties has spawned efforts to turn thrombin into an anticoagulant for therapeutic purposes. This quest culminated in the identification of the E217K variant through scanning and saturation mutagenesis. The antithrombotic properties of E217K thrombin are derived from its inability to convert fibrinogen to a fibrin clot while maintaining its thrombomodulin-dependent ability to activate the anticoagulant protein C pathway. Here we describe the 2.5-A crystal structure of human E217K thrombin, which displays a dramatic restructuring of the geometry of the active site. Of particular interest is the repositioning of Glu-192, which hydrogen bonds to the catalytic Ser-195 and which results in the complete occlusion of the active site and the destruction of the oxyanion hole. Substrate binding pockets are further blocked by residues previously implicated in thrombin allostery. We have concluded that the E217K mutation causes the allosteric inactivation of thrombin by destabilizing the Na(+) binding site and that the structure thus may represent the Na(+)-free, catalytically inert "slow" form.
Collapse
Affiliation(s)
- Wendy J Carter
- University of Cambridge, Department of Haematology, Division of Structural Medicine, Thrombosis Research Unit, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 2XY, United Kingdom
| | | | | | | | | |
Collapse
|
138
|
Isetti G, Maurer MC. Thrombin Activity Is Unaltered by N-Terminal Truncation of Factor XIII Activation Peptides. Biochemistry 2004; 43:4150-9. [PMID: 15065858 DOI: 10.1021/bi049796v] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In blood coagulation, thrombin helps to activate factor XIII by cleaving the activation peptide at the R37-G38 peptide bond. The residues N-terminal to the scissile bond are important in determining rates of hydrolysis. Solution studies of wild-type and mutant peptides of factor XIII AP (28-37) suggest residues P(4)-P(1) are most critical in substrate recognition. By contrast, the X-ray crystal structure of FXIII AP (28-37) displays all of the residues, P(10)-P(1), interacting with the thrombin active site in a conformation similar to that of fibrinogen Aalpha (7-16) [Sadasivan, C., and Yee, V. C. (2000) J. Biol. Chem. 275, 36942-36948]. Peptides were therefore synthesized with the N-terminal P(10)-P(6) residues removed to further characterize interactions of thrombin with factor XIII activation peptides. The truncations have no adverse effects on thrombin's ability to bind and to hydrolyze the shortened peptides. The wild-type FXIII AP (33-41) V34 sequence actually exhibits a decrease in K(m) relative to the longer (28-41) sequence whereas the cardioprotective FXIII AP (33-41) V34L exhibits a further increase in k(cat) relative to its longer parent sequence. One-dimensional proton line broadening NMR and 2D transferred-NOESY studies indicate that the shortened peptides maintain similar bound conformations as their FXIII AP (28-37) counterparts. Furthermore, the distinctive NOE between the L34 and P36 side chains is preserved. Kinetic and NMR studies thus reveal that the N-terminal portions of FXIII AP (28-37) (V34 and V34L) are not necessary for effective interaction with the thrombin active site surface. FXIII activation peptides bind to thrombin in a manner more like PAR1 than fibrinogen Aalpha.
Collapse
Affiliation(s)
- Giulia Isetti
- Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, Kentucky 40292, USA
| | | |
Collapse
|
139
|
Isetti G, Maurer MC. Probing thrombin's ability to accommodate a V34F substitution within the factor XIII activation peptide segment (28-41)*. ACTA ACUST UNITED AC 2004; 63:241-52. [PMID: 15049836 DOI: 10.1111/j.1399-3011.2004.00132.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In blood coagulation, thrombin helps to activate factor XIII (FXIII) by cleaving the activation peptide (AP) at the R37-G38 peptide bond. The common polymorphism V34L yields a FXIII that is more easily activated than the wild type enzyme. Peptides based on the FXIII (28-41) (28TVELQGVVPRGVNL41) sequence serve as an important model system to evaluate the substrate specificity of thrombin and thus how to regulate FXIII activation. Our previous kinetic and nuclear magnetic resonance (NMR) studies have suggested that the P4-P1 amino acids on this FXIII segment provide key anchors to the thrombin active site surface. Furthermore, the most effective amino acid to have at the P4 position is a leucine. In the current work, a peptide containing V34F was examined to probe the ability to accommodate an aromatic residue at this position. Kinetic parameters for thrombin-catalyzed hydrolysis of FXIII AP (28-41) V34F are comparable with that of the wild type V34. One-dimensional proton line-broadening studies reveal that the 34FVPR37 segment encompassing the P4-P1 positions makes the most contact with the thrombin surface. Two-dimensional transferred-nuclear overhauser effect spectroscopy (NOESY) studies indicate that when the peptide is bound to thrombin, the F34 aromatic ring is oriented to promote P4-P2 interactions with P36. This characteristic has been viewed as a hallmark for V34L. An ability to generate this interaction may promote the ability of FXIII AP (28-41) V34F to remain a viable substrate for thrombin.
Collapse
Affiliation(s)
- G Isetti
- Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, KY 40292, USA
| | | |
Collapse
|
140
|
Verhamme IM, Bock PE, Jackson CM. The Preferred Pathway of Glycosaminoglycan-accelerated Inactivation of Thrombin by Heparin Cofactor II. J Biol Chem 2004; 279:9785-95. [PMID: 14701814 DOI: 10.1074/jbc.m313962200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thrombin (T) inactivation by the serpin, heparin cofactor II (HCII), is accelerated by the glycosaminoglycans (GAGs) dermatan sulfate (DS) and heparin (H). Equilibrium binding and thrombin inactivation kinetics at pH 7.8 and ionic strength (I) 0.125 m demonstrated that DS and heparin bound much tighter to thrombin (K(T(DS)) 1-5.8 microm; K(T(H)) 0.02-0.2 microm) than to HCII (K(HCII(DS)) 236-291 microm; K(HCII(H)) 25-35 microm), favoring formation of T.GAG over HCII.GAG complexes as intermediates for T.GAG.HCII complex assembly. At [GAG] << K(HCII(GAG)) the GAG and HCII concentration dependences of the first-order inactivation rate constants (k(app)) were hyperbolic, reflecting saturation of T.GAG complex and formation of the T.GAG.HCII complex from T.GAG and free HCII, respectively. At [GAG] >> K(HCII(GAG)), HCII.GAG complex formation caused a decrease in k(app). The bell-shaped logarithmic GAG dependences fit an obligatory template mechanism in which free HCII binds GAG in the T.GAG complex. DS and heparin bound fluorescently labeled meizothrombin(des-fragment 1) (MzT(-F1)) with K(MzT(-F1)(GAG)) 10 and 20 microm, respectively, demonstrating a binding site outside of exosite II. Exosite II ligands did not attenuate the DS-accelerated thrombin inactivation markedly, but DS displaced thrombin from heparin-Sepharose, suggesting that DS and heparin share a restricted binding site in or nearby exosite II, in addition to binding outside exosite II. Both T.DS and MzT(-F1).DS interactions were saturable at DS concentrations substantially below K(HCII(DS)), consistent with DS bridging T.DS and free HCII. The results suggest that GAG template action facilitates ternary complex formation and accommodates HCII binding to GAG and thrombin exosite I in the ternary complex.
Collapse
Affiliation(s)
- Ingrid M Verhamme
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2561, USA.
| | | | | |
Collapse
|
141
|
Schatz S, Turecek PL, Fiedler C, Zimmermann K, Gritsch H, Voorberg J, Schwarz HP, Dorner F, Scheiflinger F. Evaluation of the haemostatic potential of factor VIII-heparin cofactor II hybrid proteins in a mouse model. Br J Haematol 2004; 123:692-5. [PMID: 14616974 DOI: 10.1046/j.1365-2141.2003.04674.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We constructed factor VIII-heparin cofactor II (FVIII-HCII) hybrid molecules, which are more readily activated by thrombin in vitro than the respective wild-type molecules. The hybrid proteins were tested in a murine model of haemophilia A to investigate their haemostatic efficacy in vivo. Bleeding characteristics, measured using standard tail-tip cutting techniques, were total blood loss, bleeding time and survival rate. FVIII-HCII hybrids were found to be effective in preventing bleeding in FVIII knockout mice. While in vitro experiments showed that the chimaeric molecules had higher haemostatic functions than the wild-type proteins, the variables analysed in vivo were similar for both proteins.
Collapse
Affiliation(s)
- Simone Schatz
- Baxter BioScience, Biomedical Research Centre, Orth-Donau, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Anderson PJ, Nesset A, Bock PE. Effects of activation peptide bond cleavage and fragment 2 interactions on the pathway of exosite I expression during activation of human prethrombin 1 to thrombin. J Biol Chem 2003; 278:44482-8. [PMID: 12939269 DOI: 10.1074/jbc.m306917200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of prothrombin (Pro) by factor Xa to form thrombin occurs by proteolysis of Arg271-Thr272 and Arg320-Ile321, resulting in expression of regulatory exosites I and II. Cleavage of Pro by thrombin liberates fragment 1 and generates the zymogen analog, prethrombin 1 (Pre 1). The properties of exosite I on Pre 1 and its factor Xa activation intermediates were characterized in spectroscopic and equilibrium binding studies using the fluorescein-labeled probe, hirudin(54-65) ([5F]Hir(54-65)-(SO3-)). Prethrombin 2 (Pre 2), formed by factor Xa cleavage of Pre 1 at Arg271-Thr272, had the same affinity for hirudin(54-65) peptides as Pre 1 in the absence or presence of near-saturating fragment 2 (F2). Pre 2 and thrombin also had indistinguishable affinities for F2. By contrast, cleavage of Pre 1 at Arg320-Ile321, to form active meizothrombin des-fragment 1 MzT(-F1), showed a 11- to 20-fold increase in affinity for hirudin(54-65), indistinguishable from the 13- to 20-fold increase seen for conversion of Pre 2 to thrombin. Thus, factor Xa cleavage of Pre 1 at Arg271-Thr272 does not effect exosite I expression, whereas cleavage at Arg320-Ile321 results in concomitant activation of the catalytic site and exosite I. Furthermore, expression of exosite I on the Pre 1 activation intermediates is not modulated by F2, and exosite II is not activated conformationally. The differential expression of exosite I affinity on the Pre 1 activation intermediates and the previously demonstrated role of (pro)exosite I in factor Va-dependent substrate recognition suggest that changes in exosite I expression may regulate the rate and direction of the Pre 1 activation pathway.
Collapse
Affiliation(s)
- Patricia J Anderson
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
143
|
Anderson PJ, Bock PE. Role of prothrombin fragment 1 in the pathway of regulatory exosite I formation during conversion of human prothrombin to thrombin. J Biol Chem 2003; 278:44489-95. [PMID: 12939270 DOI: 10.1074/jbc.m306916200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prothrombin (Pro) activation by factor Xa generates the thrombin catalytic site and exosites I and II. The role of fragment 1 (F1) in the pathway of exosite I expression during Pro activation was characterized in equilibrium binding studies using hirudin(54-65) labeled with 6-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)hexanoate ([NBD]Hir(54-65)(SO3-)) or 5-(carboxy)fluorescein ([5F]Hir(54-65)(SO3-)). [NBD]Hir(54-65)(SO3-) distinguished exosite I environments on Pro, prethrombin 1 (Pre 1), and prethrombin 2 (Pre 2) but bound with the same affinities as [5F]Hir(54-65)(SO3-). Conversion of Pro to Pre 1 caused a 7-fold increase in affinity for the peptides. Conversely, fragment 1.2 (F1.2) decreased the affinity of Pre 2 for [5F]Hir(54-65)(SO3-) by 3-fold. This was correlated with a 16-fold increased affinity of F1.2 for Pre 2 in comparison to thrombin, demonstrating an enhancing effect of F1 on F1.2 binding. The active intermediate, meizothrombin, demonstrated a 50- to 220-fold increase in exosite affinity. Free thrombin and thrombin.F1.2 complex bound [5F]Hir(54-65)(SO3-) with indistinguishable affinity, indicating that the effect of F1 on peptide binding was eliminated upon expression of catalytic activity and exosite I. The results demonstrate a new zymogen-specific role for F1 in modulating the affinity of ligands for exosite I. This may reflect a direct interaction between the F1 and Pre 2 domains in Pro that is lost upon folding of the zymogen activation domain. The effect of F1 on (pro)exosite I and the role of (pro)exosite I in factor Va-dependent substrate recognition suggest that the Pro activation pathway may be regulated by (pro)exosite I interactions with factor Va.
Collapse
Affiliation(s)
- Patricia J Anderson
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
144
|
Abstract
Although there have been many significant advances over the last 50 years with regards to anticoagulant therapy, warfarin remains the definitive standard for the long-term prevention of thromboembolic events in many patients at risk for these complications. Although effective, warfarin has a narrow therapeutic window, necessitating frequent laboratory monitoring for anticoagulant effect. Ximelagatran is an investigational anticoagulant that directly inhibits thrombin, unlike heparin or warfarin, which are indirect inhibitors. Although indirect thrombin inhibitors are mainly only effective at inhibiting circulating thrombin, direct thrombin inhibitors are able to inhibit both free and clot-bound thrombin, thereby producing more effective anticoagulation. Ximelagatran is the first orally available direct thrombin inhibitor to reach phase 3 clinical trials. Ximelagatran is a prodrug for the active metabolite melagatran, and has been demonstrated to have a relatively wide therapeutic window in terms of bleeding and antithrombotic effect compared with warfarin. Clinical studies have demonstrated ximelagatran to be comparable in efficacy to warfarin and low-molecular-weight heparins (LMWH) for prophylaxis of venous thromboembolism, comparable to warfarin for stroke prevention in the setting of atrial fibrillation, and, when combined with aspirin, possible more effective than aspirin alone at preventing major adverse cardiovascular events in patients with a recent myocardial infarction. Adverse effects with ximelagatran primarily involve bleeding complications, which are more frequent than with placebo, but appear comparable to those occurring with standard anticoagulant treatment (ie, warfarin and LMWH). Ximelagatran has also been demonstrated to cause transient increases in liver enzymes, the significance of which will need to be addressed in ongoing phase 3 studies. Should ongoing trials prove ximelagatran to have at least similar therapeutic efficacy and safety as warfarin, ximelagatran may become a first-line anticoagulant due to its ease of administration and lack of a need for drug monitoring. The results of these trials are eagerly awaited in helping to defining the place in therapy for this promising new agent.
Collapse
Affiliation(s)
- Lenka Hrebickova
- University of New Mexico College of Pharmacy, Albuquerque, NM 87131, USA
| | | | | |
Collapse
|
145
|
Murayama N, Saguchi K, Mentele R, Assakura MT, Ohi H, Fujita Y, Camargo ACM, Higuchi S, Serrano SMT. The unusual high molecular mass of Bothrops protease A, a trypsin-like serine peptidase from the venom of Bothrops jararaca, is due to its high carbohydrate content. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2003; 1652:1-6. [PMID: 14580991 DOI: 10.1016/j.bbapap.2003.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bothrops protease A (BPA) is a serine peptidase isolated from the venom of Bothrops jararaca. Unlike many venom enzymes, it is stable at pHs between 3 and 9 and resists heating at 86 degrees C for 10 min. Mature snake venom serine peptidases of the chymotrypsin family are in general glycoproteins composed of around 232 amino acids and their molecular masses vary between 25 and 40 kDa. BPA is a glycosylated protein that migrates on SDS-polyacrylamide gel electrophoresis (PAGE) as a single band of 67 kDa. In order to find out whether BPA has the typical serine peptidase primary structure or if it is composed of a longer amino acid sequence, we cloned a cDNA encoding BPA. Its deduced amino acid sequence showed that BPA is composed of 234 residues with a calculated molecular mass of 25,409 Da implying that approximately 62% of its molecular mass assessed by SDS-PAGE is due to carbohydrate moieties. Eight putative N-glycosylation and two putative O-glycosylation sites were found in BPA amino acid sequence. Deglycosylation experiments indicated that all 10 potential glycosylation sites in BPA are utilized. Complete N- and O-deglycosylation was only achieved under denaturing conditions and generated main products of 25 and 55 kDa, respectively, which were enzymatically inactive. N-deglycosylation under non-denaturing conditions was only partial and gave a main product of 50 kDa and fragments ranging from 25 to approximately 10 kDa. Kinetic parameters K(m) and V(max) of partially N-deglycosylated BPA upon substrate Bz-Arg-pNA were similar to the native form. However, when partially N-deglycosylated BPA was submitted to pH 3 and pH 10, it appeared to be unstable as it underwent hydrolysis, as shown by the presence of two main products of 30 and 12 kDa while the 50 kDa protein band disappeared. These changes also had effects on V(max) upon Bz-Arg-pNA which dropped to approximately 45%, while K(m) values remained unchanged. Fluorescence emission spectroscopy indicated that in partially N-deglycosylated BPA, tryptophan residues are more exposed to a polar environment than in the fully glycosylated protein. Taken together, these studies indicate that glycosylation has a stabilizing effect on BPA.
Collapse
Affiliation(s)
- Nobuhiro Murayama
- School of Pharmaceutical Sciences, Showa University, Tokyo 142-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
146
|
O'Brien LA, Stafford AR, Fredenburgh JC, Weitz JI. Glycosaminoglycans Bind Factor Xa in a Ca2+-Dependent Fashion and Modulate Its Catalytic Activity. Biochemistry 2003; 42:13091-8. [PMID: 14596625 DOI: 10.1021/bi0345586] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent studies have demonstrated the existence of a Ca(2+)-dependent heparin-binding site on factor Xa. To characterize this heparin-binding site, the extrinsic fluorescence of fluorescein-labeled, active site-blocked factor Xa was monitored as it was titrated with glycosaminoglycans of various sulfate content and chain length. The binding of glycosaminoglycans to factor Xa appears to be charge-dependent because affinity is correlated with degree of glycosaminoglycan sulfation. All glycosaminoglycans bind factor Xa with higher affinity in the presence of Ca(2+) than in its absence. In contrast, when Gla-domainless factor Xa was substituted for factor Xa, glycosaminoglycans bound with similar affinities in the absence and presence of Ca(2+). These results support the hypothesis that the anionic Gla domain impairs glycosaminoglycan binding in the absence of Ca(2+). The changes in fluorescence intensity of factor Xa when titrated with glycosaminoglycans suggest that glycosaminoglycans induce conformational changes in the active site environment of factor Xa. To explore the consequences of these conformational changes, the effect of glycosaminoglycans on the catalytic activity of factor Xa was examined. Glycosaminoglycans influenced the ability of factor Xa to cleave chromogenic substrates and attenuated the capacity of factor Xa to activate factor VII. The potency of glycosaminoglycans in these assays reflected their affinity for factor Xa. These studies suggest that glycosaminoglycan binding perturbs exosites on the surface of factor Xa, potentially modifying interactions with cofactors or substrates.
Collapse
Affiliation(s)
- Lee A O'Brien
- Henderson Research Centre and McMaster University, Hamilton, Ontario L8V 1C3, Canada
| | | | | | | |
Collapse
|
147
|
Tanaka-Azevedo AM, Tanaka AS, Sano-Martins IS. A new blood coagulation inhibitor from the snake Bothrops jararaca plasma: isolation and characterization. Biochem Biophys Res Commun 2003; 308:706-12. [PMID: 12927776 DOI: 10.1016/s0006-291x(03)01464-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A novel thrombin inhibitor, Bothrops jararaca inhibitor (BjI), has been identified and purified from B. jararaca snake blood by two anionic chromatographic steps. Purified BjI showed two polypeptide chains with molecular masses of 109 and 138 kDa, by SDS-PAGE in reducing conditions. On the other hand, in nonreducing conditions the molecular masses were 150 and 219 kDa, suggesting that the polypeptide chain 109 kDa can be a dimer form linked by disulfide bond. However, the native BjI shows a molecular mass higher than 1000 kDa by gel filtration chromatography, indicating the need of a quaternary structure formation for the blood coagulation inhibition. BjI is a specific thrombin coagulant activity inhibitor that does not affect other thrombin functions, such as: amidolytic and platelet aggregation activities. BjI is not an antithrombin-like inhibitor. Fibrinogen and heparin competition ELISA assays with BjI and thrombin showed that fibrinogen does not interfere in the BjI and thrombin binding, however, heparin interferes in BjI and thrombin interaction, suggesting that BjI binds to heparin site or other sites close to it. Our findings indicate that BjI is an exosite binding thrombin inhibitor, specific upon coagulant activity thrombin inhibitor, without any anti-platelet aggregation activity.
Collapse
|
148
|
De Simone G, Menchise V, Omaggio S, Pedone C, Scozzafava A, Supuran CT. Design of weakly basic thrombin inhibitors incorporating novel P1 binding functions: molecular and X-ray crystallographic studies. Biochemistry 2003; 42:9013-21. [PMID: 12885234 DOI: 10.1021/bi020512l] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To prepare weakly basic thrombin inhibitors with modified S1 anchoring groups, two series of compounds were synthesized by reaction of guanidine or aminoguanidine with acyl halides and N,N-disubstituted carbamoyl chlorides. pK(a) measurements of these acylated guanidines/aminoguanidines showed a reduced basicity, with pK(a) values in the range of 8.4-8.7. These molecules typically showed inhibition constants in the range of 150-425 nM against thrombin and 360-965 nM against trypsin, even though some bulky derivatives, such as N,N-diphenylcarbamoylguanidine/aminoguanidine and their congeners, showed much stronger thrombin inhibitory activity, with inhibition constants in the range of 24-42 nM. Unexpectedly, very long incubation times with both proteases revealed that aminoguanidine derivatives behaved as irreversible inhibitors. To assess the molecular basis responsible for the high affinity observed for these molecules toward thrombin, the crystal structure of the thrombin-hirugen-N,N-diphenylcarbamoylaminoguanidine complex has been solved at 1.90 A resolution. The structural analysis of the complex revealed an unexpected interaction mode with the protease, resulting in an N,N-diphenylcarbamoyl intermediate covalently bound to the catalytic serine as a consequence of its hydrolysis together with the release of the aminoguanidine moiety. Surprisingly, in this covalent adduct a phenyl group was found in the S1 specificity pocket, which usually recognizes positively charged residues. These findings provide new insights in the design of low basicity serine protease inhibitors.
Collapse
Affiliation(s)
- Giuseppina De Simone
- Laboratorio di Chimica Inorganica e Bioinorganica, Università degli Studi, via della Lastruccia 3, Rm 188, Polo Scientifico, 50019 Sesto Fiorentino, Florence, Italy.
| | | | | | | | | | | |
Collapse
|
149
|
Yang L, Manithody C, Olson ST, Rezaie AR. Contribution of basic residues of the autolysis loop to the substrate and inhibitor specificity of factor IXa. J Biol Chem 2003; 278:25032-8. [PMID: 12721300 DOI: 10.1074/jbc.m302174200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The autolysis loop (residues 143-154 in chymotrypsinogen numbering) plays a pivotal role in determining the macromolecular substrate and inhibitor specificity of coagulation proteases. This loop in factor IXa (FIXa) has 3 basic residues (Arg143, Lys147, and Arg150) whose contribution to the protease specificity of factor IXa has not been studied. Here, we substituted these residues individually with Ala in Gla-domainless forms of recombinant factor IX expressed in mammalian cells. All mutants exhibited normal amidolytic activities toward a FIXa-specific chromogenic substrate. However, Arg143 and Lys147 mutants showed a approximately 3- to 6-fold impairment in FX activation, whereas the Arg150 mutant activated factor X normally both in the absence and presence of factor VIIIa. By contrast, Arg143 and Lys147 mutants reacted normally with antithrombin (AT) in both the absence and presence of the cofactor, heparin. However, the reactivity of the Arg150 mutant with AT was impaired 6.6-fold in the absence of heparin and 33- to 70-fold in the presence of pentasaccharide and full-length heparins. These results suggest that Arg143 and Lys147 of the autolysis loop are recognition sites for FX independent of factor VIIIa, and Arg150 is a specific recognition site for AT that can effectively interact with AT only if the serpin is in the heparin-activated conformation.
Collapse
Affiliation(s)
- Likui Yang
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Missouri 63104, USA
| | | | | | | |
Collapse
|
150
|
Abstract
Serpins are the predominant protease inhibitors in the higher organisms and are responsible, in humans, for the control of many highly regulated processes including blood coagulation and fibrinolysis. The serpin inhibitory mechanism has recently been revealed by the solution of a crystallographic structure of the final serpin-protease complex. The serpin mechanism, in contrast to the classical lock-and-key mechanism, involves dramatic conformational change in both the inhibitor and the inhibited protein. The final result is a stable covalent complex in which the properties of each component are altered so as to allow clearance from the circulation. Several serpins are involved in hemostasis: antithrombin (AT) inhibits many coagulation proteases, most importantly factor Xa and thrombin; heparin cofactor II (HCII) inhibits thrombin; protein C inhibitor (PCI) inhibits activated protein C and thrombin bound to thrombomodulin; plasminogen activator inhibitor 1 inhibits tissue plasminogen activator; and alpha2-antiplasmin inhibits plasmin. Nearly all of these reactions are accelerated through interactions with glycosaminoglycans (GAGs) such as heparin or heparan sulfate. Recent structures of AT, HCII and PCI have revealed how in each case the serpin mechanism has been fine-tuned by evolution to bring about high levels of regulatory control, and how seemingly disparate mechanisms of GAG binding and activation can share critical elements. By considering the serpins involved in hemostasis together it is possible to develop a deeper understanding of their complex individual roles.
Collapse
Affiliation(s)
- J A Huntington
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK.
| |
Collapse
|