101
|
Mohan A, Asakura A. CDK inhibitors for muscle stem cell differentiation and self-renewal. ACTA ACUST UNITED AC 2017; 6:65-74. [PMID: 28713664 DOI: 10.7600/jpfsm.6.65] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Regeneration of muscle is undertaken by muscle stem cell populations named satellite cells which are normally quiescent or at the G0 phase of the cell cycle. However, upon signals from damaged muscle, satellite cells lose their quiescence, and enter the G1 cell cycle phase to expand the population of satellite cell progenies termed myogenic precursor cells (MPCs). Eventually, MPCs stop their cell cycle and undergo terminal differentiation to form skeletal muscle fibers. Some MPCs retract to quiescent satellite cells as a self-renewal process. Therefore, cell cycle regulation, consisting of satellite cell activation, proliferation, differentiation and self-renewal, is the key event of muscle regeneration. In this review, we summarize up-to-date progress on research about cell cycle regulation of myogenic progenitor cells and muscle stem cells during embryonic myogenesis and adult muscle regeneration, aging, exercise and muscle diseases including muscular dystrophy and muscle fiber atrophy, especially focusing on cyclin-dependent kinase inhibitors (CDKIs).
Collapse
Affiliation(s)
- Amrudha Mohan
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, 2001 6th Street SE, MTRF 4-220, Minneapolis, MN 55455, USA
| | - Atsushi Asakura
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, 2001 6th Street SE, MTRF 4-220, Minneapolis, MN 55455, USA
| |
Collapse
|
102
|
Lu J, Zhang ZL, Huang D, Tang N, Li Y, Peng Z, Lu C, Dong Z, Tang F. Cdk3-promoted epithelial-mesenchymal transition through activating AP-1 is involved in colorectal cancer metastasis. Oncotarget 2016; 7:7012-28. [PMID: 26755651 PMCID: PMC4872765 DOI: 10.18632/oncotarget.6875] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 01/04/2016] [Indexed: 12/12/2022] Open
Abstract
Cyclin dependent kinase-3 (Cdk3) is a positive regulator of the G1 mammalian cell cycle phase. Cdk3 is involved in cancer progression, but very little is known about its mechanism in cancer development and progression. Herein, we found that Cdk3 increased colorectal cancer metastasis through promoting epithelial-mesenchymal transition (EMT) shift. Cdk3 was found to highly express in metastatic cancer and induce cell motility and invasion. Cdk3 was shown to phosphorylate c-Jun at Ser 63 and Ser 73 in vitro and ex vivo. Cdk3-phosphorylated c-Jun at Ser 63 and Ser 73 resulted in an increased AP-1 activity. Ectopic expression of Cdk3 promoted colorectal cancer from epithelial to mesenchymal transition conjugating AP-1 activation, while AP-1 inhibition dramatically decreased Cdk3-increased EMT shift. These results showed that the Cdk3/c-Jun signaling axis mediating epithelial-mesenchymal transition plays an important role in colorectal cancer metastasis.
Collapse
Affiliation(s)
- Jinping Lu
- Clinical Laboratory and Medical Research Center, Zhuhai Hospital of Jinan University, Zhuhai People's Hospital, Zhuhai, P.R. China
| | - Zhen Lin Zhang
- Clinical Laboratory and Medical Research Center, Zhuhai Hospital of Jinan University, Zhuhai People's Hospital, Zhuhai, P.R. China
| | - Damao Huang
- Clinical Laboratory, Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Na Tang
- Institution of Pathogenic Biology, Medical College, University of South China, Hengyang, P.R. China
| | - Yuejin Li
- Clinical Laboratory and Medical Research Center, Zhuhai Hospital of Jinan University, Zhuhai People's Hospital, Zhuhai, P.R. China
| | - Zhengke Peng
- Clinical Laboratory and Medical Research Center, Zhuhai Hospital of Jinan University, Zhuhai People's Hospital, Zhuhai, P.R. China
| | - Chengrong Lu
- Institution of Pathogenic Biology, Medical College, University of South China, Hengyang, P.R. China
| | - Zigang Dong
- Institution of Pathogenic Biology, Medical College, University of South China, Hengyang, P.R. China
| | - Faqing Tang
- Clinical Laboratory and Medical Research Center, Zhuhai Hospital of Jinan University, Zhuhai People's Hospital, Zhuhai, P.R. China.,Clinical Laboratory, Xiangya Hospital of Central South University, Changsha, P.R. China
| |
Collapse
|
103
|
Okuda M, Araki K, Ohtani K, Nishimura Y. The Interaction Mode of the Acidic Region of the Cell Cycle Transcription Factor DP1 with TFIIH. J Mol Biol 2016; 428:4993-5006. [DOI: 10.1016/j.jmb.2016.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/27/2016] [Accepted: 11/01/2016] [Indexed: 10/20/2022]
|
104
|
Kang DW, Lee SW, Hwang WC, Lee BH, Choi YS, Suh YA, Choi KY, Min DS. Phospholipase D1 Acts through Akt/TopBP1 and RB1 to Regulate the E2F1-Dependent Apoptotic Program in Cancer Cells. Cancer Res 2016; 77:142-152. [PMID: 27793841 DOI: 10.1158/0008-5472.can-15-3032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 10/10/2016] [Accepted: 10/23/2016] [Indexed: 01/11/2023]
Abstract
The RB1/E2F1 signaling pathway is frequently deregulated in colorectal cancer and has been suggested to intersect with Wnt/β-catenin and PI3K/Akt pathways, but molecular evidence for this link is lacking. In this study, we demonstrate that phospholipase D1 (PLD1), a transcriptional target of β-catenin/TCF4, orchestrates functional interactions between these pathways during intestinal tumor development. Overexpression of PLD1 in intestinal epithelial cells protected cells from apoptosis induced by PLD1 ablation in the Apcmin/+ mouse model of intestinal tumorigenesis. Mechanistic investigations revealed that genetic and pharmacologic targeting of PLD1 promote the E2F1-dependent apoptotic program via both miR-192/4465-mediated downregulation of RB1 and inhibition of Akt-TopBP1 pathways. Moreover, the miRNA-RB1 axis and Akt pathway also contributed to the PLD1-mediated self-renewal capacity of colon cancer-initiating cells. Finally, PLD1-driven E2F1 target gene expression positively correlated with tumor stage in patients with colorectal cancer. Overall, our findings suggest that PLD1 mediates cross-talk between multiple major signaling pathways to promote the survival and malignancy of colon cancer cells and may therefore represent an ideal signaling node for therapeutic targeting. Cancer Res; 77(1); 142-52. ©2016 AACR.
Collapse
Affiliation(s)
- Dong Woo Kang
- Institute of Innovative Cancer Research, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - Shin Wha Lee
- Institute of Innovative Cancer Research, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Obstetrics and Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Won Chan Hwang
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - Bo Hui Lee
- Department of Statistics, College of Natural Science, Pusan National University, Busan, Republic of Korea
| | - Yong-Seok Choi
- Department of Statistics, College of Natural Science, Pusan National University, Busan, Republic of Korea
| | - Young-Ah Suh
- Institute of Innovative Cancer Research, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kang-Yell Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.,Translational Research Center for Protein Function Control, Yonsei University, Seoul, Republic of Korea
| | - Do Sik Min
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea. .,Translational Research Center for Protein Function Control, Yonsei University, Seoul, Republic of Korea.,Genetic Engineering Institute, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
105
|
Abstract
Cancer has been recognized for thousands of years. Egyptians believed that cancer occurred at the will of the gods. Hippocrates believed human disease resulted from an imbalance of the four humors: blood, phlegm, yellow bile, and black bile with cancer being caused by excess black bile. The lymph theory of cancer replaced the humoral theory and the blastema theory replaced the lymph theory. Rudolph Virchow was the first to recognize that cancer cells like all cells came from other cells and believed chronic irritation caused cancer. At the same time there was a belief that trauma caused cancer, though it never evolved after many experiments inducing trauma. The birth of virology occurred in 1892 when Dimitri Ivanofsky demonstrated that diseased tobacco plants remained infective after filtering their sap through a filter that trapped bacteria. Martinus Beijerinck would call the tiny infective agent a virus and both Dimitri Ivanofsky and Marinus Beijerinck would become the fathers of virology. Not to long thereafter, Payton Rous founded the field of tumor virology in 1911 with his discovery of a transmittable sarcoma of chickens by what would come to be called Rous sarcoma virus or RSV for short. The first identified human tumor virus was the Epstein-Barr virus (EBV), named after Tony Epstein and Yvonne Barr who visualized the virus particles in Burkitt's lymphoma cells by electron microscopy in 1965. Since that time, many viruses have been associated with carcinogenesis including the most studied, human papilloma virus associated with cervical carcinoma, many other anogenital carcinomas, and oropharyngeal carcinoma. The World Health Organization currently estimates that approximately 22% of worldwide cancers are attributable to infectious etiologies, of which viral etiologies is estimated at 15-20%. The field of tumor virology/viral carcinogenesis has not only identified viruses as etiologic agents of human cancers, but has also given molecular insights to all human cancers including the oncogene activation and tumor suppressor gene inactivation.
Collapse
Affiliation(s)
- A J Smith
- Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - L A Smith
- Texas Tech University Health Sciences Center, Lubbock, TX, United States.
| |
Collapse
|
106
|
Abstract
One quarter of all deaths worldwide each year result from infectious diseases caused by microbial pathogens. Pathogens infect and cause disease by producing virulence factors that target host cell molecules. Studying how virulence factors target host cells has revealed fundamental principles of cell biology. These include important advances in our understanding of the cytoskeleton, organelles and membrane-trafficking intermediates, signal transduction pathways, cell cycle regulators, the organelle/protein recycling machinery, and cell-death pathways. Such studies have also revealed cellular pathways crucial for the immune response. Discoveries from basic research on the cell biology of pathogenesis are actively being translated into the development of host-targeted therapies to treat infectious diseases. Thus there are many reasons for cell biologists to incorporate the study of microbial pathogens into their research programs.
Collapse
Affiliation(s)
- Matthew D Welch
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
107
|
Abstract
PURPOSE OF REVIEW Cell senescence is a major process regulating tissue mass, architecture and function, and underlies many diseases of ageing. Recent studies have elucidated some of the regulatory pathways leading to cell senescence, and senescence has also been found in the vasculature. However, assessment of cell senescence is problematic, and the effects of vascular cell senescence are in most cases unproven. The present article will review how senescence is assessed, how it is regulated, where senescence has been described, and the role of cell senescence in atherosclerosis. RECENT FINDINGS Senescence results in expression of multiple proteins, both intracellular and secreted. However, to date, none of these are specific for senescence, and multiple markers must be used together for positive identification. Despite these shortfalls, cell senescence is detectable in the vasculature in ageing and in human atherosclerosis, and recent studies in mice have indicated that cell senescence promotes both atherogenesis and multiple features of 'vulnerable' lesions in advanced atherosclerotic plaques. SUMMARY The almost ubiquitous presence of cell senescence in atherosclerosis and the fundamental role of senescence in regulating plaque development and stability suggest that prevention or amelioration of senescence in atherosclerosis is a viable therapeutic target.
Collapse
Affiliation(s)
- Abel Martin Garrido
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, UK
| | | |
Collapse
|
108
|
APC/C and retinoblastoma interaction: cross-talk of retinoblastoma protein with the ubiquitin proteasome pathway. Biosci Rep 2016; 36:BSR20160152. [PMID: 27402801 PMCID: PMC5025812 DOI: 10.1042/bsr20160152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/08/2016] [Indexed: 12/15/2022] Open
Abstract
The ubiquitin (Ub) ligase anaphase promoting complex/cyclosome (APC/C) and the tumour suppressor retinoblastoma protein (pRB) play key roles in cell cycle regulation. APC/C is a critical regulator of mitosis and G1-phase of the cell cycle whereas pRB keeps a check on proliferation by inhibiting transition to the S-phase. APC/C and pRB interact with each other via the co-activator of APC/C, FZR1, providing an alternative pathway of regulation of G1 to S transition by pRB using a post-translational mechanism. Both pRB and FZR1 have complex roles and are implicated not only in regulation of cell proliferation but also in differentiation, quiescence, apoptosis, maintenance of chromosomal integrity and metabolism. Both are also targeted by transforming viruses. We discuss recent advances in our understanding of the involvement of APC/C and pRB in cell cycle based decisions and how these insights will be useful for development of anti-cancer and anti-viral drugs.
Collapse
|
109
|
Abstract
Cell death is a common outcome of virus infection. In some cases, cell death curbs virus replication. In others, cell death enhances virus dissemination and contributes to tissue injury, exacerbating viral disease. Three forms of cell death are observed following virus infection-apoptosis, necroptosis, and pyroptosis. In this review, I describe the core machinery needed for each of these forms of cell death. Using representative viruses, I highlight how distinct stages of virus replication initiate signaling pathways that elicit these forms of cell death. I also discuss viral strategies to overcome the deleterious effects of cell death on virus propagation and the consequences of cell death for host physiology.
Collapse
Affiliation(s)
- Pranav Danthi
- Department of Biology, Indiana University, Bloomington, Indiana 47405;
| |
Collapse
|
110
|
Synergistic functions of E2F7 and E2F8 are critical to suppress stress-induced skin cancer. Oncogene 2016; 36:829-839. [PMID: 27452520 PMCID: PMC5311251 DOI: 10.1038/onc.2016.251] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 04/21/2016] [Accepted: 06/01/2016] [Indexed: 01/22/2023]
Abstract
E2F transcription factors are important regulators of the cell cycle, and unrestrained activation of E2F-dependent transcription is considered to be an important driver of tumor formation and progression. Although highly expressed in normal skin and skin cancer, the role of the atypical E2Fs, E2F7 and E2F8, in keratinocyte homeostasis, regeneration and tumorigenesis is unknown. Surprisingly, keratinocyte-specific deletion of E2F7 and E2F8 in mice did not interfere with skin development and wound healing. However, the rate for successful isolation and establishment of E2f7/8-deficient primary keratinocyte cultures was much higher than for wild-type keratinocytes. Moreover, E2f7/8-deficient primary keratinocytes proliferate more efficiently under stress conditions, such as low/high confluence or DNA damage. Application of in vivo stress using the DMBA/TPA skin carcinogenesis protocol revealed that combined inactivation of E2f7/8 enhanced tumorigenesis and accelerated malignant progression. Loss of atypical E2Fs resulted in increased expression of E2F target genes, including E2f1. Additional loss of E2f1 did not rescue, but worsened skin tumorigenesis. We show that loss of E2F7/8 triggers apoptosis via induction of E2F1 in response to stress, indicating that the tumor-promoting effect of E2F7/8 inactivation can be partially compensated via E2F1-dependent apoptosis. Importantly, E2F7/8 repressed a large set of E2F target genes that are highly expressed in human patients with skin cancer. Together, our studies demonstrate that atypical E2Fs act as tumor suppressors, most likely via transcriptional repression of cell cycle genes in response to stress.
Collapse
|
111
|
Affiliation(s)
- Rahman Jamal
- Department of Haematology, University College London Medical School, 98 Chenies Mews, London WC1E 6HX., Tel: , Fax:
| |
Collapse
|
112
|
Tetzlaff MT, Teh BS, Timme TL, Fujita T, Satoh T, Tabata KI, Mai WY, Vlachaki MT, Amato RJ, Kadmon D, Miles BJ, Ayala G, Wheeler TM, Aguilar-Cordova E, Thompson TC, Butler EB. Expanding the Therapeutic Index of Radiation Therapy by Combining In Situ Gene Therapy in the Treatment of Prostate Cancer. Technol Cancer Res Treat 2016; 5:23-36. [PMID: 16417399 DOI: 10.1177/153303460600500104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The advances in radiotherapy (3D-CRT, IMRT) have enabled high doses of radiation to be delivered with the least possible associated toxicity. However, the persistence of cancer (local recurrence after radiotherapy) despite these increased doses as well as distant failure suggesting the existence of micro-metastases, especially in the case of higher risk disease, have underscored the need for continued improvement in treatment strategies to manage local and micro-metastatic disease as definitively as possible. This has prompted the idea that an increase in the therapeutic index of radiotherapy might be achieved by combining it with in situ gene therapy. The goal of these combinatorial therapies is to maximize the selective pressure against cancer cell growth while minimizing treatment-associated toxicity. Major efforts utilizing different gene therapy strategies have been employed in conjunction with radiotherapy. We reviewed our and other published clinical trials utilizing this combined radio-genetherapy approach including their associated pre-clinical in vitro and in vivo models. The use of in situ gene therapy as an adjuvant to radiation therapy dramatically reduced cell viability in vitro and tumor growth in vivo. No significant worsening of the toxicities normally observed in single-modality approaches were identified in Phase I/II clinical studies. Enhancement of both local and systemic T-cell activation was noted with this combined approach suggesting anti-tumor immunity. Early clinical outcome including biochemical and biopsy data was very promising. These results demonstrate the increased therapeutic efficacy achieved by combining in situ gene therapy with radiotherapy in the management of local prostate cancer. The combined approach maximizes tumor control, both local-regional and systemic through radio-genetherapy induced cytotoxicity and anti-tumor immunity.
Collapse
Affiliation(s)
- Michael T Tetzlaff
- Scott Department of Urology, Baylor College of Medicine, 6560 Fannin, ST 2100, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
The TRAF-interacting protein (TRAIP) is a novel E2F target with peak expression in mitosis. Oncotarget 2016; 6:20933-45. [PMID: 26369285 PMCID: PMC4673240 DOI: 10.18632/oncotarget.3055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 11/08/2014] [Indexed: 12/17/2022] Open
Abstract
The TRAF-interacting protein (TRAIP) is an E3 ubiquitin ligase required for cell proliferation. TRAIP mRNA is downregulated in human keratinocytes after inhibition of the PI3K/AKT/mTOR signaling. Since E2F transcription factors are downstream of PI3K/AKT/mTOR we investigated whether they regulate TRAIP expression. E2F1 expression significantly increased the TRAIP mRNA level in HeLa cells. Reporter assays with the 1400bp 5′-upstream promoter in HeLa cells and human keratinocytes showed that E2F1-, E2F2- and E2F4-induced upregulation of TRAIP expression is mediated by 168bp upstream of the translation start site. Mutating the E2F binding site within this fragment reduced the E2F1- and E2F2-dependent promoter activities and protein-DNA complex formation in gel shift assays. Abundance of TRAIP mRNA and protein was regulated by the cell cycle with a peak in G2/M. Expression of GFP and TRAIP-GFP demonstrated that TRAIP-GFP protein has a lower steady-state concentration than GFP despite similar mRNA levels. Cycloheximide inhibition experiments indicated that the TRAIP protein has a half-life of around four hours. Therefore, the combination of cell cycle-dependent transcription of the TRAIP gene by E2F and rapid protein degradation leads to cell cycle-dependent expression with a maximum in G2/M. These findings suggest that TRAIP has important functions in mitosis and tumorigenesis.
Collapse
|
114
|
Poly(ADP-Ribose) Polymerase in Cervical Cancer Pathogenesis: Mechanism and Potential Role for PARP Inhibitors. Int J Gynecol Cancer 2016; 26:763-9. [DOI: 10.1097/igc.0000000000000654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AbstractTreatment options for disease recurrence of women treated for locally advanced and advanced cervical cancer are very limited—largely palliative chemotherapy. The low efficacy of the currently available drugs raises the need for new targeted agents. Poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) inhibitors (PARPi) have emerged as a promising class of chemotherapeutic agents in cancers associated with defects in DNA repair. Their therapeutic potential in cervical cancer is currently being evaluated in 3 ongoing clinical trials. Here we review the available information regarding all the aspects of PARP in cervical intraepithelial neoplasia and invasive cervical cancer, from expression and the mechanism of action to the role of the polymorphisms in the pathogenesis of the disease, as well as the potential of the inhibitors. We finally propose a new unifying theory regarding the role of PARPs in the development of cervical carcinomas.
Collapse
|
115
|
Wei H, Geng J, Shi B, Liu Z, Wang YH, Stevens AC, Sprout SL, Yao M, Wang H, Hu H. Cutting Edge: Foxp1 Controls Naive CD8+ T Cell Quiescence by Simultaneously Repressing Key Pathways in Cellular Metabolism and Cell Cycle Progression. THE JOURNAL OF IMMUNOLOGY 2016; 196:3537-41. [PMID: 27001958 DOI: 10.4049/jimmunol.1501896] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 02/29/2016] [Indexed: 12/31/2022]
Abstract
Previously we have shown that transcription factor Foxp1 plays an essential role in maintaining naive T cell quiescence; in the absence of Foxp1, mature naive CD8(+) T cells proliferate in direct response to homeostatic cytokine IL-7. In this study, we report that the deletion of Foxp1 in naive CD8(+) T cells leads to enhanced activation of the PI3K/Akt/mammalian target of rapamycin signaling pathway and its downstream cell growth and metabolism targets in response to IL-7. We found that Foxp1 directly regulates PI3K interacting protein 1, a negative regulator of PI3K. Additionally, we found that deletion of Foxp1 in naive CD8(+) T cells results in increased expression levels of E2fs, the critical components for cell cycle progression and proliferation, in a manner that is not associated with increased phosphorylation of retinoblastoma protein. Taken together, our studies suggest that Foxp1 enforces naive CD8(+) T cell quiescence by simultaneously repressing key pathways in both cellular metabolism and cell cycle progression.
Collapse
Affiliation(s)
- Hairong Wei
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35205; and
| | - Jianlin Geng
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35205; and
| | - Bi Shi
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35205; and
| | - Zhenghui Liu
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35205; and
| | - Yin-Hu Wang
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35205; and
| | - Anna C Stevens
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35205; and
| | - Stephanie L Sprout
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35205; and
| | - Min Yao
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Haikun Wang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Hu
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35205; and
| |
Collapse
|
116
|
Neault M, Mallette F, Richard S. miR-137 Modulates a Tumor Suppressor Network-Inducing Senescence in Pancreatic Cancer Cells. Cell Rep 2016; 14:1966-78. [DOI: 10.1016/j.celrep.2016.01.068] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 12/10/2015] [Accepted: 01/22/2016] [Indexed: 12/18/2022] Open
|
117
|
CHK1 expression in Gastric Cancer is modulated by p53 and RB1/E2F1: implications in chemo/radiotherapy response. Sci Rep 2016; 6:21519. [PMID: 26867682 PMCID: PMC4751465 DOI: 10.1038/srep21519] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/26/2016] [Indexed: 12/19/2022] Open
Abstract
Radiation has a limited but relevant role in the adjuvant therapy of gastric cancer (GC) patients. Since Chk1 plays a critical function in cellular response to genotoxic agents, we aimed to analyze the role of Chk1 in GC as a biomarker for radiotherapy resistance. We analyzed Chk1 expression in AGS and MKN45 human GC cell lines by RT-QPCR and WB and in a small cohort of human patient’s samples. We demonstrated that Chk1 overexpression specifically increases resistance to radiation in GC cells. Accordingly, abrogation of Chk1 activity with UCN-01 and its expression with shChk1 increased sensitivity to bleomycin and radiation. Furthermore, when we assessed Chk1 expression in human samples, we found a correlation between nuclear Chk1 accumulation and a decrease in progression free survival. Moreover, using a luciferase assay we found that Chk1’s expression is controlled by p53 and RB/E2F1 at the transcriptional level. Additionally, we present preliminary data suggesting a posttranscriptional regulation mechanism, involving miR-195 and miR-503, which are inversely correlated with expression of Chk1 in radioresistant cells. In conclusion, Chk1/microRNA axis is involved in resistance to radiation in GC, and suggests Chk1 as a potential tool for optimal stratification of patients susceptible to receive adjuvant radiotherapy after surgery.
Collapse
|
118
|
Stafman LL, Beierle EA. Cell Proliferation in Neuroblastoma. Cancers (Basel) 2016; 8:E13. [PMID: 26771642 PMCID: PMC4728460 DOI: 10.3390/cancers8010013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/05/2016] [Accepted: 01/08/2016] [Indexed: 12/19/2022] Open
Abstract
Neuroblastoma, the most common extracranial solid tumor of childhood, continues to carry a dismal prognosis for children diagnosed with advanced stage or relapsed disease. This review focuses upon factors responsible for cell proliferation in neuroblastoma including transcription factors, kinases, and regulators of the cell cycle. Novel therapeutic strategies directed toward these targets in neuroblastoma are discussed.
Collapse
Affiliation(s)
- Laura L Stafman
- Department of Surgery, Division of Pediatric Surgery, University of Alabama, Birmingham, AL 35233, USA.
| | - Elizabeth A Beierle
- Department of Surgery, Division of Pediatric Surgery, University of Alabama, Birmingham, AL 35233, USA.
| |
Collapse
|
119
|
Hu WH, Miyai K, Sporn JC, Luo L, Wang JYJ, Cosman B, Ramamoorthy S. Loss of histone variant macroH2A2 expression associates with progression of anal neoplasm. J Clin Pathol 2015; 69:627-31. [PMID: 26658220 PMCID: PMC4941135 DOI: 10.1136/jclinpath-2015-203367] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/20/2015] [Indexed: 11/23/2022]
Abstract
Aims The macroH2A histone variants are epigenetic marks for inactivated chromatin. In this study, we examined the expression of macroH2A2 in anal neoplasm from anal intraepithelial neoplasia (AIN) to anal squamous cell carcinoma (SCC). Methods AIN and anal SCC samples were analysed for macroH2A2 expression, HIV and human papilloma virus (HPV). The association of macroH2A2 expression with clinical grade, disease recurrence, overall survival and viral involvement was determined. Results macroH2A2 was expressed in normal squamous tissue and lower grade AIN (I and II). Expression was lost in 38% of high-grade AIN (III) and 71% of anal SCC (p=0.002). Patients with AIN with macroH2A2-negative lesions showed earlier recurrence than those with macroH2A2-positive neoplasm (p=0.017). With anal SCC, macroH2A2 loss was more prevalent in the HPV-negative tumours. Conclusions Loss of histone variant macroH2A2 expression is associated with the progression of anal neoplasm and can be used as a prognostic biomarker for high-grade AIN and SCC.
Collapse
Affiliation(s)
- Wan-Hsiang Hu
- Department of Surgery, University of California San Diego Health System, San Diego, California, USA Rebecca and John Moores Cancer Center, University of California San Diego Health System, San Diego, California, USA Department of Colorectal Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Katsumi Miyai
- Department of Pathology, School of Medicine, University of California, San Diego, California, USA
| | - Judith C Sporn
- Department of General Surgery, Baystate Medical Center, Springfield, Massachusetts, USA
| | - Linda Luo
- Department of Surgery, University of California San Diego Health System, San Diego, California, USA Rebecca and John Moores Cancer Center, University of California San Diego Health System, San Diego, California, USA
| | - Jean Y J Wang
- Rebecca and John Moores Cancer Center, University of California San Diego Health System, San Diego, California, USA Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of California, San Diego, California, USA
| | - Bard Cosman
- Department of Surgery, University of California San Diego Health System, San Diego, California, USA Department of Surgery, Veteran's Administration Medical Center, University of California, San Diego Healthcare System, San Diego, California, USA
| | - Sonia Ramamoorthy
- Department of Surgery, University of California San Diego Health System, San Diego, California, USA Rebecca and John Moores Cancer Center, University of California San Diego Health System, San Diego, California, USA
| |
Collapse
|
120
|
Dasgupta A, Chen KH, Munk RB, Sasaki CY, Curtis J, Longo DL, Ghosh P. Mechanism of Activation-Induced Downregulation of Mitofusin 2 in Human Peripheral Blood T Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:5780-6. [PMID: 26566676 DOI: 10.4049/jimmunol.1501023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 10/17/2015] [Indexed: 12/11/2022]
Abstract
Mitofusin 2 (Mfn2), a mitochondrial protein, was shown to have antiproliferative properties when overexpressed. In this article, we show that activation of resting human peripheral blood T cells caused downregulation of Mfn2 levels. This downregulation of Mfn2 was blocked by different inhibitors (mTOR inhibitor rapamycin, PI3K inhibitor LY294002, and Akt inhibitor A443654), producing cells that were arrested in the G0/G1 stage of the cell cycle. Furthermore, the activation-induced downregulation of Mfn2 preceded the entry of the cells into the cell cycle, suggesting that Mfn2 downregulation is a prerequisite for activated T cell entry into the cell cycle. Accordingly, small interfering RNA-mediated knockdown of Mfn2 resulted in increased T cell proliferation. Overexpression of constitutively active AKT resulted in the downregulation of Mfn2, which can be blocked by a proteasome inhibitor. Akt-mediated downregulation of Mfn2 was via the mTORC1 pathway because this downregulation was blocked by rapamycin, and overexpression of wild-type, but not kinase-dead mTOR, caused Mfn2 downregulation. Our data suggested that activation-induced reactive oxygen species production plays an important role in the downregulation of Mfn2. Collectively, our data suggest that the PI3K-AKT-mTOR pathway plays an important role in activation-induced downregulation of Mfn2 and subsequent proliferation of resting human T cells.
Collapse
Affiliation(s)
- Asish Dasgupta
- Lymphocyte Cell Biology Unit, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD; and
| | - Kuang-Hueih Chen
- Lymphocyte Cell Biology Unit, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD; and
| | - Rachel B Munk
- Lymphocyte Cell Biology Unit, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD; and
| | - Carl Y Sasaki
- Lymphocyte Cell Biology Unit, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD; and
| | - Jessica Curtis
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Dan L Longo
- Lymphocyte Cell Biology Unit, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD; and
| | - Paritosh Ghosh
- Lymphocyte Cell Biology Unit, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD; and
| |
Collapse
|
121
|
The Human Adenovirus Type 5 E4orf6/E1B55K E3 Ubiquitin Ligase Complex Enhances E1A Functional Activity. mSphere 2015; 1:mSphere00015-15. [PMID: 27303687 PMCID: PMC4863633 DOI: 10.1128/msphere.00015-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 09/29/2015] [Indexed: 11/20/2022] Open
Abstract
Following our demonstration that adenovirus E3 ubiquitin ligase formed by the viral E4orf6 and E1B55K proteins is able to mimic the activation of E2F by E1A, we conducted a series of studies to determine if this complex might also promote the ability of E1A to do so. We found that the complex both significantly stabilizes E1A proteins and also enhances their ability to activate E2F. This finding is of significance because it represents an entirely new function for the ligase in regulating adenovirus replication by enhancing the action of E1A products. Human adenovirus (Ad) E1A proteins have long been known as the central regulators of virus infection as well as the major source of adenovirus oncogenic potential. Not only do they activate expression of other early viral genes, they make viral replication possible in terminally differentiated cells, at least in part, by binding to the retinoblastoma (Rb) tumor suppressor family of proteins to activate E2F transcription factors and thus viral and cellular DNA synthesis. We demonstrate in an accompanying article (F. Dallaire et al., mSphere 1:00014-15, 2016) that the human adenovirus E3 ubiquitin ligase complex formed by the E4orf6 and E1B55K proteins is able to mimic E1A activation of E2F transactivation factors. Acting alone in the absence of E1A, the Ad5 E4orf6 protein in complex with E1B55K was shown to bind E2F, disrupt E2F/Rb complexes, and induce hyperphosphorylation of Rb, leading to induction of viral and cellular DNA synthesis, as well as stimulation of early and late viral gene expression and production of viral progeny. While these activities were significantly lower than those exhibited by E1A, we report here that this ligase complex appeared to enhance E1A activity in two ways. First, the E4orf6/E1B55K complex was shown to stabilize E1A proteins, leading to higher levels in infected cells. Second, the complex was demonstrated to enhance the activation of E2F by E1A products. These findings indicated a new role of the E4orf6/E1B55K ligase complex in promoting adenovirus replication. IMPORTANCE Following our demonstration that adenovirus E3 ubiquitin ligase formed by the viral E4orf6 and E1B55K proteins is able to mimic the activation of E2F by E1A, we conducted a series of studies to determine if this complex might also promote the ability of E1A to do so. We found that the complex both significantly stabilizes E1A proteins and also enhances their ability to activate E2F. This finding is of significance because it represents an entirely new function for the ligase in regulating adenovirus replication by enhancing the action of E1A products.
Collapse
|
122
|
Law ME, Corsino PE, Narayan S, Law BK. Cyclin-Dependent Kinase Inhibitors as Anticancer Therapeutics. Mol Pharmacol 2015; 88:846-52. [PMID: 26018905 PMCID: PMC4613943 DOI: 10.1124/mol.115.099325] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/27/2015] [Indexed: 12/20/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) have been considered promising drug targets for a number of years, but most CDK inhibitors have failed rigorous clinical testing. Recent studies demonstrating clear anticancer efficacy and reduced toxicity of CDK4/6 inhibitors such as palbociclib and multi-CDK inhibitors such as dinaciclib have rejuvenated the field. Favorable results with palbociclib and its recent U.S. Food and Drug Administration approval demonstrate that CDK inhibitors with narrow selectivity profiles can have clinical utility for therapy based on individual tumor genetics. A brief overview of results obtained with ATP-competitive inhibitors such as palbociclib and dinaciclib is presented, followed by a compilation of new avenues that have been pursued toward the development of novel, non-ATP-competitive CDK inhibitors. These creative ways to develop CDK inhibitors are presented along with crystal structures of these agents complexed with CDK2 to highlight differences in their binding sites and mechanisms of action. The recent successes of CDK inhibitors in the clinic, combined with the potential for structure-based routes to the development of non-ATP-competitive CDK inhibitors, and evidence that CDK inhibitors may have use in suppressing chromosomal instability and in synthetic lethal drug combinations inspire optimism that CDK inhibitors will become important weapons in the fight against cancer.
Collapse
Affiliation(s)
- Mary E Law
- Departments of Pharmacology and Therapeutics (M.E.L., P.E.C., B.K.L.), Anatomy and Cell Biology (S.N.), and the University of Florida Health Cancer Center (M.E.L., P.E.C., S.N., B.K.L.), University of Florida, Gainesville, Florida
| | - Patrick E Corsino
- Departments of Pharmacology and Therapeutics (M.E.L., P.E.C., B.K.L.), Anatomy and Cell Biology (S.N.), and the University of Florida Health Cancer Center (M.E.L., P.E.C., S.N., B.K.L.), University of Florida, Gainesville, Florida
| | - Satya Narayan
- Departments of Pharmacology and Therapeutics (M.E.L., P.E.C., B.K.L.), Anatomy and Cell Biology (S.N.), and the University of Florida Health Cancer Center (M.E.L., P.E.C., S.N., B.K.L.), University of Florida, Gainesville, Florida
| | - Brian K Law
- Departments of Pharmacology and Therapeutics (M.E.L., P.E.C., B.K.L.), Anatomy and Cell Biology (S.N.), and the University of Florida Health Cancer Center (M.E.L., P.E.C., S.N., B.K.L.), University of Florida, Gainesville, Florida
| |
Collapse
|
123
|
Ngo DC, Ververis K, Tortorella SM, Karagiannis TC. Introduction to the molecular basis of cancer metabolism and the Warburg effect. Mol Biol Rep 2015; 42:819-23. [PMID: 25672512 DOI: 10.1007/s11033-015-3857-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In differentiated normal cells, the conventional route of glucose metabolism involves glycolysis, followed by the citric acid cycle and electron transport chain to generate usable energy in the form of adenosine triphosphate (ATP). This occurs in the presence of oxygen. In hypoxic conditions, normal cells undergo anaerobic glycolysis to yield significantly less energy producing lactate as a product. As first highlighted in the 1920s by Otto Warburg, the metabolism exhibited by tumor cells involves an increased rate of aerobic glycolysis, known as the Warburg effect. In aerobic glycolysis, pyruvate molecules yielded from glycolysis are converted into fewer molecules of ATP even in the presence of oxygen. Evidence indicates that the reasons as to why tumor cells undergo aerobic glycolysis include: (1) the shift in priority to accumulate biomass rather than energy production, (2) the evasion of apoptosis as fewer reactive oxygen species are released by the mitochondria and (3) the production of lactate to further fuel growth of tumors. In this mini-review we discuss emerging molecular aspects of cancer metabolism and the Warburg effect. Aspects of the Warburg effect are analyzed in the context of the established hallmarks of cancer including the role of oncogenes and tumor suppressor genes.
Collapse
Affiliation(s)
- Darleen C Ngo
- Epigenomic Medicine, The Alfred Medical Research and Education Precinct, Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia
| | | | | | | |
Collapse
|
124
|
Abstract
Activator E2Fs and Myc cooperate as master regulators of proliferation. A new study sheds light on one of the fundamental questions in cancer biology: how do oncogenic changes, such as Retinoblastoma (RB)-mutation, modify E2F and Myc activity?
Collapse
Affiliation(s)
- Wayne O Miles
- Harvard Medical School Laboratory of Molecular Oncology The MGH Cancer Center, Bldg 149, 13th Street Charlestown, Massachusetts 02129, USA
| | - Nicholas J Dyson
- Harvard Medical School Laboratory of Molecular Oncology The MGH Cancer Center, Bldg 149, 13th Street Charlestown, Massachusetts 02129, USA
| |
Collapse
|
125
|
Gitlin AD, Mayer CT, Oliveira TY, Shulman Z, Jones MJK, Koren A, Nussenzweig MC. HUMORAL IMMUNITY. T cell help controls the speed of the cell cycle in germinal center B cells. Science 2015; 349:643-6. [PMID: 26184917 DOI: 10.1126/science.aac4919] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 07/08/2015] [Indexed: 12/20/2022]
Abstract
The germinal center (GC) is a microanatomical compartment wherein high-affinity antibody-producing B cells are selectively expanded. B cells proliferate and mutate their antibody genes in the dark zone (DZ) of the GC and are then selected by T cells in the light zone (LZ) on the basis of affinity. Here, we show that T cell help regulates the speed of cell cycle phase transitions and DNA replication of GC B cells. Genome sequencing and single-molecule analyses revealed that T cell help shortens S phase by regulating replication fork progression, while preserving the relative order of replication origin activation. Thus, high-affinity GC B cells are selected by a mechanism that involves prolonged dwell time in the DZ where selected cells undergo accelerated cell cycles.
Collapse
Affiliation(s)
- Alexander D Gitlin
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Christian T Mayer
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Ziv Shulman
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Mathew J K Jones
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Amnon Koren
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA. Howard Hughes Medical Institute (HHMI), The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
126
|
Silencing of Id2 attenuates hypoxia/ischemia-induced neuronal injury via inhibition of neuronal apoptosis. Behav Brain Res 2015; 292:528-36. [PMID: 26187693 DOI: 10.1016/j.bbr.2015.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 07/03/2015] [Accepted: 07/05/2015] [Indexed: 11/21/2022]
Abstract
Cerebral ischemic stroke has long been recognized as a prevalent and serious neurological disease that was associated with high mortality and morbidity. However, the current therapeutic protocols remain suboptimal with major mechanisms underlying stroke urgently warranted. Inhibitor of DNA binding/differentiation 2 (Id2) is found to be up-regulated in neuronal cells following hypoxia/ischemia (H/I). This study was aimed to investigate whether knockdown of Id2 in neuronal cells could protect them from hypoxic and ischemic injury both in vitro and in vivo. Flow cytometric analysis was employed to assess neuronal apoptosis in CoCl2-treated neuroblastoma B35 cells engineered to overexpress or knockdown Id2 expression. In vivo knockdown of Id2 was performed in Sprague-Dawley rats by a single intracerebroventricular injection of Cy3-labeled and cholesterol-modified Id2-siRNA. We found that knockdown of Id2 attenuated H/I-induced neuronal apoptosis in vitro while overexpression of Id2 produced an opposite effect. In a rat model of middle cerebral artery occlusion (MCAO), in vivo knockdown of Id2 significantly improved neurological deficits, reduced the volume of ischemic infarction and diminished the neuronal apoptosis in the penumbra area. Double immunofluorescence staining showed less co-localization of retinoblastoma tumor suppressor protein (Rb)-Id2 but greater co-localization of Rb-E2F1 in the penumbra area. Cell cycle assay further demonstrated that Id2 knockdown induced G0/G1 cell cycle arrest in CoCl2-treated B35 cells. The present data support the implication of Id2 in the modulation of H/I-induced neuronal apoptosis and may provide a potential therapeutic option to protect brain tissues from ischemic injury by inhibition of its expression.
Collapse
|
127
|
Liu NA, Araki T, Cuevas-Ramos D, Hong J, Ben-Shlomo A, Tone Y, Tone M, Melmed S. Cyclin E-Mediated Human Proopiomelanocortin Regulation as a Therapeutic Target for Cushing Disease. J Clin Endocrinol Metab 2015; 100:2557-64. [PMID: 25942479 PMCID: PMC5393529 DOI: 10.1210/jc.2015-1606] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
CONTEXT Cushing disease, due to pituitary corticotroph tumor ACTH hypersecretion, drives excess adrenal cortisol production with adverse morbidity and mortality. Loss of glucocorticoid negative feedback on the hypothalamic-pituitary-adrenal axis leads to autonomous transcription of the corticotroph precursor hormone proopiomelanocortin (POMC), consequent ACTH overproduction, and adrenal hypercortisolism. We previously reported that R-roscovitine (CYC202, seliciclib), a 2,6,9-trisubstituted purine analog, suppresses cyclin-dependent-kinase 2/cyclin E and inhibits ACTH in mice and zebrafish. We hypothesized that intrapituitary cyclin E signaling regulates corticotroph tumor POMC transcription independently of cell cycle progression. The aim was to investigate whether R-roscovitine inhibits human ACTH in corticotroph tumors by targeting the cyclin-dependent kinase 2/cyclin E signaling pathway. METHODS Primary cell cultures of surgically resected human corticotroph tumors were treated with or without R-roscovitine, ACTH measured by RIA and quantitative PCR, and/or Western blot analysis performed to investigate ACTH and lineage-specific transcription factors. Cyclin E and E2F transcription factor 1 (E2F1) small interfering RNA (siRNA) transfection was performed in murine corticotroph tumor AtT20 cells to elucidate mechanisms for drug action. POMC gene promoter activity in response to R-roscovitine treatment was analyzed using luciferase reporter and chromatin immunoprecipitation assays. RESULTS R-roscovitine inhibits human corticotroph tumor POMC and Tpit/Tbx19 transcription with decreased ACTH expression. Cyclin E and E2F1 exhibit reciprocal positive regulation in corticotroph tumors. R-roscovitine disrupts E2F1 binding to the POMC gene promoter and suppresses Tpit/Tbx19 and other lineage-specific POMC transcription cofactors via E2F1-dependent and -independent pathways. CONCLUSION R-roscovitine inhibits human pituitary corticotroph tumor ACTH by targeting the cyclin E/E2F1 pathway. Pituitary cyclin E/E2F1 signaling is a previously unappreciated molecular mechanism underlying neuroendocrine regulation of the hypothalamic-pituitary-adrenal axis, providing a subcellular therapeutic target for small molecule cyclin-dependent kinase 2 inhibitors of pituitary ACTH-dependent hypercortisolism, ie, Cushing disease.
Collapse
Affiliation(s)
- Ning-Ai Liu
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Takako Araki
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Daniel Cuevas-Ramos
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Jiang Hong
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Anat Ben-Shlomo
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Yukiko Tone
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Masahide Tone
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Shlomo Melmed
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048
| |
Collapse
|
128
|
VanArsdale T, Boshoff C, Arndt KT, Abraham RT. Molecular Pathways: Targeting the Cyclin D-CDK4/6 Axis for Cancer Treatment. Clin Cancer Res 2015; 21:2905-10. [PMID: 25941111 DOI: 10.1158/1078-0432.ccr-14-0816] [Citation(s) in RCA: 296] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 04/13/2015] [Indexed: 11/16/2022]
Abstract
Cancer cells bypass normal controls over mitotic cell-cycle progression to achieve a deregulated state of proliferation. The retinoblastoma tumor suppressor protein (pRb) governs a key cell-cycle checkpoint that normally prevents G1-phase cells from entering S-phase in the absence of appropriate mitogenic signals. Cancer cells frequently overcome pRb-dependent growth suppression via constitutive phosphorylation and inactivation of pRb function by cyclin-dependent kinase (CDK) 4 or CDK6 partnered with D-type cyclins. Three selective CDK4/6 inhibitors, palbociclib (Ibrance; Pfizer), ribociclib (Novartis), and abemaciclib (Lilly), are in various stages of development in a variety of pRb-positive tumor types, including breast cancer, melanoma, liposarcoma, and non-small cell lung cancer. The emerging, positive clinical data obtained to date finally validate the two decades-old hypothesis that the cyclin D-CDK4/6 pathway is a rational target for cancer therapy.
Collapse
Affiliation(s)
- Todd VanArsdale
- Oncology Research Unit, Pfizer Worldwide Research and Development, San Diego, California
| | | | - Kim T Arndt
- Oncology Research Unit, Pfizer Worldwide Research and Development, Pearl River, New York
| | - Robert T Abraham
- Oncology Research Unit, Pfizer Worldwide Research and Development, San Diego, California.
| |
Collapse
|
129
|
Assessment of the anticancer mechanism of ferulic acid via cell cycle and apoptotic pathways in human prostate cancer cell lines. Tumour Biol 2015; 36:9437-46. [DOI: 10.1007/s13277-015-3689-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/17/2015] [Indexed: 01/08/2023] Open
|
130
|
Jiang X, Nevins JR, Shats I, Chi JT. E2F1-Mediated Induction of NFYB Attenuates Apoptosis via Joint Regulation of a Pro-Survival Transcriptional Program. PLoS One 2015; 10:e0127951. [PMID: 26039627 PMCID: PMC4454684 DOI: 10.1371/journal.pone.0127951] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 04/22/2015] [Indexed: 11/18/2022] Open
Abstract
The E2F1 transcription factor regulates cell proliferation and apoptosis through the control of a considerable variety of target genes. Previous work has detailed the role of other transcription factors in mediating the specificity of E2F function. Here we identify the NF-YB transcription factor as a novel direct E2F1 target. Genome-wide expression analysis of the effects of NFYB knockdown on E2F1-mediated transcription identified a large group of genes that are co-regulated by E2F1 and NFYB. We also provide evidence that knockdown of NFYB enhances E2F1-induced apoptosis, suggesting a pro-survival function of the NFYB/E2F1 joint transcriptional program. Bioinformatic analysis suggests that deregulation of these NFY-dependent E2F1 target genes might play a role in sarcomagenesis as well as drug resistance.
Collapse
Affiliation(s)
- Xiaolei Jiang
- Duke Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
| | - Joseph Roy Nevins
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
| | - Igor Shats
- Duke Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
- Department of Biomedical Engineering, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: (JTC); (IS)
| | - Jen-Tsan Chi
- Duke Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
- * E-mail: (JTC); (IS)
| |
Collapse
|
131
|
Caffeic Acid phenethyl ester is a potential therapeutic agent for oral cancer. Int J Mol Sci 2015; 16:10748-66. [PMID: 25984601 PMCID: PMC4463674 DOI: 10.3390/ijms160510748] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/07/2015] [Accepted: 05/06/2015] [Indexed: 12/15/2022] Open
Abstract
Head and neck cancers, which affect 650,000 people and cause 350,000 deaths per year, is the sixth leading cancer by cancer incidence and eighth by cancer-related death worldwide. Oral cancer is the most common type of head and neck cancer. More than 90% of oral cancers are oral and oropharyngeal squamous cell carcinoma (OSCC). The overall five-year survival rate of OSCC patients is approximately 63%, which is due to the low response rate to current therapeutic drugs. In this review we discuss the possibility of using caffeic acid phenethyl ester (CAPE) as an alternative treatment for oral cancer. CAPE is a strong antioxidant extracted from honeybee hive propolis. Recent studies indicate that CAPE treatment can effectively suppress the proliferation, survival, and metastasis of oral cancer cells. CAPE treatment inhibits Akt signaling, cell cycle regulatory proteins, NF-κB function, as well as activity of matrix metalloproteinase (MMPs), epidermal growth factor receptor (EGFR), and Cyclooxygenase-2 (COX-2). Therefore, CAPE treatment induces cell cycle arrest and apoptosis in oral cancer cells. According to the evidence that aberrations in the EGFR/phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling, NF-κB function, COX-2 activity, and MMPs activity are frequently found in oral cancers, and that the phosphorylation of Akt, EGFR, and COX-2 correlates to oral cancer patient survival and clinical progression, we believe that CAPE treatment will be useful for treatment of advanced oral cancer patients.
Collapse
|
132
|
Sengupta S, Lingnurkar R, Carey TS, Pomaville M, Kar P, Feig M, Wilson CA, Knott JG, Arnosti DN, Henry RW. The Evolutionarily Conserved C-terminal Domains in the Mammalian Retinoblastoma Tumor Suppressor Family Serve as Dual Regulators of Protein Stability and Transcriptional Potency. J Biol Chem 2015; 290:14462-75. [PMID: 25903125 DOI: 10.1074/jbc.m114.599993] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Indexed: 11/06/2022] Open
Abstract
The retinoblastoma (RB) tumor suppressor and related family of proteins play critical roles in development through their regulation of genes involved in cell fate. Multiple regulatory pathways impact RB function, including the ubiquitin-proteasome system with deregulated RB destruction frequently associated with pathogenesis. With the current study we explored the mechanisms connecting proteasome-mediated turnover of the RB family to the regulation of repressor activity. We find that steady state levels of all RB family members, RB, p107, and p130, were diminished during embryonic stem cell differentiation concomitant with their target gene acquisition. Proteasome-dependent turnover of the RB family is mediated by distinct and autonomously acting instability elements (IE) located in their C-terminal regulatory domains in a process that is sensitive to cyclin-dependent kinase (CDK4) perturbation. The IE regions include motifs that contribute to E2F-DP transcription factor interaction, and consistently, p107 and p130 repressor potency was reduced by IE deletion. The juxtaposition of degron sequences and E2F interaction motifs appears to be a conserved feature across the RB family, suggesting the potential for repressor ubiquitination and specific target gene regulation. These findings establish a mechanistic link between regulation of RB family repressor potency and the ubiquitin-proteasome system.
Collapse
Key Words
- retinoblastoma, RB, p107, p130, E2F-DP, cyclin, CDK, protein stability, proteasome, degron, transcriptional repression.
Collapse
Affiliation(s)
- Satyaki Sengupta
- From the Department of Biochemistry and Molecular Biology, Graduate Program in Physiology, and
| | - Raj Lingnurkar
- From the Department of Biochemistry and Molecular Biology
| | | | | | - Parimal Kar
- From the Department of Biochemistry and Molecular Biology
| | - Michael Feig
- From the Department of Biochemistry and Molecular Biology
| | - Catherine A Wilson
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824
| | - Jason G Knott
- From the Department of Biochemistry and Molecular Biology, Department of Animal Science, Michigan State University, East Lansing, Michigan 48824
| | | | | |
Collapse
|
133
|
Schaal C, Pillai S, Chellappan SP. The Rb-E2F transcriptional regulatory pathway in tumor angiogenesis and metastasis. Adv Cancer Res 2015; 121:147-182. [PMID: 24889531 DOI: 10.1016/b978-0-12-800249-0.00004-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The retinoblastoma tumor suppressor protein Rb plays a major role in regulating G1/S transition and is a critical regulator of cell proliferation. Rb protein exerts its growth regulatory properties mainly by physically interacting with the transcriptionally active members of the E2F transcription factor family, especially E2Fs 1, 2, and 3. Given its critical role in regulating cell proliferation, it is not surprising that Rb is inactivated in almost all tumors, either through the mutation of Rb gene itself or through the mutations of its upstream regulators including K-Ras and INK4. Recent studies have revealed a significant role for Rb and its downstream effectors, especially E2Fs, in regulating various aspects of tumor progression, angiogenesis, and metastasis. Thus, components of the Rb-E2F pathway have been shown to regulate the expression of genes involved in angiogenesis, including VEGF and VEGFR, genes involved in epithelial-mesenchymal transition including E-cadherin and ZEB proteins, and genes involved in invasion and migration like matrix metalloproteinases. Rb has also been shown to play a major role in the functioning of normal and cancer stem cells; further, Rb and E2F appear to play a regulatory role in the energy metabolism of cancer cells. These findings raise the possibility that mutational events that initiate tumorigenesis by inducing uncontrolled cell proliferation might also contribute to the progression and metastasis of cancers through the mediation of the Rb-E2F transcriptional regulatory pathway. This review highlights these recent studies on tumor promoting functions of the Rb-E2F pathway.
Collapse
Affiliation(s)
- Courtney Schaal
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Smitha Pillai
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Srikumar P Chellappan
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.
| |
Collapse
|
134
|
Sakamuro D, Folk WP, Kumari A. To die, or not to die: E2F1 never decides by itself during serum starvation. Mol Cell Oncol 2015; 2:e981447. [PMID: 27308445 PMCID: PMC4904901 DOI: 10.4161/23723556.2014.981447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 06/06/2023]
Abstract
The adenovirus E2 promoter-binding factor-1 (E2F1) induces apoptosis in response to DNA damage and serum starvation. After DNA damage, E2F1 is phosphorylated by ataxia telangiectasia-mutated (ATM) kinase to promote apoptosis. However, precisely how serum starvation stimulates E2F1-induced apoptosis is unclear. We recently found that serum starvation reduces E2F1 poly(ADP-ribosyl)ation, thereby releasing a proapoptotic protein, bridging integrator-1 (BIN1), into the cytoplasm.
Collapse
Affiliation(s)
- Daitoku Sakamuro
- Department of Biochemistry and Molecular Biology; Medical College of Georgia; Georgia Regents University Cancer Center; Augusta, GA USA
| | - Watson P Folk
- Department of Biochemistry and Molecular Biology; Medical College of Georgia; Georgia Regents University Cancer Center; Augusta, GA USA
| | - Alpana Kumari
- Department of Biochemistry and Molecular Biology; Medical College of Georgia; Georgia Regents University Cancer Center; Augusta, GA USA
| |
Collapse
|
135
|
Gordon CA, Gulzar ZG, Brooks JD. NUSAP1 expression is upregulated by loss of RB1 in prostate cancer cells. Prostate 2015; 75:517-26. [PMID: 25585568 DOI: 10.1002/pros.22938] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/05/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Overexpression of NUSAP1 is associated with poor prognosis in prostate cancer, but little is known about what leads to its overexpression. Based on previous observations that NUSAP1 expression is enhanced by E2F1, we hypothesized that NUSAP1 expression is regulated, at least in part, by loss of RB1 via the RB1/E2F1 axis. METHODS Using Significance Analysis of Microarrays, we examined RB1, E2F1, and NUSAP1 transcript levels in prostate cancer gene expression datasets. We compared NUSAP1 expression levels in DU145, LNCaP, and PC-3 prostate cancer cell lines via use of cDNA microarray data, RT-qPCR, and Western blots. In addition, we used lentiviral expression constructs to knockdown RB1 in prostate cancer cell lines and transient transfections to knockdown E2F1, and investigated RB1, E2F1, and NUSAP1 expression levels with RT-qPCR and Western blots. Finally, in DU145 cells or PC-3 cells that stably underexpress RB1, we used proliferation and invasion assays to assess whether NUSAP1 knockdown affects proliferation or invasion. RESULTS NUSAP1 transcript levels are positively correlated with E2F1 and negatively correlated with RB1 transcript levels in prostate cancer microarray datasets. NUSAP1 expression is elevated in the RB1-null DU145 prostate cancer cell line, as opposed to LNCaP and PC-3 cell lines. Furthermore, NUSAP1 expression increases upon knockdown of RB1 in prostate cancer cell lines (LNCaP and PC-3) and decreases after knockdown of E2F1. Lastly, knockdown of NUSAP1 in DU145 cells or PC-3 cells with stable knockdown of RB1 decreases proliferation and invasion of these cells. CONCLUSION Our studies support the notion that NUSAP1 expression is upregulated by loss of RB1 via the RB1/E2F1 axis in prostate cancer cells. Such upregulation may promote prostate cancer progression by increasing proliferation and invasion of prostate cancer cells. NUSAP1 may thus represent a novel therapeutic target.
Collapse
Affiliation(s)
- Catherine A Gordon
- Department of Urology, Stanford University School of Medicine, Stanford, California
| | | | | |
Collapse
|
136
|
Cheng YH, Streicher DA, Waning DL, Chitteti BR, Gerard-O'Riley R, Horowitz MC, Bidwell JP, Pavalko FM, Srour EF, Mayo LD, Kacena MA. Signaling pathways involved in megakaryocyte-mediated proliferation of osteoblast lineage cells. J Cell Physiol 2015; 230:578-86. [PMID: 25160801 DOI: 10.1002/jcp.24774] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 08/22/2014] [Indexed: 01/07/2023]
Abstract
Recent studies suggest that megakaryocytes (MKs) may play a significant role in skeletal homeostasis, as evident by the occurrence of osteosclerosis in multiple MK related diseases (Lennert et al., 1975; Thiele et al., 1999; Chagraoui et al., 2006). We previously reported a novel interaction whereby MKs enhanced proliferation of osteoblast lineage/osteoprogenitor cells (OBs) by a mechanism requiring direct cell-cell contact. However, the signal transduction pathways and the downstream effector molecules involved in this process have not been characterized. Here we show that MKs contact with OBs, via beta1 integrin, activate the p38/MAPKAPK2/p90RSK kinase cascade in the bone cells, which causes Mdm2 to neutralizes p53/Rb-mediated check point and allows progression through the G1/S. Interestingly, activation of MAPK (ERK1/2) and AKT, collateral pathways that regulate the cell cycle, remained unchanged with MK stimulation of OBs. The MK-to-OB signaling ultimately results in significant increases in the expression of c-fos and cyclin A, necessary for sustaining the OB proliferation. Overall, our findings show that OBs respond to the presence of MKs, in part, via an integrin-mediated signaling mechanism, activating a novel response axis that de-represses cell cycle activity. Understanding the mechanisms by which MKs enhance OB proliferation will facilitate the development of novel anabolic therapies to treat bone loss associated with osteoporosis and other bone-related diseases.
Collapse
Affiliation(s)
- Ying-Hua Cheng
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Abstract
Classic as well as more recent large-scale genomic analyses have uncovered multiple genes and pathways important for bladder cancer development. Genes involved in cell-cycle control, chromatin regulation, and receptor tyrosine and PI3 kinase-mammalian target of rapamycin signaling pathways are commonly mutated in muscle-invasive bladder cancer. Expression-based analyses have identified distinct types of bladder cancer that are similar to subsets of breast cancer, and have prognostic and therapeutic significance. These observations are leading to novel therapeutic approaches in bladder cancer, providing optimism for therapeutic progress.
Collapse
Affiliation(s)
- William Martin-Doyle
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA
| | - David J Kwiatkowski
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA.
| |
Collapse
|
138
|
Su C, Zhang C, Tecle A, Fu X, He J, Song J, Zhang W, Sun X, Ren Y, Silvennoinen O, Yao Z, Yang X, Wei M, Yang J. Tudor staphylococcal nuclease (Tudor-SN), a novel regulator facilitating G1/S phase transition, acting as a co-activator of E2F-1 in cell cycle regulation. J Biol Chem 2015; 290:7208-20. [PMID: 25627688 DOI: 10.1074/jbc.m114.625046] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tudor staphylococcal nuclease (Tudor-SN) is a multifunctional protein implicated in a variety of cellular processes. In the present study, we identified Tudor-SN as a novel regulator in cell cycle. Tudor-SN was abundant in proliferating cells whereas barely expressed in terminally differentiated cells. Functional analysis indicated that ectopic overexpression of Tudor-SN promoted the G1/S transition, whereas knockdown of Tudor-SN caused G1 arrest. Moreover, the live-cell time-lapse experiment demonstrated that the cell cycle of MEF(-/-) (knock-out of Tudor-SN in mouse embryonic fibroblasts) was prolonged compared with wild-type MEF(+/+). We noticed that Tudor-SN was constantly expressed in every cell cycle phase, but was highly phosphorylated in the G1/S border. Further study revealed that Tudor-SN was a potential substrate of Cdk2/4/6, supportively, we found the physical interaction of endogenous Tudor-SN with Cdk4/6 in G1 and the G1/S border, and with Cdk2 in the G1/S border and S phase. In addition, roscovitine (Cdk1/2/5 inhibitor) or CINK4 (Cdk4/6 inhibitor) could inhibit the phosphorylation of Tudor-SN, whereas ectopic overexpression of Cdk2/4/6 increased the Tudor-SN phosphorylation. The underlying molecular mechanisms indicated that Tudor-SN could physically interact with E2F-1 in vivo, and could enhance the physical association of E2F-1 with GCN5 (a cofactor of E2F-1, which possesses histone acetyltransferase activity), and promote the binding ability of E2F-1 to the promoter region of its target genes CYCLIN A and E2F-1, and as a result, facilitate the gene transcriptional activation. Taken together, Tudor-SN is identified as a novel co-activator of E2F-1, which could facilitate E2F-1-mediated gene transcriptional activation of target genes, which play essential roles in G1/S transition.
Collapse
Affiliation(s)
- Chao Su
- From the Departments of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Immunology, School of Basic Medical Sciences, Laboratory of Molecular Immunology, Research Center of Basic Medical Science, and the Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, 300070, China, the Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| | - Chunyan Zhang
- From the Departments of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Immunology, School of Basic Medical Sciences, Laboratory of Molecular Immunology, Research Center of Basic Medical Science, and the Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, 300070, China, the Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| | - Adiam Tecle
- Immunology, School of Basic Medical Sciences, Laboratory of Molecular Immunology, Research Center of Basic Medical Science, and the Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, 300070, China, the Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| | - Xue Fu
- From the Departments of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Immunology, School of Basic Medical Sciences, Laboratory of Molecular Immunology, Research Center of Basic Medical Science, and the Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, 300070, China, the Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| | - Jinyan He
- the Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, 300070, China, the Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| | - Juan Song
- From the Departments of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Immunology, School of Basic Medical Sciences, Laboratory of Molecular Immunology, Research Center of Basic Medical Science, and the Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, 300070, China, the Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| | - Wei Zhang
- From the Departments of Biochemistry and Molecular Biology, School of Basic Medical Sciences, the Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, 300070, China, the Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaoming Sun
- From the Departments of Biochemistry and Molecular Biology, School of Basic Medical Sciences, the Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, 300070, China, the Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| | - Yuanyuan Ren
- From the Departments of Biochemistry and Molecular Biology, School of Basic Medical Sciences, the Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, 300070, China, the Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| | - Olli Silvennoinen
- the Institute of Medical Technology, University of Tampere, Tampere University Hospital, Biokatu 8, FI-33014 Tampere, Finland, and
| | - Zhi Yao
- Immunology, School of Basic Medical Sciences, the Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, 300070, China, the Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| | - Xi Yang
- the Department of Immunology, University of Manitoba, Winnipeg R3E 0T5, Canada
| | - Minxin Wei
- the Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Jie Yang
- From the Departments of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Immunology, School of Basic Medical Sciences, Laboratory of Molecular Immunology, Research Center of Basic Medical Science, and the Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, 300070, China, the Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China, the Institute of Medical Technology, University of Tampere, Tampere University Hospital, Biokatu 8, FI-33014 Tampere, Finland, and
| |
Collapse
|
139
|
Auditory hair cell-specific deletion of p27Kip1 in postnatal mice promotes cell-autonomous generation of new hair cells and normal hearing. J Neurosci 2015; 34:15751-63. [PMID: 25411503 DOI: 10.1523/jneurosci.3200-14.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hearing in mammals relies upon the transduction of sound by hair cells (HCs) in the organ of Corti within the cochlea of the inner ear. Sensorineural hearing loss is a widespread and permanent disability due largely to a lack of HC regeneration in mammals. Recent studies suggest that targeting the retinoblastoma (Rb)/E2F pathway can elicit proliferation of auditory HCs. However, previous attempts to induce HC proliferation in this manner have resulted in abnormal cochlear morphology, HC death, and hearing loss. Here we show that cochlear HCs readily proliferate and survive following neonatal, HC-specific, conditional knock-out of p27(Kip1) (p27CKO), a tumor suppressor upstream of Rb. Indeed, HC-specific p27CKO results in proliferation of these cells without the upregulation of the supporting cell or progenitor cell proteins, Prox1 or Sox2, suggesting that they remain HCs. Furthermore, p27CKO leads to a significant addition of postnatally derived HCs that express characteristic synaptic and stereociliary markers and survive to adulthood, although a portion of the newly derived inner HCs exhibit cytocauds and lack VGlut3 expression. Despite this, p27CKO mice exhibit normal hearing as measured by evoked auditory brainstem responses, which suggests that the newly generated HCs may contribute to, or at least do not greatly detract from, function. These results show that p27(Kip1) actively maintains HC quiescence in postnatal mice, and suggest that inhibition of p27(Kip1) in residual HCs represents a potential strategy for cell-autonomous auditory HC regeneration.
Collapse
|
140
|
Engel BE, Cress WD, Santiago-Cardona PG. THE RETINOBLASTOMA PROTEIN: A MASTER TUMOR SUPPRESSOR ACTS AS A LINK BETWEEN CELL CYCLE AND CELL ADHESION. ACTA ACUST UNITED AC 2014; 7:1-10. [PMID: 28090172 DOI: 10.2147/chc.s28079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
RB1 was the first tumor suppressor gene discovered. Over four decades of work have revealed that the Rb protein (pRb) is a master regulator of biological pathways influencing virtually every aspect of intrinsic cell fate including cell growth, cell-cycle checkpoints, differentiation, senescence, self-renewal, replication, genomic stability and apoptosis. While these many processes may account for a significant portion of RB1's potency as a tumor suppressor, a small, but growing stream of evidence suggests that RB1 also significantly influences how a cell interacts with its environment, including cell-to-cell and cell-to-extracellular matrix interactions. This review will highlight pRb's role in the control of cell adhesion and how alterations in the adhesive properties of tumor cells may drive the deadly process of metastasis.
Collapse
Affiliation(s)
- B E Engel
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - W D Cress
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | |
Collapse
|
141
|
Choi J, Yang ES, Cha K, Whang J, Choi WJ, Avraham S, Kim TA. The Nuclear Matrix Protein, NRP/B, Acts as a Transcriptional Repressor of E2F-mediated Transcriptional Activity. J Cancer Prev 2014; 19:187-98. [PMID: 25337588 PMCID: PMC4189505 DOI: 10.15430/jcp.2014.19.3.187] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 08/29/2014] [Accepted: 08/29/2014] [Indexed: 12/12/2022] Open
Abstract
Background: NRP/B, a family member of the BTB/Kelch repeat proteins, is implicated in neuronal and cancer development, as well as the regulation of oxidative stress responses in breast and brain cancer. Our previous studies indicate that the NRP/B-BTB/POZ domain is involved in the dimerization of NRP/B and in a complex formation with the tumor suppressor, retinoblastoma protein. Although much evidence supports the potential role of NRP/B as a tumor suppressor, the molecular mechanisms of NRP/B action on E2F transcription factors have not been elucidated. Methods: Three-dimensional modeling of NRP/B was used to generate point mutations in the BTB/Kelch domains. Tet-on inducible NRP/B expression was established. The NRP/B deficient breast cancer cell line, MDA-MB-231, was generated using lentiviral shNRP/B to evaluate the effect of NRP/B on cell proliferation, invasion and migration. Immunoprecipitation was performed to verify the interaction of NRP/B with E2F and histone deacetylase (HDAC-1), and the expression level of NRP/B protein was analyzed by Western blot analysis. Changes in cell cycle were determined by flow cytometry. Transcriptional activities of E2F transcription factors were measured by chloramphenicol acetyltransferase (CAT) activity. Results: Ectopic overexpression of NRP/B demonstrated that the NRP/B-BTB/POZ domain plays a critical role in E2F-mediated transcriptional activity. Point mutations within the BTB/POZ domain restored E2-promoter activity inhibited by NRP/B. Loss of NRP/B enhanced the proliferation and migration of breast cancer cells. Endogenous NRP/B interacted with E2F and HDAC1. Treatement with an HDAC inhibitor, trichostatin A (TSA), abolished the NRP/B-mediated suppression of E2-promoter activity. Gain or loss of NRP/B in HeLa cells confirmed the transcriptional repressive capability of NRP/B on the E2F target genes, Cyclin E and HsORC (Homo sapiens Origin Recognition Complex). Conclusions: The present study shows that NRP/B acts as a transcriptional repressor by interacting with the co-repressors, HDAC1, providing new insight into the molecular mechanisms of NRP/B on tumor suppression.
Collapse
Affiliation(s)
- Jina Choi
- CHA Cancer Institute, CHA University, Seoul, Korea
| | - Eun Sung Yang
- Cancer Cell Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kiweon Cha
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - John Whang
- Cancer Cell Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Shalom Avraham
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Tae-Aug Kim
- CHA Cancer Institute, CHA University, Seoul, Korea ; Cancer Cell Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
142
|
Murao K, Yoshioka R, Kubo Y. Human papillomavirus infection in Bowen disease: Negative p53 expression, not p16INK4aoverexpression, is correlated with human papillomavirus-associated Bowen disease. J Dermatol 2014; 41:878-84. [DOI: 10.1111/1346-8138.12613] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/31/2014] [Indexed: 01/10/2023]
Affiliation(s)
- Kazutoshi Murao
- Department of Dermatology; Institute of Health Biosciences; University of Tokushima Graduate School; Tokushima Japan
| | - Rika Yoshioka
- Department of Dermatology; Institute of Health Biosciences; University of Tokushima Graduate School; Tokushima Japan
| | - Yoshiaki Kubo
- Department of Dermatology; Institute of Health Biosciences; University of Tokushima Graduate School; Tokushima Japan
| |
Collapse
|
143
|
KMTase Set7/9 is a critical regulator of E2F1 activity upon genotoxic stress. Cell Death Differ 2014; 21:1889-99. [PMID: 25124555 DOI: 10.1038/cdd.2014.108] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 05/01/2014] [Accepted: 06/09/2014] [Indexed: 12/20/2022] Open
Abstract
During the recent years lysine methyltransferase Set7/9 ((Su(var)-3-9, Enhancer-of-Zeste, Trithorax) domain containing protein 7/9) has emerged as an important regulator of different transcription factors. In this study, we report a novel function for Set7/9 as a critical co-activator of E2 promoter-binding factor 1 (E2F1)-dependent transcription in response to DNA damage. By means of various biochemical, cell biology, and bioinformatics approaches, we uncovered that cell-cycle progression through the G1/S checkpoint of tumour cells upon DNA damage is defined by the threshold of expression of both E2F1 and Set7/9. The latter affects the activity of E2F1 by indirectly modulating histone modifications in the promoters of E2F1-dependent genes. Moreover, Set7/9 differentially affects E2F1 transcription targets: it promotes cell proliferation via expression of the CCNE1 gene and represses apoptosis by inhibiting the TP73 gene. Our biochemical screening of the panel of lung tumour cell lines suggests that these two factors are critically important for transcriptional upregulation of the CCNE1 gene product and hence successful progression through cell cycle. These findings identify Set7/9 as a potential biomarker in tumour cells with overexpressed E2F1 activity.
Collapse
|
144
|
Watnick RS, Rodriguez RK, Wang S, Blois AL, Rangarajan A, Ince T, Weinberg RA. Thrombospondin-1 repression is mediated via distinct mechanisms in fibroblasts and epithelial cells. Oncogene 2014; 34:2823-35. [PMID: 25109329 DOI: 10.1038/onc.2014.228] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 06/03/2014] [Accepted: 06/21/2014] [Indexed: 12/27/2022]
Abstract
Tumor-associated angiogenesis is postulated to be regulated by the balance between pro- and anti-angiogenic factors. We demonstrate here that the critical step in establishing the angiogenic capability of human tumor cells is the repression of a key secreted anti-angiogenic factor, thrombospondin-1 (Tsp-1). This repression is essential for tumor formation by mammary epithelial cells and kidney cells engineered to express SV40 early region proteins, hTERT, and H-RasV12. In transformed epithelial cells, a signaling pathway leading from Ras to Tsp-1 repression induces the sequential activation of PI3 kinase, Rho and ROCK, leading to activation of Myc through phosphorylation, thereby enabling Myc to repress Tsp-1 transcription. In transformed fibroblasts, however, the repression of Tsp-1 can be achieved by an alternative mechanism involving inactivation of both p53 and pRb. We thus describe novel mechanisms by which the activation of oncogenes in epithelial cells and the inactivation of tumor suppressors in fibroblasts permits angiogenesis and, in turn, tumor formation.
Collapse
Affiliation(s)
- R S Watnick
- 1] Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA [2] Department of Surgery, Harvard Medical School, Boston, MA, USA [3] Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - R K Rodriguez
- 1] Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA [2] Department of Surgery, Harvard Medical School, Boston, MA, USA [3] Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - S Wang
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
| | - A L Blois
- 1] Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA [2] Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - A Rangarajan
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - T Ince
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - R A Weinberg
- 1] Whitehead Institute for Biomedical Research, Cambridge, MA, USA [2] Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
145
|
Munakata T, Inada M, Tokunaga Y, Wakita T, Kohara M, Nomoto A. Suppression of hepatitis C virus replication by cyclin-dependent kinase inhibitors. Antiviral Res 2014; 108:79-87. [PMID: 24893207 DOI: 10.1016/j.antiviral.2014.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/02/2014] [Accepted: 05/23/2014] [Indexed: 12/12/2022]
Abstract
Hepatitis C virus (HCV) is a causative agent of chronic hepatitis. Although the standard therapy for HCV-infected patients consists of pegylated interferon plus ribavirin, this treatment is associated with serious side effects and high costs, and fails in some patients infected with specific HCV genotypes. To address this problem, we are developing small-molecule inhibitors of cyclin-dependent kinases (CDKs) as novel anti-HCV drug candidates. Previous data showed that HCV replication is inhibited by retinoblastoma protein, which is itself inactivated by CDK-mediated phosphorylation. Here, we report that CDK inhibitors suppress HCV replication in vitro and in vivo, and that CDK4 is required for efficient HCV replication. These findings shed light on the development of novel anti-HCV drugs that target host factors.
Collapse
Affiliation(s)
- Tsubasa Munakata
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan; Department of Microbiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Makoto Inada
- Department of Microbiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuko Tokunaga
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Akio Nomoto
- Department of Microbiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Institute of Microbial Chemistry, 3-14-23 Kamiohsaki, Shinagawa-ku, Tokyo 141-0021, Japan
| |
Collapse
|
146
|
Xiaofei E, Kowalik TF. The DNA damage response induced by infection with human cytomegalovirus and other viruses. Viruses 2014; 6:2155-85. [PMID: 24859341 PMCID: PMC4036536 DOI: 10.3390/v6052155] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/02/2014] [Accepted: 05/08/2014] [Indexed: 12/12/2022] Open
Abstract
Viruses use different strategies to overcome the host defense system. Recent studies have shown that viruses can induce DNA damage response (DDR). Many of these viruses use DDR signaling to benefit their replication, while other viruses block or inactivate DDR signaling. This review focuses on the effects of DDR and DNA repair on human cytomegalovirus (HCMV) replication. Here, we review the DDR induced by HCMV infection and its similarities and differences to DDR induced by other viruses. As DDR signaling pathways are critical for the replication of many viruses, blocking these pathways may represent novel therapeutic opportunities for the treatment of certain infectious diseases. Lastly, future perspectives in the field are discussed.
Collapse
Affiliation(s)
- E Xiaofei
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 368 Plantation St, Worcester, MA 01605, USA.
| | - Timothy F Kowalik
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 368 Plantation St, Worcester, MA 01605, USA.
| |
Collapse
|
147
|
Ajioka I. Coordination of proliferation and neuronal differentiation by the retinoblastoma protein family. Dev Growth Differ 2014; 56:324-34. [PMID: 24697649 DOI: 10.1111/dgd.12127] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 02/13/2014] [Accepted: 02/16/2014] [Indexed: 12/23/2022]
Abstract
Once neurons enter the post-mitotic G0 phase during central nervous system (CNS) development, they lose their proliferative potential. When neurons re-enter the cell cycle during pathological situations such as neurodegeneration, they undergo cell death after S phase progression. Thus, the regulatory networks that drive cell proliferation and maintain neuronal differentiation are highly coordinated. In this review, the coordination of cell cycle control and neuronal differentiation during development are discussed, focusing on regulation by the Rb family of tumor suppressors (including p107 and p130), and the Cip/Kip family of cyclin dependent kinase (Cdk) inhibitors. Based on recent findings suggesting roles for these families in regulating neurogenesis and neuronal differentiation, I propose that the Rb family is essential for daughter cells of neuronal progenitors to enter the post-mitotic G0 phase without affecting the initiation of neuronal differentiation in most cases, while the Cip/Kip family regulates the timing of neuronal progenitor cell cycle exit and the initiation of neuronal differentiation at least in the progenitor cells of the cerebral cortex and the retina. Rb's lack of involvement in regulating the initiation of neuronal differentiation may explain why Rb family-deficient retinoblastomas characteristically exhibit neuronal features.
Collapse
Affiliation(s)
- Itsuki Ajioka
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Tokyo, 113-8510, Japan
| |
Collapse
|
148
|
Dommering CJ, Mol BM, Moll AC, Burton M, Cloos J, Dorsman JC, Meijers-Heijboer H, van der Hout AH. RB1 mutation spectrum in a comprehensive nationwide cohort of retinoblastoma patients. J Med Genet 2014; 51:366-74. [PMID: 24688104 DOI: 10.1136/jmedgenet-2014-102264] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Retinoblastoma (Rb) is a childhood cancer of the retina, commonly initiated by biallelic inactivation of the RB1 gene. Knowledge of the presence of a heritable RB1 mutation can help in risk management and reproductive decision making. We report here on RB1 mutation scanning in a unique nationwide cohort of Rb patients from the Netherlands. METHODS From the 1173 Rb patients registered in the Dutch National Retinoblastoma Register until January 2013, 529 patients from 433 unrelated families could be included. RB1 mutation scanning was performed with different detection methods, depending on the time period. RESULTS Our mutation detection methods revealed RB1 mutations in 92% of bilateral and/or familial Rb patients and in 10% of non-familial unilateral cases. Overall an RB1 germline mutation was detected in 187 (43%) of 433 Rb families, including 33 novel mutations. The distribution of the type of mutation was 37% nonsense, 20% frameshift, 21% splice, 9% large indel, 5% missense, 7% chromosomal deletions and 1% promoter. Ten per cent of patients were mosaic for the RB1 mutation. Six three-generation families with incomplete penetrance RB1 mutations were found. We found evidence that two variants, previously described as pathogenic RB1 mutations, are likely to be neutral variants. CONCLUSIONS The frequency of the type of mutations in the RB1 gene in our unbiased national cohort is the same as the mutation spectrum described worldwide. Furthermore, our RB1 mutation detection regimen achieves a high scanning sensitivity.
Collapse
Affiliation(s)
- Charlotte J Dommering
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Berber M Mol
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Annette C Moll
- Department of Ophthalmology, VU University Medical Center, Amsterdam, The Netherlands
| | - Margaret Burton
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jacqueline Cloos
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Josephine C Dorsman
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Hanne Meijers-Heijboer
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Annemarie H van der Hout
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
149
|
Chitikova ZV, Gordeev SA, Bykova TV, Zubova SG, Pospelov VA, Pospelova TV. Sustained activation of DNA damage response in irradiated apoptosis-resistant cells induces reversible senescence associated with mTOR downregulation and expression of stem cell markers. Cell Cycle 2014; 13:1424-39. [PMID: 24626185 PMCID: PMC4050140 DOI: 10.4161/cc.28402] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cells respond to genotoxic stress by activating the DNA damage response (DDR). When injury is severe or irreparable, cells induce apoptosis or cellular senescence to prevent transmission of the lesions to the daughter cells upon cell division. Resistance to apoptosis is a hallmark of cancer that challenges the efficacy of cancer therapy. In this work, the effects of ionizing radiation on apoptosis-resistant E1A + E1B transformed cells were investigated to ascertain whether the activation of cellular senescence could provide an alternative tumor suppressor mechanism. We show that irradiated cells arrest cell cycle at G2/M phase and resume DNA replication in the absence of cell division followed by formation of giant polyploid cells. Permanent activation of DDR signaling due to impaired DNA repair results in the induction of cellular senescence in E1A + E1B cells. However, irradiated cells bypass senescence and restore the population by dividing cells, which have near normal size and ploidy and do not express senescence markers. Reversion of senescence and appearance of proliferating cells were associated with downregulation of mTOR, activation of autophagy, mitigation of DDR signaling, and expression of stem cell markers.
Collapse
Affiliation(s)
- Zhanna V Chitikova
- Institute of Cytology; Russian Academy of Sciences; St. Petersburg, Russia; Saint Petersburg State University; St. Petersburg, Russia
| | - Serguei A Gordeev
- Institute of Cytology; Russian Academy of Sciences; St. Petersburg, Russia; Saint Petersburg State University; St. Petersburg, Russia
| | - Tatiana V Bykova
- Institute of Cytology; Russian Academy of Sciences; St. Petersburg, Russia; Saint Petersburg State University; St. Petersburg, Russia
| | - Svetlana G Zubova
- Institute of Cytology; Russian Academy of Sciences; St. Petersburg, Russia; Saint Petersburg State University; St. Petersburg, Russia
| | - Valery A Pospelov
- Institute of Cytology; Russian Academy of Sciences; St. Petersburg, Russia; Saint Petersburg State University; St. Petersburg, Russia
| | - Tatiana V Pospelova
- Institute of Cytology; Russian Academy of Sciences; St. Petersburg, Russia; Saint Petersburg State University; St. Petersburg, Russia
| |
Collapse
|
150
|
Liu Z, Rader J, He S, Phung T, Thiele CJ. CASZ1 inhibits cell cycle progression in neuroblastoma by restoring pRb activity. Cell Cycle 2014; 12:2210-8. [PMID: 23892435 DOI: 10.4161/cc.25265] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Dysregulation of cell cycle genes such as Cyclin D1 and Chk1 contributes to the undifferentiated phenotype of neuroblastoma (NB). CASZ1 functions as a tumor suppressor in NB; here we sought to determine how loss of CASZ1 contributes to cell cycle dysregulation in NB. CASZ1 restoration in NB cells delays NB cell cycle progression. The earliest changes occur within 8 h of CASZ1 restoration in SY5Y cells with a 2.8-fold increase in the level of p21, an inhibitor of Cdk2/4. By 16 h, there is a 40% decrease in the steady-state levels of Cdk6. Restoration of CASZ1 decreases Cdk2-dependent cyclins A and E protein levels and Cdk4/6-dependent Cyclin D1 protein levels. The restoration of CASZ1 resulted in a decrease in pRb phosphorylation and a significant reduction of E2F transcriptional activity. Subsequent to the changes in the G 1/S transition, induction of CASZ1 results in a decrease in Cyclin B levels and Cdc25c phosphatase levels, an upstream activator of the G 2/M regulator CyclinB:Cdk1. In addition, induction of CASZ1 results in a decrease in the levels of phospho-Chk1, a key M-phase regulatory kinase. Similar results were found in a NB cell line with MYCN amplification. Taken together, this study indicates that restoration of CASZ1 activates pRb in G 1 and inhibits the G 2/M regulators Cyclin B1 and Chk1, leading to a lengthening of NB cell cycle progression and a subsequent decrease in cell proliferation.
Collapse
Affiliation(s)
- Zhihui Liu
- Pediatric Oncology Branch; National Cancer Institute; Bethesda, MD, USA
| | | | | | | | | |
Collapse
|