101
|
Chowdhury G, Umeda K, Ohyanagi T, Nasu K, Yamasu K. Involvement of nr2f genes in brain regionalization and eye development during early zebrafish development. Dev Growth Differ 2024; 66:145-160. [PMID: 38263801 PMCID: PMC11457503 DOI: 10.1111/dgd.12912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/02/2024] [Accepted: 01/06/2024] [Indexed: 01/25/2024]
Abstract
Nuclear receptor subfamily 2 group F (Nr2f) proteins are essential for brain development in mice, but little is known about their precise roles and their evolutionary diversification. In the present study, the expression patterns of major nr2f genes (nr2f1a, nr2f1b, and nr2f2) during early brain development were investigated in zebrafish. Comparisons of their expression patterns revealed similar but temporally and spatially distinct patterns after early somite stages in the brain. Frameshift mutations in the three nr2f genes, achieved using the CRISPR/Cas9 method, resulted in a smaller telencephalon and smaller eyes in the nr2f1a mutants; milder forms of those defects were present in the nr2f1b and nr2f2 mutants. Acridine orange staining revealed enhanced cell death in the brain and/or eyes in all nr2f homozygous mutants. The expression of regional markers in the brain did not suggest global defects in brain regionalization; however, shha expression in the preoptic area and hypothalamus, as well as fgf8a expression in the anterior telencephalon, was disturbed in nr2f1a and nr2f1b mutants, potentially leading to a defective telencephalon. Specification of the retina and optic stalk was also significantly affected. The overexpression of nr2f1b by injection of mRNA disrupted the anterior brain at a high dose, and the expression of pax6a in the eyes and fgf8a in the telencephalon at a low dose. The results of these loss- and gain-of-function approaches showed that nr2f genes regulate the development of the telencephalon and eyes in zebrafish embryos.
Collapse
Affiliation(s)
- Gazlima Chowdhury
- Division of Life Science, Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
- Department of Aquatic Environment and Resource ManagementSher‐e‐Bangla Agricultural UniversityDhakaBangladesh
| | - Koto Umeda
- Division of Life Science, Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
| | - Takero Ohyanagi
- Division of Life Science, Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
| | - Kouhei Nasu
- Division of Life Science, Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
| | - Kyo Yamasu
- Division of Life Science, Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
| |
Collapse
|
102
|
Otmani K, Rouas R, Berehab M, Lewalle P. The regulatory mechanisms of oncomiRs in cancer. Biomed Pharmacother 2024; 171:116165. [PMID: 38237348 DOI: 10.1016/j.biopha.2024.116165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Cancer development is a complex process that primarily results from the combination of genetic alterations and the dysregulation of major signalling pathways due to interference with the epigenetic machinery. As major epigenetic regulators, miRNAs are central players in the control of many key tumour development factors. These miRNAs have been classified as oncogenic miRNAs (oncomiRs) when they target tumour suppressor genes and tumour suppressor miRNAs (TS miRNAs) when they inhibit oncogene protein expression. Most of the mechanisms that modulate oncomiR expression are linked to transcriptional or posttranscriptional regulation. However, non-transcriptional processes, such as gene amplification, have been described as alternative processes that are responsible for increasing oncomiR expression. The current review summarises the different mechanisms controlling the upregulation of oncomiR expression in cancer cells and the tumour microenvironment (TME). Detailed knowledge of the mechanism underlying the regulation of oncomiR expression in cancer may pave the way for understanding the critical role of oncomiRs in cancer development and progression.
Collapse
Affiliation(s)
- Khalid Otmani
- Hematology Laboratory, Hematology Department, Hôpital Universitaire de Bruxelles (H.U.B.) Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.
| | - Redouane Rouas
- Hematology Laboratory, Hematology Department, Hôpital Universitaire de Bruxelles (H.U.B.) Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Mimoune Berehab
- Hematology Laboratory, Hematology Department, Hôpital Universitaire de Bruxelles (H.U.B.) Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Philippe Lewalle
- Hematology Laboratory, Hematology Department, Hôpital Universitaire de Bruxelles (H.U.B.) Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
103
|
Ryu T, Okamoto K, Ansai S, Nakao M, Kumar A, Iguchi T, Ogino Y. Gene Duplication of Androgen Receptor As An Evolutionary Driving Force Underlying the Diversity of Sexual Characteristics in Teleost Fishes. Zoolog Sci 2024; 41:68-76. [PMID: 38587519 DOI: 10.2108/zs230098] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/15/2024] [Indexed: 04/09/2024]
Abstract
Sexual dimorphism allows species to meet their fitness optima based on the physiological availability of each sex. Although intralocus sexual conflict appears to be a genetic constraint for the evolution of sex-specific traits, sex-linked genes and the regulation of sex steroid hormones contribute to resolving this conflict by allowing sex-specific developments. Androgens and their receptor, androgen receptor (Ar), regulate male-biased phenotypes. In teleost fish, ar ohnologs have emerged as a result of teleost-specific whole genome duplication (TSGD). Recent studies have highlighted the evolutionary differentiation of ar ohnologs responsible for the development of sexual characteristics, which sheds light on the need for comparative studies on androgen regulation among different species. In this review, we discuss the importance of ar signaling as a regulator of male-specific traits in teleost species because teleost species are suitable experimental models for comparative studies owing to their great diversity in male-biased morphological and physiological traits. To date, both in vivo and in vitro studies on teleost ar ohnologs have shown a substantial influence of ars as a regulator of male-specific reproductive traits such as fin elongation, courtship behavior, and nuptial coloration. In addition to these sexual characteristics, ar substantially influences immunity, inducing a sex-biased immune response. This review aims to provide a comprehensive understanding of the current state of teleost ar studies and emphasizes the potential of teleost fishes, given their availability, to find molecular evidence about what gives rise to the spectacular diversity among fish species.
Collapse
Affiliation(s)
- Tsukasa Ryu
- Laboratory of Marine Biochemistry, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Keigo Okamoto
- Laboratory of Aquatic Molecular Developmental Biology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Satoshi Ansai
- Laboratory of Genome Editing Breeding, Graduate School of Agriculture, Kyoto University, Kyoto 606-8507, Japan
| | - Miki Nakao
- Laboratory of Marine Biochemistry, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
- Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Anu Kumar
- Commonwealth Scientific and Industrial Research Organization, CSIRO Environment, PMB2, Glen Osmond, 5064 South Australia, Australia
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa 236-0027, Japan
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ishikawa 927-0553, Japan
| | - Yukiko Ogino
- Laboratory of Aquatic Molecular Developmental Biology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan,
- Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
104
|
Mehralivand S, Thomas C, Puhr M, Claessens F, van de Merbel AF, Dubrovska A, Jenster G, Bernemann C, Sommer U, Erb HHH. New advances of the androgen receptor in prostate cancer: report from the 1st International Androgen Receptor Symposium. J Transl Med 2024; 22:71. [PMID: 38238739 PMCID: PMC10795409 DOI: 10.1186/s12967-024-04878-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
The androgen receptor (AR) is a crucial player in various aspects of male reproduction and has been associated with the development and progression of prostate cancer (PCa). Therefore, the protein is the linchpin of current PCa therapies. Despite great research efforts, the AR signaling pathway has still not been deciphered, and the emergence of resistance is still the biggest problem in PCa treatment. To discuss the latest developments in AR research, the "1st International Androgen Receptor Symposium" offered a forum for the exchange of clinical and scientific innovations around the role of the AR in prostate cancer (PCa) and to stimulate new collaborative interactions among leading scientists from basic, translational, and clinical research. The symposium included three sessions covering preclinical studies, prognostic and diagnostic biomarkers, and ongoing prostate cancer clinical trials. In addition, a panel discussion about the future direction of androgen deprivation therapy and anti-AR therapy in PCa was conducted. Therefore, the newest insights and developments in therapeutic strategies and biomarkers are discussed in this report.
Collapse
Affiliation(s)
- Sherif Mehralivand
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Christian Thomas
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Martin Puhr
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Frank Claessens
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | | | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Institute of Radiooncology-OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Guido Jenster
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | | | - Ulrich Sommer
- Institut für Pathologie, Medical Faculty, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Holger H H Erb
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
105
|
Yang X, Zhao Y, Wei Q, Zhu X, Wang L, Zhang W, Liu X, Kuai J, Wang F, Wei W. GRK2 inhibits Flt-1 + macrophage infiltration and its proangiogenic properties in rheumatoid arthritis. Acta Pharm Sin B 2024; 14:241-255. [PMID: 38261818 PMCID: PMC10792976 DOI: 10.1016/j.apsb.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 01/25/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease with a complex etiology. Monocyte-derived macrophages (MDMs) infiltration are associated with RA severity. We have reported the deletion of G-protein-coupled receptor kinase 2 (GRK2) reprograms macrophages toward an anti-inflammatory phenotype by recovering G-protein-coupled receptor signaling. However, as more GRK2-interacting proteins were discovered, the GRK2 interactome mechanisms in RA have been understudied. Thus, in the collagen-induced arthritis mouse model, we performed genetic GRK2 deletion using GRK2f/fLyz2-Cre+/- mice. Synovial inflammation and M1 polarization were improved in GRK2f/fLyz2-Cre+/- mice. Supporting experiments with RNA-seq and dual-luciferase reporter assays identified peroxisome proliferator-activated receptor γ (PPARγ) as a new GRK2-interacting protein. We further confirmed that fms-related tyrosine kinase 1 (Flt-1), which promoted macrophage migration to induce angiogenesis, was inhibited by GRK2-PPARγ signaling. Mechanistically, excess GRK2 membrane recruitment in CIA MDMs reduced the activation of PPARγ ligand-binding domain and enhanced Flt-1 transcription. Furthermore, the treatment of mice with GRK2 activity inhibitor resulted in significantly diminished CIA pathology, Flt-1+ macrophages induced-synovial inflammation, and angiogenesis. Altogether, we anticipate to facilitate the elucidation of previously unappreciated details of GRK2-specific intracellular signaling. Targeting GRK2 activity is a viable strategy to inhibit MDMs infiltration, affording a distinct way to control joint inflammation and angiogenesis of RA.
Collapse
Affiliation(s)
- Xuezhi Yang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Yingjie Zhao
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Qi Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Xuemin Zhu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Luping Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Wankang Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Xiaoyi Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Jiajie Kuai
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Fengling Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| |
Collapse
|
106
|
Masuda LHP, Sabino AU, Reinitz J, Ramos AF, Machado-Lima A, Andrioli LP. Global repression by tailless during segmentation. Dev Biol 2024; 505:11-23. [PMID: 37879494 PMCID: PMC10949167 DOI: 10.1016/j.ydbio.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/27/2023]
Abstract
The orphan nuclear receptor Tailless (Tll) exhibits conserved roles in brain formation and maintenance that are shared, for example, with vertebrate orthologous forms (Tlx). However, the early expression of tll in two gap domains in the segmentation cascade of Drosophila is unusual even for most other insects. Here we investigate tll regulation on pair-rule stripes. With ectopic misexpression of tll we detected unexpected repression of almost all pair-rule stripes of hairy (h), even-skipped (eve), runt (run), and fushi-tarazu (ftz). Examining Tll embryonic ChIP-chip data with regions mapped as Cis-Regulatory Modules (CRMs) of pair-rule stripes we verified Tll interactions to these regions. With the ChIP-chip data we also verified Tll interactions to the CRMs of gap domains and in the misexpression assay, Tll-mediated repression on Kruppel (Kr), kni (kni) and giant (gt) according to their differential sensitivity to Tll. These results with gap genes confirmed previous data from the literature and argue against indirect repression roles of Tll in the striped pattern. Moreover, the prediction of Tll binding sites in the CRMs of eve stripes and the mathematical modeling of their removal using an experimentally validated theoretical framework shows effects on eve stripes compatible with the absence of a repressor binding to the CRMs. In addition, modeling increased tll levels in the embryo results in the differential repression of eve stripes, agreeing well with the results of the misexpression assay. In genetic assays we investigated eve 5, that is strongly repressed by the ectopic domain and representative of more central stripes not previously implied to be under direct regulation of tll. While this stripe is little affected in tll-, its posterior border is expanded in gt- but detected with even greater expansion in gt-;tll-. We end up by discussing tll with key roles in combinatorial repression mechanisms to contain the expression of medial patterns of the segmentation cascade in the extremities of the embryo.
Collapse
Affiliation(s)
| | - Alan Utsuni Sabino
- Departamento de Radiologia e Oncologia, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - John Reinitz
- Departments of Statistics, Ecology and Evolution, Molecular Genetics & Cell Biology, Institute of Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | | | - Ariane Machado-Lima
- Escola de Artes, Ciências e Humanidades da Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Paulo Andrioli
- Escola de Artes, Ciências e Humanidades da Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
107
|
Islam MR, Rauf A, Akash S, Trisha SI, Nasim AH, Akter M, Dhar PS, Ogaly HA, Hemeg HA, Wilairatana P, Thiruvengadam M. Targeted therapies of curcumin focus on its therapeutic benefits in cancers and human health: Molecular signaling pathway-based approaches and future perspectives. Biomed Pharmacother 2024; 170:116034. [PMID: 38141282 DOI: 10.1016/j.biopha.2023.116034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023] Open
Abstract
The curry powder spices turmeric (Curcuma longa L.), which contains curcumin (diferuloylmethane), an orange-yellow chemical. Polyphenols are the most commonly used sources of curcumin. It combats oxidative stress and inflammation in diseases, such as hyperlipidemia, metabolic syndrome, arthritis, and depression. Most of these benefits are due to their anti-inflammatory and antioxidant properties. Curcumin consumption leads to decreased bioavailability, resulting in limited absorption, quick metabolism, and quick excretion, which hinders health improvement. Numerous factors can increase its bioavailability. Piperine enhances bioavailability when combined with curcumin in a complex. When combined with other enhancing agents, curcumin has a wide spectrum of health benefits. This review evaluates the therapeutic potential of curcumin with a specific emphasis on its approach based on molecular signaling pathways. This study investigated its influence on the progression of cancer, inflammation, and many health-related mechanisms, such as cell proliferation, apoptosis, and metastasis. Curcumin has a significant potential for the prevention and treatment of various diseases. Curcumin modulates several biochemical pathways and targets involved in cancer growth. Despite its limited tissue accumulation and bioavailability when administered orally, curcumin has proven useful. This review provides an in-depth analysis of curcumin's therapeutic applications, its molecular signaling pathway-based approach, and its potential for precision medicine in cancer and human health.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Sadiya Islam Trisha
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Akram Hossain Nasim
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Muniya Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Hanan A Ogaly
- Chemistry Department, College of Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Al-Medinah Al-Monawara, Saudi Arabia
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul 05029, Republic of Korea; Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India.
| |
Collapse
|
108
|
Yang Z, Danzeng A, Liu Q, Zeng C, Xu L, Mo J, Pingcuo C, Wang X, Wang C, Zhang B, Zhang B. The Role of Nuclear Receptors in the Pathogenesis and Treatment of Non-alcoholic Fatty Liver Disease. Int J Biol Sci 2024; 20:113-126. [PMID: 38164174 PMCID: PMC10750283 DOI: 10.7150/ijbs.87305] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/21/2023] [Indexed: 01/03/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a global health burden closely linked to insulin resistance, obesity, and type 2 diabetes. The complex pathophysiology of NAFLD involves multiple cellular pathways and molecular factors. Nuclear receptors (NRs) have emerged as crucial regulators of lipid metabolism and inflammation in NAFLD, offering potential therapeutic targets for NAFLD. Targeting PPARs and FXRs has shown promise in ameliorating NAFLD symptoms and halting disease progression. However, further investigation is needed to address side effects and personalize therapy approaches. This review summarizes the current understanding of the involvement of NRs in the pathogenesis of NAFLD and explores their therapeutic potential. We discuss the role of several NRs in modulating lipid homeostasis in the liver, including peroxisome proliferator-activated receptors (PPARs), liver X receptors (LXRs), farnesoid X receptors (FXRs), REV-ERB, hepatocyte nuclear factor 4α (HNF4α), constitutive androstane receptor (CAR) and pregnane X receptor (PXR).The expanding knowledge of NRs in NAFLD offers new avenues for targeted therapies, necessitating exploration of novel treatment strategies and optimization of existing approaches to combat this increasingly prevalent disease.
Collapse
Affiliation(s)
- Zhenhua Yang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan 430030, Hubei Province, China
| | - Awang Danzeng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan 430030, Hubei Province, China
| | - Qiumeng Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan 430030, Hubei Province, China
| | - Chenglong Zeng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan 430030, Hubei Province, China
| | - Lei Xu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan 430030, Hubei Province, China
| | - Jie Mo
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan 430030, Hubei Province, China
| | - Ciren Pingcuo
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan 430030, Hubei Province, China
| | - Xiaojing Wang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Chao Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan 430030, Hubei Province, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan 430030, Hubei Province, China
| | - Binhao Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan 430030, Hubei Province, China
| |
Collapse
|
109
|
He W, Ding J, Gao N, Zhu L, Zhu L, Feng J. Elucidating the toxicity mechanisms of organophosphate esters by adverse outcome pathway network. Arch Toxicol 2024; 98:233-250. [PMID: 37864630 DOI: 10.1007/s00204-023-03624-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 10/05/2023] [Indexed: 10/23/2023]
Abstract
With the widespread use of organophosphate esters (OPEs), the accumulation and toxicity effect of OPEs in biota are attracting more and more concern. In order to clarify the mechanism of toxicity of OPEs to organisms, this study reviewed the OPEs toxicity and systematically identified the mechanism of OPEs toxicity under the framework of adverse outcome pathway (AOP). OPEs were divided into three groups (alkyl-OPEs, aryl-OPEs, and halogenated-OPEs) and biota was divided into aquatic organism and mammals. The results showed that tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and triphenyl phosphate (TPHP) mainly caused neurotoxicity, reproductive, and hepatotoxicity in different mechanisms. According to the constructed AOP network, the toxicity mechanism of OPEs on aquatic organisms and mammals is different, which is mainly attributed to the different biological metabolic systems of aquatic organisms and mammals. Interestingly, our results indicate that the toxicity effect of the three kinds of OPEs on aquatic organisms is different, while there was no obvious difference in the mechanism of toxicity of OPEs on mammals. This study provides a theoretical basis for OPEs risk assessment in the future.
Collapse
Affiliation(s)
- Wanyu He
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jiaqi Ding
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Ning Gao
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Lingyan Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Lin Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jianfeng Feng
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
110
|
Hasan A, Khan NA, Uddin S, Khan AQ, Steinhoff M. Deregulated transcription factors in the emerging cancer hallmarks. Semin Cancer Biol 2024; 98:31-50. [PMID: 38123029 DOI: 10.1016/j.semcancer.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/25/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Cancer progression is a multifaceted process that entails several stages and demands the persistent expression or activation of transcription factors (TFs) to facilitate growth and survival. TFs are a cluster of proteins with DNA-binding domains that attach to promoter or enhancer DNA strands to start the transcription of genes by collaborating with RNA polymerase and other supporting proteins. They are generally acknowledged as the major regulatory molecules that coordinate biological homeostasis and the appropriate functioning of cellular components, subsequently contributing to human physiology. TFs proteins are crucial for controlling transcription during the embryonic stage and development, and the stability of different cell types depends on how they function in different cell types. The development and progression of cancer cells and tumors might be triggered by any anomaly in transcription factor function. It has long been acknowledged that cancer development is accompanied by the dysregulated activity of TF alterations which might result in faulty gene expression. Recent studies have suggested that dysregulated transcription factors play a major role in developing various human malignancies by altering and rewiring metabolic processes, modifying the immune response, and triggering oncogenic signaling cascades. This review emphasizes the interplay between TFs involved in metabolic and epigenetic reprogramming, evading immune attacks, cellular senescence, and the maintenance of cancer stemness in cancerous cells. The insights presented herein will facilitate the development of innovative therapeutic modalities to tackle the dysregulated transcription factors underlying cancer.
Collapse
Affiliation(s)
- Adria Hasan
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Lucknow 226026, India; Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow 226026, India
| | - Naushad Ahmad Khan
- Department of Surgery, Trauma and Vascular Surgery Clinical Research, Hamad General Hospital, Doha 3050, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Biosciences, Integral University, Lucknow 226026, India; Animal Research Center, Qatar University, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar.
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Animal Research Center, Qatar University, Doha, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar; Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; College of Medicine, Qatar University, Doha 2713, Qatar
| |
Collapse
|
111
|
Qiu Y, Gan M, Wang X, Liao T, Chen Q, Lei Y, Chen L, Wang J, Zhao Y, Niu L, Wang Y, Zhang S, Zhu L, Shen L. The global perspective on peroxisome proliferator-activated receptor γ (PPARγ) in ectopic fat deposition: A review. Int J Biol Macromol 2023; 253:127042. [PMID: 37742894 DOI: 10.1016/j.ijbiomac.2023.127042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Excessive expansion of adipocytes can have unhealthy consequences as excess free fatty acids enter other tissues and cause ectopic fat deposition by resynthesizing triglycerides. This lipid accumulation in various tissues is harmful and can increase the risk of related metabolic diseases such as type II diabetes, cardiovascular disease, and insulin resistance. Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily that play a key role in energy metabolism as fatty acid metabolism sensors, and peroxisome proliferator-activated receptor γ (PPARγ) is the main subtype responsible for fat cell differentiation and adipogenesis. In this paper, we introduce the main structure and function of PPARγ and its regulatory role in the process of lipogenesis in the liver, kidney, skeletal muscle, and pancreas. This information can serve as a reference for further understanding the regulatory mechanisms and measures of the PPAR family in the process of ectopic fat deposition.
Collapse
Affiliation(s)
- Yanhao Qiu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Mailin Gan
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xingyu Wang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Tianci Liao
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiuyang Chen
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuhang Lei
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinyong Wang
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China
| | - Ye Zhao
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Linyuan Shen
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
112
|
Lee YC, Nam Y, Kim M, Kim SI, Lee JW, Eun YG, Kim D. Prognostic significance of senescence-related tumor microenvironment genes in head and neck squamous cell carcinoma. Aging (Albany NY) 2023; 16:985-1001. [PMID: 38154113 PMCID: PMC10866405 DOI: 10.18632/aging.205346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/06/2023] [Indexed: 12/30/2023]
Abstract
The impact of the senescence related microenvironment on cancer prognosis and therapeutic response remains poorly understood. In this study, we investigated the prognostic significance of senescence related tumor microenvironment genes (PSTGs) and their potential implications for immunotherapy response. Using the Cancer Genome Atlas- head and neck squamous cell carcinoma (HNSC) data, we identified two subtypes based on the expression of PSTGs, acquired from tumor-associated senescence genes, tumor microenvironment (TME)-related genes, and immune-related genes, using consensus clustering. Using the LASSO, we constructed a risk model consisting of senescence related TME core genes (STCGs). The two subtypes exhibited significant differences in prognosis, genetic alterations, methylation patterns, and enriched pathways, and immune infiltration. Our risk model stratified patients into high-risk and low-risk groups and validated in independent cohorts. The high-risk group showed poorer prognosis and immune inactivation, suggesting reduced responsiveness to immunotherapy. Additionally, we observed a significant enrichment of STCGs in stromal cells using single-cell RNA transcriptome data. Our findings highlight the importance of the senescence related TME in HNSC prognosis and response to immunotherapy. This study contributes to a deeper understanding of the complex interplay between senescence and the TME, with potential implications for precision medicine and personalized treatment approaches in HNSC.
Collapse
Affiliation(s)
- Young Chan Lee
- Department of Otolaryngology-Head and Neck Surgery, Kyung Hee University School of Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
- Department of Medicine (AgeTech-Service Convergence Major) College of Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Biostatistics, Epidemiology and Informatics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yonghyun Nam
- Department of Biostatistics, Epidemiology and Informatics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Minjeong Kim
- Department of Medicine (AgeTech-Service Convergence Major) College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Su Il Kim
- Department of Otolaryngology-Head and Neck Surgery, Kyung Hee University School of Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Jung-Woo Lee
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Young-Gyu Eun
- Department of Otolaryngology-Head and Neck Surgery, Kyung Hee University School of Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Dokyoon Kim
- Department of Biostatistics, Epidemiology and Informatics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
113
|
Zhang-Sun ZY, Xu XZ, Escames G, Lei WR, Zhao L, Zhou YZ, Tian Y, Ren YN, Acuña-Castroviejo D, Yang Y. Targeting NR1D1 in organ injury: challenges and prospects. Mil Med Res 2023; 10:62. [PMID: 38072952 PMCID: PMC10712084 DOI: 10.1186/s40779-023-00495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Nuclear receptor subfamily 1, group D, member 1 (NR1D1, also known as REV-ERBα) belongs to the nuclear receptor (NR) family, and is a heme-binding component of the circadian clock that consolidates circadian oscillators. In addition to repressing the transcription of multiple clock genes associated with circadian rhythms, NR1D1 has a wide range of downstream target genes that are intimately involved in many physiopathological processes, including autophagy, immunity, inflammation, metabolism and aging in multiple organs. This review focuses on the pivotal role of NR1D1 as a key transcription factor in the gene regulatory network, with particular emphasis on the milestones of the latest discoveries of NR1D1 ligands. NR1D1 is considered as a promising drug target for treating diverse diseases and may contribute to research on innovative biomarkers and therapeutic targets for organ injury-related diseases. Further research on NR1D1 ligands in prospective human trials may pave the way for their clinical application in many organ injury-related disorders.
Collapse
Affiliation(s)
- Zi-Yin Zhang-Sun
- Department of Cardiology, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine , Northwest University, Xi'an, 710069, China
| | - Xue-Zeng Xu
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Germaine Escames
- Biomedical Research Center, Department of Physiology, Faculty of Medicine, Institute of Biotechnology, Technological Park of Health Sciences, University of Granada, 18016, Granada, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Ibs.Granada, San Cecilio University Hospital, 18016, Granada, Spain
| | - Wang-Rui Lei
- Department of Cardiology, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine , Northwest University, Xi'an, 710069, China
| | - Lin Zhao
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Ya-Zhe Zhou
- Department of Cardiology, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine , Northwest University, Xi'an, 710069, China
| | - Ye Tian
- Department of Cardiology, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine , Northwest University, Xi'an, 710069, China
| | - Ya-Nan Ren
- Department of Cardiology, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine , Northwest University, Xi'an, 710069, China
| | - Darío Acuña-Castroviejo
- Biomedical Research Center, Department of Physiology, Faculty of Medicine, Institute of Biotechnology, Technological Park of Health Sciences, University of Granada, 18016, Granada, Spain.
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Ibs.Granada, San Cecilio University Hospital, 18016, Granada, Spain.
- UGC of Clinical Laboratories, San Cecilio Clinical University Hospital, 18016, Granada, Spain.
| | - Yang Yang
- Department of Cardiology, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine , Northwest University, Xi'an, 710069, China.
| |
Collapse
|
114
|
Dutta TK, Akhil VS, Dash M, Kundu A, Phani V, Sirohi A. Molecular and functional characterization of chemosensory genes from the root-knot nematode Meloidogyne graminicola. BMC Genomics 2023; 24:745. [PMID: 38057766 DOI: 10.1186/s12864-023-09864-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Root-knot nematode Meloidogyne graminicola has emerged as a major threat in rice agroecosystems owing to climate change-induced changes in cultivation practices. Synthetic nematicides are continually being withdrawn from the nematode management toolbox because of their ill effects on the environment. A sustainable strategy would be to develop novel nematicides or resistant plants that would target nematode sensory perception, which is a key step in the host finding biology of plant-parasitic nematodes (PPNs). However, compared to the extensive literature on the free-living nematode Caenorhabditis elegans, negligible research has been performed on PPN chemosensory biology. RESULTS The present study characterizes the five chemosensory genes (Mg-odr-7, Mg-tax-4, Mg-tax-4.1, Mg-osm-9, and Mg-ocr-2) from M. graminicola that are putatively associated with nematode host-finding biology. All the genes were highly transcribed in the early life stages, and RNA interference (RNAi)-induced downregulation of each candidate gene perturbed the normal behavioural phenotypes of M. graminicola, as determined by examining the tracking pattern of juveniles on Pluronic gel medium, attraction to and penetration in rice root tip, and developmental progression in rice root. In addition, a detrimental effect on nematode chemotaxis towards different volatile and nonvolatile organic compounds and host root exudates was documented. CONCLUSION Our findings enrich the existing literature on PPN chemosensory biology and can supplement future research aimed at identifying a comprehensive chemosensory signal transduction pathway in PPNs.
Collapse
Affiliation(s)
- Tushar K Dutta
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Voodikala S Akhil
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Manoranjan Dash
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Artha Kundu
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Victor Phani
- Department of Agricultural Entomology, College of Agriculture, Uttar Banga Krishi Viswavidyalaya, Balurghat, Dakshin Dinajpur, West Bengal, India
| | - Anil Sirohi
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
115
|
Bohn T, de Lera AR, Landrier JF, Rühl R. Carotenoid metabolites, their tissue and blood concentrations in humans and further bioactivity via retinoid receptor-mediated signalling. Nutr Res Rev 2023; 36:498-511. [PMID: 36380523 DOI: 10.1017/s095442242200021x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Many epidemiological studies have emphasised the relation between carotenoid dietary intake and their circulating concentrations and beneficial health effects, such as lower risk of cardiometabolic diseases and cancer. However, there is dispute as to whether the attributed health benefits are due to native carotenoids or whether they are instead induced by their metabolites. Several categories of metabolites have been reported, most notably involving (a) modifications at the cyclohexenyl ring or the polyene chain, such as epoxides and geometric isomers, (b) excentric cleavage metabolites with alcohol-, aldehyde- or carboxylic acid-functional groups or (c) centric cleaved metabolites with additional hydroxyl, aldehyde or carboxyl functionalities, not counting their potential phase-II glucuronidated / sulphated derivatives. Of special interest are the apo-carotenoids, which originate in the intestine and other tissues from carotenoid cleavage by β-carotene oxygenases 1/2 in a symmetrical / non-symmetrical fashion. These are more water soluble and more electrophilic and, therefore, putative candidates for interactions with transcription factors such as NF-kB and Nrf2, as well as ligands for RAR-RXR nuclear receptor interactions. In this review, we discuss in vivo detected apo-carotenoids, their reported tissue concentrations, and potential associated health effects, focusing exclusively on the human situation and based on quantified / semi-quantified carotenoid metabolites proven to be present in humans.
Collapse
Affiliation(s)
- Torsten Bohn
- Nutrition and Health Research Group, Precision Health Department, Luxembourg Institute of Health, 1 A-B, rue Thomas Edison, L-1445, Strassen, Luxembourg
| | - Angel R de Lera
- Departmento de Química Orgánica, Facultade de Química, CINBIO and IBIV, Universidade de Vigo, 36310 Vigo, Spain
| | | | - Ralph Rühl
- CISCAREX UG, Berlin, Germany
- Paprika Bioanalytics BT, Debrecen, Hungary
| |
Collapse
|
116
|
Stossi F, Rivera Tostado A, Johnson HL, Mistry RM, Mancini MG, Mancini MA. Gene transcription regulation by ER at the single cell and allele level. Steroids 2023; 200:109313. [PMID: 37758052 PMCID: PMC10842394 DOI: 10.1016/j.steroids.2023.109313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/12/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
In this short review we discuss the current view of how the estrogen receptor (ER), a pivotal member of the nuclear receptor superfamily of transcription factors, regulates gene transcription at the single cell and allele level, focusing on in vitro cell line models. We discuss central topics and new trends in molecular biology including phenotypic heterogeneity, single cell sequencing, nuclear phase separated condensates, single cell imaging, and image analysis methods, with particular focus on the methodologies and results that have been reported in the last few years using microscopy-based techniques. These observations augment the results from biochemical assays that lead to a much more complex and dynamic view of how ER, and arguably most transcription factors, act to regulate gene transcription.
Collapse
Affiliation(s)
- Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States; GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, United States.
| | | | - Hannah L Johnson
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States; GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, United States
| | - Ragini M Mistry
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States; GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, United States
| | - Maureen G Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States; GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, United States
| | - Michael A Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States; GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, United States; Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
117
|
Nishimagi A, Kobayashi M, Sugimoto K, Kofunato Y, Sato N, Haga J, Ishigame T, Kimura T, Kenjo A, Kobayashi Y, Hashimoto Y, Marubashi S, Chiba H. Aberrant phosphorylation of human LRH1 at serine 510 is predictable of hepatocellular carcinoma recurrence. Clin Exp Med 2023; 23:4985-4995. [PMID: 37285077 PMCID: PMC10725388 DOI: 10.1007/s10238-023-01098-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/20/2023] [Indexed: 06/08/2023]
Abstract
We previously identified the AKT-phosphorylation sites in nuclear receptors and showed that phosphorylation of S379 in mouse retinoic acid γ and S518 in human estrogen receptor α regulate their activity independently of the ligands. Since this site is conserved at S510 in human liver receptor homolog 1 (hLRH1), we developed a monoclonal antibody (mAb) that recognized the phosphorylation form of hLRH1S510 (hLRH1pS510) and verified its clinicopathological significance in hepatocellular carcinoma (HCC). We generated the anti-hLRH1pS510 mAb and assessed its selectivity. We then evaluated the hLRH1pS510 signals in 157 cases of HCC tissues by immunohistochemistry because LRH1 contributes to the pathogenesis of diverse cancers. The developed mAb specifically recognized hLRH1pS510 and worked for immunohistochemistry of formalin-fixed paraffin-embedded tissues. hLRH1pS510 was exclusively localized in the nucleus of HCC cells, but the signal intensity and positive rates varied among the subjects. According to the semi-quantification, 45 cases (34.9%) showed hLRH1pS510-high, and the remaining 112 cases (65.1%) exhibited hLRH1pS510-low. There were significant differences in the recurrence-free survival (RFS) between the two groups, and the 5-year RFS rates in the hLRH1pS510-high and hLRH1pS510-low groups were 26.5% and 46.1%, respectively. In addition, high hLRH1pS510 was significantly correlated with portal vein invasion, hepatic vein invasion, and high levels of serum alpha-fetoprotein (AFP). Furthermore, multivariable analysis revealed that hLRH1pS510-high was an independent biomarker for HCC recurrence. We conclude that aberrant phosphorylation of hLRH1S510 is a predictor of poor prognosis for HCC. The anti-hLRH1pS510 mAb could provide a powerful tool to validate the relevance of hLRH1pS510 in pathological processes such as tumor development and progression.
Collapse
Affiliation(s)
- Atsushi Nishimagi
- Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Makoto Kobayashi
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Kotaro Sugimoto
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan.
| | - Yasuhide Kofunato
- Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Naoya Sato
- Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Junichiro Haga
- Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Teruhide Ishigame
- Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Takashi Kimura
- Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Akira Kenjo
- Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Yasuyuki Kobayashi
- Department of Diagnostic Pathology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Yuko Hashimoto
- Department of Diagnostic Pathology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Shigeru Marubashi
- Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Hideki Chiba
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan.
| |
Collapse
|
118
|
Costagliola A, Lombardi R, Liguori G, Morrione A, Giordano A. Orexins and Prostate Cancer: State of the Art and Potential Experimental and Therapeutic Perspectives. Cancer Genomics Proteomics 2023; 20:637-645. [PMID: 38035703 PMCID: PMC10687730 DOI: 10.21873/cgp.20412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Prostate cancer (PCa) is the second most common cancer in humans. Peptides have recently been used as targeted therapeutics in cancers, due to their extensive multi-functional applications. Two hypothalamic peptides, orexins A (OXA) and B (OXB) and their specific receptors, orexin receptor 1 (OX1R) and 2 (OX2R), orchestrate several biological processes in the central nervous system and peripheral organs. However, in addition to their role in physiological responses, orexins are involved in numerous inflammatory and/or neoplastic pathologies. The presence and expression of orexins in different cancer models, including prostate cancer, and their role in inducing pro- or anti-apoptotic responses in tumor cell lines, suggest that the orexinergic system might have potential therapeutic action or function as a diagnostic marker in PCa. In addition to the traditional animal models for studying human PCa, the canine model might also serve as an additional tool, due to its clinical similarities with human prostate cancer.
Collapse
Affiliation(s)
- Anna Costagliola
- Department of Veterinary Medicine and Animal Productions, University of Napoli Federico II, Naples, Italy
| | - Renato Lombardi
- Local Health Authority, ASL, Foggia, Italy
- Unit of Pharmacy, Department of Pharmaceuticals, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Giovanna Liguori
- Department of Veterinary Medicine and Animal Productions, University of Napoli Federico II, Naples, Italy;
- Local Health Authority, ASL, Foggia, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, U.S.A
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, U.S.A
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| |
Collapse
|
119
|
Li S, Ying Z, Gentenaar M, Rensen PCN, Kooijman S, Visser JA, Meijer OC, Kroon J. Glucocorticoid Receptor Antagonism Improves Glucose Metabolism in a Mouse Model of Polycystic Ovary Syndrome. J Endocr Soc 2023; 8:bvad162. [PMID: 38169733 PMCID: PMC10758754 DOI: 10.1210/jendso/bvad162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Indexed: 01/05/2024] Open
Abstract
Context Polycystic ovary syndrome (PCOS) is a complex metabolic disorder associated with obesity, insulin resistance, and dyslipidemia. Hyperandrogenism is a major characteristic of PCOS. Increased androgen exposure is believed to deregulate metabolic processes in various tissues as part of the PCOS pathogenesis, predominantly through the androgen receptor (AR). Notably, various metabolic features in PCOS are similar to those observed after excess glucocorticoid exposure. Objective We hypothesized that glucocorticoid receptor (GR) signaling is involved in the metabolic symptoms of PCOS. Methods In a PCOS model of chronic dihydrotestosterone (DHT) exposure in female mice, we investigated whether GR signaling machinery was (de)regulated, and if treatment with a selective GR antagonist alleviated the metabolic symptoms. Results We observed an upregulation of GR messenger RNA expression in the liver after DHT exposure. In white adipose tissues and liver we found that DHT upregulated Hsd11b1, which encodes for the enzyme that converts inactive into active glucocorticoids. We found that preventive but not therapeutic administration of a GR antagonist alleviated DHT-induced hyperglycemia and restored glucose tolerance. We did not observe strong effects of GR antagonism in DHT-exposed mice on other features like total fat mass and lipid accumulation in various tissues. Conclusion We conclude that GR activation may play a role in glucose metabolism in DHT-exposed mice.
Collapse
Affiliation(s)
- Sheng Li
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Zhixiong Ying
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Max Gentenaar
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Sander Kooijman
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Jenny A Visser
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, the Netherlands
| | - Onno C Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Jan Kroon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| |
Collapse
|
120
|
Harnish MT, Lopez D, Morrison CT, Narayanan R, Fernandez EJ, Shen T. Novel Covalent Modifier-Induced Local Conformational Changes within the Intrinsically Disordered Region of the Androgen Receptor. BIOLOGY 2023; 12:1442. [PMID: 37998041 PMCID: PMC10669190 DOI: 10.3390/biology12111442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/18/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023]
Abstract
Intrinsically disordered regions (IDRs) of transcription factors play an important biological role in liquid condensate formation and gene regulation. It is thus desirable to investigate the druggability of IDRs and how small-molecule binders can alter their conformational stability. For the androgen receptor (AR), certain covalent ligands induce important changes, such as the neutralization of the condensate. To understand the specificity of ligand-IDR interaction and potential implications for the mechanism of neutralizing liquid-liquid phase separation (LLPS), we modeled and performed computer simulations of ligand-bound peptide segments obtained from the human AR. We analyzed how different covalent ligands affect local secondary structure, protein contact map, and protein-ligand contacts for these protein systems. We find that effective neutralizers make specific interactions (such as those between cyanopyrazole and tryptophan) that alter the helical propensity of the peptide segments. These findings on the mechanism of action can be useful for designing molecules that influence IDR structure and condensate of the AR in the future.
Collapse
Affiliation(s)
- Michael T. Harnish
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; (M.T.H.); (D.L.); (C.T.M.); (E.J.F.)
| | - Daniel Lopez
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; (M.T.H.); (D.L.); (C.T.M.); (E.J.F.)
| | - Corbin T. Morrison
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; (M.T.H.); (D.L.); (C.T.M.); (E.J.F.)
| | - Ramesh Narayanan
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA;
| | - Elias J. Fernandez
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; (M.T.H.); (D.L.); (C.T.M.); (E.J.F.)
| | - Tongye Shen
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; (M.T.H.); (D.L.); (C.T.M.); (E.J.F.)
| |
Collapse
|
121
|
Narkar VA. Exercise and Ischemia-Activated Pathways in Limb Muscle Angiogenesis and Vascular Regeneration. Methodist Debakey Cardiovasc J 2023; 19:58-68. [PMID: 38028974 PMCID: PMC10655757 DOI: 10.14797/mdcvj.1304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Exercise has a profound effect on cardiovascular disease, particularly through vascular remodeling and regeneration. Peripheral artery disease (PAD) is one such cardiovascular condition that benefits from regular exercise or rehabilitative physical therapy in terms of slowing the progression of disease and delaying amputations. Various rodent pre-clinical studies using models of PAD and exercise have shed light on molecular pathways of vascular regeneration. Here, I review key exercise-activated signaling pathways (nuclear receptors, kinases, and hypoxia inducible factors) in the skeletal muscle that drive paracrine regenerative angiogenesis. The rationale for highlighting the skeletal muscle is that it is the largest organ recruited during exercise. During exercise, skeletal muscle releases several myokines, including angiogenic factors and cytokines that drive tissue vascular regeneration via activation of endothelial cells, as well as by recruiting immune and endothelial progenitor cells. Some of these core exercise-activated pathways can be extrapolated to vascular regeneration in other organs. I also highlight future areas of exercise research (including metabolomics, single cell transcriptomics, and extracellular vesicle biology) to advance our understanding of how exercise induces vascular regeneration at the molecular level, and propose the idea of "exercise-mimicking" therapeutics for vascular recovery.
Collapse
Affiliation(s)
- Vihang A. Narkar
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, UTHealth, Houston, Texas, US
| |
Collapse
|
122
|
Chen S, Zheng Y, Liang B, Yin Y, Yao J, Wang Q, Liu Y, Neamati N. The application of PROTAC in HDAC. Eur J Med Chem 2023; 260:115746. [PMID: 37607440 DOI: 10.1016/j.ejmech.2023.115746] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/29/2023] [Accepted: 08/17/2023] [Indexed: 08/24/2023]
Abstract
Inducing protein degradation by proteolysis targeting chimera (PROTAC) has provided great opportunities for scientific research and industrial applications. Histone deacetylase (HDAC)-PROTAC has been widely developed since the first report of its ability to induce the degradation of SIRT2 in 2017. To date, ten of the eighteen HDACs (HDACs 1-8, HDAC10, and SIRT2) have been successfully targeted and degraded by HDAC-PROTACs. HDAC-PROTACs surpass traditional HDAC inhibitors in many aspects, such as higher selectivity, more potent antiproliferative activity, and the ability to disrupt the enzyme-independent functions of a multifunctional protein and overcome drug resistance. Rationally designing HDAC-PROTACs is a main challenge in development because slight variations in chemical structure can lead to drastic effects on the efficiency and selectivity of the degradation. In the future, HDAC-PROTACs can potentially be involved in clinical research with the support of the increased amount of in vivo data, pharmacokinetic evaluation, and pharmacological studies.
Collapse
Affiliation(s)
- Shaoting Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Yuxiang Zheng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Benji Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Yudong Yin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Jian Yao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Quande Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China.
| | - Yanghan Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China.
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy and Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, United States.
| |
Collapse
|
123
|
Joko Y, Yamamoto Y, Kato S, Takemoto T, Abe M, Matsumoto T, Fukumoto S, Sawatsubashi S. VDR is an essential regulator of hair follicle regression through the progression of cell death. Life Sci Alliance 2023; 6:e202302014. [PMID: 37673445 PMCID: PMC10485823 DOI: 10.26508/lsa.202302014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 09/08/2023] Open
Abstract
Vitamin D receptor (VDR) is essential for hair follicle homeostasis as its deficiency induces hair loss, although the mechanism involved remains unknown. Our research shows that, in Vdr-knockout mice, the hair cycle is halted during the catagen stage, preceding alopecia. In addition, in Vdr-knockout hair follicles, epithelial strands that normally regress during the catagen phase persist as "surviving epithelial strands." Single-cell RNA sequencing analysis suggests that these surviving epithelial strands are formed by cells in the lower part of the hair follicle. These findings emphasize the importance of the regression phase in hair follicle regeneration and establish VDR as a regulator of the catagen stage.
Collapse
Affiliation(s)
- Yudai Joko
- Department of Molecular Endocrinology, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yoko Yamamoto
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Shigeaki Kato
- Graduate School of Life Science and Technology, Iryo Sosei University, Fukushima, Japan
| | - Tatsuya Takemoto
- Laboratory for Embryology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Masahiro Abe
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Toshio Matsumoto
- Department of Molecular Endocrinology, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Seiji Fukumoto
- Department of Molecular Endocrinology, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Shun Sawatsubashi
- Department of Molecular Endocrinology, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
- Research and Innovation Liaison Office, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
- Laboratory of Integrative Nuclear Dynamics, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
124
|
Senapati D, Sharma V, Rath SK, Rai U, Panigrahi N. Functional implications and therapeutic targeting of androgen response elements in prostate cancer. Biochimie 2023; 214:188-198. [PMID: 37460038 DOI: 10.1016/j.biochi.2023.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/12/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
The androgen receptor (AR) plays an essential role in the growth and progression of prostate cancer (CaP). Ligand-activated AR inside the nucleus binds to the androgen response element (ARE) of the target genes in dimeric form and recruits transcriptional machinery to facilitate gene transcription. Pharmacological compounds that inhibit the AR action either bind to the ligand binding domain (LBD) or interfere with the interactions of AR with other co-regulatory proteins, slowing the progression of the disease. However, the emergence of resistance to conventional treatment makes clinical management of CaP difficult. Resistance has been associated with activation of androgen/AR axis that restores AR transcriptional activity. Activated AR signaling in resistance cases can be mediated by several mechanisms including AR amplification, gain-of-function AR mutations, androgen receptor variant (ARVs), intracrine androgen production, and overexpression of AR coactivators. Importantly, in castration resistant prostate cancer, ARVs lacking the LBD become constitutively active and promote hormone-independent development, underlining the need to concentrate on the other domain or the AR-DNA interface for the identification of novel actionable targets. In this review, we highlight the plasticity of AR-DNA binding and explain how fine-tuning AR's cooperative interactions with DNA translate into developing an alternative strategy to antagonize AR activity.
Collapse
Affiliation(s)
- Dhirodatta Senapati
- GITAM School of Pharmacy, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India.
| | - Vikas Sharma
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Santosh Kumar Rath
- School of Pharmaceuticals and Population Health Informatics, DIT University, Dehradun, Uttarakhand, India
| | - Uddipak Rai
- School of Pharmaceuticals and Population Health Informatics, DIT University, Dehradun, Uttarakhand, India
| | - Naresh Panigrahi
- GITAM School of Pharmacy, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
| |
Collapse
|
125
|
Wooton-Kee CR. Therapeutic implications of impaired nuclear receptor function and dysregulated metabolism in Wilson's disease. Pharmacol Ther 2023; 251:108529. [PMID: 37741465 PMCID: PMC10841433 DOI: 10.1016/j.pharmthera.2023.108529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/29/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023]
Abstract
Copper is an essential trace element that is required for the activity of many enzymes and cellular processes, including energy homeostasis and neurotransmitter biosynthesis; however, excess copper accumulation results in significant cellular toxicity. The liver is the major organ for maintaining copper homeostasis. Inactivating mutations of the copper-transporting P-type ATPase, ATP7B, result in Wilson's disease, an autosomal recessive disorder that requires life-long medicinal therapy or liver transplantation. Current treatment protocols are limited to either sequestration of copper via chelation or reduction of copper absorption in the gut (zinc therapy). The goal of these strategies is to reduce free copper, redox stress, and cellular toxicity. Several lines of evidence in Wilson's disease animal models and patients have revealed altered hepatic metabolism and impaired hepatic nuclear receptor activity. Nuclear receptors are transcription factors that coordinate hepatic metabolism in normal and diseased livers, and several hepatic nuclear receptors have decreased activity in Wilson's disease and Atp7b-/- models. In this review, we summarize the basic physiology that underlies Wilson's disease pathology, Wilson's disease animal models, and the possibility of targeting nuclear receptor activity in Wilson's disease patients.
Collapse
Affiliation(s)
- Clavia Ruth Wooton-Kee
- Baylor College of Medicine, Department of Pediatrics-Nutrition, Children's Nutrition Research Center, Houston, TX, United States of America.
| |
Collapse
|
126
|
Wang X, Xu X, Wang Z. The Post-Translational Role of UFMylation in Physiology and Disease. Cells 2023; 12:2543. [PMID: 37947621 PMCID: PMC10648299 DOI: 10.3390/cells12212543] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023] Open
Abstract
Ubiquitin-fold modifier 1 (UFM1) is a newly identified ubiquitin-like protein that has been conserved during the evolution of multicellular organisms. In a similar manner to ubiquitin, UFM1 can become covalently linked to the lysine residue of a substrate via a dedicated enzymatic cascade. Although a limited number of substrates have been identified so far, UFM1 modification (UFMylation) has been demonstrated to play a vital role in a variety of cellular activities, including mammalian development, ribosome biogenesis, the DNA damage response, endoplasmic reticulum stress responses, immune responses, and tumorigenesis. In this review, we summarize what is known about the UFM1 enzymatic cascade and its biological functions, and discuss its recently identified substrates. We also explore the pathological role of UFMylation in human disease and the corresponding potential therapeutic targets and strategies.
Collapse
Affiliation(s)
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China;
| | - Zhifeng Wang
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China;
| |
Collapse
|
127
|
Kadasah SF, Radwan MO. Overview of Ursolic Acid Potential for the Treatment of Metabolic Disorders, Autoimmune Diseases, and Cancers via Nuclear Receptor Pathways. Biomedicines 2023; 11:2845. [PMID: 37893218 PMCID: PMC10604592 DOI: 10.3390/biomedicines11102845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Nuclear receptors (NRs) form a family of druggable transcription factors that are regulated by ligand binding to orchestrate multifaceted physiological functions, including reproduction, immunity, metabolism, and growth. NRs represent attractive and valid targets for the management and treatment of a vast array of ailments. Pentacyclic triterpenes (PTs) are ubiquitously distributed natural products in medicinal and aromatic plants, of which ursolic acid (UA) is an extensively studied member, due to its diverse bio-pertinent activities against different cancers, inflammation, aging, obesity, diabetes, dyslipidemia, and liver injury. In fact, PTs share a common lipophilic structure that resembles NRs' endogenous ligands. Herein, we present a review of the literature on UA's effect on NRs, showcasing the resulting health benefits and potential therapeutic outcomes. De facto, UA exhibited numerous pharmacodynamic effects on PPAR, LXR, FXR, and PXR, resulting in remarkable anti-inflammatory, anti-hyperlipidemic, and hepatoprotective properties, by lowering lipid accumulation in hepatocytes and mitigating non-alcoholic steatohepatitis (NASH) and its subsequent liver fibrosis. Furthermore, UA reversed valproate and rifampicin-induced hepatic lipid accumulation. Additionally, UA showed great promise for the treatment of autoimmune inflammatory diseases such as multiple sclerosis and autoimmune arthritis by antagonizing RORγ. UA exhibited antiproliferative effects against skin, prostate, and breast cancers, partially via PPARα and RORγ pathways. Herein, for the first time, we explore and provide insights into UA bioactivity with respect to NR modulation.
Collapse
Affiliation(s)
- Sultan F. Kadasah
- Department of Biology, Faculty of Science, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia
| | - Mohamed O. Radwan
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| |
Collapse
|
128
|
Kumar A, Narkar VA. Nuclear receptors as potential therapeutic targets in peripheral arterial disease and related myopathy. FEBS J 2023; 290:4596-4613. [PMID: 35942640 PMCID: PMC9908775 DOI: 10.1111/febs.16593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 12/31/2022]
Abstract
Peripheral arterial disease (PAD) is a prevalent cardiovascular complication of limb vascular insufficiency, causing ischemic injury, mitochondrial metabolic damage and functional impairment in the skeletal muscle, and ultimately leading to immobility and mortality. While potential therapies have been mostly focussed on revascularization, none of the currently available pharmacological treatments are fully effective in PAD, often leading to amputations, particularly in chronic metabolic diseases. One major limitation of focussed angiogenesis and revascularization as a therapeutic strategy is a limited effect on metabolic restoration and muscle regeneration in the affected limb. Therefore, additional preclinical investigations are needed to discover novel treatment options for PAD preferably targeting multiple aspects of muscle recovery. In this review, we propose nuclear receptors expressed in the skeletal muscle as potential candidates for ischemic muscle repair in PAD. We review classic steroid and orphan receptors that have been reported to be involved in the regulation of paracrine muscle angiogenesis, oxidative metabolism, mitochondrial biogenesis and muscle regeneration, and discuss how these receptors could be critical for recovery from ischemic muscle damage. Furthermore, we identify existing gaps in our understanding of nuclear receptor signalling in the skeletal muscle and propose future areas of research that could be instrumental in exploring nuclear receptors as therapeutic candidates for treating PAD.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204
| | - Vihang A. Narkar
- Brown Foundation Institute of Molecular Medicine, UTHealth McGovern Medical School, Houston, TX, 77030
- University of Texas MD Anderson and UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030
| |
Collapse
|
129
|
Brent GA. A Historical Reflection on Scientific Advances in Understanding Thyroid Hormone Action. Thyroid 2023; 33:1140-1149. [PMID: 37594753 DOI: 10.1089/thy.2022.0636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Background: Thyroid hormone (TH) has actions in every tissue of the body and is essential for normal development, as well as having important actions in the adult. The earliest markers of TH action that were identified and monitored clinically, even before TH could be measured in serum, included oxygen consumption, basal metabolic rate, serum cholesterol, and deep tendon reflex time. Cellular, rodent, amphibian, zebrafish, and human models have been used to study TH action. Summary: Early studies of the mechanism of TH action focused on saturable-specific triiodothyronine (T3) nuclear binding and direct actions of T3 that altered protein expression. Additional effects of TH were recognized on mitochondria, stimulation of ion transport, especially the sodium potassium ATPase, augmentation of adrenergic signaling, role as a neurotransmitter, and direct plasma membrane effects. The cloning of the thyroid hormone receptor (THR) genes in 1986 and report of the THR crystal structure in 1995 produced rapid progress in understanding the mechanism of TH nuclear action, as well as the development of modified THR ligands. These findings revealed nuances of TH signaling, including the role of nuclear receptor coactivators and corepressors, repression of positively stimulated genes by the unliganded receptor, THR isoform-specific actions of TRα (THRA) and TRβ (THRB), and THR binding DNA as a heterodimer with retinoid-x-receptor (RXR) for genes positively regulated by TH. The identification of genetic disorders of TH transport and signaling, especially Resistance to Thyroid Hormone (RTH) and monocarboxylate transporter 8 (Mct8) defects, has been highly informative with respect to the mechanism of TH action. Conclusions: The impact of THR isoform, post-translational modifications, receptor cofactors, DNA response element, and selective TH tissue uptake, on TH action, have clinical implications for diagnosing and treating thyroid disease. Additionally, these findings have led to the development of novel TH and TH analogue therapies for metabolic, neurological, and cardiovascular diseases.
Collapse
Affiliation(s)
- Gregory A Brent
- Division of Endocrinology, Diabetes, and Metabolism, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| |
Collapse
|
130
|
Ito-Harashima S, Tsubouchi Y, Takada E, Kawanishi M, Yagi T. Development of a yeast reporter gene assay to detect ligands of freshwater cladoceran Daphnia magna ultraspiracle, a homolog of vertebrate retinoid X receptors. J Appl Toxicol 2023; 43:1447-1461. [PMID: 37078133 DOI: 10.1002/jat.4476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/21/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) often affect homeostatic regulation in living organisms by directly acting on nuclear receptors (NRs). Retinoid X receptors (RXRs), the most highly conserved members of the NR superfamily during evolution, function as partners to form heterodimers with other NRs, such as retinoic acid, thyroid hormone, and vitamin D3 receptors. RXRs also homodimerize and induce the expression of target genes upon binding with their natural ligand, 9-cis-retinoic acid (9cRA), and typical EDCs organotin compounds, such as tributyltin and triphenyltin. In the present study, we established a new yeast reporter gene assay (RGA) to detect the ligands of freshwater cladoceran Daphnia magna ultraspiracle (Dapma-USP), a homolog of vertebrate RXRs. D. magna has been used as a representative crustacean species for aquatic EDC assessments in the Organization for Economic Corporation and Development test guidelines. Dapma-USP was expressed along with the Drosophila melanogaster steroid receptor coactivator Taiman in yeast cells carrying the lacZ reporter plasmid. The RGA for detecting agonist activity of organotins and o-butylphenol was improved by use of mutant yeast strains lacking genes encoding cell wall mannoproteins and/or plasma membrane drug efflux pumps as hosts. We also showed that a number of other human RXR ligands, phenol and bisphenol A derivatives, and terpenoid compounds such as 9c-RA exhibited antagonist activity on Dapma-USP. Our newly established yeast-based RGA system is valuable as the first screening tool to detect ligand substances for Dapma-USP and for evaluating the evolutionary divergence of the ligand responses of RXR homologs between humans and D. magna.
Collapse
Affiliation(s)
- Sayoko Ito-Harashima
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Japan
| | - Yumiko Tsubouchi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Japan
| | - Eiji Takada
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Japan
| | - Masanobu Kawanishi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Japan
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Japan
| | - Takashi Yagi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Japan
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Japan
| |
Collapse
|
131
|
López-Mejía JA, Mantilla-Ollarves JC, Rocha-Zavaleta L. Modulation of JAK-STAT Signaling by LNK: A Forgotten Oncogenic Pathway in Hormone Receptor-Positive Breast Cancer. Int J Mol Sci 2023; 24:14777. [PMID: 37834225 PMCID: PMC10573125 DOI: 10.3390/ijms241914777] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Breast cancer remains the most frequently diagnosed cancer in women worldwide. Tumors that express hormone receptors account for 75% of all cases. Understanding alternative signaling cascades is important for finding new therapeutic targets for hormone receptor-positive breast cancer patients. JAK-STAT signaling is commonly activated in hormone receptor-positive breast tumors, inducing inflammation, proliferation, migration, and treatment resistance in cancer cells. In hormone receptor-positive breast cancer, the JAK-STAT cascade is stimulated by hormones and cytokines, such as prolactin and IL-6. In normal cells, JAK-STAT is inhibited by the action of the adaptor protein, LNK. However, the role of LNK in breast tumors is not fully understood. This review compiles published reports on the expression and activation of the JAK-STAT pathway by IL-6 and prolactin and potential inhibition of the cascade by LNK in hormone receptor-positive breast cancer. Additionally, it includes analyses of available datasets to determine the level of expression of LNK and various members of the JAK-STAT family for the purpose of establishing associations between expression and clinical outcomes. Together, experimental evidence and in silico studies provide a better understanding of the potential implications of the JAK-STAT-LNK loop in hormone receptor-positive breast cancer progression.
Collapse
Affiliation(s)
- José A. López-Mejía
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 03100, Mexico; (J.A.L.-M.); (J.C.M.-O.)
| | - Jessica C. Mantilla-Ollarves
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 03100, Mexico; (J.A.L.-M.); (J.C.M.-O.)
| | - Leticia Rocha-Zavaleta
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 03100, Mexico; (J.A.L.-M.); (J.C.M.-O.)
- Programa Institucional de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 03100, Mexico
| |
Collapse
|
132
|
Radwan MO, Kadasah SF, Aljubiri SM, Alrefaei AF, El-Maghrabey MH, El Hamd MA, Tateishi H, Otsuka M, Fujita M. Harnessing Oleanolic Acid and Its Derivatives as Modulators of Metabolic Nuclear Receptors. Biomolecules 2023; 13:1465. [PMID: 37892147 PMCID: PMC10604226 DOI: 10.3390/biom13101465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Nuclear receptors (NRs) constitute a superfamily of ligand-activated transcription factors with a paramount role in ubiquitous physiological functions such as metabolism, growth, and reproduction. Owing to their physiological role and druggability, NRs are deemed attractive and valid targets for medicinal chemists. Pentacyclic triterpenes (PTs) represent one of the most important phytochemical classes present in higher plants, where oleanolic acid (OA) is the most studied PTs representative owing to its multitude of biological activities against cancer, inflammation, diabetes, and liver injury. PTs possess a lipophilic skeleton that imitates the NRs endogenous ligands. Herein, we report a literature overview on the modulation of metabolic NRs by OA and its semi-synthetic derivatives, highlighting their health benefits and potential therapeutic applications. Indeed, OA exhibited varying pharmacological effects on FXR, PPAR, LXR, RXR, PXR, and ROR in a tissue-specific manner. Owing to these NRs modulation, OA showed prominent hepatoprotective properties comparable to ursodeoxycholic acid (UDCA) in a bile duct ligation mice model and antiatherosclerosis effect as simvastatin in a model of New Zealand white (NZW) rabbits. It also demonstrated a great promise in alleviating non-alcoholic steatohepatitis (NASH) and liver fibrosis, attenuated alpha-naphthol isothiocyanate (ANIT)-induced cholestatic liver injury, and controlled blood glucose levels, making it a key player in the therapy of metabolic diseases. We also compiled OA semi-synthetic derivatives and explored their synthetic pathways and pharmacological effects on NRs, showcasing their structure-activity relationship (SAR). To the best of our knowledge, this is the first review article to highlight OA activity in terms of NRs modulation.
Collapse
Affiliation(s)
- Mohamed O. Radwan
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.T.); (M.O.); (M.F.)
| | - Sultan F. Kadasah
- Department of Biology, Faculty of Science, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Salha M. Aljubiri
- Department of Chemistry, College of Science, University of Bisha, Bisha 61922, Saudi Arabia;
| | | | - Mahmoud H. El-Maghrabey
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt;
| | - Mohamed A. El Hamd
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt
| | - Hiroshi Tateishi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.T.); (M.O.); (M.F.)
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.T.); (M.O.); (M.F.)
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.T.); (M.O.); (M.F.)
| |
Collapse
|
133
|
Hwang BS, Lee S, Jeong EJ, Rho JR. Two New Components from an Association of Marine Sponges Poecillastra sp. and Jaspis sp. and Their Inhibitory Effects on Biomarkers for Benign Prostatic Hyperplasia. Mar Drugs 2023; 21:491. [PMID: 37755104 PMCID: PMC10532625 DOI: 10.3390/md21090491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
Benign prostatic hyperplasia (BPH), characterized by the enlargement of the prostate gland and subsequent lower urinary tract symptoms, poses a significant health concern for aging men with increasing prevalence. Extensive efforts encompassing in vitro and in vivo models are underway to identify novel and effective agents for the management and treatment of BPH. Research endeavors are primarily channeled toward assessing the potential of compounds to inhibit cell proliferation, curb inflammation, and display anti-androgenic activity. Notably, through screening aimed at inhibiting 5-alpha reductase type 2 (5αR2) in human prostatic cells, two acyl compounds (1 and 2) were isolated from a bioactive fraction sourced from an association of marine sponges Poecillastra sp. and Jaspis sp. The complete structure of 1 was determined as (Z)-dec-3-enony (2S, 3S)-capreomycidine, ascertained by JBCA and ECD comparison. While the absolute configurations of 2 remained unassigned, it was identified as a linkage of a 2, 7S*-dihydoxy-9R*-methyloctadecanoyl group with the 2-amino position of a tramiprosate moiety referred to as homotaurine. Evaluation of both compounds encompassed the assessment of their inhibitory effects on key biomarkers (5αR2, AR, PSA, and PCNA) associated with BPH in testosterone propionate (TP)-activated LNCap and RWPE-1 cells.
Collapse
Affiliation(s)
- Buyng Su Hwang
- Bio-Resource Industrialization Center, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea;
| | - Sangbum Lee
- Department of Oceanography, Kunsan National University, Kunsan 54150, Republic of Korea;
| | - Eun Ju Jeong
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Jung-Rae Rho
- Department of Oceanography, Kunsan National University, Kunsan 54150, Republic of Korea;
| |
Collapse
|
134
|
Matsumoto Y, Hashimoto Y, Fujii S. Development of subtype-selective estrogen receptor modulators using the bis(4-hydroxyphenyl)silanol core as a stable isostere of bis(4-hydroxyphenyl)methanol. RSC Adv 2023; 13:27359-27362. [PMID: 37705989 PMCID: PMC10496907 DOI: 10.1039/d3ra04656g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023] Open
Abstract
In this study, we synthesized and evaluated silanol-based bisphenol derivatives as stable isosteres of bis(4-hydroxyphenyl)methanol. The developed silanols exhibited estrogen receptor (ER)-modulating activity. Among them, bis(4-hydroxyphenyl)(methyl)silanol (5a) showed a characteristic ER subtype selectivity, namely, antagonistic activity toward ERα and agonistic activity toward ERβ. Docking simulation indicated that the silanol moiety plays a key role in this selectivity. Our results suggest that silanol-based bisphenols offer a unique scaffold for biologically active compounds.
Collapse
Affiliation(s)
- Yuichiro Matsumoto
- Institute for Quantitative Biosciences, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-0032 Japan
| | - Yuichi Hashimoto
- Institute for Quantitative Biosciences, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-0032 Japan
| | - Shinya Fujii
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kanda-Surugadai, Chiyoda-ku Tokyo 101-0062 Japan
| |
Collapse
|
135
|
Reichenbach J, Fraungruber P, Mayr D, Buschmann C, Kraus FBT, Topalov NE, Chelariu-Raicu A, Kolben T, Burges A, Mahner S, Kessler M, Jeschke U, Czogalla B, Trillsch F. Nuclear receptor co-repressor NCOR2 and its relation to GPER with prognostic impact in ovarian cancer. J Cancer Res Clin Oncol 2023; 149:8719-8728. [PMID: 37131060 PMCID: PMC10374731 DOI: 10.1007/s00432-023-04708-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/17/2023] [Indexed: 05/04/2023]
Abstract
PURPOSE The significance of the non-classical G-protein-coupled estrogen receptor (GPER) as positive or negative prognostic factor for ovarian cancer patients remains still controversial. Recent results indicate that an imbalance of both co-factors and co-repressors of nuclear receptors regulates ovarian carcinogenesis by altering the transcriptional activity through chromatin remodeling. The present study aims to investigate whether the expression of the nuclear co-repressor NCOR2 plays a role in GPER signaling which thereby could positively impact overall survival rates of ovarian cancer patients. METHODS NCOR2 expression was evaluated by immunohistochemistry in a cohort of 156 epithelial ovarian cancer (EOC) tumor samples and correlated with GPER expression. The correlation and differences in clinical and histopathological variables as well as their effect on prognosis were analyzed by Spearman's correlation, Kruskal-Wallis test and Kaplan-Meier estimates. RESULTS Histologic subtypes were associated with different NCOR2 expression patterns. More specifically, serous and mucinous EOC demonstrated a higher NCOR2 expression (P = 0.008). In addition, high nuclear NCOR2 expression correlated significantly with high GPER expression (cc = 0.245, P = 0.008). A combined evaluation of both high NCOR2 (IRS > 6) and high GPER (IRS > 8) expression revealed an association of a significantly improved overall survival (median OS 50.9 versus 105.1 months, P = 0.048). CONCLUSION Our results support the hypothesis that nuclear co-repressors such as NCOR2 may influence the transcription of target genes in EOC such as GPER. Understanding the role of nuclear co-repressors on signaling pathways will allow a better understanding of the factors involved in prognosis and clinical outcome of EOC patients.
Collapse
Affiliation(s)
- Juliane Reichenbach
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilian-University of Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Patricia Fraungruber
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilian-University of Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Doris Mayr
- Department of Pathology, Ludwig-Maximilian-University of Munich, Thalkirchner Strasse 36, 80337 Munich, Germany
| | - Christina Buschmann
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilian-University of Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Fabian B. T. Kraus
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilian-University of Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Nicole Elisabeth Topalov
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilian-University of Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Anca Chelariu-Raicu
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilian-University of Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilian-University of Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Alexander Burges
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilian-University of Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilian-University of Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Mirjana Kessler
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilian-University of Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Augsburg, Germany
| | - Bastian Czogalla
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilian-University of Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Fabian Trillsch
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilian-University of Munich, Marchioninistr. 15, 81377 Munich, Germany
| |
Collapse
|
136
|
Zhang J, Liu J, Li H, Hua J, Luo S. Esterification with a Long-Chain Fatty Acid Elevates the Exposure Toxicity of Tigliane Diterpenoids from Euphorbia fischeriana Roots against Nematodes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12730-12740. [PMID: 37599642 DOI: 10.1021/acs.jafc.3c03460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
In this study, two tigliane diterpenoids, 12-deoxyphorbol-13-hexadecanoate and 12-deoxyphorbol-13-acetate (prostratin), were identified from the methanol extract of the roots of Euphorbia fischeriana and were found to have the ability to significantly reduce the survival of Caenorhabditis elegans. It was determined that exposure to these two compounds had toxic effects on the growth, reproduction, locomotion behavior, and accumulation of lipids and lipofuscin of the nematodes. Moreover, the transcription levels of the genes associated with lipid accumulation, apoptosis, insulin, and nuclear hormone synthesis in C. elegans were significantly influenced. Interestingly, 12-deoxyphorbol-13-hexadecanoate produced exposure toxicity at lower concentrations than that of prostratin. Pearson correlation analysis indicates that the elevated exposure toxicity of 12-deoxyphorbol-13-hexadecanoate may be the result of differing transcription levels, which result from the differential expression of fat-6, egl-38, and cep-1. These results reveal that esterification with a long-chain fatty acid elevates the exposure toxicity of this tigliane diterpenoid, thus providing a basis for the application of tigliane diterpenoids in plant-derived nematicides.
Collapse
Affiliation(s)
- Jiaming Zhang
- Research Center of Protection and Utilization of Plant Resources, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jiayi Liu
- Research Center of Protection and Utilization of Plant Resources, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Hongdi Li
- Research Center of Protection and Utilization of Plant Resources, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Juan Hua
- Research Center of Protection and Utilization of Plant Resources, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Shihong Luo
- Research Center of Protection and Utilization of Plant Resources, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| |
Collapse
|
137
|
Bohn T, Hellman-Regen J, de Lera AR, Böhm V, Rühl R. Human nutritional relevance and suggested nutritional guidelines for vitamin A5/X and provitamin A5/X. Nutr Metab (Lond) 2023; 20:34. [PMID: 37582723 PMCID: PMC10426203 DOI: 10.1186/s12986-023-00750-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 05/27/2023] [Indexed: 08/17/2023] Open
Abstract
In the last century, vitamin A was identified that included the nutritional relevant vitamin A1 / provitamin A1, as well as the vitamin A2 pathway concept. Globally, nutritional guidelines have focused on vitamin A1 with simplified recommendations and calculations based solely on vitamin A. The vitamin A / provitamin A terminology described vitamin A with respect to acting as a precursor of 11-cis-retinal, the chromophore of the visual pigment, as well as retinoic acid(s), being ligand(s) of the nuclear hormone receptors retinoic acid receptors (RARs) α, β and γ. All-trans-retinoic acid was conclusively shown to be the endogenous RAR ligand, while the concept of its isomer 9-cis-retinoic acid, being "the" endogenous ligand of the retinoid-X receptors (RXRs), remained inconclusive. Recently, 9-cis-13,14-dihydroretinoic acid was conclusively reported as an endogenous RXR ligand, and a direct nutritional precursor was postulated in 2018 and further confirmed by Rühl, Krezel and de Lera in 2021. This was further termed vitamin A5/X / provitamin A5/X. In this review, a new vitamin A5/X / provitamin A5/X concept is conceptualized in parallel to the vitamin A(1) / provitamin A(1) concept for daily dietary intake and towards dietary guidelines, with a focus on the existing national and international regulations for the physiological and nutritional relevance of vitamin A5/X. The aim of this review is to summarize available evidence and to emphasize gaps of knowledge regarding vitamin A5/X, based on new and older studies and proposed future directions as well as to stimulate and propose adapted nutritional regulations.
Collapse
Affiliation(s)
- Torsten Bohn
- Nutrition Research Group, Department of Precision Health, Luxembourg Institute and Health, 1 A-B, Rue Thomas Edison, 1445, Strassen, Luxembourg
| | - Julian Hellman-Regen
- Department of Psychiatry, Charité-Campus Benjamin Franklin, Section Neurobiology, University Medicine Berlin, Berlin, Germany
| | - Angel R de Lera
- Departamento de Química Orgánica, Facultad de Química, CINBIO and IBIV, Universidade de Vigo, Campus As Lagoas-Marcosende, 36310, Vigo, Spain
| | - Volker Böhm
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Ralph Rühl
- CISCAREX UG, Transvaalstr. 27c, 13351, Berlin, Germany.
| |
Collapse
|
138
|
Hochbaum DR, Dubinsky AC, Farnsworth HC, Hulshof L, Kleinberg G, Urke A, Wang W, Hakim R, Robertson K, Park C, Solberg A, Yang Y, Baynard C, Nadaf NM, Beron CC, Girasole AE, Chantranupong L, Cortopassi M, Prouty S, Geistlinger L, Banks A, Scanlan T, Greenberg ME, Boulting GL, Macosko EZ, Sabatini BL. Thyroid hormone rewires cortical circuits to coordinate body-wide metabolism and exploratory drive. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552874. [PMID: 37609206 PMCID: PMC10441422 DOI: 10.1101/2023.08.10.552874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Animals adapt to varying environmental conditions by modifying the function of their internal organs, including the brain. To be adaptive, alterations in behavior must be coordinated with the functional state of organs throughout the body. Here we find that thyroid hormone- a prominent regulator of metabolism in many peripheral organs- activates cell-type specific transcriptional programs in anterior regions of cortex of adult mice via direct activation of thyroid hormone receptors. These programs are enriched for axon-guidance genes in glutamatergic projection neurons, synaptic regulators across both astrocytes and neurons, and pro-myelination factors in oligodendrocytes, suggesting widespread remodeling of cortical circuits. Indeed, whole-cell electrophysiology recordings revealed that thyroid hormone induces local transcriptional programs that rewire cortical neural circuits via pre-synaptic mechanisms, resulting in increased excitatory drive with a concomitant sensitization of recruited inhibition. We find that thyroid hormone bidirectionally regulates innate exploratory behaviors and that the transcriptionally mediated circuit changes in anterior cortex causally promote exploratory decision-making. Thus, thyroid hormone acts directly on adult cerebral cortex to coordinate exploratory behaviors with whole-body metabolic state.
Collapse
|
139
|
Katleba KD, Ghosh PM, Mudryj M. Beyond Prostate Cancer: An Androgen Receptor Splice Variant Expression in Multiple Malignancies, Non-Cancer Pathologies, and Development. Biomedicines 2023; 11:2215. [PMID: 37626712 PMCID: PMC10452427 DOI: 10.3390/biomedicines11082215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Multiple studies have demonstrated the importance of androgen receptor (AR) splice variants (SVs) in the progression of prostate cancer to the castration-resistant phenotype and their utility as a diagnostic. However, studies on AR expression in non-prostatic malignancies uncovered that AR-SVs are expressed in glioblastoma, breast, salivary, bladder, kidney, and liver cancers, where they have diverse roles in tumorigenesis. AR-SVs also have roles in non-cancer pathologies. In granulosa cells from women with polycystic ovarian syndrome, unique AR-SVs lead to an increase in androgen production. In patients with nonobstructive azoospermia, testicular Sertoli cells exhibit differential expression of AR-SVs, which is associated with impaired spermatogenesis. Moreover, AR-SVs have been identified in normal cells, including blood mononuclear cells, neuronal lipid rafts, and the placenta. The detection and characterization of AR-SVs in mammalian and non-mammalian species argue that AR-SV expression is evolutionarily conserved and that AR-SV-dependent signaling is a fundamental regulatory feature in multiple cellular contexts. These discoveries argue that alternative splicing of the AR transcript is a commonly used mechanism that leads to an expansion in the repertoire of signaling molecules needed in certain tissues. Various malignancies appropriate this mechanism of alternative AR splicing to acquire a proliferative and survival advantage.
Collapse
Affiliation(s)
- Kimberley D. Katleba
- Veterans Affairs-Northern California Health Care System, 10535 Hospital Way, Mather, CA 95655, USA; (K.D.K.); (P.M.G.)
- Department of Medical Microbiology and Immunology, 1 Shields Avenue, UC Davis, Davis, CA 95616, USA
| | - Paramita M. Ghosh
- Veterans Affairs-Northern California Health Care System, 10535 Hospital Way, Mather, CA 95655, USA; (K.D.K.); (P.M.G.)
- Department of Urologic Surgery, 4860 Y Street, UC Davis, Sacramento, CA 95718, USA
- Department of Biochemistry and Molecular Medicine, 1 Shields Avenue, UC Davis, Davis, CA 95616, USA
| | - Maria Mudryj
- Veterans Affairs-Northern California Health Care System, 10535 Hospital Way, Mather, CA 95655, USA; (K.D.K.); (P.M.G.)
- Department of Medical Microbiology and Immunology, 1 Shields Avenue, UC Davis, Davis, CA 95616, USA
| |
Collapse
|
140
|
Wagh SN, Chatpalliwar VA. Design, Docking, In silico ADME Prediction of Novel 2-substituted-5-
hydroxy-1-(1-methyl-3-morpholinopropyl)-1H-indole-3-carboxamide Derivatives
for Estrogen Receptor Alfa in AF-2 Domain for Effective Anticancer
Treatment. LETT DRUG DES DISCOV 2023; 20:1066-1085. [DOI: 10.2174/1570180819666220613091348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/16/2022] [Accepted: 03/15/2022] [Indexed: 11/22/2022]
Abstract
Aim:
The present work has been designed to discover some novel 2-substituted -5-hydroxy-1-
(1-methyl-3-morpholinopropyl)-1H-indole-3-carboxamide derivatives and their screening through computational
molecular docking.
Background:
The present manuscript describes designing novel 2-substituted-5-hydroxy-1-(1-methyl-3-
morpholinopropyl)-1H-indole-3-carboxamide derivatives as specific ERα modulators, discusses the selection
criteria for 1ERR, several interactions between the ligand and the amino acid residues that would
probably elicit fruitful modulation of the receptor. Accordingly, a ligand was observed to yield a G Score
of -10. 390, which was considered close and comparable with the standard ligand Raloxifene (-11.869).
Objective:
Synthesize a few indole -3-carboxamide derivatives and test their ability to modulate ER-α
through human cell line cultures for breast cancer. The present manuscript describes the designing of
novel 2-substituted -5-hydroxy-1-(1-methyl-3-morpholinopropyl)-1H-indole-3-carboxamide derivatives
as specific ERα modulators, discusses the selection criteria for 1ERR, several interactions between the
ligand and the amino acid residues that would probably elicit fruitful modulation of the ER-alpha in the
treatment of breast cancer.
Methods:
This work involved designing a few 2-substituted-5-hydroxy-1-(1-methyl-3-
morpholinopropyl)-1H-indole-3-carboxamide derivatives and their virtual screening for receptor modulation
by carrying molecular docking studies to determine the binding interactions for best-fit conformations
in AF-2 binding site of the ERα receptor, and ADME predictions by Quick Prop Tools. Those
ligands that displayed satisfactory docking were selected for further studies. These revealed all-important
functional groups that interact with active amino acid residues in the targeted cavity, substantiating their
presence in molecules to elicit the desired response whence tested in vitro.
Results:
Based on the docking studies of the designed derivatives, ligands BD59, BD60, BD65, BD58,
BD64 BD61, BD54, BD32, BD48 and BD45 have shown better binding energy than the rest and were
comparable with the interactions shown by the standard, Raloxifene. The observed results lamented the
presence of a substitution at the C-2 position of indole scaffold, either straight or branched with terminal
atom containing non-bonding electrons (halo/-NH2). Accordingly, ligand BD59 carrying chlorobenzene
chain (G Score= -10.390), whereas BD60 carrying flurobenzene chain (G Score = -10.204), whereas
BD65 carrying methylbenzene chain (G Score = -9.863) were found to interact suitably with the active
amino acid residues in the targeted cavity that are reported to be involved in interaction with the standard.
Conclusion:
From the present results, we conclude that designed derivatives have the potential to modulate
ERα receptors effectively, which can be synthesized and tested for their effectiveness, in vitro and in
vivo against breast cancer.
Collapse
Affiliation(s)
- Sandip Narayan Wagh
- Department of Pharmaceutical Chemistry, S.N.J.B’s S.S.D.J. College of Pharmacy, Neminagar, Chandwad, Nashik,
Maharashtra - 423 101, India
| | - Vivekanand Arvind Chatpalliwar
- Department of Pharmaceutical Chemistry, S.N.J.B’s S.S.D.J. College of Pharmacy, Neminagar, Chandwad, Nashik,
Maharashtra - 423 101, India
| |
Collapse
|
141
|
Caron V, Chassaing N, Ragge N, Boschann F, Ngu AMH, Meloche E, Chorfi S, Lakhani SA, Ji W, Steiner L, Marcadier J, Jansen PR, van de Pol LA, van Hagen JM, Russi AS, Le Guyader G, Nordenskjöld M, Nordgren A, Anderlid BM, Plaisancié J, Stoltenburg C, Horn D, Drenckhahn A, Hamdan FF, Lefebvre M, Attie-Bitach T, Forey P, Smirnov V, Ernould F, Jacquemont ML, Grotto S, Alcantud A, Coret A, Ferrer-Avargues R, Srivastava S, Vincent-Delorme C, Romoser S, Safina N, Saade D, Lupski JR, Calame DG, Geneviève D, Chatron N, Schluth-Bolard C, Myers KA, Dobyns WB, Calvas P, Salmon C, Holt R, Elmslie F, Allaire M, Prigozhin DM, Tremblay A, Michaud JL. Clinical and functional heterogeneity associated with the disruption of retinoic acid receptor beta. Genet Med 2023; 25:100856. [PMID: 37092537 PMCID: PMC10757562 DOI: 10.1016/j.gim.2023.100856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 04/25/2023] Open
Abstract
PURPOSE Dominant variants in the retinoic acid receptor beta (RARB) gene underlie a syndromic form of microphthalmia, known as MCOPS12, which is associated with other birth anomalies and global developmental delay with spasticity and/or dystonia. Here, we report 25 affected individuals with 17 novel pathogenic or likely pathogenic variants in RARB. This study aims to characterize the functional impact of these variants and describe the clinical spectrum of MCOPS12. METHODS We used in vitro transcriptional assays and in silico structural analysis to assess the functional relevance of RARB variants in affecting the normal response to retinoids. RESULTS We found that all RARB variants tested in our assays exhibited either a gain-of-function or a loss-of-function activity. Loss-of-function variants disrupted RARB function through a dominant-negative effect, possibly by disrupting ligand binding and/or coactivators' recruitment. By reviewing clinical data from 52 affected individuals, we found that disruption of RARB is associated with a more variable phenotype than initially suspected, with the absence in some individuals of cardinal features of MCOPS12, such as developmental eye anomaly or motor impairment. CONCLUSION Our study indicates that pathogenic variants in RARB are functionally heterogeneous and associated with extensive clinical heterogeneity.
Collapse
Affiliation(s)
| | - Nicolas Chassaing
- Service de Génétique Médicale, Hôpital Purpan CHU Toulouse, Toulouse, France; Centre de Référence des Affections Rares en Génétique Ophtalmologique CARGO, CHU Toulouse, Toulouse, France
| | - Nicola Ragge
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom; West Midlands Regional Genetics Service, Birmingham Women's and Children's NHS Foundation Trust and Birmingham Health Partners, Birmingham, United Kingdom
| | - Felix Boschann
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute for Medical Genetics and Human Genetics, Berlin, Germany
| | | | | | - Sarah Chorfi
- CHU Sainte-Justine Research Center, Montréal, QC, Canada
| | - Saquib A Lakhani
- Pediatric Genomic Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT
| | - Weizhen Ji
- Pediatric Genomic Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT
| | - Laurie Steiner
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY
| | - Julien Marcadier
- Department of Medical Genetics, Alberta Children's Hospital, Calgary, AB, Canada
| | - Philip R Jansen
- Department of Human Genetics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Laura A van de Pol
- Department of Pediatric Neurology, Amsterdam UMC, location Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | | - Magnus Nordenskjöld
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Clinical genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Clinical genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Britt-Marie Anderlid
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Clinical genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Julie Plaisancié
- Service de Génétique Médicale, Hôpital Purpan CHU Toulouse, Toulouse, France; Centre de Référence des Affections Rares en Génétique Ophtalmologique CARGO, CHU Toulouse, Toulouse, France
| | - Corinna Stoltenburg
- Department of Pediatric Neurology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Denise Horn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute for Medical Genetics and Human Genetics, Berlin, Germany
| | - Anne Drenckhahn
- Department of Pediatric Neurology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Fadi F Hamdan
- CHU Sainte-Justine Research Center, Montréal, QC, Canada; Department of Pediatrics, Université de Montréal, Montréal, QC, Canada
| | | | - Tania Attie-Bitach
- Service de médecine génomique des maladies rares, Hôpital Universitaire Necker-Enfants malade, Paris, France
| | - Peggy Forey
- Centre Hospitalier d'Angoulême, Angoulême, France
| | - Vasily Smirnov
- Exploration de la Vision et Neuro-Ophtalmologie, Hôpital Roger-Salengro, CHU de Lille, Lille, France
| | - Françoise Ernould
- Service d'ophtalmologie, Hôpital Claude Huriez, CHU de Lille, Lille, France
| | | | - Sarah Grotto
- Unité de Génétique Clinique, Hôpital Robert Debré, Paris, France
| | | | - Alicia Coret
- Servicio de Pediatría, Hospital de Sagunto, Valencia, Spain
| | | | - Siddharth Srivastava
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA
| | | | - Shelby Romoser
- Division of Medical Genetics and Genomics, Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Nicole Safina
- Division of Medical Genetics and Genomics, Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Dimah Saade
- Division of Child Neurology, Stead Family Department of Pediatrics, Department of Neurology, UI Carver College of Medicine, Iowa City, IA
| | - James R Lupski
- Department of Pediatrics and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Daniel G Calame
- Department of Pediatrics and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX; Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - David Geneviève
- Université Montpellier, INSERM U1183, Génétique clinique, CHU de Montpellier, Montpellier, France
| | - Nicolas Chatron
- Service de Génétique, Hospices Civils de Lyon, Lyon, France; Institut Neuromyogène, CNRS UMR 5310 - INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Kenneth A Myers
- Division of Neurology, Department of Pediatrics, McGill University Health Centre, Montreal, QC, Canada
| | - William B Dobyns
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Patrick Calvas
- Service de Génétique Médicale, Hôpital Purpan CHU Toulouse, Toulouse, France; Centre de Référence des Affections Rares en Génétique Ophtalmologique CARGO, CHU Toulouse, Toulouse, France
| | - Caroline Salmon
- Children's & Adolescent Services, Royal Surrey County Hospital, Guildford, Surrey, United Kingdom
| | - Richard Holt
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Frances Elmslie
- St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Marc Allaire
- Berkeley Center for Structural Biology, Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Daniil M Prigozhin
- Berkeley Center for Structural Biology, Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - André Tremblay
- CHU Sainte-Justine Research Center, Montréal, QC, Canada; Department of Obstetrics & Gynecology, Université de Montréal, Montréal, QC, Canada; Department of Biochemistry and Molecular Medecine, Université de Montréal, Montréal, QC, Canada.
| | - Jacques L Michaud
- CHU Sainte-Justine Research Center, Montréal, QC, Canada; Department of Pediatrics, Université de Montréal, Montréal, QC, Canada; Department of Neurosciences, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
142
|
Cato ML, D'Agostino EH, Spurlin RM, Flynn AR, Cornelison JL, Johnson AM, Fujita RA, Abraham SM, Jui NT, Ortlund EA. Comparison of activity, structure, and dynamics of SF-1 and LRH-1 complexed with small molecule modulators. J Biol Chem 2023; 299:104921. [PMID: 37328104 PMCID: PMC10407255 DOI: 10.1016/j.jbc.2023.104921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/29/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023] Open
Abstract
Steroidogenic factor-1 (SF-1) is a phospholipid-sensing nuclear receptor expressed in the adrenal glands, gonads, and hypothalamus which controls steroidogenesis and metabolism. There is significant therapeutic interest in SF-1 because of its oncogenic properties in adrenocortical cancer. Synthetic modulators are attractive for targeting SF-1 for clinical and laboratory purposes due to the poor pharmaceutical properties of its native phospholipid ligands. While small molecule agonists targeting SF-1 have been synthesized, no crystal structures have been reported of SF-1 in complexes with synthetic compounds. This has prevented the establishment of structure-activity relationships that would enable better characterization of ligand-mediated activation and improvement in current chemical scaffolds. Here, we compare the effects of small molecules in SF-1 and its close homolog, liver receptor homolog-1 (LRH-1), and identify several molecules that specifically activate LRH-1. We also report the first crystal structure of SF-1 in complex with a synthetic agonist that displays low nanomolar affinity and potency for SF-1. We use this structure to explore the mechanistic basis for small molecule agonism of SF-1, especially compared to LRH-1, and uncover unique signaling pathways that drive LRH-1 specificity. Molecular dynamics simulations reveal differences in protein dynamics at the pocket mouth as well as ligand-mediated allosteric communication from this region to the coactivator binding interface. Our studies, therefore, shed important insight into the allostery driving SF-1 activity and show potential for modulation of LRH-1 over SF-1.
Collapse
Affiliation(s)
- Michael L Cato
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Emma H D'Agostino
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Autumn R Flynn
- Department of Chemistry, Emory University, Atlanta, Georgia, USA
| | | | - Alyssa M Johnson
- Department of Chemistry, Emory University, Atlanta, Georgia, USA
| | - Rei A Fujita
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sarah M Abraham
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nathan T Jui
- Department of Chemistry, Emory University, Atlanta, Georgia, USA
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA.
| |
Collapse
|
143
|
Takahashi S, Takada I, Hashimoto K, Yokoyama A, Nakagawa T, Makishima M, Kume H. ESS2 controls prostate cancer progression through recruitment of chromodomain helicase DNA binding protein 1. Sci Rep 2023; 13:12355. [PMID: 37524814 PMCID: PMC10390525 DOI: 10.1038/s41598-023-39626-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/27/2023] [Indexed: 08/02/2023] Open
Abstract
Molecular targeted therapy using poly (ADP-ribose) polymerase inhibitors has improved survival in patients with castration-resistant prostate cancer (CRPC). However, this approach is only effective in patients with specific genetic mutations, and additional drug discovery targeting epigenetic modulators is required. Here, we evaluated the involvement of the transcriptional coregulator ESS2 in prostate cancer. ESS2-knockdown PC3 cells dramatically inhibited proliferation in tumor xenografts in nude mice. Microarray analysis revealed that ESS2 regulated mRNA levels of chromodomain helicase DNA binding protein 1 (CHD1)-related genes and other cancer-related genes, such as PPAR-γ, WNT5A, and TGF-β, in prostate cancer. ESS2 knockdown reduced nuclear factor (NF)-κB/CHD1 recruitment and histone H3K36me3 levels on the promoters of target genes (TNF and CCL2). In addition, we found that the transcriptional activities of NF-κB, NFAT and SMAD2/3 were enhanced by ESS2. Tamoxifen-inducible Ess2-knockout mice showed delayed prostate development with hypoplasia and disruption of luminal cells in the ventral prostate. Overall, these findings identified ESS2 acts as a transcriptional coregulator in prostate cancer and ESS2 can be novel epigenetic therapeutic target for CRPC.
Collapse
Affiliation(s)
- Sayuri Takahashi
- Department of Urology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan.
- Department of Urology, The Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| | - Ichiro Takada
- Department of Urology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
- Division of Biochemistry, Department of Biomedical Sciences, School of Medicine, Nihon University, Itabashi-Ku, Tokyo, 173-8610, Japan
| | - Kenichi Hashimoto
- Department of Urology, The Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Atsushi Yokoyama
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Tohru Nakagawa
- Department of Urology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, School of Medicine, Nihon University, Itabashi-Ku, Tokyo, 173-8610, Japan
| | - Haruki Kume
- Department of Urology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
- Department of Urology, The Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| |
Collapse
|
144
|
Moyer CL, Brown PH. Targeting nuclear hormone receptors for the prevention of breast cancer. Front Med (Lausanne) 2023; 10:1200947. [PMID: 37583424 PMCID: PMC10424511 DOI: 10.3389/fmed.2023.1200947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/30/2023] [Indexed: 08/17/2023] Open
Abstract
Advancements in research have led to the steady decline of breast cancer mortality over the past thirty years. However, breast cancer incidence has continued to rise, resulting in an undue burden on healthcare costs and highlighting a great need for more effective breast cancer prevention strategies, including targeted chemo preventative agents. Efforts to understand the etiology of breast cancer have uncovered important roles for nuclear receptors in the development and progression of breast cancer. Targeted therapies to inhibit estrogen receptor (ER) and progesterone receptor (PR) signaling (selective ER modulators, aromatase inhibitors and selective PR modulators) have shown great promise for the treatment and prevention of hormone receptor (HR)-positive breast cancer. However, these drugs do not prevent HR-negative disease. Therefore, recent efforts have focused on novel targeted therapies with the potential to prevent both HR-positive and HR-negative breast cancer. Among these include drugs that target other nuclear receptors, such as retinoic acid receptor (RAR), retinoid X receptor (RXR) and vitamin D receptor (VDR). In this review we provide an overview of recent preclinical and clinical trials targeting members of the nuclear receptor superfamily for the prevention of breast cancer.
Collapse
Affiliation(s)
- Cassandra L. Moyer
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Powel H. Brown
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
145
|
Wang A, Luo X, Meng X, Lu Z, Chen K, Yang Y. Discovery of a Novel Bifunctional Steroid Analog, YXG-158, as an Androgen Receptor Degrader and CYP17A1 Inhibitor for the Treatment of Enzalutamide-Resistant Prostate Cancer. J Med Chem 2023; 66:9972-9991. [PMID: 37458396 DOI: 10.1021/acs.jmedchem.3c00880] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The androgen/androgen receptor (AR) signaling pathway plays an important role in castration-resistant prostate cancer (CRPC). Bifunctional agents that simultaneously degrade AR and inhibit androgen synthesis are expected to block the androgen/AR signaling pathway more thoroughly, demonstrating the promising therapeutic potential for CRPC, even enzalutamide-resistant CRPC. Herein, a series of steroid analogs were designed, synthesized, and identified as selective AR degraders, among which YXG-158 (23-h) was the most potent antitumor compound with dual functions of AR degradation and CYP17A1 inhibition. In addition, 23-h abrogated the hERG inhibition and exhibited excellent PK profiles. In vivo, 23-h effectively inhibited the growth of hormone-sensitive organs in the Hershberger assay and exhibited robust antitumor efficacy both in enzalutamide-sensitive (LNCaP/AR) and enzalutamide-resistant (C4-2b-ENZ) xenograft models. Thus, 23-h was chosen as a preclinical candidate for the treatment of enzalutamide-resistant prostate cancer.
Collapse
Affiliation(s)
- Ao Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xianggang Luo
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Xin Meng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhengyu Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kaixian Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yushe Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| |
Collapse
|
146
|
Zhang S, Pei G, Li B, Li P, Lin Y. Abnormal phase separation of biomacromolecules in human diseases. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1133-1152. [PMID: 37475546 PMCID: PMC10423695 DOI: 10.3724/abbs.2023139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023] Open
Abstract
Membrane-less organelles (MLOs) formed through liquid-liquid phase separation (LLPS) are associated with numerous important biological functions, but the abnormal phase separation will also dysregulate the physiological processes. Emerging evidence points to the importance of LLPS in human health and diseases. Nevertheless, despite recent advancements, our knowledge of the molecular relationship between LLPS and diseases is frequently incomplete. In this review, we outline our current understanding about how aberrant LLPS affects developmental disorders, tandem repeat disorders, cancers and viral infection. We also examine disease mechanisms driven by aberrant condensates, and highlight potential treatment approaches. This study seeks to expand our understanding of LLPS by providing a valuable new paradigm for understanding phase separation and human disorders, as well as to further translate our current knowledge regarding LLPS into therapeutic discoveries.
Collapse
Affiliation(s)
- Songhao Zhang
- State Key Laboratory of Membrane BiologyTsinghua University-Peking University Joint Centre for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- IDG/McGovern Institute for Brain Research at Tsinghua UniversityBeijing100084China
| | - Gaofeng Pei
- State Key Laboratory of Membrane BiologyTsinghua University-Peking University Joint Centre for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- Frontier Research Center for Biological StructureTsinghua UniversityBeijing100084China
| | - Boya Li
- State Key Laboratory of Membrane BiologyTsinghua University-Peking University Joint Centre for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- IDG/McGovern Institute for Brain Research at Tsinghua UniversityBeijing100084China
| | - Pilong Li
- State Key Laboratory of Membrane BiologyTsinghua University-Peking University Joint Centre for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- Frontier Research Center for Biological StructureTsinghua UniversityBeijing100084China
| | - Yi Lin
- State Key Laboratory of Membrane BiologyTsinghua University-Peking University Joint Centre for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- IDG/McGovern Institute for Brain Research at Tsinghua UniversityBeijing100084China
| |
Collapse
|
147
|
Tang J, Li X, Li W, Cao C. Octanoic Acid-rich Enteral Nutrition Alleviated Acute Liver Injury Through PPARγ/STAT-1/MyD88 Pathway in Endotoxemic Rats. In Vivo 2023; 37:1609-1618. [PMID: 37369501 PMCID: PMC10347904 DOI: 10.21873/invivo.13246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND/AIM Acute liver injury is the hallmark of organ failure in sepsis. Enteral nutrition (EN) is an important clinical therapeutic measure in septic patients. However, the therapeutic effect of EN alone is not obvious. Here, we investigated whether octanoic acid (OA)-rich EN alleviated acute liver injury through PPARγ/STAT-1/MyD88 pathway in endotoxemic rats. MATERIALS AND METHODS First, rats were randomly divided into four groups: Sham, Lipopolysaccharide (LPS), LPS+EN and LPS+EN+OA groups to investigate the effect of OA-rich EN on LPS-induced acute liver injury in endotoxemic rats. Then rats were randomly divided into five groups: Sham, LPS, LPS+EN+OA, LPS+EN+OA+SR202 (SR) and LPS+ pioglitazone (PI) groups to examine whether OA-rich EN alleviated acute liver injury through the PPARγ/STAT-1/MyD88 pathway. Rats received nutrition support via a gastric tube for 3 days. We evaluated the liver histology, apoptosis, liver enzymes and inflammatory cytokine levels in the liver and serum. PPARγ/STAT-1/MyD88 pathway was also measured. RESULTS OA-rich EN inhibited the phosphorylation of STAT-1 and the activity of MyD88 by activating PPARγ and alleviating LPS-induced acute liver injury more effectively than EN alone in endotoxemic rats. The use of SR counteracted the effect of OA-rich EN on acute liver injury. Meanwhile, PI showed effects similar to OA-rich EN in endotoxemic rats. CONCLUSION OA-rich EN alleviated acute liver injury through PPARγ/STAT-1/MyD88 pathway in endotoxemic rats.
Collapse
Affiliation(s)
- Jiabao Tang
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Xiaohua Li
- Department of Thyroid and Breast Surgery, Suzhou Wuzhong People's Hospital, Suzhou, P.R. China
| | - Wei Li
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou, P.R. China;
| | - Chun Cao
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou, P.R. China;
| |
Collapse
|
148
|
Madugula SS, Pandey S, Amalapurapu S, Bozdag S. NRPreTo: A Machine Learning-Based Nuclear Receptor and Subfamily Prediction Tool. ACS OMEGA 2023; 8:20379-20388. [PMID: 37323377 PMCID: PMC10268018 DOI: 10.1021/acsomega.3c00286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023]
Abstract
The nuclear receptor (NR) superfamily includes phylogenetically related ligand-activated proteins, which play a key role in various cellular activities. NR proteins are subdivided into seven subfamilies based on their function, mechanism, and nature of the interacting ligand. Developing robust tools to identify NR could give insights into their functional relationships and involvement in disease pathways. Existing NR prediction tools only use a few types of sequence-based features and are tested on relatively similar independent datasets; thus, they may suffer from overfitting when extended to new genera of sequences. To address this problem, we developed Nuclear Receptor Prediction Tool (NRPreTo), a two-level NR prediction tool with a unique training approach where in addition to the sequence-based features used by existing NR prediction tools, six additional feature groups depicting various physiochemical, structural, and evolutionary features of proteins were utilized. The first level of NRPreTo allows for the successful prediction of a query protein as NR or non-NR and further subclassifies the protein into one of the seven NR subfamilies in the second level. We developed Random Forest classifiers to test on benchmark datasets, as well as the entire human protein datasets from RefSeq and Human Protein Reference Database (HPRD). We observed that using additional feature groups improved the performance. We also observed that NRPreTo achieved high performance on the external datasets and predicted 59 novel NRs in the human proteome. The source code of NRPreTo is publicly available at https://github.com/bozdaglab/NRPreTo.
Collapse
Affiliation(s)
- Sita Sirisha Madugula
- Department
of Computer Science & Engineering, University
of North Texas, Denton, Texas TX 76203, United States
| | - Suman Pandey
- Department
of Computer Science & Engineering, University
of North Texas, Denton, Texas TX 76203, United States
| | - Shreya Amalapurapu
- Department
of Computer Science & Engineering, University
of North Texas, Denton, Texas TX 76203, United States
- The
Texas Academy of Mathematics and Science, University of North Texas, Denton, Texas TX 76203, United States
| | - Serdar Bozdag
- Department
of Computer Science & Engineering, University
of North Texas, Denton, Texas TX 76203, United States
- Department
of Mathematics, University of North Texas, Denton, Texas TX 76203, United
States
- BioDiscovery
Institute, University of North Texas, Denton, Texas TX 76203, United States
| |
Collapse
|
149
|
Li DH, Liu XK, Tian XT, Liu F, Yao XJ, Dong JF. PPARG: A Promising Therapeutic Target in Breast Cancer and Regulation by Natural Drugs. PPAR Res 2023; 2023:4481354. [PMID: 37334066 PMCID: PMC10270765 DOI: 10.1155/2023/4481354] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/02/2023] [Accepted: 05/11/2023] [Indexed: 06/20/2023] Open
Abstract
Breast cancer (BC) is the most common type of cancer among females. Peroxisome proliferator-activated receptor gamma (PPARG) can regulate the production of adipocyte-related genes and has anti-inflammatory and anti-tumor effects. Our aim was to investigate PPARG expression, its possible prognostic value, and its effect on immune cell infiltration in BC, and explore the regulatory effects of natural drugs on PPARG to find new ways to treat BC. Using different bioinformatics tools, we extracted and comprehensively analyzed the data from the Cancer Genome Atlas, Genotype-Tissue Expression, and BenCaoZuJian databases to study the potential anti-BC mechanism of PPARG and potential natural drugs targeting it. First, we found that PPARG was downregulated in BC and its expression level correlates with pathological tumor stage (pT-stage) and pathological tumor-node-metastasis stage (pTNM-stage) in BC. PPARG expression was higher in estrogen receptor-positive (ER+) BC than in estrogen receptor-negative (ER-) BC, which tends to indicate a better prognosis. Meanwhile, PPARG exhibited a significant positive correlation with the infiltration of immune cells and correlated with better cumulative survival in BC patients. In addition, PPARG levels were shown to be positively associated with the expression of immune-related genes and immune checkpoints, and ER+ patients had better responses to immune checkpoint blocking. Correlation pathway research revealed that PPARG is strongly associated with pathways, such as angiogenesis, apoptosis, fatty acid biosynthesis, and degradation in ER+ BC. We also found that quercetin is the most promising natural anti-BC drug among natural medicines that upregulate PPARG. Our research showed that PPARG may reduce BC development by regulating the immune microenvironment. Quercetin as PPARG ligands/agonists is a potential natural drug for BC treatment.
Collapse
Affiliation(s)
- De-Hui Li
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Hebei Province Hospital of Chinese Medicine, Shijiazhuang 050011, China
| | - Xu-Kuo Liu
- Graduate School of Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Xiao-Tong Tian
- Graduate School of Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Fei Liu
- Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Xu-Jiong Yao
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Hebei Province Hospital of Chinese Medicine, Shijiazhuang 050011, China
| | - Jing-Fei Dong
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Hebei Province Hospital of Chinese Medicine, Shijiazhuang 050011, China
| |
Collapse
|
150
|
Kiriyama Y, Nochi H. Regulation of PD-L1 Expression by Nuclear Receptors. Int J Mol Sci 2023; 24:9891. [PMID: 37373038 DOI: 10.3390/ijms24129891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The suppression of excessive immune responses is necessary to prevent injury to the body, but it also allows cancer cells to escape immune responses and proliferate. Programmed cell death 1 (PD-1) is a co-inhibitory molecule that is present on T cells and is the receptor for programmed cell death ligand 1 (PD-L1). The binding of PD-1 to PD-L1 leads to the inhibition of the T cell receptor signaling cascade. PD-L1 has been found to be expressed in many types of cancers, such as lung, ovarian, and breast cancer, as well as glioblastoma. Furthermore, PD-L1 mRNA is widely expressed in normal peripheral tissues including the heart, skeletal muscle, placenta, lungs, thymus, spleen, kidney, and liver. The expression of PD-L1 is upregulated by proinflammatory cytokines and growth factors via a number of transcription factors. In addition, various nuclear receptors, such as androgen receptor, estrogen receptor, peroxisome-proliferator-activated receptor γ, and retinoic-acid-related orphan receptor γ, also regulate the expression of PD-L1. This review will focus on the current knowledge of the regulation of PD-L1 expression by nuclear receptors.
Collapse
Affiliation(s)
- Yoshimitsu Kiriyama
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 769-2193, Kagawa, Japan
- Institute of Neuroscience, Tokushima Bunri University, Tokushima 769-2193, Kagawa, Japan
| | - Hiromi Nochi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 769-2193, Kagawa, Japan
| |
Collapse
|