101
|
O'Leary O, Nolan Y. Glycogen synthase kinase-3 as a therapeutic target for cognitive dysfunction in neuropsychiatric disorders. CNS Drugs 2015; 29:1-15. [PMID: 25380674 DOI: 10.1007/s40263-014-0213-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The serine/threonine kinase glycogen synthase kinase-3 (GSK-3) is involved in a broad range of cellular processes including cell proliferation, apoptosis and inflammation. It is now also increasingly acknowledged as having a role to play in cognitive-related processes such as neurogenesis, synaptic plasticity and neural cell survival. Cognitive impairment represents a major debilitating feature of many neurodegenerative and psychiatric disorders, including Alzheimer's disease, mood disorders, schizophrenia and fragile X syndrome, as well as being a result of traumatic brain injury or cranial irradiation. Accordingly, GSK-3 has been identified as an important therapeutic target for cognitive impairment, and recent preclinical studies have yielded important evidence demonstrating that GSK-3 inhibitors may be useful therapeutic interventions for restoring cognitive function in some of these brain disorders. The current review summarises the role of GSK-3 as a regulator of cognitive-dependent functions, examines current preclinical and clinical evidence of the potential of GSK-3 inhibitors as therapeutic agents for cognitive impairments in neuropsychiatric disorders, and offers some insight into the current obstacles that are impeding the clinical use of selective GSK-3 inhibitors in the treatment of cognitive impairment.
Collapse
Affiliation(s)
- Olivia O'Leary
- Department of Anatomy and Neuroscience, Western Gateway Building, University College Cork, Room 4.10, Cork, Ireland
| | | |
Collapse
|
102
|
Faden AI, Loane DJ. Chronic neurodegeneration after traumatic brain injury: Alzheimer disease, chronic traumatic encephalopathy, or persistent neuroinflammation? Neurotherapeutics 2015; 12:143-50. [PMID: 25421001 PMCID: PMC4322076 DOI: 10.1007/s13311-014-0319-5] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It has long been suggested that prior traumatic brain injury (TBI) increases the subsequent incidence of chronic neurodegenerative disorders, including Alzheimer disease, Parkinson disease, and amyotrophic lateral sclerosis. Among these, the association with Alzheimer disease has the strongest support. There is also a long-recognized association between repeated concussive insults and progressive cognitive decline or other neuropsychiatric abnormalities. The latter was first described in boxers as dementia pugilistica, and has received widespread recent attention in contact sports such as professional American football. The term chronic traumatic encephalopathy was coined to attempt to define a "specific" entity marked by neurobehavioral changes and the extensive deposition of phosphorylated tau protein. Nearly lost in the discussions of post-traumatic neurodegeneration after traumatic brain injury has been the role of sustained neuroinflammation, even though this association has been well established pathologically since the 1950s, and is strongly supported by subsequent preclinical and clinical studies. Manifested by extensive microglial and astroglial activation, such chronic traumatic brain inflammation may be the most important cause of post-traumatic neurodegeneration in terms of prevalence. Critically, emerging preclinical studies indicate that persistent neuroinflammation and associated neurodegeneration may be treatable long after the initiating insult(s).
Collapse
Affiliation(s)
- Alan I Faden
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Health Sciences Facility II (HSFII), #S247 20, Penn Street, Baltimore, MD, 21201, USA,
| | | |
Collapse
|
103
|
CSF and plasma amyloid-β temporal profiles and relationships with neurological status and mortality after severe traumatic brain injury. Sci Rep 2014; 4:6446. [PMID: 25300247 PMCID: PMC4192636 DOI: 10.1038/srep06446] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/28/2014] [Indexed: 12/14/2022] Open
Abstract
The role of amyloid-β (Aβ) neuropathology and its significant changes in biofluids after traumatic brain injury (TBI) is still debated. We used ultrasensitive digital ELISA approach to assess amyloid-β1-42 (Aβ42) concentrations and time-course in cerebrospinal fluid (CSF) and in plasma of patients with severe TBI and investigated their relationship to injury characteristics, neurological status and clinical outcome. We found decreased CSF Aβ42 levels in TBI patients acutely after injury with lower levels in patients who died 6 months post-injury than in survivors. Conversely, plasma Aβ42 levels were significantly increased in TBI with lower levels in patients who survived. A trend analysis showed that both CSF and plasma Aβ42 levels strongly correlated with mortality. A positive correlation between changes in CSF Aβ42 concentrations and neurological status as assessed by Glasgow Coma Scale (GCS) was identified. Our results suggest that determination of Aβ42 may be valuable to obtain prognostic information in patients with severe TBI as well as in monitoring the response of the brain to injury.
Collapse
|
104
|
Leeds PR, Yu F, Wang Z, Chiu CT, Zhang Y, Leng Y, Linares GR, Chuang DM. A new avenue for lithium: intervention in traumatic brain injury. ACS Chem Neurosci 2014; 5:422-33. [PMID: 24697257 DOI: 10.1021/cn500040g] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of disability and death from trauma to central nervous system (CNS) tissues. For patients who survive the initial injury, TBI can lead to neurodegeneration as well as cognitive and motor deficits, and is even a risk factor for the future development of neurodegenerative disorders such as Alzheimer's disease. Preclinical studies of multiple neuropathological and neurodegenerative disorders have shown that lithium, which is primarily used to treat bipolar disorder, has considerable neuroprotective effects. Indeed, emerging evidence now suggests that lithium can also mitigate neurological deficits incurred from TBI. Lithium exerts neuroprotective effects and stimulates neurogenesis via multiple signaling pathways; it inhibits glycogen synthase kinase-3 (GSK-3), upregulates neurotrophins and growth factors (e.g., brain-derived neurotrophic factor (BDNF)), modulates inflammatory molecules, upregulates neuroprotective factors (e.g., B-cell lymphoma-2 (Bcl-2), heat shock protein 70 (HSP-70)), and concomitantly downregulates pro-apoptotic factors. In various experimental TBI paradigms, lithium has been shown to reduce neuronal death, microglial activation, cyclooxygenase-2 induction, amyloid-β (Aβ), and hyperphosphorylated tau levels, to preserve blood-brain barrier integrity, to mitigate neurological deficits and psychiatric disturbance, and to improve learning and memory outcome. Given that lithium exerts multiple therapeutic effects across an array of CNS disorders, including promising results in preclinical models of TBI, additional clinical research is clearly warranted to determine its therapeutic attributes for combating TBI. Here, we review lithium's exciting potential in ameliorating physiological as well as cognitive deficits induced by TBI.
Collapse
Affiliation(s)
- Peter R. Leeds
- Molecular
Neurobiology Section, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, MSC 1363, Bethesda, Maryland 20892-1363, United States
| | - Fengshan Yu
- Molecular
Neurobiology Section, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, MSC 1363, Bethesda, Maryland 20892-1363, United States
| | - Zhifei Wang
- Molecular
Neurobiology Section, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, MSC 1363, Bethesda, Maryland 20892-1363, United States
| | - Chi-Tso Chiu
- Molecular
Neurobiology Section, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, MSC 1363, Bethesda, Maryland 20892-1363, United States
| | | | - Yan Leng
- Molecular
Neurobiology Section, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, MSC 1363, Bethesda, Maryland 20892-1363, United States
| | - Gabriel R. Linares
- Molecular
Neurobiology Section, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, MSC 1363, Bethesda, Maryland 20892-1363, United States
| | - De-Maw Chuang
- Molecular
Neurobiology Section, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, MSC 1363, Bethesda, Maryland 20892-1363, United States
| |
Collapse
|
105
|
UV irradiation accelerates amyloid precursor protein (APP) processing and disrupts APP axonal transport. J Neurosci 2014; 34:3320-39. [PMID: 24573290 DOI: 10.1523/jneurosci.1503-13.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Overexpression and/or abnormal cleavage of amyloid precursor protein (APP) are linked to Alzheimer's disease (AD) development and progression. However, the molecular mechanisms regulating cellular levels of APP or its processing, and the physiological and pathological consequences of altered processing are not well understood. Here, using mouse and human cells, we found that neuronal damage induced by UV irradiation leads to specific APP, APLP1, and APLP2 decline by accelerating their secretase-dependent processing. Pharmacological inhibition of endosomal/lysosomal activity partially protects UV-induced APP processing implying contribution of the endosomal and/or lysosomal compartments in this process. We found that a biological consequence of UV-induced γ-secretase processing of APP is impairment of APP axonal transport. To probe the functional consequences of impaired APP axonal transport, we isolated and analyzed presumptive APP-containing axonal transport vesicles from mouse cortical synaptosomes using electron microscopy, biochemical, and mass spectrometry analyses. We identified a population of morphologically heterogeneous organelles that contains APP, the secretase machinery, molecular motors, and previously proposed and new residents of APP vesicles. These possible cargoes are enriched in proteins whose dysfunction could contribute to neuronal malfunction and diseases of the nervous system including AD. Together, these results suggest that damage-induced APP processing might impair APP axonal transport, which could result in failure of synaptic maintenance and neuronal dysfunction.
Collapse
|
106
|
Perry G, Castellani R. Plaques and tangles: Birthmarks of the aging soul. Biochem Pharmacol 2014; 88:423-5. [DOI: 10.1016/j.bcp.2014.01.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 01/22/2014] [Indexed: 12/29/2022]
|
107
|
Pajoohesh-Ganji A, Burns MP, Pal-Ghosh S, Tadvalkar G, Hokenbury NG, Stepp MA, Faden AI. Inhibition of amyloid precursor protein secretases reduces recovery after spinal cord injury. Brain Res 2014; 1560:73-82. [PMID: 24630972 DOI: 10.1016/j.brainres.2014.02.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 12/18/2022]
Abstract
Amyloid-β (Aβ) is produced through the enzymatic cleavage of amyloid precursor protein (APP) by β (Bace1) and γ-secretases. The accumulation and aggregation of Aβ as amyloid plaques is the hallmark pathology of Alzheimer׳s disease and has been found in other neurological disorders, such as traumatic brain injury and multiple sclerosis. Although the role of Aβ after injury is not well understood, several studies have reported a negative correlation between Aβ formation and functional outcome. In this study we show that levels of APP, the enzymes cleaving APP (Bace1 and γ-secretase), and Aβ are significantly increased from 1 to 3 days after impact spinal cord injury (SCI) in mice. To determine the role of Aβ after SCI, we reduced or inhibited Aβ in vivo through pharmacological (using DAPT) or genetic (Bace1 knockout mice) approaches. We found that these interventions significantly impaired functional recovery as evaluated by white matter sparing and behavioral testing. These data are consistent with a beneficial role for Aβ after SCI.
Collapse
Affiliation(s)
| | - Mark P Burns
- Georgetown University, Washington, DC, United States
| | | | - Gauri Tadvalkar
- The George Washington University, Washington, DC, United States
| | - Nicole G Hokenbury
- The George Washington University, Washington, DC, United States; Georgetown University, Washington, DC, United States; University of Maryland, Baltimore, United States
| | - Mary Ann Stepp
- The George Washington University, Washington, DC, United States
| | - Alan I Faden
- University of Maryland, Baltimore, United States
| |
Collapse
|
108
|
Mouzon BC, Bachmeier C, Ferro A, Ojo JO, Crynen G, Acker CM, Davies P, Mullan M, Stewart W, Crawford F. Chronic neuropathological and neurobehavioral changes in a repetitive mild traumatic brain injury model. Ann Neurol 2014; 75:241-54. [DOI: 10.1002/ana.24064] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 09/11/2013] [Accepted: 10/10/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Benoit C. Mouzon
- Roskamp Institute; Sarasota FL
- James A. Haley Veterans Administration Medical Center; Tampa FL
- Department of Life Sciences; Open University; Milton Keynes United Kingdom
| | - Corbin Bachmeier
- Roskamp Institute; Sarasota FL
- Department of Life Sciences; Open University; Milton Keynes United Kingdom
| | | | | | - Gogce Crynen
- Roskamp Institute; Sarasota FL
- Department of Life Sciences; Open University; Milton Keynes United Kingdom
| | - Christopher M. Acker
- Litwin-Zucker Center for Research in Alzheimer's Disease; Feinstein Institute for Medical Research, North Shore/LIJ Health System; Manhasset NY
| | - Peter Davies
- Litwin-Zucker Center for Research in Alzheimer's Disease; Feinstein Institute for Medical Research, North Shore/LIJ Health System; Manhasset NY
| | - Michael Mullan
- Roskamp Institute; Sarasota FL
- James A. Haley Veterans Administration Medical Center; Tampa FL
- Department of Life Sciences; Open University; Milton Keynes United Kingdom
| | - William Stewart
- Department of Neuropathology; Southern General Hospital; Glasgow United Kingdom
- University of Glasgow; Glasgow United Kingdom
| | - Fiona Crawford
- Roskamp Institute; Sarasota FL
- James A. Haley Veterans Administration Medical Center; Tampa FL
- Department of Life Sciences; Open University; Milton Keynes United Kingdom
| |
Collapse
|
109
|
Chronic traumatic encephalopathy: a spectrum of neuropathological changes following repetitive brain trauma in athletes and military personnel. ALZHEIMERS RESEARCH & THERAPY 2014; 6:4. [PMID: 24423082 PMCID: PMC3979082 DOI: 10.1186/alzrt234] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic traumatic encephalopathy (CTE) is a progressive neurodegenerative disease that occurs in association with repetitive traumatic brain injury experienced in sport and military service. In most instances, the clinical symptoms of the disease begin after a long period of latency ranging from several years to several decades. The initial symptoms are typically insidious, consisting of irritability, impulsivity, aggression, depression, short-term memory loss and heightened suicidality. The symptoms progress slowly over decades to include cognitive deficits and dementia. The pathology of CTE is characterized by the accumulation of phosphorylated tau protein in neurons and astrocytes in a pattern that is unique from other tauopathies, including Alzheimer’s disease. The hyperphosphorylated tau abnormalities begin focally, as perivascular neurofibrillary tangles and neurites at the depths of the cerebral sulci, and then spread to involve superficial layers of adjacent cortex before becoming a widespread degeneration affecting medial temporal lobe structures, diencephalon and brainstem. Most instances of CTE (>85% of cases) show abnormal accumulations of phosphorylated 43 kDa TAR DNA binding protein that are partially colocalized with phosphorylated tau protein. As CTE is characterized pathologically by frontal and temporal lobe atrophy, by abnormal deposits of phosphorylated tau and by 43 kDa TAR DNA binding protein and is associated clinically with behavioral and personality changes, as well as cognitive impairments, CTE is increasingly categorized as an acquired frontotemporal lobar degeneration. Currently, some of the greatest challenges are that CTE cannot be diagnosed during life and the incidence and prevalence of the disorder remain uncertain. Furthermore, the contribution of age, gender, genetics, stress, alcohol and substance abuse to the development of CTE remains to be determined.
Collapse
|
110
|
Iqbal K, Liu F, Gong CX. Alzheimer disease therapeutics: focus on the disease and not just plaques and tangles. Biochem Pharmacol 2014; 88:631-9. [PMID: 24418409 DOI: 10.1016/j.bcp.2014.01.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 12/26/2013] [Accepted: 01/02/2014] [Indexed: 12/13/2022]
Abstract
The bulk of AD research during the last 25 years has been Aβ-centric based on a strong faith in the Amyloid Cascade Hypothesis which is not supported by the data on humans. To date, Aβ-based therapeutic clinical trials on sporadic cases of AD have been negative. Although most likely the major reason for the failure is that Aβ is not an effective therapeutic target for sporadic AD, initiation of the treatment at mild to moderate stages of the disease is blamed as too late to be effective. Clinical trials on presymptomatic familial AD cases have been initiated with the logic that Aβ is a trigger of the disease and hence initiation of the Aβ immunotherapies several years before any clinical symptoms would be effective. There is an urgent need to explore targets other than Aβ. There is now increasing interest in inhibiting tau pathology, which does have a far more compelling rationale than Aβ. AD is multifactorial and over 99% of the cases are the sporadic form of the disease. Understanding of the various etiopathogenic mechanisms of sporadic AD and generation of the disease-relevant animal models are required to develop rational therapeutic targets and therapies. Treatment of AD will require both inhibition of neurodegeneration and regeneration of the brain.
Collapse
Affiliation(s)
- Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA.
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| |
Collapse
|
111
|
McKee AC, Daneshvar DH, Alvarez VE, Stein TD. The neuropathology of sport. Acta Neuropathol 2014; 127:29-51. [PMID: 24366527 DOI: 10.1007/s00401-013-1230-6] [Citation(s) in RCA: 280] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 12/07/2013] [Accepted: 12/08/2013] [Indexed: 12/11/2022]
Abstract
The benefits of regular exercise, physical fitness and sports participation on cardiovascular and brain health are undeniable. Physical activity reduces the risk for cardiovascular disease, type 2 diabetes, hypertension, obesity, and stroke, and produces beneficial effects on cholesterol levels, antioxidant systems, inflammation, and vascular function. Exercise also enhances psychological health, reduces age-related loss of brain volume, improves cognition, reduces the risk of developing dementia, and impedes neurodegeneration. Nonetheless, the play of sports is associated with risks, including a risk for mild TBI (mTBI) and, rarely, catastrophic traumatic injury and death. There is also growing awareness that repetitive mTBIs, such as concussion and subconcussion, can occasionally produce persistent cognitive, behavioral, and psychiatric problems as well as lead to the development of a neurodegeneration, chronic traumatic encephalopathy (CTE). In this review, we summarize the beneficial aspects of sports participation on psychological, emotional, physical and cognitive health, and specifically analyze some of the less common adverse neuropathological outcomes, including concussion, second-impact syndrome, juvenile head trauma syndrome, catastrophic sudden death, and CTE. CTE is a latent neurodegeneration clinically associated with behavioral changes, executive dysfunction and cognitive impairments, and pathologically characterized by frontal and temporal lobe atrophy, neuronal and axonal loss, and abnormal deposits of paired helical filament (PHF)-tau and 43 kDa TAR deoxyribonucleic acid (DNA)-binding protein (TDP-43). CTE often occurs as a sole diagnosis, but may be associated with other neurodegenerative disorders, including motor neuron disease (CTE-MND). Although the incidence and prevalence of CTE are not known, CTE has been reported most frequently in American football players and boxers. Other sports associated with CTE include ice hockey, professional wrestling, soccer, rugby, and baseball.
Collapse
|
112
|
Hong YT, Veenith T, Dewar D, Outtrim JG, Mani V, Williams C, Pimlott S, Hutchinson PJA, Tavares A, Canales R, Mathis CA, Klunk WE, Aigbirhio FI, Coles JP, Baron JC, Pickard JD, Fryer TD, Stewart W, Menon DK. Amyloid imaging with carbon 11-labeled Pittsburgh compound B for traumatic brain injury. JAMA Neurol 2014; 71:23-31. [PMID: 24217171 PMCID: PMC4084932 DOI: 10.1001/jamaneurol.2013.4847] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To image amyloid deposition in patients with traumatic brain injury (TBI) using carbon 11-labeled Pittsburgh Compound B ([11C]PiB) positron emission tomography (PET) and to validate these findings using tritium-labeled PiB ([3H]PiB) autoradiography and immunocytochemistry in autopsy-acquired tissue. DESIGN, SETTING, AND PARTICIPANTS In vivo PET at tertiary neuroscience referral center and ex vivo immunocytochemistry of autopsy-acquired brain tissue from a neuropathology archive. [11C]PiB PET was used to image amyloid deposition in 11 controls (median [range] age, 35 [24-60] years) and in 15 patients (median [range] age, 33 [21-50] years) between 1 and 361 days after a TBI. [3H]PiB autoradiography and immunocytochemistry for β-amyloid (Aβ) and β-amyloid precursor protein in brain tissue were obtained from separate cohorts of 16 patients (median [range] age, 46 [21-70] years) who died between 3 hours and 56 days after a TBI and 7 controls (median [range] age, 61 [29-71] years) who died of other causes. MAIN OUTCOMES AND MEASURES We quantified the [11C]PiB distribution volume ratio and standardized uptake value ratio in PET images. The distribution volume ratio and the standardized uptake value ratio were measured in cortical gray matter, white matter, and multiple cortical and white matter regions of interest, as well as in striatal and thalamic regions of interest. We examined [3H]PiB binding and Aβ and β-amyloid precursor protein immunocytochemistry in autopsy-acquired brain tissue. RESULTS Compared with the controls, the patients with TBI showed significantly increased [11C]PiB distribution volume ratios in cortical gray matter and the striatum (corrected P < .05 for both), but not in the thalamus or white matter. Increases in [11C]PiB distribution volume ratios in patients with TBI were seen across most cortical subregions, were replicated using comparisons of standardized uptake value ratios, and could not be accounted for by methodological confounders. Autoradiography revealed [3H]PiB binding in neocortical gray matter, in regions where amyloid deposition was demonstrated by immunocytochemistry; white matter showed Aβ and β-amyloid precursor protein by immunocytochemistry, but no [3H]PiB binding. No plaque-associated amyloid immunoreactivity or [3H]PiB binding was seen in cerebellar gray matter in autopsy-acquired tissue from either controls or patients with TBI, although 1 sample of cerebellar tissue from a patient with TBI showed amyloid angiopathy in meningeal vessels. CONCLUSIONS AND RELEVANCE [11C]PiB shows increased binding following TBI. The specificity of this binding is supported by neocortical [3H]PiB binding in regions of amyloid deposition in the postmortem tissue of patients with TBI. [11C]PiB PET could be valuable in imaging amyloid deposition following TBI.
Collapse
Affiliation(s)
- Young T. Hong
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, England5Department of Clinical Neurosciences, University of Cambridge, Cambridge, England
| | - Tonny Veenith
- Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, England
| | - Deborah Dewar
- Institute of Neuroscience and Psychology, University of Glasgow, Scotland
| | - Joanne G. Outtrim
- Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, England
| | - Vaithianadan Mani
- Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, England
| | - Claire Williams
- Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, England
| | - Sally Pimlott
- University of Glasgow and Southern General Hospital, Glasgow, Scotland
| | | | - Adriana Tavares
- Institute of Neuroscience and Psychology, University of Glasgow, Scotland
| | - Roberto Canales
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, England5Department of Clinical Neurosciences, University of Cambridge, Cambridge, England
| | - Chester A. Mathis
- Departments of Radiology and Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William E. Klunk
- Departments of Psychiatry and Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Franklin I. Aigbirhio
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, England5Department of Clinical Neurosciences, University of Cambridge, Cambridge, England
| | - Jonathan P. Coles
- Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, England
| | - Jean-Claude Baron
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, England5Department of Clinical Neurosciences, University of Cambridge, Cambridge, England8INSERM U894, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - John D. Pickard
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, England5Department of Clinical Neurosciences, University of Cambridge, Cambridge, England
| | - Tim D. Fryer
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, England5Department of Clinical Neurosciences, University of Cambridge, Cambridge, England
| | - William Stewart
- University of Glasgow and Southern General Hospital, Glasgow, Scotland
| | - David K. Menon
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, England2Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, England
| |
Collapse
|
113
|
Mielke MM, Savica R, Wiste HJ, Weigand SD, Vemuri P, Knopman DS, Lowe VJ, Roberts RO, Machulda MM, Geda YE, Petersen RC, Jack CR. Head trauma and in vivo measures of amyloid and neurodegeneration in a population-based study. Neurology 2013; 82:70-6. [PMID: 24371306 DOI: 10.1212/01.wnl.0000438229.56094.54] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES We determined whether head trauma was associated with amyloid deposition and neurodegeneration among individuals who were cognitively normal (CN) or had mild cognitive impairment (MCI). METHODS Participants included 448 CN individuals and 141 individuals with MCI from the Mayo Clinic Study of Aging who underwent Pittsburgh compound B (PiB)-PET, fluorodeoxyglucose-PET, and MRI. Head trauma was defined as a self-reported brain injury with at least momentary loss of consciousness or memory. Regression models examined whether head trauma was associated with each neuroimaging variable (assessed as continuous and dichotomous measures) in both CN and MCI participants, controlling for age and sex. RESULTS Among 448 CN individuals, 74 (17%) self-reported a head trauma. There was no difference in any neuroimaging measure between CN subjects with and without head trauma. Of 141 participants with MCI, 25 (18%) self-reported a head trauma. MCI participants with a head trauma had higher amyloid levels (by an average 0.36 standardized uptake value ratio units, p = 0.002). CONCLUSIONS Among individuals with MCI, but not CN individuals, self-reported head trauma with at least momentary loss of consciousness or memory was associated with greater amyloid deposition, suggesting that head trauma may be associated with Alzheimer disease-related neuropathology. Differences between CN individuals and individuals with MCI raise questions about the relevance of head injury-PET abnormality findings in those with MCI.
Collapse
Affiliation(s)
- Michelle M Mielke
- From the Divisions of Epidemiology (M.M.Mielke, R.O.R., R.C.P., Y.E.G.) and Biomedical Statistics and Informatics (H.J.W., S.D.W.), Department of Health Sciences Research; Departments of Neurology (R.S., D.S.K., R.O.R, R.C.P.), Psychiatry and Psychology (M.M.Machulda), and Radiology (P.V., V.J.L, C.R.J.), Mayo Clinic, Rochester, MN; and Departments of Psychiatry, Psychology, and Neurology (Y.E.G.), Mayo Clinic, Scottsdale, AZ
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Washington PM, Morffy N, Parsadanian M, Zapple DN, Burns MP. Experimental traumatic brain injury induces rapid aggregation and oligomerization of amyloid-beta in an Alzheimer's disease mouse model. J Neurotrauma 2013; 31:125-34. [PMID: 24050316 DOI: 10.1089/neu.2013.3017] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Soluble amyloid-beta (Aβ) oligomers are hypothesized to be the pathogenic species in Alzheimer's disease (AD), and increased levels of oligomers in the brain subsequent to traumatic brain injury (TBI) may exacerbate secondary injury pathways and underlie increased risk of developing AD in later life. To determine whether TBI causes Aβ aggregation and oligomerization in the brain, we exposed triple transgenic AD model mice to controlled cortical impact injury and measured levels of soluble, insoluble, and oligomeric Aβ by enzyme-linked immunosorbent assay (ELISA) at 1, 3, and 7 days postinjury. TBI rapidly increased levels of both soluble and insoluble Aβ40 and Aβ42 in the injured cortex at 1 day postinjury. We confirmed previous findings that identified damaged axons as a major site of Aβ accumulation using both immunohistochemistry and biochemistry. We also report that soluble Aβ oligomers were significantly increased in the injured cortex, as demonstrated by both ELISA and Western blot. Interestingly, the mouse brain is able to rapidly clear trauma-induced Aβ, with both soluble and insoluble Aβ species returning to sham levels by 7 days postinjury. In conclusion, we demonstrate that TBI causes acute accumulation and aggregation of Aβ in the brain, including the formation of low- and high-molecular-weight Aβ oligomers. The formation and aggregation of Aβ into toxic species acutely after injury may play a role in secondary injury cascades after trauma and, chronically, may contribute to increased risk of developing AD in later life.
Collapse
Affiliation(s)
- Patricia M Washington
- 1 Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center , Washington, DC
| | | | | | | | | |
Collapse
|
115
|
Cheng X, Wu J, Geng M, Xiong J. Role of synaptic activity in the regulation of amyloid beta levels in Alzheimer's disease. Neurobiol Aging 2013; 35:1217-32. [PMID: 24368087 DOI: 10.1016/j.neurobiolaging.2013.11.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 11/03/2013] [Accepted: 11/24/2013] [Indexed: 01/27/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Accumulation of amyloid-beta (Aβ) peptides is regarded as the critical component associated with AD pathogenesis, which is derived from the amyloid precursor protein (APP) cleavage. Recent studies suggest that synaptic activity is one of the most important factors that regulate Aβ levels. It has been found that synaptic activity facilitates APP internalization and influences APP cleavage. Glutamatergic, cholinergic, serotonergic, leptin, adrenergic, orexin, and gamma-amino butyric acid receptors, as well as the activity-regulated cytoskeleton-associated protein (Arc) are all involved in these processes. The present review summarizes the evidence for synaptic activity-modulated Aβ levels and the mechanisms underlying this regulation. Interestingly, the immediate early gene product Arc may also be the downstream signaling molecule of several receptors in the synaptic activity-modulated Aβ levels. Elucidating how Aβ levels are regulated by synaptic activity may provide new insights in both the understanding of the pathogenesis of AD and in the development of therapies to slow down the progression of AD.
Collapse
Affiliation(s)
- Xiaofang Cheng
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Jian Wu
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Miao Geng
- Institute of Geriatrics, General Hospital of Chinese PLA, Beijing, China
| | - Jiaxiang Xiong
- Department of Physiology, Third Military Medical University, Chongqing, China.
| |
Collapse
|
116
|
Biomarkers of cognitive dysfunction in traumatic brain injury. J Neural Transm (Vienna) 2013; 121:79-90. [DOI: 10.1007/s00702-013-1078-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 07/30/2013] [Indexed: 12/11/2022]
|
117
|
Johnson VE, Stewart W, Smith DH. Axonal pathology in traumatic brain injury. Exp Neurol 2013; 246:35-43. [PMID: 22285252 PMCID: PMC3979341 DOI: 10.1016/j.expneurol.2012.01.013] [Citation(s) in RCA: 857] [Impact Index Per Article: 71.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 12/22/2011] [Accepted: 01/10/2012] [Indexed: 12/11/2022]
Abstract
Over the past 70years, diffuse axonal injury (DAI) has emerged as one of the most common and important pathological features of traumatic brain injury (TBI). Axons in the white matter appear to be especially vulnerable to injury due to the mechanical loading of the brain during TBI. As such, DAI has been found in all severities of TBI and may represent a key pathologic substrate of mild TBI (concussion). Pathologically, DAI encompasses a spectrum of abnormalities from primary mechanical breaking of the axonal cytoskeleton, to transport interruption, swelling and proteolysis, through secondary physiological changes. Depending on the severity and extent of injury, these changes can manifest acutely as immediate loss of consciousness or confusion and persist as coma and/or cognitive dysfunction. In addition, recent evidence suggests that TBI may induce long-term neurodegenerative processes, such as insidiously progressive axonal pathology. Indeed, axonal degeneration has been found to continue even years after injury in humans, and appears to play a role in the development of Alzheimer's disease-like pathological changes. Here we review the current understanding of DAI as a uniquely mechanical injury, its histopathological identification, and its acute and chronic pathogenesis following TBI.
Collapse
Affiliation(s)
- Victoria E. Johnson
- Penn Center for Brain Injury and Repair and Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - William Stewart
- Department of Neuropathology, Institute of Neurological Sciences, Southern General Hospital, Glasgow, UK
| | - Douglas H. Smith
- Penn Center for Brain Injury and Repair and Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
118
|
Smith C. Review: the long-term consequences of microglial activation following acute traumatic brain injury. Neuropathol Appl Neurobiol 2013. [PMID: 23206160 DOI: 10.1111/nan.12006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The brain is vulnerable to a number of acute insults, with traumatic brain injury being among the commonest. Neuroinflammation is a common response to acute injury and microglial activation is a key component of the inflammatory response. In the acute and subacute phase it is likely that this response is protective and forms an important part of the normal tissue reaction. However, there is considerable literature demonstrating an association between acute traumatic brain injury to the brain and subsequent cognitive decline. This article will review the epidemiological literature relating to both single and repetitive head injury. It will focus on the neuropathological features associated with long-term complications of a single blunt force head injury, repetitive head injury and blast head injury, with particular reference to chronic traumatic encephalopathy, including dementia pugilistica. Neuroinflammation has been postulated as a key mechanism linking acute traumatic brain injury with subsequent neurodegenerative disease, and this review will consider the response to injury in the acute phase and how this may be detrimental in the longer term, and discuss potential genetic factors which may influence this cellular response. Finally, this article will consider future directions for research and potential future therapies.
Collapse
Affiliation(s)
- C Smith
- Academic Department of Neuropathology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
119
|
Breunig JJ, Guillot-Sestier MV, Town T. Brain injury, neuroinflammation and Alzheimer's disease. Front Aging Neurosci 2013; 5:26. [PMID: 23874297 PMCID: PMC3708131 DOI: 10.3389/fnagi.2013.00026] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/13/2013] [Indexed: 12/14/2022] Open
Abstract
With as many as 300,000 United States troops in Iraq and Afghanistan having suffered head injuries (Miller, 2012), traumatic brain injury (TBI) has garnered much recent attention. While the cause and severity of these injuries is variable, severe cases can lead to lifelong disability or even death. While aging is the greatest risk factor for Alzheimer's disease (AD), it is now becoming clear that a history of TBI predisposes the individual to AD later in life (Sivanandam and Thakur, 2012). In this review article, we begin by defining hallmark pathological features of AD and the various forms of TBI. Putative mechanisms underlying the risk relationship between these two neurological disorders are then critically considered. Such mechanisms include precipitation and ‘spreading’ of cerebral amyloid pathology and the role of neuroinflammation. The combined problems of TBI and AD represent significant burdens to public health. A thorough, mechanistic understanding of the precise relationship between TBI and AD is of utmost importance in order to illuminate new therapeutic targets. Mechanistic investigations and the development of preclinical therapeutics are reliant upon a clearer understanding of these human diseases and accurate modeling of pathological hallmarks in animal systems.
Collapse
Affiliation(s)
- Joshua J Breunig
- Regenerative Medicine Institute, Cedars-Sinai Medical Center Los Angeles, CA, USA ; Department of Biomedical Sciences, Cedars-Sinai Medical Center Los Angeles, CA, USA
| | | | | |
Collapse
|
120
|
Walker KR, Tesco G. Molecular mechanisms of cognitive dysfunction following traumatic brain injury. Front Aging Neurosci 2013; 5:29. [PMID: 23847533 PMCID: PMC3705200 DOI: 10.3389/fnagi.2013.00029] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/18/2013] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) results in significant disability due to cognitive deficits particularly in attention, learning and memory, and higher-order executive functions. The role of TBI in chronic neurodegeneration and the development of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS) and most recently chronic traumatic encephalopathy (CTE) is of particular importance. However, despite significant effort very few therapeutic options exist to prevent or reverse cognitive impairment following TBI. In this review, we present experimental evidence of the known secondary injury mechanisms which contribute to neuronal cell loss, axonal injury, and synaptic dysfunction and hence cognitive impairment both acutely and chronically following TBI. In particular we focus on the mechanisms linking TBI to the development of two forms of dementia: AD and CTE. We provide evidence of potential molecular mechanisms involved in modulating Aβ and Tau following TBI and provide evidence of the role of these mechanisms in AD pathology. Additionally we propose a mechanism by which Aβ generated as a direct result of TBI is capable of exacerbating secondary injury mechanisms thereby establishing a neurotoxic cascade that leads to chronic neurodegeneration.
Collapse
Affiliation(s)
- Kendall R Walker
- Alzheimer's Disease Research Laboratory, Department of Neuroscience, Tufts University School of Medicine Boston, MA, USA
| | | |
Collapse
|
121
|
Human apolipoprotein E4 worsens acute axonal pathology but not amyloid-β immunoreactivity after traumatic brain injury in 3xTG-AD mice. J Neuropathol Exp Neurol 2013; 72:396-403. [PMID: 23584199 DOI: 10.1097/nen.0b013e31828e24ab] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Apolipoprotein E4 (APOE4) genotype is a risk factor for poor outcome after traumatic brain injury (TBI), particularly in young patients, but the underlying mechanisms are not known. By analogy to effects of APOE4 on the risk of Alzheimer disease (AD), the APOE genotype may influence β-amyloid (Aβ) and tau deposition after TBI. To test this hypothesis, we crossed 3xTG-AD transgenic mice carrying 3 human familial AD mutations (PS1(M146V), tauP(301)L, and APP(SWE)) to human ApoE2-, ApoE3-, and ApoE4-targeted replacement mice. Six- to 8-month-old 3xTG-ApoE mice were assayed by quantitative immunohistochemistry for amyloid precursor protein (APP), Aβ(1-40) (Aβ40), Aβ(1-42) (Aβ42), total human tau, and phospho-serine 199 (pS199) tau at 24 hours after moderate controlled cortical impact. There were increased numbers of APP-immunoreactive axonal varicosities in 3xTG-ApoE4 mice versus the other genotypes. This finding was repeated in a separate cohort of ApoE4-targeted replacement mice without human transgenes compared with ApoE3 and ApoE2 mice. There were no differences between genotypes in the extent of intra-axonal Aβ40 and Aβ42; none of the mice had extracellular Aβ deposition. Regardless of injury status, 3xTG-ApoE4 mice had more total human tau accumulation in both somatodendritic and intra-axonal compartments than other genotypes. These results suggest that the APOE4 genotype may have a primary effect on the severity of axonal injury in acute TBI.
Collapse
|
122
|
Kokjohn TA, Maarouf CL, Daugs ID, Hunter JM, Whiteside CM, Malek-Ahmadi M, Rodriguez E, Kalback W, Jacobson SA, Sabbagh MN, Beach TG, Roher AE. Neurochemical profile of dementia pugilistica. J Neurotrauma 2013; 30:981-97. [PMID: 23268705 PMCID: PMC3684215 DOI: 10.1089/neu.2012.2699] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Dementia pugilistica (DP), a suite of neuropathological and cognitive function declines after chronic traumatic brain injury (TBI), is present in approximately 20% of retired boxers. Epidemiological studies indicate TBI is a risk factor for neurodegenerative disorders including Alzheimer disease (AD) and Parkinson disease (PD). Some biochemical alterations observed in AD and PD may be recapitulated in DP and other TBI persons. In this report, we investigate long-term biochemical changes in the brains of former boxers with neuropathologically confirmed DP. Our experiments revealed biochemical and cellular alterations in DP that are complementary to and extend information already provided by histological methods. ELISA and one-dimensional and two dimensional Western blot techniques revealed differential expression of select molecules between three patients with DP and three age-matched non-demented control (NDC) persons without a history of TBI. Structural changes such as disturbances in the expression and processing of glial fibrillary acidic protein, tau, and α-synuclein were evident. The levels of the Aβ-degrading enzyme neprilysin were reduced in the patients with DP. Amyloid-β levels were elevated in the DP participant with the concomitant diagnosis of AD. In addition, the levels of brain-derived neurotrophic factor and the axonal transport proteins kinesin and dynein were substantially decreased in DP relative to NDC participants. Traumatic brain injury is a risk factor for dementia development, and our findings are consistent with permanent structural and functional damage in the cerebral cortex and white matter of boxers. Understanding the precise threshold of damage needed for the induction of pathology in DP and TBI is vital.
Collapse
Affiliation(s)
- Tyler A. Kokjohn
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona
- Department of Microbiology, Midwestern University School of Medicine, Glendale, Arizona
| | - Chera L. Maarouf
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona
| | - Ian D. Daugs
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona
| | - Jesse M. Hunter
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona
| | - Charisse M. Whiteside
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona
| | - Michael Malek-Ahmadi
- Cleo Roberts Center for Clinical Research, Banner Sun Health Research Institute, Sun City, Arizona
| | - Emma Rodriguez
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona
- National Institute of Cardiology, Mexico City, Mexico
| | - Walter Kalback
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona
| | - Sandra A. Jacobson
- Cleo Roberts Center for Clinical Research, Banner Sun Health Research Institute, Sun City, Arizona
| | - Marwan N. Sabbagh
- Cleo Roberts Center for Clinical Research, Banner Sun Health Research Institute, Sun City, Arizona
| | - Thomas G. Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona
| | - Alex E. Roher
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona
| |
Collapse
|
123
|
Mannix RC, Zhang J, Berglass J, Qui J, Whalen MJ. Beneficial effect of amyloid beta after controlled cortical impact. Brain Inj 2013; 27:743-8. [DOI: 10.3109/02699052.2013.771797] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
124
|
Zetterberg H, Smith DH, Blennow K. Biomarkers of mild traumatic brain injury in cerebrospinal fluid and blood. Nat Rev Neurol 2013; 9:201-10. [PMID: 23399646 PMCID: PMC4513656 DOI: 10.1038/nrneurol.2013.9] [Citation(s) in RCA: 431] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mild traumatic brain injury (TBI), which is defined as a head trauma resulting in a brief loss of consciousness and/or alteration of mental state, is usually benign, but occasionally causes persistent and sometimes progressive symptoms. Whether a threshold for the amount of brain injury and/or individual vulnerability might contribute to the development of these long-term consequences is unknown. Furthermore, reliable diagnostic methods that can establish whether a blow to the head has affected the brain (and in what way) are lacking. In this Review, we discuss potential biomarkers of injury to different structures and cell types in the CNS that can be detected in body fluids. We present arguments in support of the need for further development and validation of such biomarkers, and for their use in assessing patients with head trauma in whom the brain might have been affected. Specifically, we focus on the need for such biomarkers in the management of sports-related concussion, the most common cause of mild TBI in young individuals, to prevent long-term neurological sequelae due to concussive or subconcussive blows to the head.
Collapse
Affiliation(s)
- Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, SE-431 80 Mölndal, Sweden.
| | | | | |
Collapse
|
125
|
Gatson JW, Warren V, Abdelfattah K, Wolf S, Hynan LS, Moore C, Diaz-Arrastia R, Minei JP, Madden C, Wigginton JG. Detection of β-amyloid oligomers as a predictor of neurological outcome after brain injury. J Neurosurg 2013; 118:1336-42. [PMID: 23540266 DOI: 10.3171/2013.2.jns121771] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECT Traumatic brain injury (TBI) is known to be a risk factor for Alzheimer-like dementia. In previous studies, an increase in β-amyloid (Aβ) monomers, such as β-amyloid 42 (Aβ42), in the CSF of patients with TBI has been shown to correlate with a decrease in amyloid plaques in the brain and improved neurological outcomes. In this study, the authors hypothesized that the levels of toxic high-molecular-weight β-amyloid oligomers are increased in the brain and are detectable within the CSF of TBI patients with poor neurological outcomes. METHODS Samples of CSF were collected from 18 patients with severe TBI (Glasgow Coma Scale Scores 3-8) and a ventriculostomy. In all cases the CSF was collected within 72 hours of injury. The CSF levels of neuron-specific enolase (NSE) and Aβ42 were measured using enzyme-linked immunosorbent assay. The levels of high-molecular-weight β-amyloid oligomers were measured using Western blot analysis. RESULTS Patients with good outcomes showed an increase in the levels of CSF Aβ42 (p = 0.003). Those with bad outcomes exhibited an increase in CSF levels of β-amyloid oligomers (p = 0.009) and NSE (p = 0.001). In addition, the CSF oligomer levels correlated with the scores on the extended Glasgow Outcome Scale (r = -0.89, p = 0.0001), disability rating scale scores (r = 0.77, p = 0.005), CSF Aβ42 levels (r = -0.42, p = 0.12), and CSF NSE levels (r = 0.70, p = 0.004). Additionally, the receiver operating characteristic curve yielded an area under the curve for β-amyloid oligomers of 0.8750 ± 0.09. CONCLUSIONS Detection of β-amyloid oligomers may someday become a useful clinical tool for determining injury severity and neurological outcomes in patients with TBI.
Collapse
Affiliation(s)
- Joshua Wayne Gatson
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9160, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Purushothuman S, Marotte L, Stowe S, Johnstone DM, Stone J. The response of cerebral cortex to haemorrhagic damage: experimental evidence from a penetrating injury model. PLoS One 2013; 8:e59740. [PMID: 23555765 PMCID: PMC3605910 DOI: 10.1371/journal.pone.0059740] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 02/21/2013] [Indexed: 11/18/2022] Open
Abstract
Understanding the response of the brain to haemorrhagic damage is important in haemorrhagic stroke and increasingly in the understanding the cerebral degeneration and dementia that follow head trauma and head-impact sports. In addition, there is growing evidence that haemorrhage from small cerebral vessels is important in the pathogenesis of age-related dementia (Alzheimer's disease). In a penetration injury model of rat cerebral cortex, we have examined the neuropathology induced by a needlestick injury, with emphasis on features prominent in the ageing and dementing human brain, particularly plaque-like depositions and the expression of related proteins. Needlestick lesions were made in neo- and hippocampal cortex in Sprague Dawley rats aged 3-5 months. Brains were examined after 1-30 d survival, for haemorrhage, for the expression of hyperphosphorylated tau, Aβ, amyloid precursor protein (APP), for gliosis and for neuronal death. Temporal cortex from humans diagnosed with Alzheimer's disease was examined with the same techniques. Needlestick injury induced long-lasting changes-haem deposition, cell death, plaque-like deposits and glial invasion-along the needle track. Around the track, the lesion induced more transient changes, particularly upregulation of Aβ, APP and hyperphosporylated tau in neurons and astrocytes. Reactions were similar in hippocampus and neocortex, except that neuronal death was more widespread in the hippocampus. In summary, experimental haemorrhagic injury to rat cerebral cortex induced both permanent and transient changes. The more permanent changes reproduced features of human senile plaques, including the formation of extracellular deposits in which haem and Aβ-related proteins co-localised, neuronal loss and gliosis. The transient changes, observed in tissue around the direct lesion, included the upregulation of Aβ, APP and hyperphosphorylated tau, not associated with cell death. The findings support the possibility that haemorrhagic damage to the brain can lead to plaque-like pathology.
Collapse
|
127
|
Smith DH, Johnson VE, Stewart W. Chronic neuropathologies of single and repetitive TBI: substrates of dementia? Nat Rev Neurol 2013; 9:211-21. [PMID: 23458973 DOI: 10.1038/nrneurol.2013.29] [Citation(s) in RCA: 545] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Traumatic brain injury (TBI) has long been recognized to be a risk factor for dementia. This association has, however, only recently gained widespread attention through the increased awareness of 'chronic traumatic encephalopathy' (CTE) in athletes exposed to repetitive head injury. Originally termed 'dementia pugilistica' and linked to a career in boxing, descriptions of the neuropathological features of CTE include brain atrophy, cavum septum pellucidum, and amyloid-β, tau and TDP-43 pathologies, many of which might contribute to clinical syndromes of cognitive impairment. Similar chronic pathologies are also commonly found years after just a single moderate to severe TBI. However, little consensus currently exists on specific features of these post-TBI syndromes that might permit their confident clinical and/or pathological diagnosis. Moreover, the mechanisms contributing to neurodegeneration following TBI largely remain unknown. Here, we review the current literature and controversies in the study of chronic neuropathological changes after TBI.
Collapse
Affiliation(s)
- Douglas H Smith
- Penn Center for Brain Injury and Repair and Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 105 Hayden Hall, 3320 Smith Walk, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
128
|
Blennow K, Hardy J, Zetterberg H. The neuropathology and neurobiology of traumatic brain injury. Neuron 2013; 76:886-99. [PMID: 23217738 DOI: 10.1016/j.neuron.2012.11.021] [Citation(s) in RCA: 463] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2012] [Indexed: 01/19/2023]
Abstract
The acute and long-term consequences of traumatic brain injury (TBI) have received increased attention in recent years. In this Review, we discuss the neuropathology and neural mechanisms associated with TBI, drawing on findings from sports-induced TBI in athletes, in whom acute TBI damages axons and elicits both regenerative and degenerative tissue responses in the brain and in whom repeated concussions may initiate a long-term neurodegenerative process called dementia pugilistica or chronic traumatic encephalopathy (CTE). We also consider how the neuropathology and neurobiology of CTE in many ways resembles other neurodegenerative illnesses such as Alzheimer's disease, particularly with respect to mismetabolism and aggregation of tau, β-amyloid, and TDP-43. Finally, we explore how translational research in animal models of acceleration/deceleration types of injury relevant for concussion together with clinical studies employing imaging and biochemical markers may further elucidate the neurobiology of TBI and CTE.
Collapse
Affiliation(s)
- Kaj Blennow
- Clinical Neurochemistry Laboratory, Institue of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Sahlgrenska University Hospital, Mölndal, SE-431 80 Mölndal, Sweden.
| | | | | |
Collapse
|
129
|
Haeseler LA. Themes of coping in the spectrum of domestic violence abuse: a review of the literature. JOURNAL OF EVIDENCE-BASED SOCIAL WORK 2013; 10:25-32. [PMID: 23368992 DOI: 10.1080/15433714.2013.751230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Women's coping experiences in the spectrum of domestic violence abuse are complex and multifaceted. The spectrum stages of abuse include when a woman is in, out, or returning to the abuse situation. In this article the author discusses the obstacles with which women cope and the service delivery initiatives to better serve women. The themes of women's coping in the spectrum of abuse for this research review include psycho-physiological, economic, education, family, and childcare factors. Service practitioners must fully recognize the factors with which women of abuse cope. Included are suggestions for service professionals aiding women to improve services as women utilize multiple services simultaneously.
Collapse
Affiliation(s)
- Lisa Ann Haeseler
- Community Outreach Consultant, Leadership Headquarters, Angola, New York 14226, USA.
| |
Collapse
|
130
|
Kumar A, Loane DJ. Neuroinflammation after traumatic brain injury: opportunities for therapeutic intervention. Brain Behav Immun 2012; 26:1191-201. [PMID: 22728326 DOI: 10.1016/j.bbi.2012.06.008] [Citation(s) in RCA: 508] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 05/27/2012] [Accepted: 06/14/2012] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) remains one of the leading causes of mortality and morbidity worldwide, yet despite extensive efforts to develop neuroprotective therapies for this devastating disorder there have been no successful outcomes in human clinical trials to date. Following the primary mechanical insult TBI results in delayed secondary injury events due to neurochemical, metabolic and cellular changes that account for many of the neurological deficits observed after TBI. The development of secondary injury represents a window of opportunity for therapeutic intervention to prevent progressive tissue damage and loss of function after injury. To establish effective neuroprotective treatments for TBI it is essential to fully understand the complex cellular and molecular events that contribute to secondary injury. Neuroinflammation is well established as a key secondary injury mechanism after TBI, and it has been long considered to contribute to the damage sustained following brain injury. However, experimental and clinical research indicates that neuroinflammation after TBI can have both detrimental and beneficial effects, and these likely differ in the acute and delayed phases after injury. The key to developing future anti-inflammatory based neuroprotective treatments for TBI is to minimize the detrimental and neurotoxic effects of neuroinflammation while promoting the beneficial and neurotrophic effects, thereby creating optimal conditions for regeneration and repair after injury. This review outlines how post-traumatic neuroinflammation contributes to secondary injury after TBI, and discusses the complex and varied responses of the primary innate immune cells of the brain, microglia, to injury. In addition, emerging experimental anti-inflammatory and multipotential drug treatment strategies for TBI are discussed, as well as some of the challenges faced by the research community to translate promising neuroprotective drug treatments to the clinic.
Collapse
Affiliation(s)
- Alok Kumar
- Department of Anesthesiology & Center for Shock, Trauma and Anesthesiology Research (STAR), National Study Center for Trauma and EMS, University of Maryland School of Medicine, Baltimore, MD, United States
| | | |
Collapse
|
131
|
Das M, Mohapatra S, Mohapatra SS. New perspectives on central and peripheral immune responses to acute traumatic brain injury. J Neuroinflammation 2012; 9:236. [PMID: 23061919 PMCID: PMC3526406 DOI: 10.1186/1742-2094-9-236] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/04/2012] [Indexed: 01/14/2023] Open
Abstract
Traumatic injury to the brain (TBI) results in a complex set of responses involving various symptoms and long-term consequences. TBI of any form can cause cognitive, behavioral and immunologic changes in later life, which underscores the problem of underdiagnosis of mild TBI that can cause long-term neurological deficits. TBI disrupts the blood–brain barrier (BBB) leading to infiltration of immune cells into the brain and subsequent inflammation and neurodegeneration. TBI-induced peripheral immune responses can also result in multiorgan damage. Despite worldwide research efforts, the methods of diagnosis, monitoring and treatment for TBI are still relatively ineffective. In this review, we delve into the mechanism of how TBI-induced central and peripheral immune responses affect the disease outcome and discuss recent developments in the continuing effort to combat the consequences of TBI and new ways to enhance repair of the damaged brain.
Collapse
Affiliation(s)
- Mahasweta Das
- Nanomedicine Research Center, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | | | | |
Collapse
|
132
|
Chami L, Checler F. BACE1 is at the crossroad of a toxic vicious cycle involving cellular stress and β-amyloid production in Alzheimer's disease. Mol Neurodegener 2012; 7:52. [PMID: 23039869 PMCID: PMC3507664 DOI: 10.1186/1750-1326-7-52] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/03/2012] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is a complex age-related pathology, the etiology of which has not been firmly delineated. Among various histological stigmata, AD-affected brains display several cellular dysfunctions reflecting enhanced oxidative stress, inflammation process and calcium homeostasis disturbance. Most of these alterations are directly or indirectly linked to amyloid β-peptides (Aβ), the production, molecular nature and biophysical properties of which likely conditions the degenerative process. It is particularly noticeable that, in a reverse control process, the above-described cellular dysfunctions alter Aβ peptides levels. β-secretase βAPP-cleaving enzyme 1 (BACE1) is a key molecular contributor of this cross-talk. This enzyme is responsible for the primary cleavage generating the N-terminus of “full length” Aβ peptides and is also transcriptionally induced by several cellular stresses. This review summarizes data linking brain insults to AD-like pathology and documents the key role of BACE1 at the cross-road of a vicious cycle contributing to Aβ production.
Collapse
Affiliation(s)
- Linda Chami
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275 CNRS/UNSA, 06560 Valbonne, France
| | | |
Collapse
|
133
|
Yu F, Zhang Y, Chuang DM. Lithium reduces BACE1 overexpression, β amyloid accumulation, and spatial learning deficits in mice with traumatic brain injury. J Neurotrauma 2012; 29:2342-51. [PMID: 22583494 PMCID: PMC3430485 DOI: 10.1089/neu.2012.2449] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Traumatic brain injury (TBI) leads to both acute injury and long-term neurodegeneration, and is a major risk factor for developing Alzheimer's disease (AD). Beta amyloid (Aβ) peptide deposits in the brain are one of the pathological hallmarks of AD. Aβ levels increase after TBI in animal models and in patients with head trauma, and reducing Aβ levels after TBI has beneficial effects. Lithium is known to be neuroprotective in various models of neurodegenerative disease, and can reduce Aβ generation by modulating glycogen synthase kinase-3 (GSK-3) activity. In this study we explored whether lithium would reduce Aβ load after TBI, and improve learning and memory in a mouse TBI model. Lithium chloride (1.5 mEq/kg, IP) was administered 15 min after TBI, and once daily thereafter for up to 3 weeks. At 3 days after injury, lithium attenuated TBI-induced Aβ load increases, amyloid precursor protein (APP) accumulation, and β-APP-cleaving enzyme-1 (BACE1) overexpression in the corpus callosum and hippocampus. Increased Tau protein phosphorylation in the thalamus was also attenuated after lithium treatment following TBI at the same time point. Notably, lithium treatment significantly improved spatial learning and memory in the Y-maze test conducted 10 days after TBI, and in the Morris water maze test performed 17-20 days post-TBI, in association with increased hippocampal preservation. Thus post-insult treatment with lithium appears to alleviate the TBI-induced Aβ load and consequently improves spatial memory. Our findings suggest that lithium is a potentially useful agent for managing memory impairments after TBI or other head trauma.
Collapse
Affiliation(s)
- Fengshan Yu
- Section on Molecular Neurobiology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Yumin Zhang
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - De-Maw Chuang
- Section on Molecular Neurobiology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
134
|
A polymorphism in the upstream regulatory region of the interleukin-1α gene confers differential binding by transcription factors of the AP-1 family. Life Sci 2012; 90:975-9. [PMID: 22634325 DOI: 10.1016/j.lfs.2012.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 04/26/2012] [Accepted: 05/08/2012] [Indexed: 11/23/2022]
Abstract
AIMS Previous genetic studies have shown that a C/T polymorphism at position -889 of the IL1A promoter, specifically allele 2 (-889T), increases the risk for development of several inflammation-related disorders, such as periodontitis, osteomyelitis, toxoplasmic retinochoroiditis, contact dermatitis, as well as neurodegenerative conditions such as Alzheimer's disease. We sought to determine the differential abilities of C- and T- containing versions of the -889 sequence to bind nuclear proteins from microglia. MAIN METHODS Microglial cells were subjected to inflammatory activation prior to the harvest of nuclear proteins. Electrophoretic mobility shift assays (EMSA) were performed using oligonucleotide probes representing 25 base pairs surrounding the IL1A -889 polymorphism. Antibodies reactive against transcription factors were used to identify the specific proteins involved in complexes with DNA. KEY FINDINGS EMSA revealed multiple differences in DNA-binding profiles when microglial nuclear extracts were incubated with the polymorphic probes. The allele-2 probe formed specific complexes that were not detected with the allele-1 (-889C) probe, and vice versa. Formation of allele-2 nucleoprotein complexes was increased in activated microglia. Antibody supershift analysis indicated that multiple Jun-family members but not Fos-family proteins contributed to the LPS-activated allele-2 EMSA complexes. LPS-activation of allele-2 EMSA complexes could be blocked by the specific c-Jun N-terminal kinase (JNK) inhibitor SP600125. SIGNIFICANCE These results suggest that the -889 polymorphism creates differential interactions with transcription factors that could lead to differential expression rates under proinflammatory conditions.
Collapse
|
135
|
Corrigan F, Vink R, Blumbergs PC, Masters CL, Cappai R, van den Heuvel C. sAPPα rescues deficits in amyloid precursor protein knockout mice following focal traumatic brain injury. J Neurochem 2012; 122:208-20. [PMID: 22519988 DOI: 10.1111/j.1471-4159.2012.07761.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The amyloid precursor protein (APP) is thought to be neuroprotective following traumatic brain injury (TBI), although definitive evidence at moderate to severe levels of injury is lacking. In the current study, we investigated histological and functional outcomes in APP-/- mice compared with APP+/+ mice following a moderate focal injury, and whether administration of sAPPα restored the outcomes in knockout animals back to the wildtype state. Following moderate controlled cortical impact injury, APP-/- mice demonstrated greater impairment in motor and cognitive outcome as determined by the ledged beam and Barnes Maze tests respectively (p < 0.05). This corresponded with the degree of neuronal damage, with APP-/- mice having significantly greater lesion volume (25.0 ± 1.6 vs. 20.3 ± 1.6%, p < 0.01) and hippocampal damage, with less remaining CA neurons (839 ± 245 vs. 1353 ± 142 and 1401 ± 263). This was also associated with an impaired neuroreparative response, with decreased GAP-43 immunoreactivity within the cortex around the lesion edge compared with APP+/+ mice. The deficits observed in the APP-/- mice related to a lack of sAPPα, as treatment with exogenously added sAPPα post-injury improved APP-/- mice histological and functional outcome to the point that they were no longer significantly different to APP+/+ mice (p < 0.05). This study shows that endogenous APP is potentially protective at moderate levels of TBI, and that this neuroprotective activity is related to the presence of sAPPα. Importantly, it indicates that the mechanism of action of exogenously added sAPPα is independent of the presence of endogenous APP.
Collapse
Affiliation(s)
- Frances Corrigan
- Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, Adelaide South Australia, Australia.
| | | | | | | | | | | |
Collapse
|
136
|
Traumatic brain injury, microglia, and Beta amyloid. Int J Alzheimers Dis 2012; 2012:608732. [PMID: 22666622 PMCID: PMC3359797 DOI: 10.1155/2012/608732] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 03/02/2012] [Indexed: 01/30/2023] Open
Abstract
Recently, there has been growing interest in the association between traumatic brain injury (TBI) and Alzheimer's Disease (AD). TBI and AD share many pathologic features including chronic inflammation and the accumulation of beta amyloid (Aβ). Data from both AD and TBI studies suggest that microglia play a central role in Aβ accumulation after TBI. This paper focuses on the current research on the role of microglia response to Aβ after TBI.
Collapse
|
137
|
Corrigan F, Vink R, Blumbergs PC, Masters CL, Cappai R, van den Heuvel C. Characterisation of the effect of knockout of the amyloid precursor protein on outcome following mild traumatic brain injury. Brain Res 2012; 1451:87-99. [PMID: 22424792 DOI: 10.1016/j.brainres.2012.02.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 01/17/2012] [Accepted: 02/19/2012] [Indexed: 01/01/2023]
Abstract
The amyloid precursor protein (APP) increases following traumatic brain injury (TBI), although the functional significance of this remains unclear largely because the functions of the subsequent APP metabolites are so different: Aβ is neurotoxic whilst sAPPα is neuroprotective. To investigate this further, APP wildtype and knockout mice were subjected to mild diffuse TBI and their outcomes compared. APP knockout mice displayed significantly worse cognitive and motor deficits, as demonstrated by the Barnes Maze and rotarod respectively, than APP wildtype mice. This was associated with a significant increase in hippocampal and cortical cell loss, as well as axonal injury, in APP knockout mice and an impaired neuroreparative response as indicated by diminished GAP-43 immunoreactivity when compared to APP wildtype mice. This study is the first to demonstrate that endogenous APP is beneficial following mild TBI, suggesting that the upregulation of APP observed following injury is an acute protective response.
Collapse
Affiliation(s)
- Frances Corrigan
- Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, Adelaide SA, Australia
| | | | | | | | | | | |
Collapse
|
138
|
Johnson VE, Stewart W, Trojanowski JQ, Smith DH. Acute and chronically increased immunoreactivity to phosphorylation-independent but not pathological TDP-43 after a single traumatic brain injury in humans. Acta Neuropathol 2011; 122:715-26. [PMID: 22101322 PMCID: PMC3979333 DOI: 10.1007/s00401-011-0909-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 11/06/2011] [Accepted: 11/07/2011] [Indexed: 12/13/2022]
Abstract
The pathologic phosphorylation and sub-cellular translocation of neuronal transactive response-DNA binding protein (TDP-43) was identified as the major disease protein in frontotemporal lobar degeneration (FTLD) with ubiquitinated inclusions, now termed FTLD-TDP, and amyotrophic lateral sclerosis (ALS). More recently, TDP-43 proteinopathy has been reported in dementia pugilistica or chronic traumatic encephalopathy caused by repetitive traumatic brain injury (TBI). While a single TBI has been linked to the development of Alzheimer's disease and an increased frequency of neurofibrillary tangles, TDP-43 proteinopathy has not been examined with survival following a single TBI. Using immunohistochemistry specific for both pathological phosphorylated TDP-43 (p-TDP-43) and phosphorylation-independent TDP-43 (pi-TDP-43), we examined acute (n = 23: Survival < 2 weeks) and long-term (n = 39; 1-47 years survival) survivors of a single TBI versus age-matched controls (n = 47). Multiple regions were examined including the hippocampus, medial temporal lobe, cingulate gyrus, superior frontal gyrus and brainstem. No association was found between a history of single TBI and abnormally phosphorylated TDP-43 (p-TDP-43) inclusions. Specifically, just 3 of 62 TBI cases displayed p-TDP-43 pathology versus 2 of 47 control cases. However, while aggregates of p-TDP-43 were not increased acutely or long-term following TBI, immunoreactivity to phosphorylation-independent TDP-43 was commonly increased in the cytoplasm following TBI with both acute and long-term survival. Moreover, while single TBI can induce multiple long-term neurodegenerative changes, the absence of TDP-43 proteinopathy may indicate a fundamental difference in the processes induced following single TBI from those of repetitive TBI.
Collapse
Affiliation(s)
- Victoria E. Johnson
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, University of Pennsylvania, 105 Hayden Hall, 3320 Smith Walk, Philadelphia, PA 19104, USA
- Division of Clinical Neurosciences, University of Glasgow, Glasgow, UK
| | - William Stewart
- Division of Clinical Neurosciences, University of Glasgow, Glasgow, UK
- Department of Neuropathology, Institute of Neurological Sciences, Southern General Hospital, Glasgow, UK
| | - John Q. Trojanowski
- Department Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
- Alzheimer’s Disease Core Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
- Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Douglas H. Smith
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, University of Pennsylvania, 105 Hayden Hall, 3320 Smith Walk, Philadelphia, PA 19104, USA
| |
Collapse
|
139
|
Controlled cortical impact traumatic brain injury in 3xTg-AD mice causes acute intra-axonal amyloid-β accumulation and independently accelerates the development of tau abnormalities. J Neurosci 2011; 31:9513-25. [PMID: 21715616 DOI: 10.1523/jneurosci.0858-11.2011] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized pathologically by progressive neuronal loss, extracellular plaques containing the amyloid-β (Aβ) peptides, and neurofibrillary tangles composed of hyperphosphorylated tau proteins. Aβ is thought to act upstream of tau, affecting its phosphorylation and therefore aggregation state. One of the major risk factors for AD is traumatic brain injury (TBI). Acute intra-axonal Aβ and diffuse extracellular plaques occur in ∼30% of human subjects after severe TBI. Intra-axonal accumulations of tau but not tangle-like pathologies have also been found in these patients. Whether and how these acute accumulations contribute to subsequent AD development is not known, and the interaction between Aβ and tau in the setting of TBI has not been investigated. Here, we report that controlled cortical impact TBI in 3xTg-AD mice resulted in intra-axonal Aβ accumulations and increased phospho-tau immunoreactivity at 24 h and up to 7 d after TBI. Given these findings, we investigated the relationship between Aβ and tau pathologies after trauma in this model by systemic treatment of Compound E to inhibit γ-secretase activity, a proteolytic process required for Aβ production. Compound E treatment successfully blocked posttraumatic Aβ accumulation in these injured mice at both time points. However, tau pathology was not affected. Our data support a causal role for TBI in acceleration of AD-related pathologies and suggest that TBI may independently affect Aβ and tau abnormalities. Future studies will be required to assess the behavioral and long-term neurodegenerative consequences of these pathologies.
Collapse
|
140
|
Johnson VE, Stewart W, Smith DH. Widespread τ and amyloid-β pathology many years after a single traumatic brain injury in humans. Brain Pathol 2011; 22:142-9. [PMID: 21714827 DOI: 10.1111/j.1750-3639.2011.00513.x] [Citation(s) in RCA: 462] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
While a history of a single traumatic brain injury (TBI) is associated with the later development of syndromes of cognitive impairment such as Alzheimer's disease, the long-term pathology evolving after single TBI is poorly understood. However, a progressive tauopathy, chronic traumatic encephalopathy, is described in selected cohorts with a history of repetitive concussive/mild head injury. Here, post-mortem brains from long-term survivors of just a single TBI (1-47 years survival; n=39) vs. uninjured, age-matched controls (n=47) were examined for neurofibrillary tangles (NFTs) and amyloid-β (Aβ) plaques using immunohistochemistry and thioflavine-S staining. Detailed maps of findings permitted classification of pathology using semiquantitative scoring systems. NFTs were exceptionally rare in young, uninjured controls, yet were abundant and widely distributed in approximately one-third of TBI cases. In addition, Aβ-plaques were found in a greater density following TBI vs. controls. Moreover, thioflavine-S staining revealed that while all plaque-positive control cases displayed predominantly diffuse plaques, 64% of plaque-positive TBI cases displayed predominantly thioflavine-S-positive plaques or a mixed thioflavine-S-positive/diffuse pattern. These data demonstrate that widespread NFT and Aβ plaque pathologies are present in up to a third of patients following survival of a year or more from a single TBI. This suggests that a single TBI induces long-term neuropathological changes akin to those found in neurodegenerative disease.
Collapse
Affiliation(s)
- Victoria E Johnson
- Penn Center for Brain Injury and Repair and Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
141
|
Mannix RC, Zhang J, Park J, Lee C, Whalen MJ. Detrimental effect of genetic inhibition of B-site APP-cleaving enzyme 1 on functional outcome after controlled cortical impact in young adult mice. J Neurotrauma 2011; 28:1855-61. [PMID: 21639727 DOI: 10.1089/neu.2011.1759] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
β-Amyloid (Aβ) peptides, most notably associated with Alzheimer's disease, have been implicated in the pathogenesis of secondary injury after traumatic brain injury (TBI). A prior study has demonstrated that blocking the β-site amyloid precursor protein (APP)-cleaving enzyme 1 (Bace1) required for production of Aβ from APP improved functional and histologic outcomes after controlled cortical impact (CCI) in aged mice. However, the majority of patients with severe TBI are young adults under the age of 40. Prior experimental models have suggested age-dependent differences in Aβ clearance, and a recent study in our lab suggests that young animals remediate acute elevations in Aβ after CCI better than older animals. We therefore tested the hypothesis that Bace1 deletion in young adult mice would not be protective after CCI. Male Bace1 knockout (Bace1(-/-)) and wild-type Bace1(+/+) (C57BL/6) mice (2-3 months old) were subjected to CCI (n=18-23/group) or sham injury (n=10-12/group). Functional outcomes were assessed with wire grip (motor) and the Morris water maze (MWM; spatial memory). Soluble Aβ levels were assessed at 48 h after CCI. Histopathological outcomes were assessed by lesion and hippocampal volume. Clustered ordinal logistic regression showed overall significant impairment in motor performance in injured Bace1(-/-) versus Bace1(+/+) animals (p=0.003). No significant differences in MWM performance were found on repeated-measures ANOVA (p=0.11) between groups. Probe scores were significantly worse in injured Bace1(-/-) versus Bace1(+/+) mice (p=0.0009). Soluble Aβ(40) was significantly lower in ipsilateral hemispheres of Bace1(-/-) than in Bace1(+/+) animals after CCI (0.9 [IQR 0.88-0.94] pmol/g protein versus 3.8 [IQR 2.4-6.0] pmol/g protein; p=0.005). Lesion and hippocampal volumes did not differ between injured groups. The data suggest that therapies targeting Bace1 may need to be tailored according to age and injury severity, as their use may exacerbate functional deficits after TBI in younger or less severely injured patients.
Collapse
Affiliation(s)
- Rebekah C Mannix
- Division of Emergency Medicine, Department of Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | |
Collapse
|
142
|
Traumatic brain injury and amyloid-β pathology: a link to Alzheimer's disease? Nat Rev Neurosci 2011; 11:361-70. [PMID: 20216546 DOI: 10.1038/nrn2808] [Citation(s) in RCA: 438] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Traumatic brain injury (TBI) has devastating acute effects and in many cases seems to initiate long-term neurodegeneration. Indeed, an epidemiological association between TBI and the development of Alzheimer's disease (AD) later in life has been demonstrated, and it has been shown that amyloid-β (Aβ) plaques — one of the hallmarks of AD — may be found in patients within hours following TBI. Here, we explore the mechanistic underpinnings of the link between TBI and AD, focusing on the hypothesis that rapid Aβ plaque formation may result from the accumulation of amyloid precursor protein in damaged axons and a disturbed balance between Aβ genesis and catabolism following TBI.
Collapse
|
143
|
Blaylock RL, Maroon J. Immunoexcitotoxicity as a central mechanism in chronic traumatic encephalopathy-A unifying hypothesis. Surg Neurol Int 2011; 2:107. [PMID: 21886880 PMCID: PMC3157093 DOI: 10.4103/2152-7806.83391] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 06/06/2011] [Indexed: 12/17/2022] Open
Abstract
Some individuals suffering from mild traumatic brain injuries, especially repetitive mild concussions, are thought to develop a slowly progressive encephalopathy characterized by a number of the neuropathological elements shared with various neurodegenerative diseases. A central pathological mechanism explaining the development of progressive neurodegeneration in this subset of individuals has not been elucidated. Yet, a large number of studies indicate that a process called immunoexcitotoxicity may be playing a central role in many neurodegenerative diseases including chronic traumatic encephalopathy (CTE). The term immunoexcitotoxicity was first coined by the lead author to explain the evolving pathological and neurodevelopmental changes in autism and the Gulf War Syndrome, but it can be applied to a number of neurodegenerative disorders. The interaction between immune receptors within the central nervous system (CNS) and excitatory glutamate receptors trigger a series of events, such as extensive reactive oxygen species/reactive nitrogen species generation, accumulation of lipid peroxidation products, and prostaglandin activation, which then leads to dendritic retraction, synaptic injury, damage to microtubules, and mitochondrial suppression. In this paper, we discuss the mechanism of immunoexcitotoxicity and its link to each of the pathophysiological and neurochemical events previously described with CTE, with special emphasis on the observed accumulation of hyperphosphorylated tau.
Collapse
Affiliation(s)
- Russell L Blaylock
- Theoretical Neurosciences, LLC Visiting Professor of Biology, Belhaven University, Jackson, MS 315 Rolling Meadows Rd, Ridgeland, MS 39157, USA
| | | |
Collapse
|
144
|
Lemkul JA, Bevan DR. Lipid composition influences the release of Alzheimer's amyloid β-peptide from membranes. Protein Sci 2011; 20:1530-45. [PMID: 21692120 DOI: 10.1002/pro.678] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 05/08/2011] [Accepted: 06/09/2011] [Indexed: 12/15/2022]
Abstract
The behavior of the amyloid β-peptide (Aβ) within a membrane environment is integral to its toxicity and the progression of Alzheimer's disease. Ganglioside GM1 has been shown to enhance the aggregation of Aβ, but the underlying mechanism is unknown. Using atomistic molecular dynamics simulations, we explored the interactions between the 40-residue alloform of Aβ (Aβ(40) ) and several model membranes, including pure palmitoyloleoylphosphatidylcholine (POPC) and palmitoyloleoylphosphatidylserine (POPS), an equimolar mixture of POPC and palmitoyloleoylphosphatidylethanolamine (POPE), and lipid rafts, both with and without GM1, to understand the behavior of Aβ(40) in various membrane microenvironments. Aβ(40) remained inserted in POPC, POPS, POPC/POPE, and raft membranes, but in several instances exited the raft containing GM1. Aβ(40) interacted with GM1 largely through hydrogen bonding, producing configurations containing β-strands with C-termini that, in some cases, exited the membrane and became exposed to solvent. These observations provide insight into the release of Aβ from the membrane, a previously uncharacterized process of the Aβ aggregation pathway.
Collapse
Affiliation(s)
- Justin A Lemkul
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | | |
Collapse
|
145
|
Verghese PB, Castellano JM, Holtzman DM. Apolipoprotein E in Alzheimer's disease and other neurological disorders. Lancet Neurol 2011; 10:241-52. [PMID: 21349439 DOI: 10.1016/s1474-4422(10)70325-2] [Citation(s) in RCA: 611] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Apolipoprotein E (APOE) is a 299-aminoacid protein encoded by the APOE gene. Three common polymorphisms in the APOE gene, ɛ2, ɛ3, and ɛ4, result in a single aminoacid change in the APOE protein. APOE ɛ2, ɛ3, and ɛ4 alleles strongly alter, in a dose-dependent manner, the likelihood of developing Alzheimer's disease and cerebral amyloid angiopathy. In particular, APOE ɛ4 is associated with increased risk for Alzheimer's disease whereas APOE ɛ2 is associated with decreased risk. The effects of APOE genotype on risk of these diseases are likely to be mediated by differential effects of APOE on amyloid-β accumulation in the brain and its vasculature. Response to treatment for Alzheimer's disease might differ according to APOE genotype. Because convincing evidence ties the APOE genotype to risk of Alzheimer's disease and cerebral amyloid angiopathy, APOE has been studied in other neurological diseases. APOE ɛ4 is associated with poor outcome after traumatic brain injury and brain haemorrhage, although the mechanisms underlying these associations are unclear. The possibility that APOE has a role in these and other neurological diseases has been of great interest, but convincing associations have not yet emerged.
Collapse
Affiliation(s)
- Philip B Verghese
- Department of Neurology, Hope Center for Neurological Disorders, and the Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St Louis, MO, USA
| | | | | |
Collapse
|
146
|
Gavett BE, Stern RA, McKee AC. Chronic traumatic encephalopathy: a potential late effect of sport-related concussive and subconcussive head trauma. Clin Sports Med 2011; 30:179-88, xi. [PMID: 21074091 DOI: 10.1016/j.csm.2010.09.007] [Citation(s) in RCA: 438] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Chronic traumatic encephalopathy (CTE) is a form of neurodegeneration believed to result from repeated head injuries. Originally termed dementia pugilistica because of its association with boxing, the neuropathology of CTE was first described by Corsellis in 1973 in a case series of 15 retired boxers. CTE has recently been found to occur after other causes of repeated head trauma, suggesting that any repeated blows to the head, such as those that occur in American football, hockey, soccer, professional wrestling, and physical abuse, can also lead to neurodegenerative changes. These changes often include cerebral atrophy, cavum septi pellucidi with fenestrations, shrinkage of the mammillary bodies, dense tau immunoreactive inclusions (neurofibrillary tangles, glial tangles, and neuropil neurites), and, in some cases, a TDP-43 proteinopathy. In association with these pathologic changes, disordered memory and executive functioning, behavioral and personality disturbances (eg, apathy, depression, irritability, impulsiveness, suicidality), parkinsonism, and, occasionally, motor neuron disease are seen in affected individuals. No formal clinical or pathologic diagnostic criteria for CTE currently exist, but the distinctive neuropathologic profile of the disorder lends promise for future research into its prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Brandon E Gavett
- Center for the Study of Traumatic Encephalopathy and Alzheimer's Disease Center, Boston University School of Medicine, 72 East Concord Street, B-7800, Boston, MA 02118, USA
| | | | | |
Collapse
|
147
|
Loane DJ, Washington PM, Vardanian L, Pocivavsek A, Hoe HS, Duff KE, Cernak I, Rebeck GW, Faden AI, Burns MP. Modulation of ABCA1 by an LXR agonist reduces β-amyloid levels and improves outcome after traumatic brain injury. J Neurotrauma 2011; 28:225-36. [PMID: 21175399 PMCID: PMC3037807 DOI: 10.1089/neu.2010.1595] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Traumatic brain injury (TBI) increases brain beta-amyloid (Aβ) in humans and animals. Although the role of Aβ in the injury cascade is unknown, multiple preclinical studies have demonstrated a correlation between reduced Aβ and improved outcome. Therefore, therapeutic strategies that enhance Aβ clearance may be beneficial after TBI. Increased levels of ATP-binding cassette A1 (ABCA1) transporters can enhance Aβ clearance through an apolipoprotein E (apoE)-mediated pathway. By measuring Aβ and ABCA1 after experimental TBI in C57BL/6J mice, we found that Aβ peaked early after injury (1-3 days), whereas ABCA1 had a delayed response (beginning at 3 days). As ABCA1 levels increased, Aβ levels returned to baseline levels-consistent with the known role of ABCA1 in Aβ clearance. To test if enhancing ABCA1 levels could block TBI-induced Aβ, we treated TBI mice with the liver X-receptor (LXR) agonist T0901317. Pre- and post-injury treatment increased ABCA1 levels at 24 h post-injury, and reduced the TBI-induced increase in Aβ. This reduction in Aβ was not due to decreased amyloid precursor protein processing, or a shift in the solubility of Aβ, indicating enhanced clearance. T0901317 also limited motor coordination deficits in injured mice and reduced brain lesion volume. These data indicate that activation of LXR can reduce Aβ accumulation after TBI, and is accompanied by improved functional recovery.
Collapse
Affiliation(s)
- David J. Loane
- Department of Anesthesiology and Center for Shock Trauma and Anesthesiology Research, National Study Center for Trauma and EMS, University of Maryland School of Medicine, Baltimore, Maryland
| | | | - Lilit Vardanian
- Department of Neuroscience, Georgetown University Medical Center, Washington, D.C
| | - Ana Pocivavsek
- Department of Neuroscience, Georgetown University Medical Center, Washington, D.C
| | - Hyang-Sook Hoe
- Department of Neuroscience, Georgetown University Medical Center, Washington, D.C
| | - Karen E. Duff
- Department of Pathology, Taub Institute for Alzheimer Disease Research, and Integrative Neuroscience New York State Psychiatric Institute, Columbia University Medical Center, New York, New York
| | - Ibolja Cernak
- Johns Hopkins University, Applied Physics Laboratory, Laurel, Maryland
| | - G. William Rebeck
- Department of Neuroscience, Georgetown University Medical Center, Washington, D.C
| | - Alan I. Faden
- Department of Anesthesiology and Center for Shock Trauma and Anesthesiology Research, National Study Center for Trauma and EMS, University of Maryland School of Medicine, Baltimore, Maryland
| | - Mark P. Burns
- Department of Neuroscience, Georgetown University Medical Center, Washington, D.C
| |
Collapse
|
148
|
Yu JT, Wang ND, Ma T, Jiang H, Guan J, Tan L. Roles of β-adrenergic receptors in Alzheimer's disease: implications for novel therapeutics. Brain Res Bull 2010; 84:111-7. [PMID: 21129453 DOI: 10.1016/j.brainresbull.2010.11.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 11/01/2010] [Accepted: 11/04/2010] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD), the most common cause of age-related dementia, is a progressive neurodegenerative disorder with an enormous unmet medical need. In recent years, several unexpected longitudinal and cross-sectional epidemiological studies reveal that beta-blockers treatment reduces the prevalence of AD in patients suffering from hypertension. Now, a newly population-based study of individuals with incident AD demonstrates that beta-blockers are also associated with delay of functional decline. Furthermore, accumulated convincing evidences from cell culture experiments and animal studies have also suggested that β-adrenergic receptors (β-ARs) may involve in the AD pathogenesis through effects on amyloid-β (Aβ) production or inflammation. This review explores clinical and experimental studies that might help to explain the roles of β-ARs in the AD pathogenesis and the potential underlying mechanisms and whether treatment with β-ARs antagonists provides a new therapeutic option for AD.
Collapse
Affiliation(s)
- Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province 266071, PR China
| | | | | | | | | | | |
Collapse
|
149
|
Lindhagen-Persson M, Brännström K, Vestling M, Steinitz M, Olofsson A. Amyloid-β oligomer specificity mediated by the IgM isotype--implications for a specific protective mechanism exerted by endogenous auto-antibodies. PLoS One 2010; 5:e13928. [PMID: 21085663 PMCID: PMC2978096 DOI: 10.1371/journal.pone.0013928] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 10/18/2010] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Alzheimers disease (AD) has been strongly linked to an anomalous self-assembly of the amyloid-β peptide (Aβ). The correlation between clinical symptoms of AD and Aβ depositions is, however, weak. Instead small and soluble Aβ oligomers are suggested to exert the major pathological effects. In strong support of this notion, immunological targeting of Aβ oligomers in AD mice-models shows that memory impairments can be restored without affecting the total burden of Aβ deposits. Consequently a specific immunological targeting of Aβ oligomers is of high therapeutic interest. METHODOLOGY/PRINCIPAL FINDINGS Previously the generation of conformational-dependent oligomer specific anti-Aβ antibodies has been described. However, to avoid the difficult task of identifying a molecular architecture only present on oligomers, we have focused on a more general approach based on the hypothesis that all oligomers expose multiple identical epitopes and therefore would have an increased binding to a multivalent receptor. Using the polyvalent IgM immunoglobulin we have developed a monoclonal anti-Aβ antibody (OMAB). OMAB only demonstrates a weak interaction with Aβ monomers and dimers having fast on and off-rate kinetics. However, as an effect of avidity, its interaction with Aβ-oligomers results in a strong complex with an exceptionally slow off-rate. Through this mechanism a selectivity towards Aβ oligomers is acquired and OMAB fully inhibits the cytotoxic effect exerted by Aβ(1-42) at highly substoichiometric ratios. Anti-Aβ auto-antibodies of IgM isotype are frequently present in the sera of humans. Through a screen of endogenous anti-Aβ IgM auto-antibodies from a group of healthy individuals we show that all displays a preference for oligomeric Aβ. CONCLUSIONS/SIGNIFICANCE Taken together we provide a simple and general mechanism for targeting of oligomers without the requirement of conformational-dependent epitopes. In addition, our results suggest that IgM anti-Aβ auto-antibodies may exert a more specific protective mechanism in vivo than previously anticipated.
Collapse
Affiliation(s)
| | | | - Monika Vestling
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Michael Steinitz
- Department of Pathology, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Anders Olofsson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| |
Collapse
|
150
|
PKC activator therapeutic for mild traumatic brain injury in mice. Neurobiol Dis 2010; 41:329-37. [PMID: 20951803 DOI: 10.1016/j.nbd.2010.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 09/25/2010] [Accepted: 10/02/2010] [Indexed: 01/08/2023] Open
Abstract
Traumatic brain injury (TBI) is a frequent consequence of vehicle, sport and war related injuries. More than 90% of TBI patients suffer mild injury (mTBI). However, the pathologies underlying the disease are poorly understood and treatment modalities are limited. We report here that in mice, the potent PKC activator bryostatin1 protects against mTBI induced learning and memory deficits and reduction in pre-synaptic synaptophysin and post-synaptic spinophylin immunostaining. An effective treatment has to start within the first 8h after injury, and includes 5 × i.p. injections over a period of 14 days. The treatment is dose dependent. Exploring the effects of the repeated bryostatin1 treatment on the processing of the amyloid precursor protein, we found that the treatment induced an increase in the putative α-secretase ADAM10 and a reduction in β-secretase activities. Both these effects could contribute towards a reduction in β-amyloid production. These results suggest that bryostatin1 protects against mTBI cognitive and synaptic sequela by rescuing synapses, which is possibly mediated by an increase in ADAM10 and a decrease in BACE1 activity. Since bryostatin1 has already been extensively used in clinical trials as an anti-cancer drug, its potential as a remedy for the short- and long-term TBI sequelae is quite promising.
Collapse
|