101
|
Li Y, Zhu J, Hu J, Meng X, Zhang Q, Zhu K, Chen X, Chen X, Li G, Wang Z, Lu G. Functional characterization of electron-transferring flavoprotein and its dehydrogenase required for fungal development and plant infection by the rice blast fungus. Sci Rep 2016; 6:24911. [PMID: 27113712 PMCID: PMC4845064 DOI: 10.1038/srep24911] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/07/2016] [Indexed: 11/09/2022] Open
Abstract
Electron-transferring flavoprotein (ETF) and its dehydrogenase (ETFDH) are highly conserved electron carriers which mainly function in mitochondrial fatty acid β oxidation. Here, we report the identification and characterization of ETF α and β subunit encoding genes (ETFA and ETFB) and ETFDH encoding gene (ETFDH) in the rice blast fungus Magnaporthe oryzae. It was demonstrated that, by impacting fatty acid metabolism, ETF and ETFDH mutations led to severe growth and conidiation defects, which could be largely rescued by exogenous acetate or carbonate. Furthermore, although conidium germination and appressorium formation appeared to be normal in ETF and ETFDH mutants, most appressoria failed to penetrate the host epidermis due to low turgor pressure. The few appressoria that succeeded in penetration were severely restricted in invasive growth and consequently failed to cause disease. Moreover, ETF mutant etfb(-) induced ROS accumulation in infected host cells and exogenous antioxidant GSH accelerated mutant invading growth without increasing the penetration rate. In addition, mutant etfb(-) displayed elevated lipid body accumulation and reduced ATP synthesis. Taken together, ETF and ETFDH play an important role in fungal development and plant infection in M. oryzae by regulation of fatty acid metabolism, turgor establishment and induction of host ROS accumulation.
Collapse
Affiliation(s)
- Ya Li
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Jindong Zhu
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Jiexiong Hu
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Xiuli Meng
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Qi Zhang
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Kunpeng Zhu
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Xiaomin Chen
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Xuehang Chen
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Guangpu Li
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zonghua Wang
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Guodong Lu
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| |
Collapse
|
102
|
Liu Z, Chen JM, Huang H, Kuznicki M, Zheng S, Sun W, Quan N, Wang L, Yang H, Guo HM, Li J, Zhuang J, Zhu P. The protective effect of trimetazidine on myocardial ischemia/reperfusion injury through activating AMPK and ERK signaling pathway. Metabolism 2016; 65:122-30. [PMID: 26892523 PMCID: PMC4967934 DOI: 10.1016/j.metabol.2015.10.022] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/02/2015] [Accepted: 10/12/2015] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Trimetazidine (TMZ) is an anti-anginal drug that has been widely used in Europe and Asia. The TMZ can optimize energy metabolism via inhibition of long-chain 3-ketoacyl CoA thiolase (3-KAT) in the heart, with subsequent decrease in fatty acid oxidation and stimulation of glucose oxidation. However, the mechanism by which TMZ aids in cardioprotection against ischemic injury has not been characterized. AMP-activated protein kinase (AMPK) is an energy sensor that controls ATP supply from substrate metabolism and protects heart from energy stress. TMZ changes the cardiac AMP/ATP ratio by modulating fatty acid oxidation, thereby triggering AMPK signaling cascade that contributes to the protection of the heart from ischemia/reperfusion (I/R) injury. METHODS The mouse model of in vivo regional ischemia and reperfusion by the ligation of the left anterior descending coronary artery (LAD) was used for determination of myocardial infarction. The infarct size was compared between C57BL/6J WT mice and AMPK kinase dead (KD) transgenic mice with or without TMZ treatment. The ex vivo working heart perfusion system was used to monitor the effect of TMZ on glucose oxidation and fatty acid oxidation in the heart. RESULTS TMZ treatment significantly stimulates cardiac AMPK and extracellular signal-regulated kinase (ERK) signaling pathways (p<0.05 vs. vehicle group). The administration of TMZ reduces myocardial infarction size in WT C57BL/6J hearts, the reduction of myocardial infarction size by TMZ in AMPK KD hearts was significantly impaired versus WT hearts (p<0.05). Intriguingly, the administration of ERK inhibitor, PD98059, to AMPK KD mice abolished the cardioprotection of TMZ against I/R injury. The ex vivo working heart perfusion data demonstrated that TMZ treatment significantly activates AMPK signaling and modulating the substrate metabolism by shifting fatty acid oxidation to glucose oxidation during reperfusion, leading to reduction of oxidative stress in the I/R hearts. Therefore, both AMPK and ERK signaling pathways mediate the cardioprotection of TMZ against ischemic injury. The metabolic benefits of TMZ for angina patients could be due to the activation of energy sensor AMPK in the heart by TMZ administration.
Collapse
Affiliation(s)
- Zhenling Liu
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China; State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Ji-Mei Chen
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Huanlei Huang
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | | | - Shaoyi Zheng
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Wanqing Sun
- State University of New York at Buffalo, Buffalo, NY 14214, USA; Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Nanhu Quan
- State University of New York at Buffalo, Buffalo, NY 14214, USA; Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Lin Wang
- State University of New York at Buffalo, Buffalo, NY 14214, USA; Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Hui Yang
- State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Hui-Ming Guo
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China.
| | - Ji Li
- State University of New York at Buffalo, Buffalo, NY 14214, USA; Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Jian Zhuang
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China.
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
103
|
Plötz T, Hartmann M, Lenzen S, Elsner M. The role of lipid droplet formation in the protection of unsaturated fatty acids against palmitic acid induced lipotoxicity to rat insulin-producing cells. Nutr Metab (Lond) 2016; 13:16. [PMID: 26918025 PMCID: PMC4766664 DOI: 10.1186/s12986-016-0076-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 02/18/2016] [Indexed: 01/22/2023] Open
Abstract
Background Type 2 diabetes is associated with increased plasma concentrations of non-esterified fatty acids (NEFAs), which trigger pancreatic β-cell dysfunction and apoptosis. Only long-chain saturated NEFAs induced lipotoxicity in rat insulin-producing cells in in vitro experiments, whereas unsaturated NEFAs were not toxic. Some unsaturated NEFAs even protected against lipotoxicity. In former studies it was suggested that long-chain unsaturated NEFAs, which induce the formation of lipid droplets, can cause sequestration of palmitic acid into lipid droplets. In the present structure-activity-relationship study the correlation between lipid droplet formation and the protection against palmitic acid induced lipotoxicity by unsaturated NEFAs in rat insulin-producing cells was examined. Methods Rat insulin-producing RINm5F and INS-1E tissue culture cells were incubated in the presence of palmitic acid and unsaturated NEFAs with different chain lengths and different numbers of double bonds. The expression of the lipid droplet associated proteins perilipin 1 and 2 was repressed by the shRNA technique and the expression analyzed by qRT-PCR and Western blotting. Viability was measured by MTT assay and the accumulation of lipid droplets was quantified by fluorescence microscopy after Oil Red O staining. Results Long-chain unsaturated NEFAs strongly induce the formation of lipid droplets in rat insulin-producing RINm5F and INS-1E cells. In RINm5F cells incubated with 11-eicosenoic acid (C20:1) 27 % of the cell area was covered by lipid droplets corresponding to a 25-fold increase in comparison with control cells. On the other hand the saturated NEFA palmitic acid only induced minor lipid droplet formation. Viability analyses revealed only a minor toxicity of unsaturated NEFAs, whereas the cells were markedly sensitive to palmitic acid. Long-chain unsaturated NEFAs antagonized palmitic acid induced lipotoxicity during co-incubation, whereby no correlation existed between protection and the ability of lipid droplet formation. Perilipin 1 and 2 expression was decreased after incubation with C20:1 to about 80 % by shRNA. For the protective effect of long-chain unsaturated NEFAs against lipotoxicity of saturated NEFAs repression of perilipin was not of crucial importance. Conclusions Long-chain unsaturated fatty acids protected rat insulin-producing cells against lipotoxicity of saturated fatty acids. This protective effect was not dependent on lipid droplet formation. Thus lipid droplet formation is apparently not essential for the protective effect of unsaturated NEFAs against palmitic acid toxicity. Electronic supplementary material The online version of this article (doi:10.1186/s12986-016-0076-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas Plötz
- Institute of Clinical Biochemistry, Hannover Medical School, 30623 Hannover, Germany
| | - Magnus Hartmann
- Institute of Clinical Biochemistry, Hannover Medical School, 30623 Hannover, Germany
| | - Sigurd Lenzen
- Institute of Clinical Biochemistry, Hannover Medical School, 30623 Hannover, Germany
| | - Matthias Elsner
- Institute of Clinical Biochemistry, Hannover Medical School, 30623 Hannover, Germany
| |
Collapse
|
104
|
Purity matters: A workflow for the valid high-resolution lipid profiling of mitochondria from cell culture samples. Sci Rep 2016; 6:21107. [PMID: 26892142 PMCID: PMC4759577 DOI: 10.1038/srep21107] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/15/2016] [Indexed: 11/09/2022] Open
Abstract
Subcellular lipidomics is a novel field of research that requires the careful combination of several pre-analytical and analytical steps. To define a reliable strategy for mitochondrial lipid profiling, we performed a systematic comparison of different mitochondria isolation procedures by western blot analyses and comprehensive high-resolution lipidomics. Using liver-derived HepG2 cells, we compared three common mitochondria isolation methods, differential centrifugation (DC), ultracentrifugation (UC) and a magnetic bead-assisted method (MACS). In total, 397 lipid species, including 32 cardiolipins, could be quantified in only 100 μg (by protein) of purified mitochondria. Mitochondria isolated by UC showed the highest enrichment in the mitochondria-specific cardiolipins as well as their precursors, phosphatidylglycerols. Mitochondrial fractions obtained by the commonly used DC and the more recent MACS method contained substantial contaminations by other organelles. Employing these isolation methods when performing lipidomics analyses from cell culture mitochondria may lead to inaccurate results. To conclude, we present a protocol how to obtain reliable mitochondria-specific lipid profiles from cell culture samples and show that quality controls are indispensable when performing mitochondria lipidomics.
Collapse
|
105
|
Kakimoto PA, Kowaltowski AJ. Effects of high fat diets on rodent liver bioenergetics and oxidative imbalance. Redox Biol 2016; 8:216-25. [PMID: 26826574 PMCID: PMC4753394 DOI: 10.1016/j.redox.2016.01.009] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/11/2016] [Accepted: 01/13/2016] [Indexed: 02/08/2023] Open
Abstract
Human metabolic diseases can be mimicked in rodents by using dietary interventions such as high fat diets (HFD). Nonalcoholic fatty liver disease (NAFLD) develops as a result of HFD and the disease may progress in a manner involving increased production of oxidants. The main intracellular source of these oxidants are mitochondria, which are also responsible for lipid metabolism and thus widely recognized as important players in the pathology and progression of steatosis. Here, we review publications that study redox and bioenergetic effects of HFD in the liver. We find that dietary composition and protocol implementations vary widely, as do the results of these dietary interventions. Overall, all HFD promote steatosis, changes in β-oxidation, generation and consequences of oxidants, while effects on body weight, insulin signaling and other bioenergetic parameters are more variable with the experimental models adopted. Our review provides a broad analysis of the bioenergetic and redox changes promoted by HFD as well as suggestions for changes and specifications in methodologies that may help explain apparent disparities in the current literature. High fat diets (HFDs) induce steatosis, even with no weight changes . HFDs activate β-oxidation. HFDs promote oxidative imbalance.
Collapse
Affiliation(s)
- Pâmela A Kakimoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil
| |
Collapse
|
106
|
Katano M, Takahashi K, Hirano T, Kazama Y, Abe T, Tsukaya H, Ferjani A. Suppressor Screen and Phenotype Analyses Revealed an Emerging Role of the Monofunctional Peroxisomal Enoyl-CoA Hydratase 2 in Compensated Cell Enlargement. FRONTIERS IN PLANT SCIENCE 2016; 7:132. [PMID: 26925070 PMCID: PMC4756126 DOI: 10.3389/fpls.2016.00132] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/25/2016] [Indexed: 05/02/2023]
Abstract
Efficient use of seed nutrient reserves is crucial for germination and establishment of plant seedlings. Mobilizing seed oil reserves in Arabidopsis involves β-oxidation, the glyoxylate cycle, and gluconeogenesis, which provide essential energy and the carbon skeletons needed to sustain seedling growth until photoautotrophy is acquired. We demonstrated that H(+)-PPase activity is required for gluconeogenesis. Lack of H(+)-PPase in fugu5 mutants increases cytosolic pyrophosphate (PPi) levels, which partially reduces sucrose synthesis de novo and inhibits cell division. In contrast, post-mitotic cell expansion in cotyledons was unusually enhanced, a phenotype called compensation. Therefore, it appears that PPi inhibits several cellular functions, including cell cycling, to trigger compensated cell enlargement (CCE). Here, we mutagenized fugu5-1 seeds with (12)C(6+) heavy-ion irradiation and screened mutations that restrain CCE to gain insight into the genetic pathway(s) involved in CCE. We isolated A#3-1, in which cell size was severely reduced, but cell number remained similar to that of original fugu5-1. Moreover, cell number decreased in A#3-1 single mutant (A#3-1sm), similar to that of fugu5-1, but cell size was almost equal to that of the wild type. Surprisingly, A#3-1 mutation did not affect CCE in other compensation exhibiting mutant backgrounds, such as an3-4 and fugu2-1/fas1-6. Subsequent map-based cloning combined with genome sequencing and HRM curve analysis identified enoyl-CoA hydratase 2 (ECH2) as the causal gene of A#3-1. The above phenotypes were consistently observed in the ech2-1 allele and supplying sucrose restored the morphological and cellular phenotypes in fugu5-1, ech2-1, A#3-1sm, fugu5-1 ech2-1, and A#3-1; fugu5-1. Taken together, these results suggest that defects in either H(+)-PPase or ECH2 compromise cell proliferation due to defects in mobilizing seed storage lipids. In contrast, ECH2 alone likely promotes CCE during the post-mitotic cell expansion stage of cotyledon development, probably by converting indolebutyric acid to indole acetic acid.
Collapse
Affiliation(s)
- Mana Katano
- Department of Biology, Tokyo Gakugei UniversityTokyo, Japan
| | | | - Tomonari Hirano
- Department of Biochemistry and Applied Biosciences, Miyazaki UniversityMiyazaki, Japan
| | | | | | - Hirokazu Tsukaya
- Department of Biological Sciences, Graduate School of Science, University of TokyoTokyo, Japan
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural SciencesOkazaki, Japan
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei UniversityTokyo, Japan
- *Correspondence: Ali Ferjani,
| |
Collapse
|
107
|
Sheppard MJ, Kunjapur AM, Prather KL. Modular and selective biosynthesis of gasoline-range alkanes. Metab Eng 2016; 33:28-40. [DOI: 10.1016/j.ymben.2015.10.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/27/2015] [Accepted: 10/27/2015] [Indexed: 12/16/2022]
|
108
|
The odd-carbon medium-chain fatty triglyceride triheptanoin does not reduce hepatic steatosis. Clin Nutr 2015; 36:229-237. [PMID: 26778339 DOI: 10.1016/j.clnu.2015.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 10/18/2015] [Accepted: 11/06/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND & AIMS Non-alcoholic fatty-liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome. Previously, we showed that a high-protein diet minimized diet-induced development of fatty liver and even reversed pre-existing steatosis. A high-protein diet leads to amino-acid catabolism, which in turn causes anaplerosis of the tricarboxylic-acid (TCA) cycle. Therefore, we hypothesized that anaplerosis of the TCA cycle could be responsible for the high-protein diet-induced improvement of NAFLD by channeling amino acids into the TCA cycle. Next we considered that an efficient anaplerotic agent, the odd-carbon medium-chain triglyceride triheptanoin (TH), might have similar beneficial effects. METHODS C57BL/6J mice were fed low-fat (8en%) or high-fat (42en%) oleate-containing diets with or without 15en% TH for 3 weeks. RESULTS TH treatment enhanced the hepatic capacity for fatty-acid oxidation by a selective increase in hepatic Ppara, Acox, and Cd36 expression, and a decline in plasma acetyl-carnitines. It also induced pyruvate cycling through an increased hepatic PCK1 protein concentration and it increased thermogenesis reflected by an increased Ucp2 mRNA content. TH, however, did not reduce hepatic lipid content. CONCLUSION The comparison of the present effects of dietary triheptanoin with a previous study by our group on protein supplementation shows that the beneficial effects of the high-protein diet are not mimicked by TH. This argues against anaplerosis as the sole explanatory mechanism for the anti-steatotic effect of a high-protein diet.
Collapse
|
109
|
Young PA, Leonard S, Martin DSD, Findlay JBC. Analysis of the effect of a novel therapeutic for type 2 diabetes on the proteome of a muscle cell line. Proteomics 2015; 16:70-9. [PMID: 26573124 DOI: 10.1002/pmic.201500050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 09/05/2015] [Accepted: 11/11/2015] [Indexed: 01/18/2023]
Abstract
Elevated serum retinol-binding protein (RBP) concentration has been implicated in the development of insulin resistance and type 2 diabetes. Two series of small molecules have been designed to lower serum levels by reducing secretion of the transthyretin-RBP complex from the liver and enhancing RBP clearance through the kidney. These small molecules were seen to improve glucose and insulin tolerance tests and to reduce body weight gain in mice rendered diabetic through a high fat diet. A proteomics study was conducted to better understand the effects of these compounds in muscle cells, muscle being the primary site for energy expenditure. One lead compound, RTC-15, is seen to have a significant effect on proteins involved in fat and glucose metabolism. This could indicate that the compound is having a direct effect on muscle tissue to improve energy homeostasis as well as a whole body effect on circulating RBP levels. This newly characterized group of antidiabetic compounds may prove useful in the treatment and prevention of insulin resistance and obesity.
Collapse
Affiliation(s)
- Pamela A Young
- Marie Curie Laboratory for Membrane Proteins, Department of Biology, Maynooth University, Maynooth, Ireland
| | - Siobhán Leonard
- Marie Curie Laboratory for Membrane Proteins, Department of Biology, Maynooth University, Maynooth, Ireland
| | - Darren S D Martin
- Marie Curie Laboratory for Membrane Proteins, Department of Biology, Maynooth University, Maynooth, Ireland
| | - John B C Findlay
- Marie Curie Laboratory for Membrane Proteins, Department of Biology, Maynooth University, Maynooth, Ireland
| |
Collapse
|
110
|
Manipulation of Host Diet To Reduce Gastrointestinal Colonization by the Opportunistic Pathogen Candida albicans. mSphere 2015; 1:mSphere00020-15. [PMID: 27303684 PMCID: PMC4863630 DOI: 10.1128/msphere.00020-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 10/17/2015] [Indexed: 11/30/2022] Open
Abstract
Candida albicans, the most common human fungal pathogen, can cause infections with a mortality rate of ~40%. C. albicans is part of the normal gut flora, but when a patient’s immune system is compromised, it can leave the gut and cause infections. By reducing the amount of C. albicans in the gut of susceptible patients, infections (and the resulting fatalities) can be prevented. Currently, this is done using antimicrobial drugs; to “preserve” drugs for treating infections, we looked for a dietary change to reduce the amount of C. albicans in the gut. Using a mouse model, we showed that adding coconut oil to the diet could become the first drug-free way to reduce C. albicans in the gut. More broadly, this model lets us study the interactions between our diet and the microbes in our body and the reasons why some of those microbes, under certain conditions, cause disease. Candida albicans, the most common human fungal pathogen, can cause systemic infections with a mortality rate of ~40%. Infections arise from colonization of the gastrointestinal (GI) tract, where C. albicans is part of the normal microflora. Reducing colonization in at-risk patients using antifungal drugs prevents C. albicans-associated mortalities. C. albicans provides a clinically relevant system for studying the relationship between diet and the microbiota as it relates to commensalism and pathogenicity. As a first step toward a dietary intervention to reduce C. albicans GI colonization, we investigated the impact of dietary lipids on murine colonization by C. albicans. Coconut oil and its constituent fatty acids have antifungal activity in vitro; we hypothesized that dietary coconut oil would reduce GI colonization by C. albicans. Colonization was lower in mice fed a coconut oil-rich diet than in mice fed diets rich in beef tallow or soybean oil. Switching beef tallow-fed mice to a coconut oil diet reduced preexisting colonization. Coconut oil reduced colonization even when the diet also contained beef tallow. Dietary coconut oil also altered the metabolic program of colonizing C. albicans cells. Long-chain fatty acids were less abundant in the cecal contents of coconut oil-fed mice than in the cecal contents of beef tallow-fed mice; the expression of genes involved in fatty acid utilization was lower in C. albicans from coconut oil-fed mice than in C. albicans from beef tallow-fed mice. Extrapolating to humans, these findings suggest that coconut oil could become the first dietary intervention to reduce C. albicans GI colonization. IMPORTANCECandida albicans, the most common human fungal pathogen, can cause infections with a mortality rate of ~40%. C. albicans is part of the normal gut flora, but when a patient’s immune system is compromised, it can leave the gut and cause infections. By reducing the amount of C. albicans in the gut of susceptible patients, infections (and the resulting fatalities) can be prevented. Currently, this is done using antimicrobial drugs; to “preserve” drugs for treating infections, we looked for a dietary change to reduce the amount of C. albicans in the gut. Using a mouse model, we showed that adding coconut oil to the diet could become the first drug-free way to reduce C. albicans in the gut. More broadly, this model lets us study the interactions between our diet and the microbes in our body and the reasons why some of those microbes, under certain conditions, cause disease. Podcast: A podcast concerning this article is available.
Collapse
|
111
|
Kim J, Kim KJ. Crystal structure and biochemical characterization of a 3-ketoacyl-CoA thiolase from Ralstoniaeutropha H16. Int J Biol Macromol 2015; 82:425-31. [PMID: 26499087 DOI: 10.1016/j.ijbiomac.2015.10.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/14/2015] [Accepted: 10/19/2015] [Indexed: 10/22/2022]
Abstract
The protein ReH16_B0759 from Ralstoniaeutropha is a 3-ketoacyl-coenzyme A (CoA) thiolase that catalyzes the fourth step of the β-oxidation degradative pathways by converting 3-ketoacyl-CoAto acyl-CoA. The crystal structures of ReH16_B0759 in its apo form and as a complex with its CoA substrate have been determined. Although ReH16_B0759 exhibited an overall structure similar to the ReH16_A1887 isozyme, the proteindoes not make a complex for β-oxidation. Similar to other degradative thiolases, ReH16_B0759 functions as a dimer, and the monomer comprises three subdomains. Unlike ReH16_A1887, a substantial structural change was not observed upon the binding of the CoA substrate in ReH16_B0759. Exceptionally, the Arg220 residue moved about 5.00Å to make room for the binding of the adenosine ring. Several charged residues including Arg220 are involved in the stabilization of CoA through hydrogen bond interactions. At the active site of ReH16_B0759, highly conserved residues such as Cys89, His347, and Cys377 were located near the thiol-group of CoA, suggesting that ReH16_B0759 may catalyze the thiolase reaction in a manner similar to that of other degradative thiolases. The residues involved in substrate binding and enzyme catalysis were further confirmed by site-directed mutagenesis.
Collapse
Affiliation(s)
- Jieun Kim
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, South Korea
| | - Kyung-Jin Kim
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, South Korea.
| |
Collapse
|
112
|
Houten SM, Violante S, Ventura FV, Wanders RJA. The Biochemistry and Physiology of Mitochondrial Fatty Acid β-Oxidation and Its Genetic Disorders. Annu Rev Physiol 2015; 78:23-44. [PMID: 26474213 DOI: 10.1146/annurev-physiol-021115-105045] [Citation(s) in RCA: 558] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitochondrial fatty acid β-oxidation (FAO) is the major pathway for the degradation of fatty acids and is essential for maintaining energy homeostasis in the human body. Fatty acids are a crucial energy source in the postabsorptive and fasted states when glucose supply is limiting. But even when glucose is abundantly available, FAO is a main energy source for the heart, skeletal muscle, and kidney. A series of enzymes, transporters, and other facilitating proteins are involved in FAO. Recessively inherited defects are known for most of the genes encoding these proteins. The clinical presentation of these disorders may include hypoketotic hypoglycemia, (cardio)myopathy, arrhythmia, and rhabdomyolysis and illustrates the importance of FAO during fasting and in hepatic and (cardio)muscular function. In this review, we present the current state of knowledge on the biochemistry and physiological functions of FAO and discuss the pathophysiological processes associated with FAO disorders.
Collapse
Affiliation(s)
- Sander M Houten
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; ,
| | - Sara Violante
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; ,
| | - Fatima V Ventura
- Metabolism and Genetics Group, Research Institute for Medicines and Pharmaceutical Sciences, iMed.ULisboa, 1649-003 Lisboa, Portugal; .,Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, 1649-003 Lisboa, Portugal
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, University of Amsterdam, 1100 DE Amsterdam, The Netherlands; .,Department of Pediatrics, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
113
|
Rudolf JD, Dong LB, Huang T, Shen B. A genetically amenable platensimycin- and platencin-overproducer as a platform for biosynthetic explorations: a showcase of PtmO4, a long-chain acyl-CoA dehydrogenase. MOLECULAR BIOSYSTEMS 2015; 11:2717-26. [PMID: 26055255 PMCID: PMC4573825 DOI: 10.1039/c5mb00303b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Platensimycin (PTM) and platencin (PTN) are members of a new class of promising drug leads that target bacterial and mammalian fatty acid synthases. We previously cloned and sequenced the PTM and PTN gene clusters, discovered six additional PTM-PTN dual producing strains, and demonstrated the dramatic overproduction of PTM and PTN by inactivating the pathway-specific regulators ptmR1 or ptnR1 in five different strains. Our ability to utilize these PTM-PTN dual overproducing strains was limited by their lack of genetic amenability. Here we report the construction of Streptomyces platensis SB12029, a genetically amenable, in-frame ΔptmR1 dual PTM-PTN overproducing strain. To highlight the potential of this strain for future PTM and PTN biosynthetic studies, we created the ΔptmR1 ΔptmO4 double mutant S. platensis SB12030. Fourteen PTM and PTN congeners, ten of which were new, were isolated from SB12030, shedding new insights into PTM and PTN biosynthesis. PtmO4, a long-chain acyl-CoA dehydrogenase, is strongly implicated to catalyze β-oxidation of the diterpenoid intermediates into the PTM and PTN scaffolds. SB12029 sets the stage for future biosynthetic and bioengineering studies of the PTM and PTN family of natural products.
Collapse
Affiliation(s)
- Jeffrey D Rudolf
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA.
| | | | | | | |
Collapse
|
114
|
Ding BJ, Löfstedt C. Analysis of the Agrotis segetum pheromone gland transcriptome in the light of sex pheromone biosynthesis. BMC Genomics 2015; 16:711. [PMID: 26385554 PMCID: PMC4575462 DOI: 10.1186/s12864-015-1909-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/09/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Moths rely heavily on pheromone communication for mate finding. The pheromone components of most moths are modified from the products of normal fatty acid metabolism by a set of tissue-specific enzymes. The turnip moth, Agrotis segetum uses a series of homologous fatty-alcohol acetate esters ((Z)-5-decenyl, (Z)-7-dodecenyl, and (Z)-9 tetradecenyl acetate) as its sex pheromone components. The ratio of the components differs between populations, making this species an interesting subject for studies of the enzymes involved in the biosynthetic pathway and their influence on sex pheromone variation. RESULTS Illumina sequencing and comparative analysis of the transcriptomes of the pheromone gland and abdominal epidermal tissue, enabled us to identify genes coding for putative key enzymes involved in the pheromone biosynthetic pathway, such as fatty acid synthase, β-oxidation enzymes, fatty-acyl desaturases (FAD), fatty-acyl reductases (FAR), and acetyltransferases. We functionally assayed the previously identified ∆11-desaturase [GenBank: ES583599, JX679209] and FAR [GenBank: JX679210] and candidate acetyltransferases (34 genes) by heterologous expression in yeast. The functional assay confirmed that the ∆11-desaturase interacts with palmitate and produces (Z)-11-hexadecenoate, which is the common unsaturated precursor of three homologous pheromone component acetates produced by subsequent chain-shortening, reduction and acetylation. Much lower, but still visible, activity on 14C and 12C saturated acids may account for minor pheromone compounds previously observed in the pheromone gland. The FAR characterized can operate on various unsaturated fatty acids that are the immediate acyl precursors of the different A. segetum pheromone components. None of the putative acetyltransferases that we expressed heterologously did acetylate any of the fatty alcohols tested as substrates. CONCLUSIONS The massive sequencing technology generates enormous amounts of candidate genes potentially involved in pheromone biosynthesis but testing their function by heterologous expression or gene silencing is a bottleneck. We confirmed the function of a previously identified desaturase gene and a fatty-acyl reductase gene by heterologous expression, but the acetyltransferase postulated to be involved in pheromone biosynthesis remains illusive, in spite of 34 candidates being assayed. We also generated lists of gene candidates that may be useful for characterizing the acetyl-CoA carboxylase, fatty acid synthetase and β-oxidation enzymes.
Collapse
Affiliation(s)
- Bao-Jian Ding
- Pheromone Group, Department of Biology, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden.
| | - Christer Löfstedt
- Pheromone Group, Department of Biology, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden.
| |
Collapse
|
115
|
Inhibition of gene expression of carnitine palmitoyltransferase I and heart fatty acid binding protein in cyclophosphamide and ifosfamide-induced acute cardiotoxic rat models. Cardiovasc Toxicol 2015; 14:232-42. [PMID: 24469765 DOI: 10.1007/s12012-014-9247-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This study investigated whether cyclophosphamide (CP) and ifosfamide (IFO) therapy alters the expression of the key genes engaged in long-chain fatty acid (LCFA) oxidation outside rat heart mitochondria, and if so, whether these alterations should be viewed as a mechanism during CP- and IFO-induced cardiotoxicity. Adult male Wistar albino rats were assigned to one of the six treatment groups: Rats in group 1 (control) and group 2 (L-carnitine) were injected intraperitoneal (i.p.) with normal saline and L-carnitine (200 mg/kg/day), respectively, for 10 successive days. Animals in group 3 (CP group) were injected i.p. with normal saline for 5 days before and 5 days after a single dose of CP (200 mg/kg, i.p.). Rats in group 4 (IFO group) received normal saline for 5 successive days followed by IFO (50 mg/kg/day, i.p.) for 5 successive days. Rats in group 5 (CP-carnitine supplemented) were given the same doses of L-carnitine as group 2 for 5 days before and 5 days after a single dose of CP as group 3. Rats in group 6 (IFO-carnitine supplemented) were given the same doses of L-carnitine as group 2 for 5 days before and 5 days concomitant with IFO as group 4. Immediately, after the last dose of the treatment protocol, blood samples were withdrawn and animals were killed for biochemical, histopathological and gene expression studies. Treatment with CP and IFO significantly decreased expression of heart fatty acid binding protein (H-FABP) and carnitine palmitoyltransferase I (CPT I) genes in cardiac tissues. Moreover, CP but not IFO significantly increased acetyl-CoA carboxylase2 mRNA expression. Conversely, IFO but not CP significantly decreased mRNA expression of malonyl-CoA decarboxylase. Both CP and IFO significantly increased serum lactate dehydrogenase, creatine kinase isoenzyme MB and malonyl-CoA content and histopathological lesions in cardiac tissues. Interestingly, carnitine supplementation completely reversed all the biochemical, histopathological and gene expression changes induced by CP and IFO to the control values, except CPT I mRNA, and protein expression remained inhibited by IFO. Data from the current study suggest, for the first time, that (1) CP and IFO therapy is associated with the inhibition of the expression of H-FABP and CPT I genes in cardiac tissues with the consequent inhibition of mitochondrial transport and oxidation of LCFA. (2) The progressive increase in cardiotoxicity enzymatic indices and the decrease in H-FABP and CPT I expression may point to the possible contribution of these genes to CP- and IFO-induced cardiotoxicity.
Collapse
|
116
|
Xiong X, Yang H, Tan B, Yang C, Wu M, Liu G, Kim SW, Li T, Li L, Wang J, Wu G, Yin Y. Differential expression of proteins involved in energy production along the crypt-villus axis in early-weaning pig small intestine. Am J Physiol Gastrointest Liver Physiol 2015; 309:G229-37. [PMID: 26045611 DOI: 10.1152/ajpgi.00095.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/01/2015] [Indexed: 01/31/2023]
Abstract
Weaning of piglets reflects intestinal dysfunction and atrophy and affected the physiological state of enterocytes. However, few studies have defined physiological state of enterocytes along the crypt-villus axis in early-weaning piglets. A total of 16 piglets from 8 litters were used in the experiment. One group of piglets was nursed by sows until age 21 days, and another group was weaned at age 14 days and then fed creep feed instead of breast milk for 7 days. Piglets were killed at 21 days, and the jejunum segments were dissected. After sequential isolation of jejunum epithelial cells along the crypt-villus axis, their proteins were analyzed through the isobaric tags for relative and absolute quantification, and proteins involved in the mammalian target of rapamycin signaling pathway and proliferating cell nuclear antigen abundances in jejunal epithelial cells of weaning or suckling group were determined by Western blotting. The differential proteins in three cell fractions were identified and analyzed. The results showed that proteins involved in the tricarboxylic acid cycle, β-oxidation, and the glycolysis pathway were significantly downregulated in the upper and middle villus of the early-weaned group. However, proteins involved in glycolysis were significantly upregulated in crypt cells. In addition, Western blot analysis showed that the expression of mammalian target of rapamycin pathway-related proteins was decreased (P < 0.05) in the early-weaned group. The present results showed that early-weaning differentially affect the expression of proteins involved in energy production of enterocytes along the jejunal crypt-villus axis.
Collapse
Affiliation(s)
- Xia Xiong
- Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region, Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan, China
| | - Huansheng Yang
- Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region, Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan, China; Fujian Aonong Biotechnology Corporation, Xiamen, Fujian, China
| | - Bie Tan
- Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region, Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan, China
| | - Chengbo Yang
- Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region, Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan, China
| | - Miaomiao Wu
- Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region, Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan, China
| | - Gang Liu
- Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region, Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan, China
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, North Carolina
| | - Tiejun Li
- Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region, Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan, China
| | - Lili Li
- Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region, Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, Texas
| | - Yulong Yin
- Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region, Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan, China; Southwest Collaborative Innovation Center of Swine for Quality and Safety, Chengdu, China; School of Life Sciences, Hunan Normal University, Changsha, China; and
| |
Collapse
|
117
|
Matsuo T, Ushiroda Y. Fatty liver formation in fulminant type 1 diabetes. Endocrinol Diabetes Metab Case Rep 2015; 2016:15-0121. [PMID: 30367750 PMCID: PMC6356111 DOI: 10.1530/edm-15-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/09/2016] [Indexed: 12/02/2022] Open
Abstract
Summary A 32-year-old woman presented with 3days of epigastric pain and was admitted to our hospital (day 3 of disease). We diagnosed acute pancreatitis based on epigastric abdominal pain, hyperamylasemia, and an inflammatory reaction of withdrawn blood, pancreatic enlargement, and so on. Her condition improved with treatment; however, on day 8, she had decreased level of consciousness. Laboratory results led to a diagnosis of fulminant type 1 diabetes mellitus (FT1DM) with concomitant diabetic ketoacidosis. Insulin therapy improved her blood glucose levels as well as her symptoms. Fatty liver with liver dysfunction was observed on day 14, which improved by day 24. Blood levels of free fatty acids (FFAs) increased rapidly from 440μEq/L (normal range: 140–850μEq/L) on day 4 to 2097μEq/L on days 7–8 (onset of FT1DM) and subsequently decreased to 246μEq/L at the onset of fatty liver. The rapid decrease in insulin at the onset of FT1DM likely freed fatty acids derived from triglycerides in peripheral adipocytes into the bloodstream. Insulin therapy rapidly transferred FFAs from the periphery to the liver. In addition, insulin promotes the de novo synthesis of triglycerides in the liver, using newly acquired FFAs as substrates. At the same time, inhibitory effects of insulin on VLDL secretion outside of the liver promote the accumulation of triglycerides in the liver, leading to fatty liver. We describe the process by which liver dysfunction and severe fatty liver occurs after the onset of FT1DM, from the perspective of disturbed fatty acid metabolism. Learning Points FT1DM is rare but should be considered in patients with pancreatitis and a decreased level of consciousness. Fatty liver should be considered in patients with FT1DM when liver dysfunction is observed. Insulin is involved in mechanisms that promote fatty liver formation. Pathophysiological changes in fatty acid metabolism may provide clues on lipid metabolism in the early phases of FT1DM.
Collapse
Affiliation(s)
- Takashi Matsuo
- Internal Medicine, Nobeoka city Medical Association Hospital, Nobeoka, Japan
| | - Yoshihiko Ushiroda
- Internal Medicine, Nobeoka city Medical Association Hospital, Nobeoka, Japan
| |
Collapse
|
118
|
Antony B, Soffan A, Jakše J, Alfaifi S, Sutanto KD, Aldosari SA, Aldawood AS, Pain A. Genes involved in sex pheromone biosynthesis of Ephestia cautella, an important food storage pest, are determined by transcriptome sequencing. BMC Genomics 2015; 16:532. [PMID: 26187652 PMCID: PMC4506583 DOI: 10.1186/s12864-015-1710-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 06/22/2015] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Insects use pheromones, chemical signals that underlie all animal behaviors, for communication and for attracting mates. Synthetic pheromones are widely used in pest control strategies because they are environmentally safe. The production of insect pheromones in transgenic plants, which could be more economical and effective in producing isomerically pure compounds, has recently been successfully demonstrated. This research requires information regarding the pheromone biosynthetic pathways and the characterization of pheromone biosynthetic enzymes (PBEs). We used Illumina sequencing to characterize the pheromone gland (PG) transcriptome of the Pyralid moth, Ephestia cautella, a destructive storage pest, to reveal putative candidate genes involved in pheromone biosynthesis, release, transport and degradation. RESULTS We isolated the E. cautella pheromone compound as (Z,E)-9,12-tetradecadienyl acetate, and the major pheromone precursors 16:acyl, 14:acyl, E14-16:acyl, E12-14:acyl and Z9,E12-14:acyl. Based on the abundance of precursors, two possible pheromone biosynthetic pathways are proposed. Both pathways initiate from C16:acyl-CoA, with one involving ∆14 and ∆9 desaturation to generate Z9,E12-14:acyl, and the other involving the chain shortening of C16:acyl-CoA to C14:acyl-CoA, followed by ∆12 and ∆9 desaturation to generate Z9,E12-14:acyl-CoA. Then, a final reduction and acetylation generates Z9,E12-14:OAc. Illumina sequencing yielded 83,792 transcripts, and we obtained a PG transcriptome of ~49.5 Mb. A total of 191 PBE transcripts, which included pheromone biosynthesis activating neuropeptides, fatty acid transport proteins, acetyl-CoA carboxylases, fatty acid synthases, desaturases, β-oxidation enzymes, fatty acyl-CoA reductases (FARs) and fatty acetyltransferases (FATs), were selected from the dataset. A comparison of the E. cautella transcriptome data with three other Lepidoptera PG datasets revealed that 45% of the sequences were shared. Phylogenetic trees were constructed for desaturases, FARs and FATs, and transcripts that clustered with the ∆14, ∆12 and ∆9 desaturases, PG-specific FARs and potential candidate FATs, respectively, were identified. Transcripts encoding putative pheromone degrading enzymes, and candidate pheromone carrier and receptor proteins expressed in the E. cautella PG, were also identified. CONCLUSIONS Our study provides important background information on the enzymes involved in pheromone biosynthesis. This information will be useful for the in vitro production of E. cautella sex pheromones and may provide potential targets for disrupting the pheromone-based communication system of E. cautella to prevent infestations.
Collapse
Affiliation(s)
- Binu Antony
- Department of Plant Protection, King Saud University, Chair of Date Palm Research, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia.
| | - Alan Soffan
- Department of Plant Protection, King Saud University, Chair of Date Palm Research, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia.
- Department of Plant Protection, King Saud University, EERU, Riyadh, Saudi Arabia.
| | - Jernej Jakše
- Agronomy Department, University of Ljubljana, Biotechnical Faculty, SI-1000, Ljubljana, Slovenia.
| | - Sulieman Alfaifi
- Department of Plant Protection, King Saud University, Chair of Date Palm Research, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia.
| | - Koko D Sutanto
- Department of Plant Protection, King Saud University, Chair of Date Palm Research, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia.
| | - Saleh A Aldosari
- Department of Plant Protection, King Saud University, Chair of Date Palm Research, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia.
| | | | - Arnab Pain
- BASE Division, KAUST, Thuwal, Jeddah, 23955-6900, Saudi Arabia.
| |
Collapse
|
119
|
Kim J, Kim KJ. Purification, crystallization and preliminary X-ray diffraction analysis of 3-ketoacyl-CoA thiolase A1887 from Ralstonia eutropha H16. Acta Crystallogr F Struct Biol Commun 2015; 71:758-62. [PMID: 26057808 PMCID: PMC4461343 DOI: 10.1107/s2053230x15007888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/21/2015] [Indexed: 11/10/2022] Open
Abstract
The gene product of A1887 from Ralstonia eutropha (ReH16_A1887) has been annotated as a 3-ketoacyl-CoA thiolase, an enzyme that catalyzes the fourth step of β-oxidation degradative pathways by converting 3-ketoacyl-CoA to acyl-CoA. ReH16_A1887 was overexpressed and purified to homogeneity by affinity and size-exclusion chromatography. The degradative thiolase activity of the purified ReH16_A1887 was measured and enzyme-kinetic parameters for the protein were obtained, with Km, Vmax and kcat values of 158 µM, 32 mM min(-1) and 5 × 10(6) s(-1), respectively. The ReH16_A1887 protein was crystallized in 17% PEG 8K, 0.1 M HEPES pH 7.0 at 293 K and a complete data set was collected to 1.4 Å resolution. The crystal belonged to space group P4(3)2(1)2, with unit-cell parameters a = b = 129.52, c = 114.13 Å, α = β = γ = 90°. The asymmetric unit contained two molecules, with a solvent content of 58.9%.
Collapse
Affiliation(s)
- Jieun Kim
- School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Program), Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Program), Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, Republic of Korea
| |
Collapse
|
120
|
Lian J, Zhao H. Reversal of the β-oxidation cycle in Saccharomyces cerevisiae for production of fuels and chemicals. ACS Synth Biol 2015; 4:332-41. [PMID: 24959659 DOI: 10.1021/sb500243c] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Functionally reversing the β-oxidation cycle represents an efficient and versatile strategy for synthesis of a wide variety of fuels and chemicals. However, due to the compartmentalization of cellular metabolisms, reversing the β-oxidation cycle in eukaryotic systems remains elusive. Here, we report the first successful reversal of the β-oxidation cycle in Saccharomyces cerevisiae, an important cell factory for large-scale production of fuels and chemicals. After extensive gene cloning and enzyme activity assays, a reversed β-oxidation pathway was functionally constructed in the yeast cytosol, which led to the synthesis of n-butanol, medium-chain fatty acids (MCFAs), and medium-chain fatty acid ethyl esters (MCFAEEs). The resultant recombinant strain provides a new broadly applicable platform for synthesis of fuels and chemicals in S. cerevisiae.
Collapse
Affiliation(s)
- Jiazhang Lian
- Department of Chemical and Biomolecular Engineering, ‡Energy Biosciences Institute, Institute
for Genomic Biology, §Departments of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, ‡Energy Biosciences Institute, Institute
for Genomic Biology, §Departments of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
121
|
Bouyakdan K, Taïb B, Budry L, Zhao S, Rodaros D, Neess D, Mandrup S, Faergeman NJ, Alquier T. A novel role for central ACBP/DBI as a regulator of long-chain fatty acid metabolism in astrocytes. J Neurochem 2015; 133:253-65. [PMID: 25598214 DOI: 10.1111/jnc.13035] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 12/15/2014] [Accepted: 01/08/2015] [Indexed: 12/29/2022]
Abstract
Acyl-CoA-binding protein (ACBP) is a ubiquitously expressed protein that binds intracellular acyl-CoA esters. Several studies have suggested that ACBP acts as an acyl-CoA pool former and regulates long-chain fatty acids (LCFA) metabolism in peripheral tissues. In the brain, ACBP is known as Diazepam-Binding Inhibitor, a secreted peptide acting as an allosteric modulator of the GABAA receptor. However, its role in central LCFA metabolism remains unknown. In the present study, we investigated ACBP cellular expression, ACBP regulation of LCFA intracellular metabolism, FA profile, and FA metabolism-related gene expression using ACBP-deficient and control mice. ACBP was mainly found in astrocytes with high expression levels in the mediobasal hypothalamus. We demonstrate that ACBP deficiency alters the central LCFA-CoA profile and impairs unsaturated (oleate, linolenate) but not saturated (palmitate, stearate) LCFA metabolic fluxes in hypothalamic slices and astrocyte cultures. In addition, lack of ACBP differently affects the expression of genes involved in FA metabolism in cortical versus hypothalamic astrocytes. Finally, ACBP deficiency increases FA content and impairs their release in response to palmitate in hypothalamic astrocytes. Collectively, these findings reveal for the first time that central ACBP acts as a regulator of LCFA intracellular metabolism in astrocytes. Acyl-CoA-binding protein (ACBP) or diazepam-binding inhibitor is a secreted peptide acting centrally as a GABAA allosteric modulator. Using brain slices, cortical, and hypothalamic astrocyte cultures from ACBP KO mice, we demonstrate that ACBP mainly localizes in astrocytes and regulates unsaturated but not saturated long-chain fatty acids (LCFA) metabolism. In addition, ACBP deficiency alters FA metabolism-related genes and results in intracellular FA accumulation while affecting their release. Our results support a novel role for ACBP in brain lipid metabolism. FA, fatty acids; KO, knockout; PL, phospholipids; TAG, triacylglycerol.
Collapse
Affiliation(s)
- Khalil Bouyakdan
- Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Universite de Montreal (CRCHUM), Montreal, Quebec, Canada; Department of Biochemistry, University of Montreal, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Characterization of novel acyl coenzyme A dehydrogenases involved in bacterial steroid degradation. J Bacteriol 2015; 197:1360-7. [PMID: 25645564 DOI: 10.1128/jb.02420-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED The acyl coenzyme A (acyl-CoA) dehydrogenases (ACADs) FadE34 and CasC, encoded by the cholesterol and cholate gene clusters of Mycobacterium tuberculosis and Rhodococcus jostii RHA1, respectively, were successfully purified. Both enzymes differ from previously characterized ACADs in that they contain two fused acyl-CoA dehydrogenase domains in a single polypeptide. Site-specific mutagenesis showed that only the C-terminal ACAD domain contains the catalytic glutamate base required for enzyme activity, while the N-terminal ACAD domain contains an arginine required for ionic interactions with the pyrophosphate of the flavin adenine dinucleotide (FAD) cofactor. Therefore, the two ACAD domains must associate to form a single active site. FadE34 and CasC were not active toward the 3-carbon side chain steroid metabolite 3-oxo-23,24-bisnorchol-4-en-22-oyl-CoA (4BNC-CoA) but were active toward steroid CoA esters containing 5-carbon side chains. CasC has similar specificity constants for cholyl-CoA, deoxycholyl-CoA, and 3β-hydroxy-5-cholen-24-oyl-CoA, while FadE34 has a preference for the last compound, which has a ring structure similar to that of cholesterol metabolites. Knockout of the casC gene in R. jostii RHA1 resulted in a reduced growth on cholate as a sole carbon source and accumulation of a 5-carbon side chain cholate metabolite. FadE34 and CasC represent unique members of ACADs with primary structures and substrate specificities that are distinct from those of previously characterized ACADs. IMPORTANCE We report here the identification and characterization of acyl-CoA dehydrogenases (ACADs) involved in the metabolism of 5-carbon side chains of cholesterol and cholate. The two homologous enzymes FadE34 and CasC, from M. tuberculosis and Rhodococcus jostii RHA1, respectively, contain two ACAD domains per polypeptide, and we show that these two domains interact to form a single active site. FadE34 and CasC are therefore representatives of a new class of ACADs with unique primary and quaternary structures. The bacterial steroid degradation pathway is important for the removal of steroid waste in the environment and for survival of the pathogen M. tuberculosis within host macrophages. FadE34 is a potential target for development of new antibiotics against tuberculosis.
Collapse
|
123
|
Zhang J, Ibrahim MM, Sun M, Tang J. Enoyl-coenzyme A hydratase in cancer. Clin Chim Acta 2015; 448:13-7. [PMID: 25636653 DOI: 10.1016/j.cca.2015.01.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/18/2015] [Accepted: 01/23/2015] [Indexed: 11/28/2022]
Abstract
Enoyl-CoA hydratase (Ech) catalyzes the second step in the physiologically important beta-oxidation pathway of fatty acid metabolism. The enzyme was reported to be associated with the progression, metastasis and drug resistance of cancers. It might function as a tumor promoter or a tumor suppressor for certain cancers depending on the particular type or stage of tumor cells/tissues. In this review, Ech's association with malignant tumors as well as its potential mechanisms is discussed and summarized. The enzyme might be useful in the diagnosis, treatment and prognosis determination of certain tumors.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Pathology, Dalian Medical University, Dalian 116044, China
| | - M M Ibrahim
- Department of Pathology, Dalian Medical University, Dalian 116044, China
| | - Mingzhong Sun
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Jianwu Tang
- Key Laboratory of Tumor Metastasis of Liaoning Province University, Dalian 116044, China.
| |
Collapse
|
124
|
Hisahara S, Matsushita T, Furuyama H, Tajima G, Shigematsu Y, Imai T, Shimohama S. A Heterozygous Missense Mutation in Adolescent-Onset Very Long-Chain Acyl-CoA Dehydrogenase Deficiency with Exercise-Induced Rhabdomyolysis. TOHOKU J EXP MED 2015; 235:305-10. [DOI: 10.1620/tjem.235.305] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Shin Hisahara
- Department of Neurology, School of Medicine, Sapporo Medical University
| | | | | | - Go Tajima
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences & Health Sciences
| | - Yosuke Shigematsu
- Department of Health Science, Faculty of Medical Sciences, University of Fukui
| | - Tomihiro Imai
- Department of Occupational Therapy, School of Health Sciences, Sapporo Medical University
- Department of Neurology, School of Medicine, Sapporo Medical University
| | - Shun Shimohama
- Department of Neurology, School of Medicine, Sapporo Medical University
| |
Collapse
|
125
|
Gabriel F, Accoceberry I, Bessoule JJ, Salin B, Lucas-Guérin M, Manon S, Dementhon K, Noël T. A Fox2-dependent fatty acid ß-oxidation pathway coexists both in peroxisomes and mitochondria of the ascomycete yeast Candida lusitaniae. PLoS One 2014; 9:e114531. [PMID: 25486052 PMCID: PMC4259357 DOI: 10.1371/journal.pone.0114531] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 11/10/2014] [Indexed: 01/24/2023] Open
Abstract
It is generally admitted that the ascomycete yeasts of the subphylum Saccharomycotina possess a single fatty acid ß-oxidation pathway located exclusively in peroxisomes, and that they lost mitochondrial ß-oxidation early during evolution. In this work, we showed that mutants of the opportunistic pathogenic yeast Candida lusitaniae which lack the multifunctional enzyme Fox2p, a key enzyme of the ß-oxidation pathway, were still able to grow on fatty acids as the sole carbon source, suggesting that C. lusitaniae harbored an alternative pathway for fatty acid catabolism. By assaying 14Cα-palmitoyl-CoA consumption, we demonstrated that fatty acid catabolism takes place in both peroxisomal and mitochondrial subcellular fractions. We then observed that a fox2Δ null mutant was unable to catabolize fatty acids in the mitochondrial fraction, thus indicating that the mitochondrial pathway was Fox2p-dependent. This finding was confirmed by the immunodetection of Fox2p in protein extracts obtained from purified peroxisomal and mitochondrial fractions. Finally, immunoelectron microscopy provided evidence that Fox2p was localized in both peroxisomes and mitochondria. This work constitutes the first demonstration of the existence of a Fox2p-dependent mitochondrial β-oxidation pathway in an ascomycetous yeast, C. lusitaniae. It also points to the existence of an alternative fatty acid catabolism pathway, probably located in peroxisomes, and functioning in a Fox2p-independent manner.
Collapse
Affiliation(s)
- Frédéric Gabriel
- Univ. Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, F-33000 Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, F-33000 Bordeaux, France
| | - Isabelle Accoceberry
- Univ. Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, F-33000 Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, F-33000 Bordeaux, France
| | - Jean-Jacques Bessoule
- Univ. Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33000 Bordeaux, France
- CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33000 Bordeaux, France
| | - Bénédicte Salin
- Univ. Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - Marine Lucas-Guérin
- Univ. Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, F-33000 Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, F-33000 Bordeaux, France
| | - Stephen Manon
- Univ. Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - Karine Dementhon
- Univ. Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, F-33000 Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, F-33000 Bordeaux, France
| | - Thierry Noël
- Univ. Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, F-33000 Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, F-33000 Bordeaux, France
| |
Collapse
|
126
|
Lin CW, Wang PH, Ismail W, Tsai YW, El Nayal A, Yang CY, Yang FC, Wang CH, Chiang YR. Substrate uptake and subcellular compartmentation of anoxic cholesterol catabolism in Sterolibacterium denitrificans. J Biol Chem 2014; 290:1155-69. [PMID: 25418128 DOI: 10.1074/jbc.m114.603779] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cholesterol catabolism by actinobacteria has been extensively studied. In contrast, the uptake and catabolism of cholesterol by Gram-negative species are poorly understood. Here, we investigated microbial cholesterol catabolism at the subcellular level. (13)C metabolomic analysis revealed that anaerobically grown Sterolibacterium denitrificans, a β-proteobacterium, adopts an oxygenase-independent pathway to degrade cholesterol. S. denitrificans cells did not produce biosurfactants upon growth on cholesterol and exhibited high cell surface hydrophobicity. Moreover, S. denitrificans did not produce extracellular catabolic enzymes to transform cholesterol. Accordingly, S. denitrificans accessed cholesterol by direction adhesion. Cholesterol is imported through the outer membrane via a putative FadL-like transport system, which is induced by neutral sterols. The outer membrane steroid transporter is able to selectively import various C27 sterols into the periplasm. S. denitrificans spheroplasts exhibited a significantly higher efficiency in cholest-4-en-3-one-26-oic acid uptake than in cholesterol uptake. We separated S. denitrificans proteins into four fractions, namely the outer membrane, periplasm, inner membrane, and cytoplasm, and we observed the individual catabolic reactions within them. Our data indicated that, in the periplasm, various periplasmic and peripheral membrane enzymes transform cholesterol into cholest-4-en-3-one-26-oic acid. The C27 acidic steroid is then transported into the cytoplasm, in which side-chain degradation and the subsequent sterane cleavage occur. This study sheds light into microbial cholesterol metabolism under anoxic conditions.
Collapse
Affiliation(s)
- Ching-Wen Lin
- From the Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan and
| | - Po-Hsiang Wang
- From the Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan and
| | - Wael Ismail
- the Life Sciences Department, Biotechnology Program, College of Graduate Studies, Arabian Gulf University, Manama 329, Kingdom of Bahrain
| | - Yu-Wen Tsai
- From the Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan and
| | - Ashraf El Nayal
- the Life Sciences Department, Biotechnology Program, College of Graduate Studies, Arabian Gulf University, Manama 329, Kingdom of Bahrain
| | - Chia-Ying Yang
- From the Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan and
| | - Fu-Chun Yang
- From the Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan and
| | - Chia-Hsiang Wang
- From the Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan and
| | - Yin-Ru Chiang
- From the Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan and
| |
Collapse
|
127
|
Gomes D, Aguiar TQ, Dias O, Ferreira EC, Domingues L, Rocha I. Genome-wide metabolic re-annotation of Ashbya gossypii: new insights into its metabolism through a comparative analysis with Saccharomyces cerevisiae and Kluyveromyces lactis. BMC Genomics 2014; 15:810. [PMID: 25253284 PMCID: PMC4190384 DOI: 10.1186/1471-2164-15-810] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/15/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Ashbya gossypii is an industrially relevant microorganism traditionally used for riboflavin production. Despite the high gene homology and gene order conservation comparatively with Saccharomyces cerevisiae, it presents a lower level of genomic complexity. Its type of growth, placing it among filamentous fungi, questions how close it really is from the budding yeast, namely in terms of metabolism, therefore raising the need for an extensive and thorough study of its entire metabolism. This work reports the first manual enzymatic genome-wide re-annotation of A. gossypii as well as the first annotation of membrane transport proteins. RESULTS After applying a developed enzymatic re-annotation pipeline, 847 genes were assigned with metabolic functions. Comparatively to KEGG's annotation, these data corrected the function for 14% of the common genes and increased the information for 52 genes, either completing existing partial EC numbers or adding new ones. Furthermore, 22 unreported enzymatic functions were found, corresponding to a significant increase in the knowledge of the metabolism of this organism. The information retrieved from the metabolic re-annotation and transport annotation was used for a comprehensive analysis of A. gossypii's metabolism in comparison to the one of S. cerevisiae (post-WGD - whole genome duplication) and Kluyveromyces lactis (pre-WGD), suggesting some relevant differences in several parts of their metabolism, with the majority being found for the metabolism of purines, pyrimidines, nitrogen and lipids. A considerable number of enzymes were found exclusively in A. gossypii comparatively with K. lactis (90) and S. cerevisiae (13). In a similar way, 176 and 123 enzymatic functions were absent on A. gossypii comparatively to K. lactis and S. cerevisiae, respectively, confirming some of the well-known phenotypes of this organism. CONCLUSIONS This high quality metabolic re-annotation, together with the first membrane transporters annotation and the metabolic comparative analysis, represents a new important tool for the study and better understanding of A. gossypii's metabolism.
Collapse
Affiliation(s)
- Daniel Gomes
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Tatiana Q Aguiar
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Oscar Dias
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Eugénio C Ferreira
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Isabel Rocha
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
128
|
Huang D, Li T, Li X, Zhang L, Sun L, He X, Zhong X, Jia D, Song L, Semenza G, Gao P, Zhang H. HIF-1-Mediated Suppression of Acyl-CoA Dehydrogenases and Fatty Acid Oxidation Is Critical for Cancer Progression. Cell Rep 2014; 8:1930-1942. [DOI: 10.1016/j.celrep.2014.08.028] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/16/2014] [Accepted: 08/13/2014] [Indexed: 02/05/2023] Open
|
129
|
Aon MA, Bhatt N, Cortassa SC. Mitochondrial and cellular mechanisms for managing lipid excess. Front Physiol 2014; 5:282. [PMID: 25132820 PMCID: PMC4116787 DOI: 10.3389/fphys.2014.00282] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 07/10/2014] [Indexed: 12/16/2022] Open
Abstract
Current scientific debates center on the impact of lipids and mitochondrial function on diverse aspects of human health, nutrition and disease, among them the association of lipotoxicity with the onset of insulin resistance in skeletal muscle, and with heart dysfunction in obesity and diabetes. Mitochondria play a fundamental role in aging and in prevalent acute or chronic diseases. Lipids are main mitochondrial fuels however these molecules can also behave as uncouplers and inhibitors of oxidative phosphorylation. Knowledge about the functional composition of these contradictory effects and their impact on mitochondrial-cellular energetics/redox status is incomplete. Cells store fatty acids (FAs) as triacylglycerol and package them into cytoplasmic lipid droplets (LDs). New emerging data shows the LD as a highly dynamic storage pool of FAs that can be used for energy reserve. Lipid excess packaging into LDs can be seen as an adaptive response to fulfilling energy supply without hindering mitochondrial or cellular redox status and keeping low concentration of lipotoxic intermediates. Herein we review the mechanisms of action and utilization of lipids by mitochondria reported in liver, heart and skeletal muscle under relevant physiological situations, e.g., exercise. We report on perilipins, a family of proteins that associate with LDs in response to loading of cells with lipids. Evidence showing that in addition to physical contact, mitochondria and LDs exhibit metabolic interactions is presented and discussed. A hypothetical model of channeled lipid utilization by mitochondria is proposed. Direct delivery and channeled processing of lipids in mitochondria could represent a reliable and efficient way to maintain reactive oxygen species (ROS) within levels compatible with signaling while ensuring robust and reliable energy supply.
Collapse
Affiliation(s)
- Miguel A Aon
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Niraj Bhatt
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Sonia C Cortassa
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine Baltimore, MD, USA
| |
Collapse
|
130
|
Dedkova EN, Blatter LA. Role of β-hydroxybutyrate, its polymer poly-β-hydroxybutyrate and inorganic polyphosphate in mammalian health and disease. Front Physiol 2014; 5:260. [PMID: 25101001 PMCID: PMC4102118 DOI: 10.3389/fphys.2014.00260] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 06/19/2014] [Indexed: 12/14/2022] Open
Abstract
We provide a comprehensive review of the role of β-hydroxybutyrate (β-OHB), its linear polymer poly-β-hydroxybutyrate (PHB), and inorganic polyphosphate (polyP) in mammalian health and disease. β-OHB is a metabolic intermediate that constitutes 70% of ketone bodies produced during ketosis. Although ketosis has been generally considered as an unfavorable pathological state (e.g., diabetic ketoacidosis in type-1 diabetes mellitus), it has been suggested that induction of mild hyperketonemia may have certain therapeutic benefits. β-OHB is synthesized in the liver from acetyl-CoA by β-OHB dehydrogenase and can be used as alternative energy source. Elevated levels of PHB are associated with pathological states. In humans, short-chain, complexed PHB (cPHB) is found in a wide variety of tissues and in atherosclerotic plaques. Plasma cPHB concentrations correlate strongly with atherogenic lipid profiles, and PHB tissue levels are elevated in type-1 diabetic animals. However, little is known about mechanisms of PHB action especially in the heart. In contrast to β-OHB, PHB is a water-insoluble, amphiphilic polymer that has high intrinsic viscosity and salt-solvating properties. cPHB can form non-specific ion channels in planar lipid bilayers and liposomes. PHB can form complexes with polyP and Ca(2+) which increases membrane permeability. The biological roles played by polyP, a ubiquitous phosphate polymer with ATP-like bonds, have been most extensively studied in prokaryotes, however polyP has recently been linked to a variety of functions in mammalian cells, including blood coagulation, regulation of enzyme activity in cancer cells, cell proliferation, apoptosis and mitochondrial ion transport and energy metabolism. Recent evidence suggests that polyP is a potent activator of the mitochondrial permeability transition pore in cardiomyocytes and may represent a hitherto unrecognized key structural and functional component of the mitochondrial membrane system.
Collapse
Affiliation(s)
- Elena N Dedkova
- Department of Molecular Biophysics and Physiology, Rush University Medical Center Chicago, IL, USA
| | - Lothar A Blatter
- Department of Molecular Biophysics and Physiology, Rush University Medical Center Chicago, IL, USA
| |
Collapse
|
131
|
Justus J, Weigand E. A Moderate Zinc Deficiency Does Not Impair Gene Expression of PPARα, PPARγ, and Mitochondrial Enoyl-CoA Delta Isomerase in the Liver of Growing Rats. Nutr Metab Insights 2014; 7:29-37. [PMID: 24855375 PMCID: PMC4024054 DOI: 10.4137/nmi.s14003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/24/2014] [Accepted: 03/24/2014] [Indexed: 11/12/2022] Open
Abstract
The aim of the study was to investigate the impact of a moderate zinc deficiency and a high intake of polyunsaturated fat on the mRNA expression of peroxisome-proliferator-activated receptor alpha (PPARα), peroxisome-proliferator-activated receptor gamma (PPARγ), and mitochondrial Δ3Δ2-enoyl-CoA isomerase (ECI) in the liver. Weanling rats were assigned to five groups (eight animals each) and fed semi-synthetic, low-carbohydrate diets containing 7 or 50 mg Zn/kg (low-Zn (LZ) or high-Zn (HZ)) and 22% cocoa butter (CB) or 22% safflower (SF) oil for four weeks. One group each was fed the LZ-CB, LZ-SF, or HZ-SF diet free choice, and one group each was fed the HZ-CB and HZ-SF diets in restricted amounts according to intake of the respective LZ diets. The LZ diets markedly lowered growth and zinc concentrations in plasma and femur. Hepatic mRNA levels of PPARα, PPARγ, and ECI were not reduced by the moderate zinc deficiency. Overall, ECI-mRNA abundance was marginally higher in the SF-fed than in the CB-fed animals.
Collapse
Affiliation(s)
- Jennifer Justus
- Dussmann Service Deutschland GmbH, Frankfurt am Main, Germany
| | - Edgar Weigand
- Institute of Animal Nutrition and Nutritional Physiology, Justus Liebig University, Giessen, Germany
| |
Collapse
|
132
|
Seyfried M, Boschung A. An assessment of biodegradability of quaternary carbon-containing fragrance compounds: comparison of experimental OECD screening test results and in silico prediction data. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:1005-1016. [PMID: 24453060 DOI: 10.1002/etc.2523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/19/2013] [Accepted: 01/10/2014] [Indexed: 06/03/2023]
Abstract
An assessment of biodegradability was carried out for fragrance substances containing quaternary carbons by using data obtained from Organisation for Economic Co-operation and Development (OECD) 301F screening tests for ready biodegradation and from Biowin and Catalogic prediction models. Despite an expected challenging profile, a relatively high percentage of common-use fragrance substances showed significant biodegradation under the stringent conditions applied in the OECD 301F test. Among 27 test compounds, 37% met the pass level criteria after 28 d, while another 26% indicated partial breakdown (≥20% biodegradation). For several compounds for which structural analogs were available, the authors found that structures that were rendered less water soluble by either the presence of an acetate ester or the absence of oxygen tended to degrade to a lesser extent compared to the primary alcohols or oxygenated counterparts under the test conditions applied. Difficulties were encountered when attempting to correlate experimental with in silico data. Whereas the Biowin model combinations currently recommended by regulatory agencies did not allow for a reliable discrimination between readily and nonbiodegradable compounds, only a comparably small proportion of the chemicals studied (30% and 63% depending on the model) fell within the applicability domain of Catalogic, a factor that critically reduced its predictive power. According to these results, currently neither Biowin nor Catalogic accurately reflects the potential for biodegradation of fragrance compounds containing quaternary carbons.
Collapse
|
133
|
Su B, Ryan RO. Metabolic biology of 3-methylglutaconic acid-uria: a new perspective. J Inherit Metab Dis 2014; 37:359-68. [PMID: 24407466 PMCID: PMC4016128 DOI: 10.1007/s10545-013-9669-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/20/2013] [Accepted: 11/26/2013] [Indexed: 10/25/2022]
Abstract
Over the past 25 years a growing number of distinct syndromes/mutations associated with compromised mitochondrial function have been identified that share a common feature: urinary excretion of 3-methylglutaconic acid (3MGA). In the leucine degradation pathway, carboxylation of 3-methylcrotonyl CoA leads to formation of 3-methylglutaconyl CoA while 3-methylglutaconyl CoA hydratase converts this metabolite to 3-hydroxy-3-methylglutaryl CoA (HMG CoA). In "primary" 3MGA-uria, mutations in the hydratase are directly responsible for the accumulation of 3MGA. On the other hand, in all "secondary" 3MGA-urias, no defect in leucine catabolism exists and the metabolic origin of 3MGA is unknown. Herein, a path to 3MGA from mitochondrial acetyl CoA is proposed. The pathway is initiated when syndrome-associated mutations/DNA deletions result in decreased Krebs cycle flux. When this occurs, acetoacetyl CoA thiolase condenses two acetyl CoA into acetoacetyl CoA plus CoASH. Subsequently, HMG CoA synthase 2 converts acetoacetyl CoA and acetyl CoA to HMG CoA. Under syndrome-specific metabolic conditions, 3-methylglutaconyl CoA hydratase converts HMG CoA into 3-methylglutaconyl CoA in a reverse reaction of the leucine degradation pathway. This metabolite fails to proceed further up the leucine degradation pathway owing to the kinetic properties of 3-methylcrotonyl CoA carboxylase. Instead, hydrolysis of the CoA moiety of 3-methylglutaconyl CoA generates 3MGA, which appears in urine. If experimentally confirmed, this pathway provides an explanation for the occurrence of 3MGA in multiple disorders associated with compromised mitochondrial function.
Collapse
Affiliation(s)
- Betty Su
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA, 94609, USA
| | | |
Collapse
|
134
|
Strandberg U, Taipale SJ, Kainz MJ, Brett MT. Retroconversion of docosapentaenoic acid (n-6): an alternative pathway for biosynthesis of arachidonic acid in Daphnia magna. Lipids 2014; 49:591-5. [PMID: 24715497 DOI: 10.1007/s11745-014-3902-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 03/20/2014] [Indexed: 02/05/2023]
Abstract
The aim of this study was to assess metabolic pathways for arachidonic acid (20:4n-6) biosynthesis in Daphnia magna. Neonates of D. magna were maintained on [(13)C] enriched Scenedesmus obliquus and supplemented with liposomes that contained separate treatments of unlabeled docosapentaenoic acid (22:5n-6), 20:4n-6, linoleic acid (18:2n-6) or oleic acid (18:1n-9). Daphnia in the control treatment, without any supplementary fatty acids (FA) containing only trace amounts of 20:4n-6 (~0.3% of all FA). As expected, the highest proportion of 20:4n-6 (~6.3%) was detected in Daphnia that received liposomes supplemented with this FA. Higher availability of 18:2n-6 in the diet increased the proportion of 18:2n-6 in Daphnia, but the proportion of 20:4n-6 was not affected. Daphnia supplemented with 22:5n-6 contained ~3.5% 20:4n-6 in the lipids and FA specific stable isotope analyses validated that the increase in the proportion of 20:4n-6 was due to retroconversion of unlabeled 22:5n-6. These results suggest that chain shortening of 22:5n-6 is a more efficient pathway to synthesize 20:4n-6 in D. magna than elongation and desaturation of 18:2n-6. These results may at least partially explain the discrepancies noticed between phytoplankton FA composition and the expected FA composition in freshwater cladocerans. Finally, retroconversion of dietary 22:5n-6 to 20:4n-6 indicates Daphnia efficiently retain long chain n-6 FA in lake food webs, which might be important for the nutritional ecology of fish.
Collapse
Affiliation(s)
- Ursula Strandberg
- Department of Biology, University of Eastern Finland, PO Box 111, 80101, Joensuu, Finland,
| | | | | | | |
Collapse
|
135
|
Li J, Han D, Wang D, Ning K, Jia J, Wei L, Jing X, Huang S, Chen J, Li Y, Hu Q, Xu J. Choreography of Transcriptomes and Lipidomes of Nannochloropsis Reveals the Mechanisms of Oil Synthesis in Microalgae. THE PLANT CELL 2014; 26:1645-1665. [PMID: 24692423 PMCID: PMC4036577 DOI: 10.1105/tpc.113.121418] [Citation(s) in RCA: 243] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/16/2014] [Accepted: 03/11/2014] [Indexed: 05/17/2023]
Abstract
To reveal the molecular mechanisms of oleaginousness in microalgae, transcriptomic and lipidomic dynamics of the oleaginous microalga Nannochloropsis oceanica IMET1 under nitrogen-replete (N+) and N-depleted (N-) conditions were simultaneously tracked. At the transcript level, enhanced triacylglycerol (TAG) synthesis under N- conditions primarily involved upregulation of seven putative diacylglycerol acyltransferase (DGAT) genes and downregulation of six other DGAT genes, with a simultaneous elevation of the other Kennedy pathway genes. Under N- conditions, despite downregulation of most de novo fatty acid synthesis genes, the pathways that shunt carbon precursors from protein and carbohydrate metabolic pathways into glycerolipid synthesis were stimulated at the transcript level. In particular, the genes involved in supplying carbon precursors and energy for de novo fatty acid synthesis, including those encoding components of the pyruvate dehydrogenase complex (PDHC), glycolysis, and PDHC bypass, and suites of specific transporters, were substantially upregulated under N- conditions, resulting in increased overall TAG production. Moreover, genes involved in the citric acid cycle and β-oxidation in mitochondria were greatly enhanced to utilize the carbon skeletons derived from membrane lipids and proteins to produce additional TAG or its precursors. This temporal and spatial regulation model of oil accumulation in microalgae provides a basis for improving our understanding of TAG synthesis in microalgae and will also enable more rational genetic engineering of TAG production.
Collapse
Affiliation(s)
- Jing Li
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Danxiang Han
- Laboratory for Algae Research and Biotechnology, Department of Applied Biological Sciences, Arizona State University, Mesa, Arizona 85212
| | - Dongmei Wang
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Kang Ning
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Jing Jia
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Wei
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Jing
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Shi Huang
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Chen
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Yantao Li
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science and University of Maryland Baltimore County, Baltimore, Maryland 21202
| | - Qiang Hu
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| |
Collapse
|
136
|
Metabolic Conversion of C20 Polymethylene-Interrupted Polyunsaturated Fatty Acids to Essential Fatty Acids. Lipids 2014; 49:423-9. [DOI: 10.1007/s11745-014-3896-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/07/2014] [Indexed: 12/21/2022]
|
137
|
Zhao Y, Peng J, Lu C, Hsin M, Mura M, Wu L, Chu L, Zamel R, Machuca T, Waddell T, Liu M, Keshavjee S, Granton J, de Perrot M. Metabolomic heterogeneity of pulmonary arterial hypertension. PLoS One 2014; 9:e88727. [PMID: 24533144 PMCID: PMC3923046 DOI: 10.1371/journal.pone.0088727] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/09/2014] [Indexed: 01/09/2023] Open
Abstract
Although multiple gene and protein expression have been extensively profiled in human pulmonary arterial hypertension (PAH), the mechanism for the development and progression of pulmonary hypertension remains elusive. Analysis of the global metabolomic heterogeneity within the pulmonary vascular system leads to a better understanding of disease progression. Using a combination of high-throughput liquid-and-gas-chromatography-based mass spectrometry, we showed unbiased metabolomic profiles of disrupted glycolysis, increased TCA cycle, and fatty acid metabolites with altered oxidation pathways in the human PAH lung. The results suggest that PAH has specific metabolic pathways contributing to increased ATP synthesis for the vascular remodeling process in severe pulmonary hypertension. These identified metabolites may serve as potential biomarkers for the diagnosis of PAH. By profiling metabolomic alterations of the PAH lung, we reveal new pathogenic mechanisms of PAH, opening an avenue of exploration for therapeutics that target metabolic pathway alterations in the progression of PAH.
Collapse
Affiliation(s)
- Yidan Zhao
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (MDP); (YZ)
| | - Jenny Peng
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Catherine Lu
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Michael Hsin
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Marco Mura
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Licun Wu
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Lei Chu
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Ricardo Zamel
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Tiago Machuca
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Thomas Waddell
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - John Granton
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Marc de Perrot
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (MDP); (YZ)
| |
Collapse
|
138
|
Du Z, Shen A, Huang Y, Su L, Lai W, Wang P, Xie Z, Xie Z, Zeng Q, Ren H, Xu D. 1H-NMR-based metabolic analysis of human serum reveals novel markers of myocardial energy expenditure in heart failure patients. PLoS One 2014; 9:e88102. [PMID: 24505394 PMCID: PMC3914925 DOI: 10.1371/journal.pone.0088102] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 01/07/2014] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Elevated myocardial energy expenditure (MEE) is related with reduced left ventricular ejection fraction, and has also been documented as an independent predictor of cardiovascular mortality. However, the serum small-molecule metabolite profiles and pathophysiological mechanisms of elevated MEE in heart failure (HF) are still lacking. Herein, we used 1H-NMR-based metabolomics analysis to screen for potential biomarkers of MEE in HF. METHODS A total of 61 subjects were enrolled, including 46 patients with heart failure and 15 age-matched controls. Venous serum samples were collected from subjects after an 8-hour fast. An INOVA 600 MHz nuclear magnetic resonance spectrometer with Carr-Purcell-Melboom-Gill (CPMG) pulse sequence was employed for the metabolomics analysis and MEE was calculated using colored Doppler echocardiography. Metabolomics data were processed using orthogonal signal correction and regression analysis was performed using the partial least squares method. RESULTS The mean MEE levels of HF patients and controls were 139.61±58.18 cal/min and 61.09±23.54 cal/min, respectively. Serum metabolomics varied with MEE changed, and 3-hydroxybutyrate, acetone and succinate were significantly elevated with the increasing MEE. Importantly, these three metabolites were independent of administration of angiotensin converting enzyme inhibitor, β-receptor blockers, diuretics and statins (P>0.05). CONCLUSIONS These results suggested that in patients with heart failure, MEE elevation was associated with significant changes in serum metabolomics profiles, especially the concentration of 3-hydroxybutyrate, acetone and succinate. These compounds could be used as potential serum biomarkers to study myocardial energy mechanism in HF patients.
Collapse
Affiliation(s)
- Zhiyong Du
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory For Organ Failure Research, Ministry of Education of the People's Republic of China, Guangzhou, China
| | - Anna Shen
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Cardiology, The Third Hospital of Southern Medical University, Guangzhou, China
| | - Yuli Huang
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liang Su
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory For Organ Failure Research, Ministry of Education of the People's Republic of China, Guangzhou, China
| | - Wenyan Lai
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory For Organ Failure Research, Ministry of Education of the People's Republic of China, Guangzhou, China
| | - Peng Wang
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory For Organ Failure Research, Ministry of Education of the People's Republic of China, Guangzhou, China
| | - Zhibing Xie
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory For Organ Failure Research, Ministry of Education of the People's Republic of China, Guangzhou, China
| | - Zhiquan Xie
- Department of Cardiology, Guangzhou General Hospital of PLA, Guangzhou, China
| | - Qingchun Zeng
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory For Organ Failure Research, Ministry of Education of the People's Republic of China, Guangzhou, China
| | - Hao Ren
- Key Laboratory For Organ Failure Research, Ministry of Education of the People's Republic of China, Guangzhou, China
- Department of Rheumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dingli Xu
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory For Organ Failure Research, Ministry of Education of the People's Republic of China, Guangzhou, China
| |
Collapse
|
139
|
Li L, Wang J, Zhang Z, Wang Y, Liu M, Jiang H, Chai R, Mao X, Qiu H, Liu F, Sun G. MoPex19, which is essential for maintenance of peroxisomal structure and woronin bodies, is required for metabolism and development in the rice blast fungus. PLoS One 2014; 9:e85252. [PMID: 24454828 PMCID: PMC3891873 DOI: 10.1371/journal.pone.0085252] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 11/24/2013] [Indexed: 11/19/2022] Open
Abstract
Peroxisomes are present ubiquitously and make important contributions to cellular metabolism in eukaryotes. They play crucial roles in pathogenicity of plant fungal pathogens. The peroxisomal matrix proteins and peroxisomal membrane proteins (PMPs) are synthesized in the cytosol and imported post-translationally. Although the peroxisomal import machineries are generally conserved, some species-specific features were found in different types of organisms. In phytopathogenic fungi, the pathways of the matrix proteins have been elucidated, while the import machinery of PMPs remains obscure. Here, we report that MoPEX19, an ortholog of ScPEX19, was required for PMPs import and peroxisomal maintenance, and played crucial roles in metabolism and pathogenicity of the rice blast fungus Magnaporthe oryzae. MoPEX19 was expressed in a low level and Mopex19p was distributed in the cytoplasm and newly formed peroxisomes. MoPEX19 deletion led to mislocalization of peroxisomal membrane proteins (PMPs), as well peroxisomal matrix proteins. Peroxisomal structures were totally absent in Δmopex19 mutants and woronin bodies also vanished. Δmopex19 exhibited metabolic deficiency typical in peroxisomal disorders and also abnormality in glyoxylate cycle which was undetected in the known mopex mutants. The Δmopex19 mutants performed multiple disorders in fungal development and pathogenicity-related morphogenesis, and lost completely the pathogenicity on its hosts. These data demonstrate that MoPEX19 plays crucial roles in maintenance of peroxisomal and peroxisome-derived structures and makes more contributions to fungal development and pathogenicity than the known MoPEX genes in the rice blast fungus.
Collapse
Affiliation(s)
- Ling Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiaoyu Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhen Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yanli Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Maoxin Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hua Jiang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Rongyao Chai
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xueqin Mao
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Haiping Qiu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Fengquan Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- * E-mail: (FL); (GS)
| | - Guochang Sun
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- * E-mail: (FL); (GS)
| |
Collapse
|
140
|
Go YM, Uppal K, Walker DI, Tran V, Dury L, Strobel FH, Baubichon-Cortay H, Pennell KD, Roede JR, Jones DP. Mitochondrial metabolomics using high-resolution Fourier-transform mass spectrometry. Methods Mol Biol 2014; 1198:43-73. [PMID: 25270922 DOI: 10.1007/978-1-4939-1258-2_4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
High-resolution Fourier-transform mass spectrometry (FTMS) provides important advantages in studies of metabolism because more than half of common intermediary metabolites can be measured in 10 min with minimal pre-detector separation and without ion dissociation. This capability allows unprecedented opportunity to study complex metabolic systems, such as mitochondria. Analysis of mouse liver mitochondria using FTMS with liquid chromatography shows that sex and genotypic differences in mitochondrial metabolism can be readily distinguished. Additionally, differences in mitochondrial function are readily measured, and many of the mitochondria-related metabolites are also measurable in plasma. Thus, application of high-resolution mass spectrometry provides an approach for integrated studies of complex metabolic processes of mitochondrial function and dysfunction in disease.
Collapse
Affiliation(s)
- Young-Mi Go
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, 615 Michael Street, Atlanta, GA, 30322, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
van Weeghel M, Ofman R, Argmann CA, Ruiter JPN, Claessen N, Oussoren SV, Wanders RJA, Aten J, Houten SM. Identification and characterization of Eci3, a murine kidney-specific Δ3,Δ2-enoyl-CoA isomerase. FASEB J 2013; 28:1365-74. [PMID: 24344334 DOI: 10.1096/fj.13-240416] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Oxidation of unsaturated fatty acids requires the action of auxiliary enzymes, such as Δ(3),Δ(2)-enoyl-CoA isomerases. Here we describe a detailed biochemical, molecular, histological, and evolutionary characterization of Eci3, the fourth member of the mammalian enoyl-CoA isomerase family. Eci3 specifically evolved in rodents after gene duplication of Eci2. Eci3 is with 79% identity homologous to Eci2 and contains a peroxisomal targeting signal type 1. Subcellular fractionation of mouse kidney and immunofluorescence studies revealed a specific peroxisomal localization for Eci3. Expression studies showed that mouse Eci3 is almost exclusively expressed in kidney. By using immunohistochemistry, we found that Eci3 is not only expressed in cells of the proximal tubule, but also in a subset of cells in the tubulointerstitium and the glomerulus. In vitro, Eci3 catalyzed the isomerization of trans-3-nonenoyl-CoA to trans-2-nonenoyl-CoA equally efficient as Eci2, suggesting a role in oxidation of unsaturated fatty acids. However, in contrast to Eci2, in silico gene coexpression and enrichment analysis for Eci3 in kidney did not yield carboxylic acid metabolism, but diverse biological functions, such as ion transport (P=7.1E-3) and tissue morphogenesis (P=1.0E-3). Thus, Eci3 picked up a novel and unexpected role in kidney function during rodent evolution.
Collapse
Affiliation(s)
- Michel van Weeghel
- 1Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mt. Sinai, 1425 Madison Ave., Box 1498, New York, NY 10029, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Ravin NV, Eldarov MA, Kadnikov VV, Beletsky AV, Schneider J, Mardanova ES, Smekalova EM, Zvereva MI, Dontsova OA, Mardanov AV, Skryabin KG. Genome sequence and analysis of methylotrophic yeast Hansenula polymorpha DL1. BMC Genomics 2013; 14:837. [PMID: 24279325 PMCID: PMC3866509 DOI: 10.1186/1471-2164-14-837] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 11/15/2013] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Hansenula polymorpha DL1 is a methylotrophic yeast, widely used in fundamental studies of methanol metabolism, peroxisome biogenesis and function, and also as a microbial cell factory for production of recombinant proteins and metabolic engineering towards the goal of high temperature ethanol production. RESULTS We have sequenced the 9 Mbp H. polymorpha DL1 genome and performed whole-genome analysis for the H. polymorpha transcriptome obtained from both methanol- and glucose-grown cells. RNA-seq analysis revealed the complex and dynamic character of the H. polymorpha transcriptome under the two studied conditions, identified abundant and highly unregulated expression of 40% of the genome in methanol grown cells, and revealed alternative splicing events. We have identified subtelomerically biased protein families in H. polymorpha, clusters of LTR elements at G + C-poor chromosomal loci in the middle of each of the seven H. polymorpha chromosomes, and established the evolutionary position of H. polymorpha DL1 within a separate yeast clade together with the methylotrophic yeast Pichia pastoris and the non-methylotrophic yeast Dekkera bruxellensis. Intergenome comparisons uncovered extensive gene order reshuffling between the three yeast genomes. Phylogenetic analyses enabled us to reveal patterns of evolution of methylotrophy in yeasts and filamentous fungi. CONCLUSIONS Our results open new opportunities for in-depth understanding of many aspects of H. polymorpha life cycle, physiology and metabolism as well as genome evolution in methylotrophic yeasts and may lead to novel improvements toward the application of H. polymorpha DL-1 as a microbial cell factory.
Collapse
Affiliation(s)
- Nikolai V Ravin
- Centre “Bioengineering” of RAS, Prosp. 60-let Oktyabrya, bld. 7-1, Moscow 117312, Russia
| | - Michael A Eldarov
- Centre “Bioengineering” of RAS, Prosp. 60-let Oktyabrya, bld. 7-1, Moscow 117312, Russia
| | - Vitaly V Kadnikov
- Centre “Bioengineering” of RAS, Prosp. 60-let Oktyabrya, bld. 7-1, Moscow 117312, Russia
| | - Alexey V Beletsky
- Centre “Bioengineering” of RAS, Prosp. 60-let Oktyabrya, bld. 7-1, Moscow 117312, Russia
| | - Jessica Schneider
- Institute for Bioinformatics, Center for Biotechnology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Eugenia S Mardanova
- Centre “Bioengineering” of RAS, Prosp. 60-let Oktyabrya, bld. 7-1, Moscow 117312, Russia
| | - Elena M Smekalova
- Faculty of Chemistry, Lomonosov Moscow State University, 119999 Moscow, Russia and Belozersky Institute, Moscow State University, Leninskie Gory 1, Bldg. 40, 119991 Moscow, Russia
| | - Maria I Zvereva
- Faculty of Chemistry, Lomonosov Moscow State University, 119999 Moscow, Russia and Belozersky Institute, Moscow State University, Leninskie Gory 1, Bldg. 40, 119991 Moscow, Russia
| | - Olga A Dontsova
- Faculty of Chemistry, Lomonosov Moscow State University, 119999 Moscow, Russia and Belozersky Institute, Moscow State University, Leninskie Gory 1, Bldg. 40, 119991 Moscow, Russia
| | - Andrey V Mardanov
- Centre “Bioengineering” of RAS, Prosp. 60-let Oktyabrya, bld. 7-1, Moscow 117312, Russia
| | - Konstantin G Skryabin
- Centre “Bioengineering” of RAS, Prosp. 60-let Oktyabrya, bld. 7-1, Moscow 117312, Russia
| |
Collapse
|
143
|
Xu J, Kazachkov M, Jia Y, Zheng Z, Zou J. Expression of a type 2 diacylglycerol acyltransferase from Thalassiosira pseudonana in yeast leads to incorporation of docosahexaenoic acid β-oxidation intermediates into triacylglycerol. FEBS J 2013; 280:6162-72. [PMID: 24128189 DOI: 10.1111/febs.12537] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/18/2013] [Accepted: 09/06/2013] [Indexed: 11/26/2022]
Abstract
Glycerolipids of the marine diatom Thalassiosira pseudonana are enriched particularly with eicosapentaenoic acid (EPA), and also with an appreciable level of docosahexaenoic acid (DHA). The present study describes the functional characterization of a type 2 diacylglycerol acyltransferase (DGAT2, EC 2.3.1.20) from T. pseudonana, designated TpDGAT2, which catalyzes the final step of triacylglycerol (TAG) synthesis. Heterologous expression of this gene restored TAG formation in a yeast mutant devoid of TAG biosynthesis. TpDGAT2 was also shown to exert a large impact on the fatty acid profile of TAG. Its expression caused a 10-12% increase of 18:1 and a concomitant decrease of 16:0 relative to that of AtDGAT1(Arabidopsis thaliana). Furthermore, in the presence of the very-long-chain polyunsaturated fatty acids (VLCPUFA) EPA and DHA, TAG formed by TpDGAT2 displayed three- to six-fold increases in the percentage of VLCPUFA relative to that of AtDGAT1 even though TpDGAT2 conferred much lower TAG-synthetic activities than Arabidopsis DGAT1. Strikingly, when fed DHA, the yeast mutant expressing TpDGAT2 incorporated high levels of EPA and DHA isomers derived from DHA β-oxidation. In contrast, no such phenomenon occurred in the cells expressing AtDGAT1. These results suggested that, in addition to the role in breaking down storage lipids, yeast peroxisomes also contribute to lipid synthesis by recycling acyl-CoAs when a fatty acyl assembly system is available to capture and utilize the fatty acyl pools generated via β-oxidation. Our study hence illustrated a case where the efficiency and substrate preference of an acyltransferase can elicit far reaching metabolic adjustments that affect TAG composition.
Collapse
Affiliation(s)
- Jingyu Xu
- National Research Council Canada, Saskatoon, Canada
| | | | | | | | | |
Collapse
|
144
|
Modification of β-oxidation pathway in Ralstonia eutropha for production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from soybean oil. J Biosci Bioeng 2013; 117:184-190. [PMID: 23999062 DOI: 10.1016/j.jbiosc.2013.07.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/16/2013] [Accepted: 07/31/2013] [Indexed: 11/22/2022]
Abstract
Ralstonia eutropha H16 is a useful platform for metabolic engineering aiming at efficient production of polyhydroxyalkanaotes being attracted as practical bioplastics. This study focused on bifunctional (S)-specific 2-enoyl-CoA hydratase/(S)-3-hydroxyacyl-CoA dehydrogenase encoded by fadB to obtain information regarding β-oxidation in this bacterium and to achieve compositional regulation of poly((R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate) [P(3HB-co-3HHx)] synthesized from soybean oil. In addition to two FadB homologs (FadB1 and FadB') encoded within the previously identified β-oxidation gene clusters on the chromosome 1, a gene of third homolog (FadB2) was found on chromosome 2 of R. eutropha. The fadB homologs were disrupted in R. eutropha strain NSDG expressing a mutant gene of PHA synthase from Aeromonas caviae. The gene disruptions affected neither growth nor PHA production on fructose. On soybean oil, fadB' deletion led to reduction of PHA quantity attributed to decrease of 3HB unit, while fadB1 deletion slightly increased 3HHx composition without serious negative impact on both cell growth and PHA biosynthesis. Double deletion of fadB1 and fadB' significantly impaired the cell growth and PHA biosynthesis, indicating the major roles of fadB1 and fadB' in β-oxidation. When fadB1 was deleted in several engineered strains of R. eutropha possessing additional (R)-enoyl-CoA hydratase gene(s), the net amounts of 3HHx unit in the PHA fractions showed 6-21% increase probably due to slightly enhanced supply of medium-chain-length 2-enoyl-CoAs through the partially impaired β-oxidation. These results demonstrated that modification of β-oxidation by fadB1 deletion was effective for increasing 3HHx composition in the copolyesters produced from soybean oil.
Collapse
|
145
|
Van Bogaert I, Zhang G, Yang J, Liu JY, Ye Y, Soetaert W, Hammock BD. Preparation of 20-HETE using multifunctional enzyme type 2-negative Starmerella bombicola. J Lipid Res 2013; 54:3215-9. [PMID: 23966667 DOI: 10.1194/jlr.d042226] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The metabolism of arachidonic acid (ARA) by cytochrome P450 ω/ω-1-hydroxylases leads to the formation of 20-hydroxyeicosatetraenoic acid (20-HETE), which is an important lipid-signaling molecule involved in regulation of vascular tone, angiogenesis, and inflammation. Development of a simple method to prepare 20-HETE would greatly facilitate the investigation of its biological activities. The nonpathogenic yeast Starmerella bombicola has been shown to convert exogenously added arachidonic acid to 20-HETE via the biosynthetic pathway of sophorolipids; however, the yield was low. Here we demonstrate that genetic knockout of multifunctional enzyme type 2 (MFE-2), which is involved in the β-oxidation of fatty acids, significantly increases the yield of ARA conversion to 20-HETE and allows practical preparation of 20-HETE.
Collapse
Affiliation(s)
- Inge Van Bogaert
- Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
146
|
Mycobacterium tuberculosis cholesterol catabolism requires a new class of acyl coenzyme A dehydrogenase. J Bacteriol 2013; 195:4319-21. [PMID: 23893117 DOI: 10.1128/jb.00867-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
147
|
Muñoz M, Fernández AI, Benítez R, Pena RN, Folch JM, Rodríguez MDC, Silió L, Alves E. Disentangling Two QTL on Porcine Chromosome 12 for Backfat Fatty Acid Composition. Anim Biotechnol 2013; 24:168-86. [DOI: 10.1080/10495398.2012.763130] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
148
|
Liberti D, Rollins JA, Dobinson KF. Peroxysomal carnitine acetyl transferase influences host colonization capacity in Sclerotinia sclerotiorum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:768-80. [PMID: 23581822 DOI: 10.1094/mpmi-03-13-0075-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In lower eukaryotes, the glyoxylate cycle allows cells to utilize two-carbon compounds when simple sugars are not available. In filamentous fungi, glyoxylate metabolism is coupled with β-oxidation of fatty acids, and both are localized to ubiquitous eukaryotic organelles called peroxisomes. Acetyl coenzyme A (acetyl-CoA) produced during β-oxidation is transported via the cytosol into mitochondria for further metabolism. A peroxisomal-specific pathway for acetyl-CoA transport requiring peroxisomal carnitine acetyl transferase (CAT) activity has been identified in Magnaporthe grisea peroxisomes. Here, we report that a Sclerotinia sclerotiorum ortholog of the M. grisea peroxisomal CAT-encoding gene Pth2 (herein designated Ss-pth2) is required for virulence-associated host colonization. Null (ss-pth2) mutants, obtained by in vitro transposon mutagenesis, failed to utilize fatty acids, acetate, or glycerol as sole carbon sources for growth. Gene expression analysis of these mutants showed altered levels of transcript accumulation for glyoxylate cycle enzymes. Ss-pth2 disruption also affected sclerotial, apothecial, and appressorial development and morphology, as well as oxalic acid accumulation when cultured with acetate or oleic acid as sole carbon nutrient sources. Although mutants were able to penetrate and initially colonize host tissue, subsequent colonization was impaired. Genetic complementation with the wild-type Ss-pth2 restored wild-type virulence phenotypes. These findings suggest an essential role in S. sclerotiorum for the peroxisomal metabolic pathways for oxalic acid synthesis and host colonization.
Collapse
Affiliation(s)
- D Liberti
- Department of Plant Pathology, University of Florida, Gainesville 32611, USA
| | | | | |
Collapse
|
149
|
Olpin SE. Pathophysiology of fatty acid oxidation disorders and resultant phenotypic variability. J Inherit Metab Dis 2013; 36:645-58. [PMID: 23674167 PMCID: PMC7101856 DOI: 10.1007/s10545-013-9611-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 03/27/2013] [Accepted: 04/10/2013] [Indexed: 12/16/2022]
Abstract
Fatty acids are a major fuel for the body and fatty acid oxidation is particularly important during fasting, sustained aerobic exercise and stress. The myocardium and resting skeletal muscle utilise long-chain fatty acids as a major source of energy. Inherited disorders affecting fatty acid oxidation seriously compromise the function of muscle and other highly energy-dependent tissues such as brain, nerve, heart, kidney and liver. Such defects encompass a wide spectrum of clinical disease, presenting in the neonatal period or infancy with recurrent hypoketotic hypoglycaemic encephalopathy, liver dysfunction, hyperammonaemia and often cardiac dysfunction. In older children, adolescence or adults there is often exercise intolerance with episodic myalgia or rhabdomyolysis in association with prolonged aerobic exercise or other exacerbating factors. Some disorders are particularly associated with toxic metabolites that may contribute to encephalopathy, polyneuropathy, axonopathy and pigmentary retinopathy. The phenotypic diversity encountered in defects of fat oxidation is partly explained by genotype/phenotype correlation and certain identifiable environmental factors but there remain many unresolved questions regarding the complex interaction of genetic, epigenetic and environmental influences that dictate phenotypic expression. It is becoming increasingly clear that the view that most inherited disorders are purely monogenic diseases is a naive concept. In the future our approach to understanding the phenotypic diversity and management of patients will be more realistically achieved from a polygenic perspective.
Collapse
Affiliation(s)
- Simon E Olpin
- Department of Clinical Chemistry, Sheffield Children's Hospital, Sheffield S10 2TH, UK.
| |
Collapse
|
150
|
Ball DR, Rowlands B, Dodd MS, Le Page L, Ball V, Carr CA, Clarke K, Tyler DJ. Hyperpolarized butyrate: a metabolic probe of short chain fatty acid metabolism in the heart. Magn Reson Med 2013; 71:1663-9. [PMID: 23798473 PMCID: PMC4238803 DOI: 10.1002/mrm.24849] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/25/2013] [Accepted: 05/28/2013] [Indexed: 12/13/2022]
Abstract
Purpose Butyrate, a short chain fatty acid, was studied as a novel hyperpolarized substrate for use in dynamic nuclear polarization enhanced magnetic resonance spectroscopy experiments, to define the pathways of short chain fatty acid and ketone body metabolism in real time. Methods Butyrate was polarized via the dynamic nuclear polarization process and subsequently dissolved to generate an injectable metabolic substrate. Metabolism was initially assessed in the isolated perfused rat heart, followed by evaluation in the in vivo rat heart. Results Hyperpolarized butyrate was generated with a polarization level of 7% and was shown to have a T1 relaxation time of 20 s. These physical characteristics were sufficient to enable assessment of multiple steps in its metabolism, with the ketone body acetoacetate and several tricarboxylic acid cycle intermediates observed both in vitro and in vivo. Metabolite to butyrate ratios of 0.1–0.4% and 0.5–2% were observed in vitro and in vivo respectively, similar to levels previously observed with hyperpolarized [2-13C]pyruvate. Conclusions In this study, butyrate has been demonstrated to be a suitable hyperpolarized substrate capable of revealing multi-step metabolism in dynamic nuclear polarization experiments and providing information on the metabolism of fatty acids not currently achievable with other hyperpolarized substrates. Magn Reson Med 71:1663–1669, 2014. © 2013 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Daniel R Ball
- Cardiac Metabolism Research Group, Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|