101
|
Shin CY, Lee NI, Je HD, Kim JS, Sung JH, Kim DS, Lee DW, Bae KL, Sohn UD. Cardiovascular responses and nitric oxide production in cerebral ischemic rats. Arch Pharm Res 2002; 25:697-703. [PMID: 12433208 DOI: 10.1007/bf02976947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We investigated that the role of nitric oxide (NO) on ischemic rats in brain and heart. Ischemia was induced by both common carotid arteries (CCA) occlusion for 24h following reperfusion. Then tissue samples were removed and measured NOx. In brain, NOx was increased by about 40% vs. normal and it was significantly inhibited by aminoguanidine, selective iNOS inhibitor. This result showed that NOx concentration was increased by iNOS. We investigated the role of Ca2+ during ischemia. Nimodipine, L-type calcium channel blocker, didn't inhibit the increases of NOx concentration during ischemia. It suggested that increased NOx was due to calcium-independent NOS. MK-801, which N-methyl-D-aspartate (NMDA) receptor antagonist, didn't significantly prevent the increases of NOx. In heart, ischemia caused NOx decrease and it is inconsistent with NOx increase in brain. Aminoguanidine and nimodipine didnt affect on NOx decrease. But MK-801 more lowered NOx concentration than those of ischemia control group. It seemed that Ca2+ influx in heart partially occurred via NMDA receptor and inhibited by NMDA receptor antagonist. The mean arterial pressure (MAP) in ischemic rats after 24h of CCA occlusion was decreased when compared to normal value, whereas the heart rates (HR) was not different between two groups. Aminoguanidine or MK801 had no effect on MAP or HR, but nimodipine reduced MAP. There was no difference the effects of aminoguanidine, nimodipine, or MK-801, on MAP and HR between normal rats and ischemic rats. In summary, ischemic model caused an increase of NOx concentration, suggesting that this may be produced via iNOS, which is calcium independent in brain. However in heart, ischemia decreased NOx concentration and NMDA receptor was partially involved. The basal MAP was decreased in ischemic rats but HR was not different from normal control, suggesting that increased NOx in brain of ischemic rat may result in the hypotension.
Collapse
Affiliation(s)
- Chang Yell Shin
- Department of Pharmacology, College of Pharmacy, Chung Ang University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Luchian T, Bancia B, Pavel C, Popa G. BIOMEMBRANE EXCITABILITY STUDIED WITHIN A WIDE-BAND FREQUENCY OF AN INTERACTING EXOGENOUS ELECTRIC FIELD. Electromagn Biol Med 2002. [DOI: 10.1081/jbc-120016003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
103
|
Abstract
N-type calcium (Ca2+) channels play a critical role in synaptic function, but the mechanisms responsible for their targeting in neurons are poorly understood. N-type channels are formed by an alpha(1B) (Ca(V)2.2) pore-forming subunit associated with beta and alpha2delta auxiliary subunits. By expressing epitope-tagged recombinant alpha1B subunits in rat hippocampal neuronal cultures, we demonstrate here that synaptic targeting of N-type channels depends on neuronal contacts and synapse formation. We also establish that the C-terminal 163 aa (2177-2339) of the alpha1B-1 (Ca(V)2.2a) splice variant contain sequences that are both necessary and sufficient for synaptic targeting. By site-directed mutagenesis, we demonstrate that postsynaptic density-95/discs large/zona occludens-1 and Src homology 3 domain-binding motifs located within this region of the alpha1B subunit (Maximov et al., 1999) act as synergistic synaptic targeting signals. We also show that the recombinant modular adaptor proteins Mint1 and CASK colocalize with N-type channels in synapses. We found that the alpha1B-2 (Ca(V)2.2b) splice variant is restricted to soma and dendrites and postulated that somatodendritic and axonal/presynaptic isoforms of N-type channels are generated via alternative splicing of alpha1B C termini. These data lead us to propose that during synaptogenesis, the alpha1B-1 (Ca(V)2.2a) splice variant of the N-type Ca2+ channel pore-forming subunit is recruited to presynaptic locations by means of interactions with modular adaptor proteins Mint1 and CASK. Our results provide a novel insight into the molecular mechanisms responsible for targeting of Ca2+ channels and other synaptic proteins in neurons.
Collapse
|
104
|
Schwartz L, Diamant S, Barhanin J, Atlas D. Tunicamycin Dissociates Depolarization-induced Calcium Entry From Transmitter Release. Involvement of Glycosylated Protein(s) in the Process of Neurosecretion in PC-12 Cells. Eur J Neurosci 2002; 4:1249-1256. [PMID: 12106388 DOI: 10.1111/j.1460-9568.1992.tb00150.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The process of regulated secretion in PC-12 cells is tightly coupled to calcium entry, which is absolutely dependent on extracellular Ca2+([Ca2+]ex). Tunicamycin treatment of the cells dissociated depolarization-triggered Ca2+ influx from depolarization (high K+)-induced transmitter release into two distinct and independent phases. Deplarization-evoked Ca2+ influx was not affected by tunicamycin treatment (1 microg/ml, 72 h), whereas depolarization-evoked transmitter release was strongly inhibited (> 60%), suggesting at least a two-step process, and the participation of glycosylated protein(s) in the actual fusion/secretion step. Similarly, bradykinin-mediated transmitter release was linearly related to and absolutely dependent on Ca2+ entry, and was inhibited by tunicamycin treatment (> 80%), whereas bradykinin-evoked Ca2+ entry was not impaired, indicating that glycosylated protein(s) are essential for bradykinin-evoked release at a step subsequent to Ca2+ influx. The heavily glycosylated alpha2 subunit of the dihydropyridine-sensitive channel, which was used to monitor tunicamycin inhibition of glycosylation, was not expressed in the tunicamycin-treated cells, as shown by Western blot analysis. This observation allowed us to conclude that the alpha1 subunit of the heteromeric dihydropyridine voltage-sensitive Ca2+ channel, which is responsible for Ca2+ entry, is also fully functional when not assembled with its corresponding alpha2 subunit. The molecular properties of the alpha2 subunit, whose role in the complex structure of the channel is not yet understood, are shown for the first time for the L-type Ca2+ channel of PC-12 cells. Similar to cardiac and skeletal muscle cells, the alpha2 subunit appears to be a glycosylated polypeptide of molecular weight 170 kD and to display a characteristic mobility shift to 140 kD under reducing conditions.
Collapse
Affiliation(s)
- Lydia Schwartz
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel 91904
| | | | | | | |
Collapse
|
105
|
Zhu PH, Vrbová G. The role of Ca2+ in the elimination of polyneuronal innervation of rat soleus muscle fibres. Eur J Neurosci 2002; 4:433-7. [PMID: 12106352 DOI: 10.1111/j.1460-9568.1992.tb00893.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mechanism by which nerve - muscle contacts are reduced during postnatal development of the rat soleus muscle was investigated using electrophysiological methods. Between days 7 and 9 after birth, soleus muscle fibres lose 0.19 - 0.24 terminals per muscle fibre within 24 h. A much more rapid loss of contacts is seen when muscles are exposed in vitro to acetylcholine (10-3 g/ml). In this case 0.67 - 0.87 terminals per muscle fibre lose contact within 2 h. The loss of neuromuscular contacts induced by acetylcholine can be reduced by preincubating the muscles in solutions containing acetoxymethyl ester of 1,2-bis(2-aminophenoxylethane-N,N1,N;N1-tetraacetic acid (BAPTA-AM), a Ca2+ chelating agent that enters cells and reduces the Ca2+ transients inside the cell. Treatment of muscles with nifedipine, which blocks dihydropyridine-sensitive (L-type) Ca2+ channels, also reduced the acetylcholinesterase-induced loss of neuromuscular contacts. The results indicate that transient increases in Ca2+ inside nerve terminals contribute to loss of neuromuscular contacts, and that these increases occur by Ca2+ entry through L-type channels.
Collapse
Affiliation(s)
- P H Zhu
- Department of Anatomy and Developmental Biology, Centre for Neuroscience, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
106
|
Son WY, Han CT, Lee JH, Jung KY, Lee HM, Choo YK. Developmental expression patterns of alpha1H T-type Ca2+ channels during spermatogenesis and organogenesis in mice. Dev Growth Differ 2002; 44:181-90. [PMID: 12060068 DOI: 10.1046/j.1440-169x.2002.00633.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The objectives of the present study were to investigate the expression patterns of T-type Ca2+ channel mRNA during spermatogenesis and organogenesis in mice. Reverse transcription-polymerase chain reaction (RT-PCR) was performed to identify the subtypes of calcium channels present in the round spermatids isolated from mouse testes by flow cytometry. Transcripts of L-type (alpha1D), non-L-type (alpha1E) and T-type Ca2+ channels were detected in round spermatids. Analysis of PCR products of T-type Ca2+ channels indicated that only alpha1H subunits were detected in round spermatids. The appearance and differential distribution of alpha1H T-type Ca2+ channel mRNA during mouse spermatogenesis and postimplantation embryogenesis (embryonic (E) days E9, E12, E15) were investigated by in situ hybridization with digoxigenin-labeled RNA probes coupled with alkaline phosphatase detection. In testes from adult and immature mice (postnatal 2 and 3 weeks), alpha1H T-type Ca2+ channel mRNA was expressed in all developing germ cells and sertoli cells. On E9 and E12, tissues of the central nervous system, such as the telencephalon, expressed alpha1H T-type Ca2+ channel mRNA. On E15, signals were detected throughout all organs of the embryo. These findings indicate that the expression of alpha1H T-type Ca2+ channels is spatio-temporally regulated during spermatogenesis and organogenesis.
Collapse
Affiliation(s)
- Weon-Young Son
- Department of Life Science, Sogang University, Seoul 121-742, Korea
| | | | | | | | | | | |
Collapse
|
107
|
Kumar PP, Stotz SC, Paramashivappa R, Beedle AM, Zamponi GW, Rao AS. Synthesis and evaluation of a new class of nifedipine analogs with T-type calcium channel blocking activity. Mol Pharmacol 2002; 61:649-58. [PMID: 11854446 DOI: 10.1124/mol.61.3.649] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have synthesized a novel series of 18 dialkyl 1,4-dihydro-4-(2'alkoxy-6'-pentadecylphenyl)-2,6-dimethyl-3,5 pyridine dicarboxylates from anacardic acid, a natural compound found in cashew nut shells, and investigated their blocking action on L- and T-type calcium channels transiently expressed in tSA-201 cells. The IC(50) values for L-type calcium channel block obtained with the series ranged from 1 to approximately 40 microM, with higher affinities being favored by increasing the size of the alkoxy group on the 4-phenyl ring and ester substituent in the 3,5 positions. A detailed analysis of the strongest L-type channel blocker of the series (PPK-12) revealed that block was poorly reversible and mediated an apparent speeding of the time course of inactivation. Moreover, in the presence of PPK-12, the midpoint of the steady state inactivation curve was shifted by 20 mV toward more hyperpolarized potentials, resulting in an increase in blocking efficacy at more depolarized holding potentials. Surprisingly, PPK-12 blocked T- and L-type calcium channels with similar affinities. One of the weakest L-type channel inhibitors (PPK-5) exhibited a T-type channel affinity that was similar to that seen with PPK-12, resulting in a 40-fold selectivity of PPK-5 for T- over L-type channels. Thus, dialkyl 1,4-dihydro-4-(2'alkoxy-6'-pentadecylphenyl)-2,6-dimethyl-3,5 pyridine dicarboxylates may serve as excellent candidates for the development of T-type calcium-channel specific blockers.
Collapse
Affiliation(s)
- P Phani Kumar
- Vittal Mallya Scientific Research Foundation, Bangalore, India
| | | | | | | | | | | |
Collapse
|
108
|
Zanner R, Hapfelmeier G, Gratzl M, Prinz C. Intracellular signal transduction during gastrin-induced histamine secretion in rat gastric ECL cells. Am J Physiol Cell Physiol 2002; 282:C374-82. [PMID: 11788349 DOI: 10.1152/ajpcell.00366.2001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of G(q) protein-coupled receptors usually causes a biphasic increase in intracellular calcium concentration ([Ca(2+)](i)) that is crucial for secretion in nonexcitable cells. In gastric enterochromaffin-like (ECL) cells, stimulation with gastrin leads to a prompt biphasic calcium response followed by histamine secretion. This study investigates the underlying signaling events in this neuroendocrine cell type. In ECL cells, RT-PCR suggested the presence of inositol 1,4,5-trisphosphate receptor (IP(3)R) subtypes 1-3. The IP(3)R antagonist 2-aminoethoxydiphenyl borate abolished both gastrin-induced elevation of [Ca(2+)](i) and histamine release. Thapsigargin increased [Ca(2+)](i), however, without inducing histamine secretion. In thapsigargin-pretreated cells, gastrin increased [Ca(2+)](i) through calcium influx across the plasma membrane. Both nimodipine and SKF-96365 inhibited gastrin-induced histamine release. The protein kinase C (PKC) activator phorbol 12-myristate 13-acetate induced histamine secretion, an effect that was prevented by nimodipine. In summary, gastrin-stimulated histamine release depends on IP(3)R activation and plasmalemmal calcium entry. Gastrin-induced calcium influx was mediated by dihydropyridine-sensitive calcium channels that appear to be L-type channels activated through a pathway involving activation of PKC.
Collapse
|
109
|
Beedle AM, Zamponi GW. Molecular determinants of opioid analgesia: Modulation of presynaptic calcium channels. Drug Dev Res 2002. [DOI: 10.1002/ddr.10026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
110
|
Abstract
PURPOSE We investigated the effect of the new antiepileptic drug (AED) levetiracetam (LEV) on different types of high-voltage-activated (HVA) Ca2+ channels in freshly isolated CA1 hippocampal neurons of rats. METHODS Patch-clamp recordings of HVA Ca2+ channel activity were obtained from isolated hippocampal CA1 neurons. LEV was applied by gravity flow from a pipette placed near the cell, and solution changes were made by electromicrovalves. Ca2+ channel blockers were used for separation of the channel subtypes. RESULTS The currents were measured in controls and after application of 1-200 microM LEV. LEV irreversibly inhibited the HVA calcium current by approximately 18% on the average. With a prepulse stimulation protocol, which can eliminate direct inhibition of Ca2+ channels by G proteins, we found that G proteins were not involved in the pathways underlying the LEV inhibitory effect. This suggested that the inhibitory effect arises from a direct action of LEV on the channel molecule. The blocking mechanism of LEV was not related to changes in steady-state activation or inactivation of Ca2+ channels. LEV also did not influence the rundown of the HVA Ca2+ current during experimental protocols lasting approximately 10 min. Finally, LEV at the highest concentration used (200 microM) did not influence the activity of L-, P- or Q-type Ca2+ channels in CA1 neurons, while selectively influencing the activity of N-type calcium channels. The maximal effect on these channels separated from other channel types was approximately 37%. CONCLUSIONS Our results provide evidence that LEV selectively inhibits N-type Ca2+ channels of CA1 pyramidal hippocampal neurons. These data suggest the existence of a subtype of N-type channels sensitive to LEV, which might be involved in the molecular basis of its antiepileptic action.
Collapse
|
111
|
Ayar A, Martin DJ, Ozcan M, Kelestimur H. Melatonin inhibits high voltage activated calcium currents in cultured rat dorsal root ganglion neurones. Neurosci Lett 2001; 313:73-7. [PMID: 11684343 DOI: 10.1016/s0304-3940(01)02188-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The actions of melatonin on high-voltage activated calcium channels (HVACC) and intracellular free Ca(2+) concentration in cultured dorsal root ganglion (DRG) neurones from neonatal rats were investigated using the whole-cell patch clamp and the fura-2 fluorescence ratio Ca(2+)-imaging techniques. HVACC were pharmacologically and biophysically isolated and the effects of melatonin were investigated. Extracellular application of melatonin inhibited HVACC in a dose dependent manner. In calcium imaging experiments, application of extracellular recording medium containing 30 mM KCl evoked increases in intracellular free Ca(2+) that were dependent upon external Ca(2+) ions. This increase was prevented by both low (10 microM) and high dose (100 microM) of melatonin pre-treatment. The results of this study indicate that the pineal hormone melatonin has inhibitory actions on voltage dependent calcium entry in cultured rat DRG neurones.
Collapse
Affiliation(s)
- A Ayar
- Firat University, Faculty of Medicine, Department of Pharmacology, TR-23200 Elazig, Turkey.
| | | | | | | |
Collapse
|
112
|
Fisher TE, Bourque CW. The function of Ca(2+) channel subtypes in exocytotic secretion: new perspectives from synaptic and non-synaptic release. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2001; 77:269-303. [PMID: 11796142 DOI: 10.1016/s0079-6107(01)00017-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
By mediating the Ca(2+) influx that triggers exocytotic fusion, Ca(2+) channels play a central role in a wide range of secretory processes. Ca(2+) channels consist of a complex of protein subunits, including an alpha(1) subunit that constitutes the voltage-dependent Ca(2+)-selective membrane pore, and a group of auxiliary subunits, including beta, gamma, and alpha(2)-delta subunits, which modulate channel properties such as inactivation and channel targeting. Subtypes of Ca(2+) channels are constituted by different combinations of alpha(1) subunits (of which 10 have been identified) and auxiliary subunits, particularly beta (of which 4 have been identified). Activity-secretion coupling is determined not only by the biophysical properties of the channels involved, but also by the relationship between channels and the exocytotic apparatus, which may differ between fast and slow types of secretion. Colocalization of Ca(2+) channels at sites of fast release may depend on biochemical interactions between channels and exocytotic proteins. The aim of this article is to review recent work on Ca(2+) channel structure and function in exocytotic secretion. We discuss Ca(2+) channel involvement in selected types of secretion, including central neurotransmission, endocrine and neuroendocrine secretion, and transmission at graded potential synapses. Several different Ca(2+) channel subtypes are involved in these types of secretion, and their function is likely to involve a variety of relationships with the exocytotic apparatus. Elucidating the relationship between Ca(2+) channel structure and function is central to our understanding of the fundamental process of exocytotic secretion.
Collapse
Affiliation(s)
- T E Fisher
- Department of Physiology, University of Saskatchewan, 107 Wiggins Road, Sask., S7N 5E5, Saskatoon, Canada.
| | | |
Collapse
|
113
|
Cano-Abad MF, Villarroya M, García AG, Gabilan NH, López MG. Calcium entry through L-type calcium channels causes mitochondrial disruption and chromaffin cell death. J Biol Chem 2001; 276:39695-704. [PMID: 11500491 DOI: 10.1074/jbc.m102334200] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sustained, mild K+ depolarization caused bovine chromaffin cell death through a Ca(2+)-dependent mechanism. During depolarization, Ca(2+) entered preferentially through L-channels to induce necrotic or apoptotic cell death, depending on the duration of the cytosolic Ca(2+) concentration ([Ca(2+)](c)) signal, as proven by the following. (i) The L-type Ca(2+) channel activators Bay K 8644 and FPL64176, more than doubled the cytotoxic effects of 30 mm K+; (ii) the L-type Ca(2+) channel blocker nimodipine suppressed the cytotoxic effects of K+ alone or K+ plus FPL64176; (iii) the potentiation by FPL64176 of the K+ -evoked [Ca(2+)](c) elevation was totally suppressed by nimodipine. Cell exposure to K+ plus the L-type calcium channel agonist FPL64176 caused an initial peak rise followed by a sustained elevation of the [Ca(2+)](c) that, in turn, increased [Ca(2+)](m) and caused mitochondrial membrane depolarization. Cyclosporin A, a blocker of the mitochondrial transition pore, and superoxide dismutase prevented the apoptotic cell death induced by Ca(2+) overload through L-channels. These results suggest that Ca(2+) entry through L-channels causes both calcium overload and mitochondrial disruption that will lead to the release of mediators responsible for the activation of the apoptotic cascade and cell death. This predominant role of L-type Ca(2+) channels is not shared by other subtypes of high threshold voltage-dependent neuronal Ca(2+) channels (i.e. N, P/Q) expressed by bovine chromaffin cells.
Collapse
Affiliation(s)
- M F Cano-Abad
- Instituto de Farmacologia Teófilo Hernando, Departamento de Farmacologia, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, Madrid 28029, Spain
| | | | | | | | | |
Collapse
|
114
|
López E, Oset-Gasque MJ, Figueroa S, Albarrán JJ, González MP. Calcium channel types involved in intrinsic amino acid neurotransmitters release evoked by depolarizing agents in cortical neurons. Neurochem Int 2001; 39:283-90. [PMID: 11551668 DOI: 10.1016/s0197-0186(01)00035-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although numerous biochemical and electrophysiological studies have already established many of the properties of the putative Ca2+ receptor for exocytosis at the synapse, the molecular mechanism that involves the influx of Ca2+ and the release of neurotransmitters has remained elusive. Several relationships have been established between neurotransmitter release and Ca2+ channel involved, but no work attempting to connect a particular neurotransmitter release, the effector which produces the release and the opening of a Ca2+ channel type has been performed. This work shows, data dealing with this subject. Based on our results, we have reached the following conclusions: (1) Ca2+ channel types P/Q, N and L mediate Ca2+ entry evoked by high KCl and veratridine, and P/Q and N but not L-type Ca2+ channels are involved when the effector is 4-aminopyridine (4-AP); (2) When we compare the relationship between the amino acid release and the Ca2+ channels which are opened by different depolarizing agents, we find that the release of a particular amino acid neurotransmitter not only depends on the opening of the voltage-dependent Ca2+ channel but also on the effector which produces the opening; and (3) the amount of amino acid release evoked by the different depolarizing agents is not correlated with the elevation of intracellular Ca2+ produced by them. From all of these results, we may conclude that calcium concentration in the active zone is not the only important factor in mediating amino acid release.
Collapse
Affiliation(s)
- E López
- Facultad de Farmacia, Instituto de Bioquímica, Centro mixto CSIC-UCM, 28040, Madrid, Spain
| | | | | | | | | |
Collapse
|
115
|
Carugo O, Lu S, Luo J, Gu X, Liang S, Strobl S, Pongor S. Structural analysis of free and enzyme-bound amaranth alpha-amylase inhibitor: classification within the knottin fold superfamily and analysis of its functional flexibility. PROTEIN ENGINEERING 2001; 14:639-46. [PMID: 11707609 DOI: 10.1093/protein/14.9.639] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The three-dimensional structure of the amaranth alpha-amylase inhibitor (AAI) adopts a knottin fold of abcabc topology. Upon binding to alpha-amylase, it adopts a more compact conformation characterized by an increased number of intramolecular hydrogen bonds, a decreased volume and in addition a trans to cis isomerization of Pro20. A systematic analysis of the 3-D structural databanks revealed that similar proteins and domains share with AAI the characteristic presence of proline residues, many of which are in a cis backbone conformation. As these proteins fulfil a variety of functional roles and are expressed in very different organisms, we conclude that the structure of the knottin fold, including the propensity of the cis bond, are the result of convergent evolution.
Collapse
Affiliation(s)
- O Carugo
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, Trieste Department of General Chemistry, University of Pavia, Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|
116
|
Chang W, Pratt SA, Chen TH, Tu CL, Mikala G, Schwartz A, Shoback D. Parathyroid cells express dihydropyridine-sensitive cation currents and L-type calcium channel subunits. Am J Physiol Endocrinol Metab 2001; 281:E180-9. [PMID: 11404236 DOI: 10.1152/ajpendo.2001.281.1.e180] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Parathyroid cells express Ca2+ -conducting currents that are activated by raising the extracellular Ca2+ concentration ([Ca2+]o). We investigated the sensitivity of these currents to dihydropyridines, the expression of voltage-dependent Ca(2+) channel (VDCC) subunits, and the effects of dihydropyridines on the intracellular free [Ca2+] ([Ca2+]i) and secretion in these cells. Dihydropyridine channel antagonists dose dependently suppressed Ca2+ -conducting currents, and agonists partially reversed the inhibitory effects of the antagonists in these cells. From a bovine parathyroid cDNA library, we isolated cDNA fragments encoding parts of an alpha(1S)- and a beta(3)-subunit of L-type Ca(2+) channels. The alpha(1S)-subunit cDNA from the parathyroid represents an alternatively spliced variant lacking exon 29 of the corresponding gene. Northern blot analysis and immunocytochemistry confirmed the presence of transcripts and proteins for alpha(1)- and beta(3)-subunits in the parathyroid gland. The addition of dihydropyridines had no significant effects on high [Ca2+]o-induced changes in [Ca2+]i and parathyroid hormone (PTH) release. Thus our studies indicate that parathyroid cells express alternatively spliced L-type Ca2+ channel subunits, which do not modulate acute intracellular Ca2+ responses or changes in PTH release.
Collapse
Affiliation(s)
- W Chang
- Endocrine Research Unit, Department of Medicine, Veterans Affairs Medical Center, University of California, San Francisco, California 04121, USA
| | | | | | | | | | | | | |
Collapse
|
117
|
Li W, Thaler C, Brehm P. Calcium channels in Xenopus spinal neurons differ in somas and presynaptic terminals. J Neurophysiol 2001; 86:269-79. [PMID: 11431508 DOI: 10.1152/jn.2001.86.1.269] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Calcium channels play dual roles in cell signaling by promoting membrane depolarization and allowing entry of calcium ions. Patch-clamp recordings of calcium and calcium-dependent currents from the soma of Xenopus spinal neurons indicate key functional differences from those of presynaptic terminals. Both terminals and somas exhibit prominent high-voltage-activated (HVA) calcium current, but only the soma expresses additional low-voltage-activated (LVA) T-type current. Further differences are reflected in the HVA current; N- and R-type channels are predominant in the soma while the terminal calcium current is composed principally of N type with smaller contribution by L- and R-type channels. Potential physiological significance for these different distributions of channel types may lie in the differential channel kinetics. Activation of somatic HVA calcium current occurs more slowly than HVA currents in terminals. Additionally, somatic LVA calcium current activates and deactivates much more slowly than any HVA calcium current. Fast-activating and -deactivating calcium current may be critical to processing the rapid exocytotic response in terminals, whereas slow LVA and HVA calcium currents may play a central role in shaping the somatic firing pattern. In support of different kinetic behavior between these two compartments, we find that somatic calcium current activates a prominent slow chloride current not observed in terminal recordings. This current activates in response to calcium entering through either LVA or HVA channels and likely functions as a modulator of excitability or synaptic input. The restriction of this channel type to the soma lends further support to the idea that differential expression of fast and slow channel types in these neurons is dictated by differences in signaling requirements for somatic and terminal compartments.
Collapse
Affiliation(s)
- W Li
- Department of Neurobiology and Behavior, State University of New York at Stony Brook, Stony Brook, New York 11794, USA.
| | | | | |
Collapse
|
118
|
C-Terminal alternative splicing changes the gating properties of a human spinal cord calcium channel alpha 1A subunit. J Neurosci 2001. [PMID: 11027215 DOI: 10.1523/jneurosci.20-20-07564.2000] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The calcium channel alpha(1A) subunit gene codes for proteins with diverse structure and function. This diversity may be important for fine tuning neurotransmitter release at central and peripheral synapses. The alpha(1A) C terminus, which serves a critical role in processing information from intracellular signaling molecules, is capable of undergoing extensive alternative splicing. The purpose of this study was to determine the extent to which C-terminal alternative splicing affects some of the fundamental biophysical properties of alpha(1A) subunits. Specifically, the biophysical properties of two alternatively spliced alpha(1A) subunits were compared. One variant was identical to an isoform identified previously in human brain, and the other was a novel isoform isolated from human spinal cord. The variants differed by two amino acids (NP) in the extracellular linker between transmembrane segments IVS3 and IVS4 and in two C-terminal regions encoded by exons 37 and 44. Expression in Xenopus oocytes demonstrated that the two variants were similar with respect to current-voltage relationships and the voltage dependence of steady-state activation and inactivation. However, the rates of activation, inactivation, deactivation, and recovery from inactivation were all significantly slower for the spinal cord variant. A chimeric strategy demonstrated that the inclusion of the sequence encoded by exon 44 specifically affects the rate of inactivation. These findings demonstrate that C-terminal structural changes alone can influence the way in which alpha(1A) subunits respond to a depolarizing stimulus and add to the developing picture of the C terminus as a critical domain in the regulation of Ca(2+) channel function.
Collapse
|
119
|
Luchian T. The influence exerted by the beta(3) subunit on MVIIA omega-conotoxin binding to neuronal N-type calcium channels. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1512:329-34. [PMID: 11406110 DOI: 10.1016/s0005-2736(01)00336-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the present study, two-electrode voltage-clamp techniques have been used to assess the interaction between the MVIIA omega-conotoxin and an isoform of the N-type Ca(2+) channel alpha subunit (alpha(1B-d)). Cloned alpha(1B-d) Ca(2+) channels were expressed in Xenopus laevis oocytes in the presence and absence of the beta(3) subunit. Coexpression of the beta(3) subunit significantly shifted the IC(50) value for MVIIA inhibition of central N-type Ca(2+) channel current. Analysis of the peak conductance vs. depolarising voltage dependence suggested that the beta(3) subunit has no apparent effect on the gating charge which accompanies the closed-open transition of the channels. Instead, coexpression of the beta(3) subunit led to an approx. 10 mV shift to more hyperpolarised potentials in the voltage-dependent activation of N-type Ca(2+) channels. We conclude that MVIIA alters the surface charge on the N-type Ca(2+) channels and might induce allosteric changes on the structure of the channel, leading to an increase in the dissociation constant of MVIIA binding.
Collapse
Affiliation(s)
- T Luchian
- Faculty of Physics, Department of Biophysics and Medical Physics, 'Alexandru I. Cuza' University, Blvd. Carol I No. 11, R-6600, Iasi, Romania.
| |
Collapse
|
120
|
Abstract
Not later than two synapses after their arrival in the cerebellar cortex all excitatory afferent signals are subsequently transformed into inhibitory ones. Guaranteed by the exceedingly ordered and stereotyped synaptic arrangement of its cellular elements, the cerebellar cortex transmits this inhibitory result of cerebellar integration exclusively via Purkinje cells (PCs) in a precise temporal succession directly onto the target neurons of the deep cerebellar and vestibular nuclei. Thus the cerebellar cortex seems to produce a temporal pattern of inhibitory influence on these target neurons that modifies their excitatory action in such a way that an activation of muscle fibers occurs which progressively integrates the intended motion into the actual condition of the motoric inventory. In consequence, disturbances that affect this cerebellar inhibition will cause uncoordinated, decomposed and ataxic movements, commonly referred to as cerebellar ataxia. Electrophysiological investigations using different cerebellar mouse mutants have shown that alterations in the cerebellar inhibitory input in the target nuclei lead to diverse neuronal responses and to different consequences for the behavioural phenotype. A dependence between the reconstitution of inhibition and the behavioural outcome seems to exist. Obviously two different basic mechanisms are responsible for these observations: (1) ineffective inhibition on target neurons by surviving PCs; and (2) enhancement of intranuclear inhibition in the deep cerebellar and vestibular nuclei. Which of the two strategies evolves is dependent upon the composition of the residual cell types in the cerebellum and on the degree of PC input loss in a given area of the target nuclei. Motor behaviour seems to deteriorate under the first of these mechanisms whereas it may benefit from the second. This is substantiated by stereotaxic removal of the remaining PC input, which eliminates the influence of the first mechanism and is able to induce the second strategy. As a consequence, motor performance improves considerably. In this review, results leading to the above conclusions are presented and links forged to human cerebellar diseases.
Collapse
Affiliation(s)
- U Grüsser-Cornehls
- Freie Universität Berlin, Fachbereich Humanmedizin, Universitätsklinikum Benjamin Franklin, Department of Physiology, 14195, Berlin, Germany.
| | | |
Collapse
|
121
|
Martin-Caraballo M, Greer JJ. Voltage-sensitive calcium currents and their role in regulating phrenic motoneuron electrical excitability during the perinatal period. JOURNAL OF NEUROBIOLOGY 2001; 46:231-48. [PMID: 11180152 DOI: 10.1002/1097-4695(200103)46:4<231::aid-neu1005>3.0.co;2-u] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study examined the ontogeny of voltage-sensitive calcium conductances in rat phrenic motoneurons (PMNs) and their role in regulating electrical excitability during the perinatal period. Specifically, we studied the period spanning from embryonic day (E)16 through postnatal day (P)1, when PMNs undergo fundamental transformation in their morphology, passive properties, ionic channel composition, synaptic inputs, and electrical excitability. Low voltage-activated (LVA) and high voltage-activated (HVA) conductances were measured using whole cell patch recordings utilizing a cervical slice-phrenic nerve preparation from perinatal rats. Changes between E16 and P0-1 included the following: an approximately 2-fold increase in the density of total calcium conductances, an approximately 2-fold decrease in the density of LVA calcium conductances, and an approximately 3-fold increase in the density of HVA conductances. The elevated expression of T-type calcium channels during the embryonic period lengthened the action potential and enhanced electrical excitability as evidenced by a hyperpolarization-evoked rebound depolarization. The reduction of LVA current density coupled to the presence of a hyperpolarizing outward A-type potassium current had a critical effect in diminishing the rebound depolarization in neonatal PMNs. The increase in HVA current density was concomitant with the emergence of a calcium-dependent "hump-like" afterdepolarization (ADP) and burst-like firing. Neonatal PMNs develop a prominent medium-duration afterhyperpolarization (mAHP) as the result of coupling between N-type calcium channels and small conductance, calcium-activated potassium channels. These data demonstrate that changes in calcium channel expression contribute to the maturation of PMN electrophysiological properties during the time from the commencement of fetal inspiratory drive to the onset of continuous breathing at birth.
Collapse
Affiliation(s)
- M Martin-Caraballo
- Department of Physiology, Division of Neuroscience, 513 HMRC, University of Alberta, Edmonton Alberta, Canada T6G 2S2
| | | |
Collapse
|
122
|
Abstract
Sixty years after its initial discovery, the octapeptide hormone angiotensin II (AngII) has proved to play numerous physiological roles that reach far beyond its initial description as a hypertensive factor. In spite of the host of target tissues that have been identified, only two major receptor subtypes, AT1 and AT2, are currently fully identified. The specificity of the effects of AngII relies upon numerous and complex intracellular signaling pathways that often mobilize calcium ions from intracellular stores or from the extracellular medium. Various types of calcium channels (store- or voltage-operated channels) endowed with distinct functional properties play a crucial role in these processes. The activity of these channels can be modulated by AngII in a positive and/or negative fashion, depending on the cell type under observation. This chapter reviews the main characteristics of AngII receptor subtypes and of the various calcium channels as well as the involvement of the multiple signal transduction mechanisms triggered by the hormone in the cell-specific modulation of the activity of these channels.
Collapse
Affiliation(s)
- M F Rossier
- Department of Internal Medicine, University Hospital, Geneva, Switzerland
| | | |
Collapse
|
123
|
Iwashima Y, Abiko A, Ushikubi F, Hata A, Kaku K, Sano H, Eto M. Downregulation of the voltage-dependent calcium channel (VDCC) beta-subunit mRNAs in pancreatic islets of type 2 diabetic rats. Biochem Biophys Res Commun 2001; 280:923-32. [PMID: 11162613 DOI: 10.1006/bbrc.2000.4122] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was undertaken to determine whether altered expression of the VDCC beta-subunits in pancreatic beta-cells could play a role in the changes in beta-cell sensitivity to glucose that occur with diabetes. Application of competitive RT-PCR procedure revealed that in normal Wistar rats, LETO and prediabetic OLETF rats, the beta(2)-subunit mRNA levels were 60-200-fold greater than the levels for the beta(3)-subunit. These findings suggest that the beta(2)-subunit as well as the beta-cell type VDCC1 alpha(1)-subunit may be the predominant form of the VDCC expressed in pancreatic beta-cells. The levels of mRNA encoding the beta-subunits and the beta-cell type alpha(1)-subunit as well as insulin were significantly reduced in diabetic rats. Perfusion experiments revealed that diabetic rats showed the higher basal insulin secretion and profoundly impaired insulin secretory responses to glucose compared with non-diabetic rats. Alternatively, impaired insulin secretory responses to glucose in high dose glucose-infused rats were recovered partly with the elevation of mRNA levels of the VDCC beta(2)- and beta(3)-subunits as well as the alpha(1)-subunit by the treatment with diazoxide. Thus, considering the possibility that the most striking effect of the VDCC alpha(1) beta-subunit coexpression in pancreatic beta-cells might occur on activation kinetics like the skeletal muscle, the impairment of further activation of the VDCCs to acute glucose challenge caused by the reduced expressions of the alpha(1) beta-subunits mRNAs in type 2 diabetic animals might be at least partly associated with the alterations in beta-cell sensitivity to glucose.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Actins/genetics
- Animals
- Base Sequence
- Calcium Channel Agonists/pharmacology
- Calcium Channels/chemistry
- Calcium Channels/genetics
- DNA Primers/genetics
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Down-Regulation
- Glucose/pharmacology
- In Vitro Techniques
- Insulin/genetics
- Insulin/metabolism
- Insulin Secretion
- Islets of Langerhans/drug effects
- Islets of Langerhans/metabolism
- Male
- Perfusion
- Protein Subunits
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred OLETF
- Rats, Wistar
Collapse
Affiliation(s)
- Y Iwashima
- Department of Internal Medicine, Sano Hospital, Suehiro 3-3-1-15, Asahikawa 078-8133, Japan.
| | | | | | | | | | | | | |
Collapse
|
124
|
Staes M, Talavera K, Klugbauer N, Prenen J, Lacinova L, Droogmans G, Hofmann F, Nilius B. The amino side of the C-terminus determines fast inactivation of the T-type calcium channel alpha1G. J Physiol 2001; 530:35-45. [PMID: 11136856 PMCID: PMC2278392 DOI: 10.1111/j.1469-7793.2001.0035m.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
We analysed the kinetic properties of the fast inactivating T-type calcium channel alpha1G in HEK 293 cells transfected with different alpha1G chimeras, containing the N-terminus, III-IV linker or various C-terminal regions of the slowly inactivating L-type alpha1C. A highly negatively charged region of 23 amino acids at the amino side of the intracellular carboxy terminus of alpha1G was found to be critical for fast inactivation. The N-terminus of alpha1G does not seem to be necessary for inactivation of the T-type calcium channel because replacement of the a1G N-terminus with the alpha1C N-terminus did not influence channel kinetics at all. Replacing the III-IV linker of alpha1G with that of a1C decreased the rate of inactivation at -20 mV from 15.8 +/- 1.8 to 8.5 +/- 1.1 ms, and shifted the potential for half-maximal inactivation from -69.6 +/- 0.8 to -54.0 +/- 1.7 mV. However, these parameters were not significantly different at other potentials. We suggest a putative 'ball-and-chain'-like mechanism for inactivation in which the negative charges function as an acceptor domain for a ball, hypothetically located at a different intracellular part of the channel. In addition, transferring the IQ motif and EF hand of alpha1C to alpha1G does not confer Ca2+-dependent inactivation on alpha1G, suggesting that other sequences besides the C-terminus are needed for Ca2+-dependent inactivation of alpha1C.
Collapse
Affiliation(s)
- M Staes
- Laboratorium voor Fysiologie, Campus Gasthuisberg, KU Leuven, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Ichida S, Abe J, Zhang YA, Sugihara K, Imoto K, Wada T, Fujita N, Sohma H. Characteristics of the inhibitory effect of calmodulin on specific [125i]omega-conotoxin GVIA binding to crude membranes from chick brain. Neurochem Res 2000; 25:1629-35. [PMID: 11152392 DOI: 10.1023/a:1026674721542] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The characteristics of the inhibitory effect of calcium ion (Ca2+)/calmodulin (CaM) on specific [125I]-omega-conotoxin GVIA (125I-omega-CTX) binding and on the labeling of 125I-omega-CTX to crude membranes from chick brain were investigated. The inhibitory effect of Ca2+/CaM depended on the concentrations of free Ca2+ and CaM. The IC50 values for free Ca2+ and CaM were about 2.0 x 10(-8) M and 3.0 microg protein/ml, respectively. The inhibitory effect of Ca2+/CaM was attenuated by the CaM antagonists W-7, prenylamine and CaM-kinase II fragment (290-309), but not by the calcineurin inhibitor FK506. Ca2+/CaM also inhibited the labeling of a 135-kDa band (which was considered to be part of N-type Ca2+ channel alpha1 subunits) with 125I-omega-CTX using a cross-linker. These results suggest that Ca2+/CaM affects specific 125I-omega-CTX binding sites, probably N-type Ca2+ channel alpha1 subunits, in crude membranes from chick whole brain.
Collapse
Affiliation(s)
- S Ichida
- Department of Biological Chemistry, Faculty of Pharmaceutical Sciences, Kinki University, Higashi-Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Büschges A, Wikström MA, Grillner S, El Manira A. Roles of high-voltage-activated calcium channel subtypes in a vertebrate spinal locomotor network. J Neurophysiol 2000; 84:2758-66. [PMID: 11110806 DOI: 10.1152/jn.2000.84.6.2758] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lamprey spinal cord neurons possess N-, L-, and P/Q-type high-voltage-activated (HVA) calcium channels. We have analyzed the role of the different HVA calcium channels subtypes in the overall functioning of the spinal locomotor network by monitoring the influence of their specific agonists and antagonists on synaptic transmission and on N-methyl-D-aspartate (NMDA)-elicited fictive locomotion. The N-type calcium channel blocker omega-conotoxin GVIA (omega-CgTx) depressed synaptic transmission from excitatory and inhibitory interneurons. Blocking L-type and P/Q-type calcium channels with nimodipine and omega-agatoxin, respectively, did not affect synaptic transmission. Application of omega-CgTx initially decreased the frequency of the locomotor rhythm, increased the burst duration, and subsequently increased the coefficient of variation and disrupted the motor pattern. These effects were accompanied by a depression of the synaptic drive between neurons in the locomotor network. Blockade of L-type channels by nimodipine also decreased the frequency and increased the duration of the locomotor bursts. Conversely, potentiation of L-type channels increased the frequency of the locomotor activity and decreased the duration of the ventral root bursts. In contrast to blockade of N-type channels, blockade or potentiation of L-type calcium channels had no effect on the stability of the locomotor pattern. The P/Q-type calcium channel blocker omega-agatoxin IVA had little effect on the locomotor frequency or burst duration. The results indicate that rhythm generation in the spinal locomotor network of the lamprey relies on calcium influx through L-type and N-type calcium channels.
Collapse
Affiliation(s)
- A Büschges
- Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, S-17177 Stockholm, Sweden
| | | | | | | |
Collapse
|
127
|
Satin LS. Localized calcium influx in pancreatic beta-cells: its significance for Ca2+-dependent insulin secretion from the islets of Langerhans. Endocrine 2000; 13:251-62. [PMID: 11216635 DOI: 10.1385/endo:13:3:251] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2000] [Accepted: 06/08/2000] [Indexed: 12/18/2022]
Abstract
Ca2+ influx through voltage-dependent Ca2+ channels plays a crucial role in stimulus-secretion coupling in pancreatic islet beta-cells. Molecular and physiologic studies have identified multiple Ca2+ channel subtypes in rodent islets and insulin-secreting cell lines. The differential targeting of Ca2+ channel subtypes to the vicinity of the insulin secretory apparatus is likely to account for their selective coupling to glucose-dependent insulin secretion. In this article, I review these studies. In addition, I discuss temporal and spatial aspects of Ca2+ signaling in beta-cells, the former involving the oscillatory activation of Ca2+ channels during glucose-induced electrical bursting, and the latter involving [Ca2+]i elevation in restricted microscopic "domains," as well as direct interactions between Ca2+ channels and secretory SNARE proteins. Finally, I review the evidence supporting a possible role for Ca2+ release from the endoplasmic reticulum in glucose-dependent insulin secretion, and evidence to support the existence of novel Ca2+ entry pathways. I also show that the beta-cell has an elaborate and complex set of [Ca2+]i signaling mechanisms that are capable of generating diverse and extremely precise [Ca2+]i patterns. These signals, in turn, are exquisitely coupled in space and time to the beta-cell secretory machinery to produce the precise minute-to-minute control of insulin secretion necessary for body energy homeostasis.
Collapse
Affiliation(s)
- L S Satin
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond 23298-0524, USA.
| |
Collapse
|
128
|
Reduced voltage sensitivity of activation of P/Q-type Ca2+ channels is associated with the ataxic mouse mutation rolling Nagoya (tg(rol)). J Neurosci 2000. [PMID: 10908603 DOI: 10.1523/jneurosci.20-15-05654.2000] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent genetic analyses have revealed an important association of the gene encoding the P/Q-type voltage-dependent Ca(2+) channel alpha(1A) subunit with hereditary neurological disorders. We have identified the ataxic mouse mutation, rolling Nagoya (tg(rol)), in the alpha(1A) gene that leads to a charge-neutralizing arginine-to-glycine substitution at position 1262 in the voltage sensor-forming segment S4 in repeat III. Ca(2+) channel currents in acutely dissociated Purkinje cells, where P-type is the dominant type, showed a marked decrease in slope and a depolarizing shift by 8 mV of the conductance-voltage curve and reduction in current density in tg(rol) mouse cerebella, compared with those in wild-type. Compatible functional change was induced by the tg(rol) mutation in the recombinant alpha(1A) channel, indicating that a defect in voltage sensor of P/Q-type Ca(2+) channels is the direct consequence of the tg(rol) mutation. Furthermore, somatic whole-cell recording of mutant Purkinje cells displayed only abortive Na(+) burst activity and hardly exhibited Ca(2+) spike activity in cerebellar slices. Thus, in tg(rol) mice, reduced voltage sensitivity, which may derive from a gating charge defect, and diminished activity of the P-type alpha(1A) Ca(2+) channel significantly impair integrative properties of Purkinje neurons, presumably resulting in locomotor deficits.
Collapse
|
129
|
Meir A, Bell DC, Stephens GJ, Page KM, Dolphin AC. Calcium channel beta subunit promotes voltage-dependent modulation of alpha 1 B by G beta gamma. Biophys J 2000; 79:731-46. [PMID: 10920007 PMCID: PMC1300973 DOI: 10.1016/s0006-3495(00)76331-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Voltage-dependent calcium channels (VDCCs) are heteromultimers composed of a pore-forming alpha1 subunit and auxiliary subunits, including the intracellular beta subunit, which has a strong influence on the channel properties. Voltage-dependent inhibitory modulation of neuronal VDCCs occurs primarily by activation of G-proteins and elevation of the free G beta gamma dimer concentration. Here we have examined the interaction between the regulation of N-type (alpha 1 B) channels by their beta subunits and by G beta gamma dimers, heterologously expressed in COS-7 cells. In contrast to previous studies suggesting antagonism of G protein inhibition by the VDCC beta subunit, we found a significantly larger G beta gamma-dependent inhibition of alpha 1 B channel activation when the VDCC alpha 1 B and beta subunits were coexpressed. In the absence of coexpressed VDCC beta subunit, the G beta gamma dimers, either expressed tonically or elevated via receptor activation, did not produce the expected features of voltage-dependent G protein modulation of N-type channels, including slowed activation and prepulse facilitation, while VDCC beta subunit coexpression restored all of the hallmarks of G beta gamma modulation. These results suggest that the VDCC beta subunit must be present for G beta gamma to induce voltage-dependent modulation of N-type calcium channels.
Collapse
Affiliation(s)
- A Meir
- Department of Pharmacology, University College London, London WC1E 6BT, United Kingdom.
| | | | | | | | | |
Collapse
|
130
|
Yan L, Adams ME. The spider toxin omega-Aga IIIA defines a high affinity site on neuronal high voltage-activated calcium channels. J Biol Chem 2000; 275:21309-16. [PMID: 10787403 DOI: 10.1074/jbc.m000212200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The spider toxin omega-agatoxin IIIA (omega-Aga-IIIA) is a potent inhibitor of high voltage-activated calcium currents in the mammalian brain. To establish the biochemical parameters governing its action, we radiolabeled the toxin and examined its binding to native and recombinant calcium channels. In experiments with purified rat synaptosomal membranes, both kinetic and equilibrium data demonstrate one-to-one binding of omega-Aga-IIIA to a single population of high affinity sites, with K(d) = approximately 9 pm and B(max) = approximately 1.4 pmol/mg protein. Partial inhibition of omega-Aga-IIIA binding by omega-conotoxins GVIA, MVIIA, and MVIIC identifies N and P/Q channels as components of this population. omega-Aga-IIIA binds to recombinant alpha(1B) and alpha(1E) calcium channels with a similar high affinity (K(d) = approximately 5-9 pm) in apparent one-to-one fashion. Results from recombinant alpha(1B) binding experiments demonstrate virtually identical B(max) values for omega-Aga-IIIA and omega-conotoxin MVIIA, providing further evidence for a one-to-one stoichiometry of agatoxin binding to calcium channels. The combined evidence suggests that omega-Aga-IIIA defines a unique, high affinity binding site on N-, P/Q-, and R-type calcium channels.
Collapse
Affiliation(s)
- L Yan
- Environmental Toxicology Graduate Program and Departments of Entomology and Neuroscience, University of California, Riverside, California 92521, USA
| | | |
Collapse
|
131
|
Magistretti J, Brevi S, de Curtis M. A blocker-resistant, fast-decaying, intermediate-threshold calcium current in palaeocortical pyramidal neurons. Eur J Neurosci 2000; 12:2376-86. [PMID: 10947816 DOI: 10.1046/j.1460-9568.2000.00125.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The whole-cell patch-clamp technique was used to record Ca2+ currents in acutely dissociated neurons from layer II of guinea-pig piriform cortex (PC). Ba2+ (5 mM) was used as charge carrier. In a subpopulation of layer II cells ( approximately 22%) total Ba2+ currents (IBas) displayed a high degree (> 70%) of inactivation after 300 ms of steady depolarization. The application of L-, N- and P/Q-type Ca2+-channel blockers to these high-decay IBas left their fast inactivating component largely unaffected. The inactivation phase of the blocker-resistant, fast-decaying IBa thus isolated had a bi-exponential time course, with a fast time constant of approximately 20 ms and a slower time constant of approximately 100 ms at voltage levels positive to -10 mV. The voltage dependence of activation of the blocker-resistant, fast-decaying IBa was shifted by approximately 7-9 mV in the negative direction in comparison with those of other pharmacologically and/or kinetically different high-voltage-activated Ca2+ currents. We named this blocker-resistant, fast-decaying, intermediate-threshold current IRfi. The amplitude of IRfi decreased only slightly (by approximately 9%) when extracellular Ca2+ was substituted for Ba2+, in contrast with that of slowly decaying, high-voltage-activated currents, which was reduced by approximately 41% on average. Moreover, IRfi was substantially inhibited by low concentrations of Ni2+ (50 microM). We conclude that IRfi, because of its fast inactivation kinetics, intermediate threshold of activation and resistance to organic blockers, represents a definite, identifiable Ca2+ current different from classical high-voltage-activated currents and clearly distinguishable from classical IT. The striking similarity found between IRfi and Ca2+ currents resulting from heterologous expression of alpha1E-type channel subunits is discussed.
Collapse
Affiliation(s)
- J Magistretti
- Laboratorio di Biofisica e Neurofisiologia dei Sistemi Corticali, Dipartimento di Neurofisiologia Sperimentale, Istituto Nazionale Neurologico 'Carlo Besta', Milano, Italy
| | | | | |
Collapse
|
132
|
Missiaen L, Robberecht W, van den Bosch L, Callewaert G, Parys JB, Wuytack F, Raeymaekers L, Nilius B, Eggermont J, De Smedt H. Abnormal intracellular ca(2+)homeostasis and disease. Cell Calcium 2000; 28:1-21. [PMID: 10942700 DOI: 10.1054/ceca.2000.0131] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A whole range of cell functions are regulated by the free cytosolic Ca(2+)concentration. Activator Ca(2+)from the extracellular space enters the cell through various types of Ca(2+)channels and sometimes the Na(+)/Ca(2+)-exchanger, and is actively extruded from the cell by Ca(2+)pumps and Na(+)/Ca(2+)-exchangers. Activator Ca(2+)can also be released from internal Ca(2+)stores through inositol trisphosphate or ryanodine receptors and is taken up into these organelles by means of Ca(2+)pumps. The resulting Ca(2+)signal is highly organized in space, frequency and amplitude because the localization and the integrated free cytosolic Ca(2+)concentration over time contain specific information. Mutations or functional abnormalities in the various Ca(2+)transporters, which in vitro seem to induce trivial functional alterations, therefore, often lead to a plethora of diseases. Skeletal-muscle pathology can be caused by mutations in ryanodine receptors (malignant hyperthermia, porcine stress syndrome, central-core disease), dihydropyridine receptors (familial hypokalemic periodic paralysis, malignant hyperthermia, muscular dysgenesis) or Ca(2+)pumps (Brody disease). Ca(2+)-pump mutations in cutaneous epidermal keratinocytes and cochlear hair cells lead to, skin diseases (Darier and Hailey-Hailey) and hearing/vestibular problems respectively. Mutated Ca(2+)channels in the photoreceptor plasma membrane cause vision problems. Hemiplegic migraine, spinocerebellar ataxia type-6, one form of episodic ataxia and some forms of epilepsy can be due to mutations in plasma-membrane Ca(2+)channels, while antibodies against these channels play a pathogenic role in all patients with the Lambert-Eaton myasthenic syndrome and may be of significance in sporadic amyotrophic lateral sclerosis. Brain inositol trisphosphate receptors have been hypothesized to contribute to the pathology in opisthotonos mice, manic-depressive illness and perhaps Alzheimer's disease. Various abnormalities in Ca(2+)-handling proteins have been described in heart during aging, hypertrophy, heart failure and during treatment with immunosuppressive drugs and in diabetes mellitus. In some instances, disease-causing mutations or abnormalities provide us with new insights into the cell biology of the various Ca(2+)transporters.
Collapse
Affiliation(s)
- L Missiaen
- Laboratory of Physiology, K.U.Leuven Campus Gasthuisberg O/N, Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Abstract
We have recently identified farnesol, an intermediate in the mevalonate pathway, as a potent endogenous modulator and blocker of N-type calcium channels (Roullet, J. B., R. L. Spaetgens, T. Burlingame, and G. W. Zamponi. 1999. J. Biol. Chem. 274:25439-25446). Here, we investigate the action of structurally related compounds on various types of voltage-dependent Ca(2+) channels transiently expressed in human embryonic kidney cells. 1-Dodecanol, despite sharing the 12-carbon backbone and headgroup of farnesol, exhibited a significantly lower blocking affinity for N-type Ca(2+) channels. Among several additional 12-carbon compounds tested, dodecylamine (DDA) mediated the highest affinity inhibition of N-type channels, indicating that the functional headgroup is a critical determinant of blocking affinity. This inhibition was concentration-dependent and relatively non-discriminatory among N-, L-, P/Q-, and R-Ca(2+) channel subtypes. However, whereas L-type channels exhibited predominantly resting channel block, the non-L-type isoforms showed substantial rapid open channel block manifested by a speeding of the apparent time course of current decay and block of the inactivated state. Consistent with these findings, we observed significant frequency-dependence of block and dependence on external Ba(2+) concentration for N-type, but not L-type, channels. We also systematically investigated the drug structural requirements for N-type channel inhibition. Blocking affinity varied with carbon chain length and showed a clear maximum at C12 and C13, with shorter and longer molecules producing progressively weaker peak current block. Overall, our data indicate that aliphatic monoamines may constitute a novel class of potent inhibitors of voltage-dependent Ca(2+) channels, with block being governed by rigid structural requirements and channel-specific state dependencies.
Collapse
Affiliation(s)
- A M Beedle
- Department of Pharmacology and Therapeutics, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | |
Collapse
|
134
|
Hill K, Hemmler R, Kovermann P, Calenberg M, Kreimer G, Wagner R. A Ca(2+)- and voltage-modulated flagellar ion channel is a component of the mechanoshock response in the unicellular green alga Spermatozopsis similis. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1466:187-204. [PMID: 10825442 DOI: 10.1016/s0005-2736(00)00200-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In flagellate green algae, behavioral responses to photo- and mechanoshock are induced by different external stimuli within 10-15 ms. In the accompanying changes in flagella beat, Ca(2+) has important regulatory roles. Although the axonemal Ca(2+) responsive elements are well characterized, analyses of flagellar channels involved in Ca(2+) signalling as well as other ion channels at the single-channel level were not yet conducted in green algae. To gain a further understanding of these important signaling elements in movement responses, intact flagella of Spermatozopsis similis were isolated and characterized and the solubilized flagellar membrane proteins were reconstituted into liposomes. We observed three types of channel activity, two of which were weakly anion and cation-selective and in the high-conductance regime typical for porin-like solute channels. The dominating channel activity was a voltage dependent, rectifying, low conductance (Lambda=80 pS in 50 mM KCl) cation-selective channel modulated by, and highly permeable to, Ca(2+) ions (SFC1: Spermatozopsis flagellar cation channel 1). Depolarizations necessary to activate SFC1 probably only occur in vivo during avoidance reactions of this alga. Ca(2+)-activation of SFC1 points to a direct link to Ca(2+)-mediated signaling pathway(s) in the flagella. Both the response to mechanoshock and SFC1 activity were inhibited by Gd(3+) and Ba(2+), thus supporting our assumption that SFC1 represents a major flagellar ion channel involved in this green algal avoidance reaction.
Collapse
Affiliation(s)
- K Hill
- Universität Osnabrück, Fachbereich Biologie/Chemie, Germany
| | | | | | | | | | | |
Collapse
|
135
|
Abstract
Movement, the fundamental component of behavior and the principal extrinsic action of the brain, is produced when skeletal muscles contract and relax in response to patterns of action potentials generated by motoneurons. The processes that determine the firing behavior of motoneurons are therefore important in understanding the transformation of neural activity to motor behavior. Here, we review recent studies on the control of motoneuronal excitability, focusing on synaptic and cellular properties. We first present a background description of motoneurons: their development, anatomical organization, and membrane properties, both passive and active. We then describe the general anatomical organization of synaptic input to motoneurons, followed by a description of the major transmitter systems that affect motoneuronal excitability, including ligands, receptor distribution, pre- and postsynaptic actions, signal transduction, and functional role. Glutamate is the main excitatory, and GABA and glycine are the main inhibitory transmitters acting through ionotropic receptors. These amino acids signal the principal motor commands from peripheral, spinal, and supraspinal structures. Amines, such as serotonin and norepinephrine, and neuropeptides, as well as the glutamate and GABA acting at metabotropic receptors, modulate motoneuronal excitability through pre- and postsynaptic actions. Acting principally via second messenger systems, their actions converge on common effectors, e.g., leak K(+) current, cationic inward current, hyperpolarization-activated inward current, Ca(2+) channels, or presynaptic release processes. Together, these numerous inputs mediate and modify incoming motor commands, ultimately generating the coordinated firing patterns that underlie muscle contractions during motor behavior.
Collapse
Affiliation(s)
- J C Rekling
- Department of Neurobiology, University of California, Los Angeles, California 90095-1763, USA
| | | | | | | | | |
Collapse
|
136
|
Sato K, Raymond C, Martin-Moutot N, Sasaki T, Ohtake A, Minami K, Van Renterghem C, Kim JI, Takahashi M, Seagar MJ. Binding of Ala-scanning analogs of omega-conotoxin MVIIC to N- and P/Q-type calcium channels. FEBS Lett 2000; 469:147-50. [PMID: 10713260 DOI: 10.1016/s0014-5793(00)01263-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
omega-Conotoxin MVIIC binds to P/Q-type calcium channels with high affinity and N-type channels with low affinity. To reveal the residues essential for subtype selectivity, we synthesized Ala-scanning analogs of MVIIC. Binding assays using rat cerebellar P(2) membranes suggested that Thr(11), Tyr(13) and Lys(2) are essential for binding to both N- and P/Q-type channels, whereas Lys(4) and Arg(22) are important for binding to P/Q-type channels. These results suggest that MVIIC interacts with P/Q-type channels via a large surface, in good agreement with previous observations using chimeric analogs.
Collapse
Affiliation(s)
- K Sato
- Mitsubishi Kasei Institute of Life Sciences, 11 Minamiooya, Machida, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Sato K, Raymond C, Martin-Moutot N, Sasaki T, Ohtake A, Minami K, Van Renterghem C, Takahashi M, Seagar MJ. Binding of six chimeric analogs of omega-conotoxin MVIIA and MVIIC to N- and P/Q-type calcium channels. Biochem Biophys Res Commun 2000; 269:254-6. [PMID: 10694509 DOI: 10.1006/bbrc.2000.2284] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Replacement of the N-terminal half of omega-conotoxin MVIIC, a peptide blocker of P/Q-type calcium channels, with that of omega-conotoxin MVIIA significantly increased the affinity for N-type calcium channels. To identify the residues essential for subtype selectivity, we examined single reverse mutations from MVIIA-type to MVIIC-type in this chimeric analog. A reverse mutation from Lys(7) to Pro(7) decreased the affinity for both P/Q- and N-type channels, whereas that from Leu(11) to Thr(11) increased the affinity for P/Q-type channels and decreased the affinity for N-type channels. The roles of these two residues were confirmed by synthesizing two MVIIC analogs in which Pro(7) and Thr(11) were replaced with Lys(7) and Leu(11), respectively.
Collapse
Affiliation(s)
- K Sato
- Mitsubishi Kasei Institute of Life Sciences, 11 Minamiooya, Machida, Tokyo, 194-8511, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Ichida S, Abe J, Yu-an Z, Sugihara K, Imoto K, Wada T, Sohma H. Calcium/calmodulin inhibits the binding of specific [125I]omega-conotoxin GVIA to chick brain membranes. Neurochem Res 2000; 25:335-40. [PMID: 10761976 DOI: 10.1023/a:1007532818918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effect of Ca2+/calmodulin (CaM) on the specific binding of [125I]omega-conotoxin GVIA (125I-omega-CTX) to crude membranes from chick brain was investigated. When we examined the effects of the activation of various endogenous protein kinases on specific [125I]omega-CTX binding to crude membranes, we observed that Ca2+/CaM had an inhibitory effect regardless of whether or not the standard medium contained ATP (0.5 mM). Ca2+/CaM also had an inhibitory effect in a simple binding-assay medium containing HEPES-HCl buffer, BSA, Ca2+ and CaM, and this effect was dependent on the concentration of Ca2+. The effect of Ca2+/CaM was attenuated by the CaM antagonists W-7 and CaM-kinase II fragment (290-309). An experiment with modified ELISA using purified anti omega-CTX antibody indicated that Ca2+/CaM did not affect the direct binding of [125I]omega-CTX and CaM. These results suggest that Ca2+/CaM either directly or indirectly affects specific [125I]omega-CTX binding sites, probably N-type Ca2+ channels in crude membranes from chick whole brain.
Collapse
Affiliation(s)
- S Ichida
- Department of Biological Chemistry, Faculty of Pharmaceutical Sciences, Kinki University, Higashi-Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|
139
|
Levine TB, Bernink PJ, Caspi A, Elkayam U, Geltman EM, Greenberg B, McKenna WJ, Ghali JK, Giles TD, Marmor A, Reisin LH, Ammon S, Lindberg E. Effect of mibefradil, a T-type calcium channel blocker, on morbidity and mortality in moderate to severe congestive heart failure: the MACH-1 study. Mortality Assessment in Congestive Heart Failure Trial. Circulation 2000; 101:758-64. [PMID: 10683349 DOI: 10.1161/01.cir.101.7.758] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Calcium antagonists have proved disappointing in long-term congestive heart failure (CHF) studies. Mibefradil, a new calcium antagonist that selectively blocks T-type calcium channels, has been shown to be an effective antihypertensive, antianginal, and anti-ischemic agent, and because of its different mechanism of action, it may be beneficial as adjunct therapy in CHF patients. METHODS AND RESULTS This multicenter, randomized, double-blind study compared mibefradil with placebo as adjunct to usual therapy in 2590 CHF patients (NYHA class II to IV; left ventricular fraction <35%). The initial 50-mg daily dose of mibefradil was uptitrated to 100 mg after 1 month and continued up to 3 years. Patients were monitored at 1 week; 1, 2, and 3 months; and every 3 months thereafter. All-cause mortality, cardiovascular mortality, and cardiovascular morbidity/mortality were analyzed by use of the log-rank test (alpha=0.05). Substudies included exercise tolerance, plasma hormone and cytokines, echocardiography, and quality of life. Total mortality was similar between mibefradil- and placebo-treated patients (P=0.151). The 14% increased risk of mortality with mibefradil in the first 3 months was not statistically significant (P=0.093). Treatment groups had similar cardiovascular mortality (P=0.246), cardiovascular morbidity/mortality (P=0.783), and reasons for death or hospitalization. Patients comedicated with mibefradil and antiarrhythmics (class I or III), including amiodarone, had a significantly increased risk of death. Substudies demonstrated no significant differences between treatments. CONCLUSIONS When used as adjunct therapy, mibefradil did not affect the usual outcome of CHF. The potential interaction with antiarrhythmic drugs, especially amiodarone, and drugs associated with torsade de pointes may have contributed to poor outcomes early in the study.
Collapse
Affiliation(s)
- T B Levine
- Michigan Institute for Heart Failure and Transplant Care, Botsford General Hospital, Farmington Hills 48336, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Zeng N, Athmann C, Kang T, Walsh JH, Sachs G. Role of neuropeptide-sensitive L-type Ca(2+) channels in histamine release in gastric enterochromaffin-like cells. Am J Physiol Gastrointest Liver Physiol 2000; 277:G1268-80. [PMID: 10600825 DOI: 10.1152/ajpgi.1999.277.6.g1268] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Peptides release histamine from enterochromaffin-like (ECL) cells because of elevation of intracellular Ca(2+) concentration ([Ca(2+)](i)) by either receptor-operated or voltage-dependent Ca(2+) channels (VDCC). To determine whether VDCCs contribute to histamine release stimulated by gastrin or pituitary adenylate cyclase-activating polypeptide (PACAP), the presence of VDCCs and their possible modulation by peptides was investigated in a 48-h cultured rat gastric cell population containing 85% ECL cells. Video imaging of fura 2-loaded cells was used to measure [Ca(2+)](i), and histamine was assayed by RIA. Cells were depolarized by increasing extracellular K(+) concentrations or by 20 mM tetraethylammonium (TEA(+)). Cell depolarization increased transient and steady-state [Ca(2+)](i) and resulted in histamine release, dependent on extracellular Ca(2+). These K(+)- or TEA(+)-dependent effects on histamine release from ECL cells were coupled to activation of parietal cells in intact rabbit gastric glands, and L-type channel blockade by 2 microM nifedipine inhibited 50% of [Ca(2+)](i) elevation and histamine release. N-type channel blockade by 1 microM omega-conotoxin GVIA inhibited 25% of [Ca(2+)](i) elevation and 14% of histamine release. Inhibition was additive. The effects of 20 mM TEA(+) were fully inhibited by 2 microM nifedipine. Both classes of Ca(2+) channels were found in ECL cells, but not in parietal cells, by RT-PCR. Nifedipine reduced PACAP-induced (but not gastrin-stimulated) Ca(2+) entry and histamine release by 40%. Somatostatin, peptide YY (PYY), and galanin dose dependently inhibited L-type Ca(2+) channels via a pertussis toxin-sensitive pathway. L-type VDCCs play a role in PACAP but not gastrin stimulation of histamine release from ECL cells, and the channel opening is inhibited by somatostatin, PYY, and galanin by interaction with a G(i) or G(o) protein.
Collapse
Affiliation(s)
- N Zeng
- Wadsworth Veterans Affairs Hospital, Los Angeles, California 90073, USA
| | | | | | | | | |
Collapse
|
141
|
Takahashi E, Miyamoto N, Oki T, Kajiwara N, Furuya K, Yanai Taniguchi K, Yagami K, Niidome T, Tanaka I, Katayama K. Neuron-specific expression of reporter gene in transgenic mice carrying the 5'-upstream region of mouse P/Q-type Ca2+ channel alpha 1A subunit gene fused to E. coli lacZ reporter gene. Brain Res 1999; 850:47-54. [PMID: 10629747 DOI: 10.1016/s0006-8993(99)02077-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To dissect the molecular mechanisms underlying the neuron-specific expression of the P/Q type calcium channel alpha 1A subunit gene, transgenic mice carrying a 0.5-kb, 1.5-kb, 3.0-kb or 6.3-kb 5'-upstream region of the gene fused to Escherichia coli lacZ reporter gene were produced. In transgenic mice carrying the 1.5-kb, 3.0-kb or 6.3-kb 5'-upstream region, the reporter gene was exclusively expressed in the nervous system, although those with the 0.5-kb 5'-upstream region failed to show reporter expression. Histological examinations showed that the three 5'-upstream regions induced distinct expression patterns of the reporter gene in the CNS and adrenal medulla. The 1.5-kb 5'-upstream region drove reporter gene expression in the olfactory bulb, dorsal cortex and hippocampus, while the regulatory element for the expression in the amygdaloid nucleus, septum, habenula medial nucleus, choroid plexus, substantia nigra, inferior colliculus, pontine nucleus and cerebellum was located in the 5'-upstream sequence between 1.5 kb and 6.3 kb. In the cerebellum, the expression of the reporter gene was induced by the 3.0-kb region in granule cells, whereas it was induced by the 6.3-kb region in Purkinje cells. The expression of the reporter gene in chromaffin cells in the adrenal medulla was induced only by the 6.3-kb 5'-upstream region. These results suggest that the expression of the mouse P/Q-type Ca2+ channel alpha 1A subunit gene is regulated in a complex fashion by both positive and negative cis-regulatory elements.
Collapse
Affiliation(s)
- E Takahashi
- Tsukuba Research Laboratories, Eisai, Ibaraki, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Thinschmidt JS, Webb B, Martin DE, Feldman DH, King MA, Walker DW. The development and pharmacological characterization of calcium channel currents in cultured embryonic rat septal cells. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 118:13-21. [PMID: 10611499 DOI: 10.1016/s0165-3806(99)00117-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We characterized the development and pharmacology of Ca(2+) channel currents in NGF-treated embryonic day 21 cultured rat septal cells. Using standard whole-cell voltage clamp techniques, cells were held at -80 mV and depolarized to construct current-voltage relations in conditions that eliminated Na(+) or K(+) currents. Barium (10 mM) was used as the charge carrier. Maximum current was produced when cells were depolarized to 0 or +10 mV. Recordings from 77 cells revealed that Ca(2+) channel current density increases over time in culture from nearly 0 pA/pF on day 2 in vitro (0.65+/-0.65 pA/pF) to (6.95+/-1.59 pA/pF) on days 6-8. This was followed by a period where currents became nearly 3 times more dense (21.05+/-7.16 pA/pF) at days 9-17. There was little or no evidence for low voltage activated currents. Bath application of 50-100 microM CdCl(2) abolished approximately 95% of the current. Application of 10 microM nimodipine produced a 50.5+/-3.22% reduction in current, 2 microM omega-CTx-GVIA produced a 32.4+/-7.3% reduction, and application of 4 microM omega-Aga-IVA produced a 29.5+/-5.73% reduction in current. When all three inhibitors (10 microM nimodipine, 2 microM omega-CTx-GVIA, and 4 microM omega-Aga-IVA) were applied simultaneously, a residual current remained that was 18.0+/-4.9% of the total current and was completely abolished by application of CdCl(2). This is the first report to characterize Ca(2+) channel currents in cultured embryonic septal cells. These data indicate that there is a steady increase in Ca(2+) channel expression over time in vitro, and show that like other cultured neuronal cells, septal cells express multiple Ca(2+) channel types including L, N, P/Q and R-type channels.
Collapse
Affiliation(s)
- J S Thinschmidt
- Department of Neuroscience, Brain Institute, University of Florida, Box 100244, Gainesville, FL 32611, USA
| | | | | | | | | | | |
Collapse
|
143
|
Zhang SY, Robertson D, Yates G, Everett A. Role of L-type Ca(2+) channels in transmitter release from mammalian inner hair cells I. Gross sound-evoked potentials. J Neurophysiol 1999; 82:3307-15. [PMID: 10601462 DOI: 10.1152/jn.1999.82.6.3307] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intracochlear perfusion and gross potential recording of sound-evoked neural and hair cell responses were used to study the site of action of the L-type Ca(2+) channel blocker nimodipine in the guinea pig inner ear. In agreement with previous work nimodipine (1-10 microM) caused changes in both the compound auditory nerve action potential (CAP) and the DC component of the hair cell receptor potential (summating potential, or SP) in normal cochleae. For 20-kHz stimulation, the effect of nimodipine on the CAP threshold was markedly greater than the effect on the threshold of the negative SP. This latter result was consistent with a dominant action of nimodipine at the final output stage of cochlear transduction: either the release of transmitter from inner hair cells (IHCs) or the postsynaptic spike generation process. In animals in which the outer hair cells (OHCs) had been destroyed by prior administration of kanamycin, nimodipine still caused a large change in the 20-kHz CAP threshold, but even less change was observed in the negative SP threshold than in normal cochleae. When any neural contamination of the SP recording in kanamycin-treated animals was removed by prior intracochlear perfusion with TTX, nimodipine caused no significant change in SP threshold. Some features of the data also suggest a separate involvement of nimodipine-sensitive channels in OHC function. Perfusion of the cochlea with solutions containing Ni(2+) (100 microM) caused no measurable change in either CAP or SP. These results are consistent with, but do not prove, the notion that L-type channels are directly involved in controlling transmitter release from the IHCs and that T-type Ca(2+) channels are not involved at any stage of cochlear transduction.
Collapse
Affiliation(s)
- S Y Zhang
- Department of Physiology, The Auditory Laboratory, The University of Western Australia, Nedlands, Western Australia 6907, Australia
| | | | | | | |
Collapse
|
144
|
Abstract
Multiple types of voltage-dependent Ca(2+) channels are involved in the regulation of neurotransmitter release (Tsien et al., 1991; Dunlap et al., 1995). In the nerve terminals of the neurohypophysis, the roles of L-, N-, and P/Q-type Ca(2+) channels in neuropeptide release have been identified previously (Wang et al., 1997a). Although the L- and N-type Ca(2+) currents play equivalent roles in both vasopressin and oxytocin release, the P/Q-type Ca(2+) current only regulates vasopressin release. An oxytocin-release and Ca(2+) current component is resistant to the L-, N-, and P/Q-type Ca(2+) channel blockers but is inhibited by Ni(2+). A new polypeptide toxin, SNX-482, which is a specific alpha(1E)-type Ca(2+) channel blocker (Newcomb et al., 1998), was used to characterize the biophysical properties of this resistant Ca(2+) current component and its role in neuropeptide release. This resistant component was dose dependently inhibited by SNX-482, with an IC(50) of 4.1 nM. Furthermore, SNX-482 did not affect the other Ca(2+) current types in these CNS terminals. Like the N- and P/Q-type Ca(2+) currents, this SNX-482-sensitive transient Ca(2+) current is high-threshold activated and shows moderate steady-state inactivation. At the same concentrations, SNX-482 blocked the component of oxytocin, but not of vasopressin, release that was resistant to the other channel blockers, indicating a preferential role for this type of Ca(2+) current in oxytocin release from neurohypophysial terminals. Our results suggest that an alpha(1E) or "R"-type Ca(2+) channel exists in oxytocinergic nerve terminals and, thus, functions in controlling only oxytocin release from the rat neurohypophysis.
Collapse
|
145
|
Yiu SH, Knaus EE. Synthesis of valproate, valerate, and 1-methyl-1, 4-dihydropyridyl-3-carbonyloxy ester derivatives of Hantzsch 1,4-dihydropyridines as potential prodrugs and their evaluation as calcium channel antagonist and anticonvulsant agents. Drug Dev Res 1999. [DOI: 10.1002/(sici)1098-2299(199909)48:1<26::aid-ddr4>3.0.co;2-m] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
146
|
Gustafsson H, Afrah A, Brodin E, Stiller CO. Pharmacological characterization of morphine-induced in vivo release of cholecystokinin in rat dorsal horn: effects of ion channel blockers. J Neurochem 1999; 73:1145-54. [PMID: 10461906 DOI: 10.1046/j.1471-4159.1999.0731145.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous studies indicate that an increased release of cholecystokinin (CCK) in response to morphine administration may counteract opioid-induced analgesia at the spinal level. In the present study we used in vivo microdialysis to demonstrate that systemic administration of antinociceptive doses of morphine (1-5 mg/kg, s.c.) induces a dose-dependent and naloxone-reversible release of CCK-like immunoreactivity (CCK-LI) in the dorsal horn of the spinal cord. A similar response could also be observed following perfusion of the dialysis probe for 60 min with 100 microM but not with 1 microM morphine. The CCK-LI release induced by morphine (5 mg/kg, s.c.) was found to be calcium-dependent and tetrodotoxin-sensitive (1 microM in the perfusion medium). Topical application of either the L-type calcium channel blocker verapamil (50 microg) or the N-type calcium channel blocker omega-conotoxin GVIA (0.4 microg) onto the dorsal spinal cord completely prevented the CCK-LI release induced by morphine (5 mg/kg, s.c.). Our data indicate that activation of L- and N-type calcium channels is of importance for morphine-induced CCK release, even though the precise site of action of morphine in the dorsal horn remains unclear. The present findings also suggest a mechanism for the potentiation of opioid analgesia by L- and N-type calcium channel blocking agents.
Collapse
Affiliation(s)
- H Gustafsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
147
|
Yu-an Z, Imanishi T, Wada T, Ichida S. Proportions of Ca2+ channel subtypes in chick or rat P2 fraction and NG108-15 cells using various Ca2+ blockers. Neurochem Res 1999; 24:1059-66. [PMID: 10478946 DOI: 10.1023/a:1021065028647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The proportions of calcium (Ca2+) channel subtypes in chick or rat P2 fraction and NG 108-15 cells were investigated using selective L-, N-, P- and P/Q- type Ca2+ channel blockers. KCl-stimulated 45Ca2+ uptake by chick P2 fraction was blocked by 40-50% using N-type Ca2+ channel blockers [omega-conotoxin GVIA, aminoglycoside antibiotics and dynorphin A(1-13)], but was not inhibited by P- or P/Q-type blockers (omega-agatoxin IVA or omega-conotoxin MVIIC). On the other hand, KCl-stimulated 45Ca2+ uptake by rat P2 fraction was blocked by 30 approximately 40% using P- or P/Q-type Ca2+ channel blockers, but was not inhibited by N-type Ca2+ channel blockers. The L-type Ca2+ channel blockers 1,4-dihydropyridines, diltiazem and verapamil, but not calciseptine (CaS), inhibited both KCl-stimulated 45Ca2+ uptake and veratridine-induced 22Na+ uptake by chick or rat P2 fraction with similar IC50 values. CaS did not have any effect on 45Ca2+ uptake by either chick or rat P2 fraction. In NG108-15 cells, CaS, omega-agatoxin IVA and omega-conotoxin MVIIC, but not omega-conotoxin GVIA, inhibited KCl-stimulated 45Ca2+ uptake by 30-40%. Various combinations of these Ca2+ channel blockers had no significant additional effects in chick or rat P2 fraction or NG 108-15 cells. These findings suggest that KCl-stimulated 45Ca2+ uptake by chick or rat P2 fraction and NG 108-15 cells is a convenient and useful model for screening whether or not natural or synthetic substances have selective effects as L-, N-, P-, or P/Q- type Ca2+ channel antagonists or agonists.
Collapse
Affiliation(s)
- Z Yu-an
- Department of Biological Chemistry, Faculty of Pharmacy, Kinki University, Higashi-Osaka, Japan
| | | | | | | |
Collapse
|
148
|
Noguera MA, Chuliá S, Ivorra MD, D'Ocon MP. Effect of divalent cations on KCl- and noradrenaline-induced contractile responses in rat aorta after nifedipine treatment. GENERAL PHARMACOLOGY 1999; 33:43-50. [PMID: 10428015 DOI: 10.1016/s0306-3623(98)00260-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Nifedipine (1 microM) relaxed the sustained contractile responses induced by 1 microM noradrenaline or 60 mM KCl in rat aortic strips. After washing, a second addition of the spasmogens gave smaller tonic contractions than the first one. Even more, a third addition of KCl also gave a smaller contraction than the first one, but a complete recovery of the contractile response to noradrenaline was obtained by a third addition of this agonist. Application of cumulative amounts of Ca2+ or Ba2+ (2.4-24 mM) on the residual contraction in response to these agents after nifedipine treatment, but in the absence of the blocker, restored the magnitude of the contractile responses. Addition of cumulative amounts of Mg2+ (2.4-24 mM) did not modify or even relax the contractile responses to KCl and noradrenaline, respectively.
Collapse
Affiliation(s)
- M A Noguera
- Department de Farmacologia, Facultat de Farmàcia, Universitat de València, Burjassot, Spain
| | | | | | | |
Collapse
|
149
|
Takahashi E, Murata Y, Oki T, Miyamoto N, Mori Y, Takada N, Wanifuchi H, Wanifuchi N, Yagami K, Niidome T, Tanaka I, Katayama K. Isolation and functional characterization of the 5'-upstream region of mouse P/Q-type Ca2+ channel alpha1A subunit gene. Biochem Biophys Res Commun 1999; 260:54-9. [PMID: 10381343 DOI: 10.1006/bbrc.1999.0857] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The omega-agatoxin-IVA-sensitive P/Q-type Ca2+ channel is predominantly expressed in the nervous system. To dissect the molecular mechanisms underlying the neuron-specific expression of the P/Q-type channel, we have isolated and characterized the 5'-upstream region of the mouse alpha1A subunit gene. A transcription start site appeared to exist at -269 bp upstream from the start codon as found by 5' RACE analysis. The proximal promoter of the alpha1A subunit gene lacks a typical TATA box, but contains several transcription factor binding sequences, including two Sp1 sites. When linked to a placental alkaline phosphatase (PLAP) reporter gene to examine the promoter activity, the 6.3-kb (-6,273 to +269) 5'-upstream region, but not a smaller 3.0-kb construct (-3, 021 to +269), was able to drive the reporter gene in neuron-like PC12 cells. In contrast, neither of these constructs enhanced the PLAP expression in fibroblast NIH3T3 cells. The sequence between 6.3 and 3.0 kb of the 5'-upstream region did not show promoter activity in either of the cell lines, but enhanced TK promoter activity in PC12 cells, though not in NIH3T3 cells. These results suggest that neuron-specific elements of the alpha1A subunit gene are likely to be located in the distal upstream regions (-6,273 to -3,021) of the 5'-upstream sequence.
Collapse
Affiliation(s)
- E Takahashi
- Tsukuba Research Laboratories, Eisai Co. Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki, 300-2635, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Kirchgessner AL, Liu MT. Differential localization of Ca2+ channel alpha1 subunits in the enteric nervous system: presence of alpha1B channel-like immunoreactivity in intrinsic primary afferent neurons. J Comp Neurol 1999; 409:85-104. [PMID: 10363713 DOI: 10.1002/(sici)1096-9861(19990621)409:1<85::aid-cne7>3.0.co;2-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Immunocytochemistry was employed to locate calcium (Ca2+) channel proteins in the enteric nervous system (ENS) of the rat and guinea pig. Anti-peptide antibodies that specifically recognize the alpha1 subunits of class A (P/Q-type), B (N-type), C and D (L-type) Ca2+ channels were utilized. Alpha1B channel-like immunoreactivity was abundant in both enteric plexuses, the mucosa, and circular and longitudinal muscle layers. Immunoreactivity was predominantly found in cholinergic varicosities, supporting a role for Ca2+ channels, which contain the alpha1B subunit, in acetylcholine release. Immunoreactivity was also associated with the cell soma of calbindin-immunoreactive submucosal and myenteric neurons, cells that have been proposed to be intrinsic primary afferent neurons. Alpha1C channel-like immunoreactivity was distributed diffusely in the cell membrane of a large subset of neuronal cell bodies and processes, whereas alpha1D was found mainly in the cell soma and proximal dendrites ofvasoactive intestinal polypeptide-immunoreactive neurons in the guinea pig gut. Alpha1A channel-like immunoreactivity was found in a small subset of cell bodies and processes in the rat ENS. The differential localization of the alpha1 subunits of Ca2+ channels in the ENS implies that they serve distinct roles in neuronal excitation and signaling within the bowel. The presence of alpha1B channel-like immunoreactivity in putative intrinsic primary afferent neurons suggested that class B Ca2+ channels play a role in enteric sensory neurotransmission; therefore, we determined the effects of the N-type Ca2+ channel blocker, omega-conotoxin GVIA (omega-CTx GVIA), on the reflex-evoked activity of enteric neurons. Demonstrating the phosphorylation of cyclic AMP (cAMP)-responsive element-binding protein (pCREB) identified neurons that became active in response to distension. Distension elicited hexamethonium-resistant pCREB immunoreactivity in calbindin-immunoreactive neurons in each plexus; however, in preparations stimulated in the presence of omega-CTx GVIA, pCREB immunoreactivity was found only in calbindin-immunoreactive neurons in the submucosal plexus and not in myenteric ganglia. These data confirm that intrinsic primary afferent neurons are located in the submucosal plexus and that N-type Ca2+ channels play a role in sensory neurotransmission.
Collapse
Affiliation(s)
- A L Kirchgessner
- Department of Anatomy and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA.
| | | |
Collapse
|