101
|
Wang W, Zheng LL, Wang F, Hu ZL, Wu WN, Gu J, Chen JG. Tanshinone IIA attenuates neuronal damage and the impairment of long-term potentiation induced by hydrogen peroxide. JOURNAL OF ETHNOPHARMACOLOGY 2011; 134:147-155. [PMID: 21134432 DOI: 10.1016/j.jep.2010.11.069] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 10/25/2010] [Accepted: 11/28/2010] [Indexed: 05/30/2023]
Abstract
AIM OF THE STUDY Tanshinone IIA (Tan IIA) is one of the key components of Salvia miltiorrhiza Bunge that has been widely used for various cardiovascular and cerebrovascular disorders in Asian countries. Many studies have reported that Tan IIA has antioxidative properties, but whether Tan IIA can rescue neurons from oxidative insult has never been reported. The present study was undertaken to evaluate the possible neuroprotective effects of Tan IIA on hydrogen peroxide (H(2)O(2))-induced oxidative stress in rats. MATERIALS AND METHODS H(2)O(2)-induced cytotoxicity was evaluated by the cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay and flow cytometry with PI staining. Calcium imaging experiments were carried out to measure intracellular free calcium concentration. Western blotting was used to determine the expression of Bax and Bcl-2 protein. Electrophysiological studies in hippocampal slices were performed to investigate the effect of Tan IIA on synaptic function and cognitive impairment caused by H(2)O(2). RESULTS It was found that pretreatment with Tan IIA protected primary rat cortical neurons against H(2)O(2)-induced cytotoxicity. Furthermore, Tan IIA markedly reduced the elevation of [Ca(2+)](i) evoked by H(2)O(2). Western blot analysis indicated that pretreatment with Tan IIA prevented the increase in Bax/Bcl-2 ratio induced by H(2)O(2). In addition, preincubation of Tan IIA 20 min prior to H(2)O(2) exposure could reverse H(2)O(2)-induced hippocampal LTP impairment, but without significant alteration in basal synaptic transmission and LTP induction. CONCLUSIONS These findings demonstrate that Tan IIA might serve as a novel promising therapeutic agent for oxidative stress injury in neurodegenerative diseases.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | | | | | | | | | |
Collapse
|
102
|
Rashid M, Arumugam TV, Karamyan VT. Association of the novel non-AT1, non-AT2 angiotensin binding site with neuronal cell death. J Pharmacol Exp Ther 2010; 335:754-61. [PMID: 20861168 DOI: 10.1124/jpet.110.171439] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have discovered a non-AT(1), non-AT(2) angiotensin binding site in rodent and human brain membranes, which, based on its pharmacological/biochemical properties and tissue distribution, is different from angiotensin receptors and key proteases processing angiotensins. In this study, the novel angiotensin binding site was localized to a specific brain cell type by using radioligand receptor binding assays. Our results indicate that the novel binding site is expressed in mouse primary cortical neuronal membranes but not in primary cortical astroglial and bEnd.3 brain capillary endothelial cell membranes. Whole-cell binding assays in neurons showed that the binding site faces the outer side of the plasma membrane. Consistent with our previous observations, the novel binding site was unmasked by the sulfhydryl reagent p-chloromercuribenzoate. This effect had a bell-shaped curve and was reversed by reduced glutathione, indicating that the function of the binding site might be regulated by the redox state of the environment. Density of the novel binding site measured by saturation binding assays was significantly increased in neuronal membranes of cells challenged in four in vitro models of cell death (oxygen-glucose deprivation, sodium azide-induced hypoxia, N-methyl-D-aspartate neurotoxicity, and hydrogen peroxide neurotoxicity). In addition, our in vivo data from developing mouse brains showed that the density of the novel angiotensin binding site changes similarly to the pattern of neuronal death in maturating brain. This is the first time that evidence is provided on the association of the novel angiotensin binding site with neuronal death, and future studies directed toward understanding of the functions of this protein are warranted.
Collapse
Affiliation(s)
- Mamoon Rashid
- Department of Pharmaceutical Sciences and Vascular Drug Research Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, USA
| | | | | |
Collapse
|
103
|
|
104
|
Keene AM, Balasubramanian R, Lloyd J, Shainberg A, Jacobson KA. Multivalent dendrimeric and monomeric adenosine agonists attenuate cell death in HL-1 mouse cardiomyocytes expressing the A(3) receptor. Biochem Pharmacol 2010; 80:188-96. [PMID: 20346920 PMCID: PMC2880883 DOI: 10.1016/j.bcp.2010.03.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 03/15/2010] [Accepted: 03/16/2010] [Indexed: 11/15/2022]
Abstract
Multivalent dendrimeric conjugates of GPCR ligands may have increased potency or selectivity in comparison to monomeric ligands, a phenomenon that was tested in a model of cytoprotection in mouse HL-1 cardiomyocytes. Quantitative RT-PCR indicated high expression levels of endogenous A(1) and A(2A) adenosine receptors (ARs), but not of A(2B) and A(3)ARs. Activation of the heterologously expressed human A(3)AR in HL-1 cells by AR agonists significantly attenuated cell damage following 4h exposure to H(2)O(2) (750 microM) but not in untransfected cells. The A(3) agonist IB-MECA (EC(50) 3.8 microM) and the non-selective agonist NECA (EC(50) 3.9 microM) protected A(3) AR-transfected cells against H(2)O(2) in a concentration-dependent manner, as determined by lactate dehydrogenase release. A generation 5.5 PAMAM (polyamidoamine) dendrimeric conjugate of a N(6)-chain-functionalized adenosine agonist was synthesized and its mass indicated an average of 60 amide-linked nucleoside moieties out of 256 theoretical attachment sites. It non-selectively activated the A(3)AR to inhibit forskolin-stimulated cAMP formation (IC(50) 66nM) and, similarly, protected A(3)-transfected HL-1 cells from apoptosis-inducing H(2)O(2) with greater potency (IC(50) 35nM) than monomeric nucleosides. Thus, a PAMAM conjugate retained AR binding affinity and displayed greatly enhanced cardioprotective potency.
Collapse
Affiliation(s)
- Athena M. Keene
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| | - Ramachandran Balasubramanian
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| | - John Lloyd
- Mass Spectrometry Facility, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| | - Asher Shainberg
- Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| |
Collapse
|
105
|
Suzuki S, Yokoyama U, Abe T, Kiyonari H, Yamashita N, Kato Y, Kurotani R, Sato M, Okumura S, Ishikawa Y. Differential roles of Epac in regulating cell death in neuronal and myocardial cells. J Biol Chem 2010; 285:24248-59. [PMID: 20516079 DOI: 10.1074/jbc.m109.094581] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cell survival and death play critical roles in tissues composed of post-mitotic cells. Cyclic AMP (cAMP) has been known to exert a distinct effect on cell susceptibility to apoptosis, protecting neuronal cells and deteriorating myocardial cells. These effects are primarily studied using protein kinase A activation. In this study we show the differential roles of Epac, an exchange protein activated by cAMP and a new effector molecule of cAMP signaling, in regulating apoptosis in these cell types. Both stimulation of Epac by 8-p-methoxyphenylthon-2'-O-methyl-cAMP and overexpression of Epac significantly increased DNA fragmentation and TUNEL (terminal deoxynucleotidyltransferase-mediated biotin nick end-labeling)-positive cell counts in mouse cortical neurons but not in cardiac myocytes. In contrast, stimulation of protein kinase A increased apoptosis in cardiac myocytes but not in neuronal cells. In cortical neurons the expression of the Bcl-2 interacting member protein (Bim) was increased by stimulation of Epac at the transcriptional level and was decreased in mice with genetic disruption of Epac1. Epac-induced neuronal apoptosis was attenuated by the silencing of Bim. Furthermore, Epac1 disruption in vivo abolished the 3-nitropropionic acid-induced neuronal apoptosis that occurs in wild-type mice. These results suggest that Epac induces neuron-specific apoptosis through increasing Bim expression. Because the disruption of Epac exerted a protective effect on neuronal apoptosis in vivo, the inhibition of Epac may be a consideration in designing a therapeutic strategy for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sayaka Suzuki
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Biotransformed blueberry juice protects neurons from hydrogen peroxide-induced oxidative stress and mitogen-activated protein kinase pathway alterations. Br J Nutr 2010; 104:656-63. [PMID: 20459875 DOI: 10.1017/s0007114510001170] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A growing body of evidence supports the therapeutic effects of blueberry in neurodegenerative disorders. Biotransformation of blueberry juice by Serratia vaccinii bacteria increases its phenolic content and antioxidant activity. In neuronal cell culture, biotransformed blueberry juice (BJ) significantly increased the activity of antioxidant enzymes, namely catalase and superoxide dismutase. Moreover, BJ protected neurons against H2O2-induced cell death in a dose-dependent manner. This associated with the upregulation of mitogen-activated protein kinase (MAPK) family enzymes p38 and c-Jun N-terminal kinase (JNK) activation, as well as with the protection of extracellular signal-regulated kinase (ERK1/2) and MAPK/ERK kinase (MEK1/2) activity loss induced by H2O2. The present studies demonstrate that BJ can protect neurons against oxidative stress possibly by increasing antioxidant enzyme activities and activating p38- and JNK-dependent survival pathways while blocking MEK1/2- and ERK1/2-mediated cell death. Thus, BJ may represent a novel approach to prevent and to treat neurodegenerative disorders, and it may represent a source of novel therapeutic agents against these diseases.
Collapse
|
107
|
Chen Z, Che J, Hou Y, Cheng Y, Lin PT. The Extract of Inflamed Rabbit Skin Induced by Inoculation of Vaccinia Virus Possesses Antioxidant and Neuroprotective Effects in Acute Ischemic Stroke. J Stroke Cerebrovasc Dis 2009; 18:475-81. [DOI: 10.1016/j.jstrokecerebrovasdis.2009.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 06/08/2009] [Accepted: 06/16/2009] [Indexed: 11/29/2022] Open
|
108
|
Del Vecchio G, Giuliani A, Fernandez M, Mesirca P, Bersani F, Pinto R, Ardoino L, Lovisolo GA, Giardino L, Calzà L. Effect of radiofrequency electromagnetic field exposure on in vitro models of neurodegenerative disease. Bioelectromagnetics 2009; 30:564-72. [DOI: 10.1002/bem.20507] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
109
|
Kim SH, Lee MK, Lee KY, Sung SH, Kim J, Kim YC. Chemical constituents isolated fromPaeonia lactifloraroots and their neuroprotective activity against oxidative stress in vitro. J Enzyme Inhib Med Chem 2009; 24:1138-40. [DOI: 10.1080/14756360802667977] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
110
|
Byun YJ, Kim SK, Kim YM, Chae GT, Jeong SW, Lee SB. Hydrogen peroxide induces autophagic cell death in C6 glioma cells via BNIP3-mediated suppression of the mTOR pathway. Neurosci Lett 2009; 461:131-5. [PMID: 19539716 DOI: 10.1016/j.neulet.2009.06.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 05/21/2009] [Accepted: 06/10/2009] [Indexed: 01/06/2023]
Abstract
Oxidative stress by exposure to H(2)O(2) induces various types of cell death depending on cell type and conditions. We report herein on a study of the mechanisms underlying H(2)O(2)-induced cell death in C6 glioma cells. The findings show that H(2)O(2) triggers a caspase-independent autophagic cell death in these cells. The findings also show that H(2)O(2) induces the dephosphorylation of the mammalian target of rapamycin (mTOR) at Ser 2481 and the p70 ribosomal protein S6 kinase (p70S6K) at Thr389 in a Bcl-2/E1B 19kDa interacting protein 3 (BNIP3)-dependent manner. BNIP3 has the capacity to inhibit mTOR activity and mTOR inhibition plays a role in autophagic induction. This suggests that BNIP3 may mediate H(2)O(2)-induced autophagic cell death through the suppression of mTOR. The findings show that the down-regulation of BNIP3 by BNIP3 siRNA prevents C6 cells from undergoing H(2)O(2)-induced autophagic cell death. Collectively, these results suggest that H(2)O(2) induces autophagic cell death in C6 cells via the BNIP3-mediated suppression of the mTOR pathway.
Collapse
Affiliation(s)
- Yu Jeong Byun
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
111
|
Thurn KT, Paunesku T, Wu A, Brown EM, Lai B, Vogt S, Maser J, Aslam M, Dravid V, Bergan R, Woloschak G. Labeling TiO2 nanoparticles with dyes for optical fluorescence microscopy and determination of TiO2-DNA nanoconjugate stability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2009; 5:1318-1325. [PMID: 19242946 PMCID: PMC2787618 DOI: 10.1002/smll.200801458] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Visualization of nanoparticles without intrinsic optical fluorescence properties is a significant problem when performing intracellular studies. Such is the case with titanium dioxide (TiO2) nanoparticles. These nanoparticles, when electronically linked to single-stranded DNA oligonucleotides, have been proposed to be used both as gene knockout devices and as possible tumor imaging agents. By interacting with complementary target sequences in living cells, these photoinducible TiO2-DNA nanoconjugates have the potential to cleave intracellular genomic DNA in a sequence specific and inducible manner. The nanoconjugates also become detectable by magnetic resonance imaging with the addition of gadolinium Gd(III) contrast agents. Herein two approaches for labeling TiO2 nanoparticles and TiO2-DNA nanoconjugates with optically fluorescent agents are described. This permits direct quantification of fluorescently labeled TiO2 nanoparticle uptake in a large population of living cells (>10(4) cells). X-ray fluorescence microscopy (XFM) is combined with fluorescent microscopy to determine the relative intracellular stability of the nanoconjugates and used to quantify intracellular nanoparticles. Imaging the DNA component of the TiO2-DNA nanoconjugate by fluorescent confocal microscopy within the same cell shows an overlap with the titanium signal as mapped by XFM. This strongly implies the intracellular integrity of the TiO2-DNA nanoconjugates in malignant cells.
Collapse
Affiliation(s)
- Kenneth T. Thurn
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine Chicago, IL 60611
| | - Tatjana Paunesku
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine Chicago, IL 60611
| | - Aiguo Wu
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine Chicago, IL 60611
| | - Eric M.B. Brown
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine Chicago, IL 60611
| | - Barry Lai
- X-Ray Science Division, Advanced Photon source, Argonne National Laboratory, Argonne, IL, 60439
| | - Stefan Vogt
- X-Ray Science Division, Advanced Photon source, Argonne National Laboratory, Argonne, IL, 60439
| | - Jörg Maser
- Center for Nanoscale Materials, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439
| | - Mohammed Aslam
- Department of Physics, Indian Institute of Technology Bombay Powai, Mumbai 400076, India
| | - Vinayak Dravid
- Department of Material Science and Engineering, and NUANCE Center, Northwestern University, Evanston IL 60208
| | - Raymond Bergan
- Department of Medicine, Robert H. Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Gayle Woloschak
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine Chicago, IL 60611
- Departments of Radiology, and Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
112
|
Abstract
AbstractHydrogen peroxide (H2O2), a major non-radical reactive oxygen species (ROS) could elicit intracellular oxidative damage and/or cause extracellular free calcium influx by activating the NMDA receptor or through calcium channels. In the present study, NMDA receptor antagonist MK-801 fully blocked H2O2-induced neuronal cell death, whereas green tea (GT) extract containing-antioxidants only partially suppressed the neurotoxicity of H2O2. These suggest that majority of ROS overproduction is downstream of H2O2-induced calcium influx. A novel neuroprotectant PAN-811 was previously demonstrated to efficiently attenuate ischemic neurotoxicity. PAN-811 hereby fully blocks H2O2-elicited neuronal cell death with a more advanced neuroprotective profile than that of GT extract. PAN-811 was also shown to protect against CaCl2-elicited neurotoxicity. Efficient protection against oxidative stress-induced neurotoxicity by PAN-811 indicates its potential application in treatment of ROS-mediated neurodegenerative diseases.
Collapse
|
113
|
Sedoris KC, Ovechkin AV, Gozal E, Roberts AM. Differential effects of nitric oxide synthesis on pulmonary vascular function during lung ischemia-reperfusion injury. Arch Physiol Biochem 2009; 115:34-46. [PMID: 19267281 DOI: 10.1080/13813450902785267] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Lung ischemia-reperfusion (IR) injury causes alveolar, epithelial and endothelial cell dysfunction which often results in decreased alveolar perfusion, characteristic of an acute respiratory distress syndrome. Nitric oxide (NO) from endothelium-derived NO synthase (eNOS) helps maintain a low pulmonary vascular resistance. Paradoxically, during acute lung injury, overproduction of NO via inducible NO synthase (iNOS) and oxidative stress lead to reactive oxygen and nitrogen species (ROS and RNS) formation and vascular dysfunction. RNS potentiate vascular and cellular injury by oxidation, by decreasing NO bioavailability, and by regulating NOS isoforms. RNS potentiate their own production by uncoupling NO production through eNOS by oxidation and disruption of Akt-mediated phosphorylation of eNOS. This review focuses on effects of NO which cause vascular dysfunction in the unique environment of the lung and presents a hypothesis for interplay between eNOS and iNOS activation with implications for development of new strategies to treat vascular dysfunction associated with IR.
Collapse
Affiliation(s)
- Kara C Sedoris
- Department of Physiology and Biophysics, University of Louisville, KY 40292, USA
| | | | | | | |
Collapse
|
114
|
Nguyen TTH, Cho SO, Ban JY, Kim JY, Ju HS, Koh SB, Song KS, Seong YH. Neuroprotective effect of Sanguisorbae radix against oxidative stress-induced brain damage: in vitro and in vivo. Biol Pharm Bull 2009; 31:2028-35. [PMID: 18981568 DOI: 10.1248/bpb.31.2028] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sanguisorbae radix (SR), the root of Sanguisorba officinalis L. (Rosaceae), has been traditionally used for its anti-inflammatory, anti-infectious and analgesic activities in Korea. Previous work has shown that SR prevents neuronal cell damage induced by Abeta (25--35) in cultured rat cortical neurons. The present study was carried out to further investigate the neuroprotective effect of SR on oxidative stress-induced toxicity in primary culture of rat cortical neurons, and on ischemia-induced brain damage in rats. SR, over a concentration range of 10--50 microg/ml, inhibited H2O2 (100 microM)-induced neuronal death, which was significantly inhibited by MK-801 (5 microM), an N-methyl-D-aspartate (NMDA) receptor antagonist, and verapamil (20 microM), an L-type Ca2+ channel blocker. Pretreatment of SR (10-50 microg/ml), MK-801 (5 microM), and verapamil (20 microM) inhibited H2O2-induced elevation of intracellular Ca2+ concentration ([Ca2+]i) measured by a fluorescent dye, Fluo-4 AM. SR (10-50 microg/ml) inhibited H2O2-induced glutamate release into medium measured by HPLC, and generation of reactive oxygen species (ROS) measured by 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA). In vivo, SR prevented cerebral ischemic injury induced by 2-h middle cerebral artery occlusion (MCAO) and 24-h reperfusion. The ischemic infarct and edema were significantly reduced in rats that received SR (10, 30 mg/kg, orally), with a corresponding improvement in neurological function. Catechin isolated from SR inhibited H2O2-induced neuronal death in cultures. Taken together, these results suggest that SR inhibits H2O2-induced neuronal death by interfering with the increase of [Ca2+]i, and inhibiting glutamate release and generation of ROS, and that the neuroprotective effect of SR against focal cerebral ischemic injury is due to its anti-oxidative effects. Thus SR might have therapeutic roles in neurodegenerative diseases such as stroke.
Collapse
Affiliation(s)
- Thi Thuy Ha Nguyen
- College of Veterinary Medicine, Chungbuk National University, Chungbuk, Korea
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Reddy MK, Wu L, Kou W, Ghorpade A, Labhasetwar V. Superoxide dismutase-loaded PLGA nanoparticles protect cultured human neurons under oxidative stress. Appl Biochem Biotechnol 2008; 151:565-77. [PMID: 18509606 PMCID: PMC2670226 DOI: 10.1007/s12010-008-8232-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2007] [Accepted: 04/09/2008] [Indexed: 02/07/2023]
Abstract
The objective of our study was to investigate the neuroprotective efficacy of superoxide dismutase (SOD), loaded in poly(D,L-lactide co-glycolide; PLGA) nanoparticles (NPs), in cultured human neurons challenged with hydrogen peroxide (H(2)O(2))-induced oxidative stress. We hypothesized that the protected and sustained intracellular delivery of SOD encapsulated in NPs would demonstrate better neuroprotection from oxidative stress than either SOD or pegylated SOD (PEG-SOD) in solution. SOD-NPs (approximately 81 +/- 4 nm in diameter, 0.9% w/w SOD loading) released the encapsulated SOD in an active form with 8.2% cumulative release during the first 24 h, followed by a slower release thereafter. The results demonstrated that PLGA-NPs are compatible with human neurons, and the neuroprotective effect of SOD-NPs is dose-dependent, with efficacy seen at >100 U SOD, and less significant effects at lower doses. Neither SOD (25-200 U) nor PEG-SOD (100 U) in solution demonstrated the neuroprotective effect under similar conditions. The neuroprotective effect of SOD-NPs was seen up to 6 h after H(2)O(2)-induced oxidative stress, but the effect diminished thereafter. Confocal microscopic studies demonstrated better intracellular neuronal uptake of the encapsulated model protein (fluorescein isothiocyanate-labeled BSA) than the protein in solution. Thus, the mechanism of efficacy of SOD-NPs appears to be due to the stability of the encapsulated enzyme and its better neuronal uptake after encapsulation.
Collapse
Affiliation(s)
- Maram K. Reddy
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Li Wu
- Department of Pharmacology and Experimental Neuroscience and Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198–5215
| | - Wei Kou
- Department of Pharmacology and Experimental Neuroscience and Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198–5215
| | - Anuja Ghorpade
- Department of Pharmacology and Experimental Neuroscience and Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198–5215
| | - Vinod Labhasetwar
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198–6025
| |
Collapse
|
116
|
Bortolato M, Chen K, Shih JC. Monoamine oxidase inactivation: from pathophysiology to therapeutics. Adv Drug Deliv Rev 2008; 60:1527-33. [PMID: 18652859 DOI: 10.1016/j.addr.2008.06.002] [Citation(s) in RCA: 431] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 06/21/2008] [Indexed: 12/25/2022]
Abstract
Monoamine oxidases (MAOs) A and B are mitochondrial bound isoenzymes which catalyze the oxidative deamination of dietary amines and monoamine neurotransmitters, such as serotonin, norepinephrine, dopamine, beta-phenylethylamine and other trace amines. The rapid degradation of these molecules ensures the proper functioning of synaptic neurotransmission and is critically important for the regulation of emotional behaviors and other brain functions. The byproducts of MAO-mediated reactions include several chemical species with neurotoxic potential, such as hydrogen peroxide, ammonia and aldehydes. As a consequence, it is widely speculated that prolonged excessive activity of these enzymes may be conducive to mitochondrial damages and neurodegenerative disturbances. In keeping with these premises, the development of MAO inhibitors has led to important breakthroughs in the therapy of several neuropsychiatric disorders, ranging from mood disorders to Parkinson's disease. Furthermore, the characterization of MAO knockout (KO) mice has revealed that the inactivation of this enzyme produces a number of functional and behavioral alterations, some of which may be harnessed for therapeutic aims. In this article, we discuss the intriguing hypothesis that the attenuation of the oxidative stress induced by the inactivation of either MAO isoform may contribute to both antidepressant and antiparkinsonian actions of MAO inhibitors. This possibility further highlights MAO inactivation as a rich source of novel avenues in the treatment of mental disorders.
Collapse
|
117
|
D'Agostino DP, Colomb DG, Dean JB. Effects of hyperbaric gases on membrane nanostructure and function in neurons. J Appl Physiol (1985) 2008; 106:996-1003. [PMID: 18818382 DOI: 10.1152/japplphysiol.91070.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
This mini-review summarizes current ideas of how hyperbaric gases (>1-10 atmospheres absolute) affect neuronal mechanisms of excitability through molecular interaction with membrane components. The dynamic nature of the lipid bilayer, its resident proteins, and the underlying cytoskeleton make each respective nanostructure a potential target for modulation by hyperbaric gases. Depending on the composition of the gas mixture, the relative concentrations of O(2) and inert gas, and total barometric pressure, the net effect of a particular gas on the cell membrane will be determined by the gas' 1) lipid solubility, 2) ability to oxidize lipids and proteins (O(2)), and 3) capacity, in the compressed state, to generate localized shear and strain forces between various nanostructures. A change in the properties of any one membrane component is anticipated to change conductance of membrane-spanning ion channels and thus neuronal function.
Collapse
Affiliation(s)
- Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, Hyperbaric Biomedical Research Laboratory, College of Medicine, University of South Florida, Tampa 33612, USA
| | | | | |
Collapse
|
118
|
Cai L, Wang H, Li Q, Qian Y, Yao W. Salidroside inhibits H2O2-induced apoptosis in PC 12 cells by preventing cytochromecrelease and inactivating of caspase cascade. Acta Biochim Biophys Sin (Shanghai) 2008. [DOI: 10.1111/j.1745-7270.2008.00463.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
119
|
Peterson B, Stovall K, Monian P, Franklin JL, Cummings BS. Alterations in phospholipid and fatty acid lipid profiles in primary neocortical cells during oxidant-induced cell injury. Chem Biol Interact 2008; 174:163-76. [PMID: 18602625 DOI: 10.1016/j.cbi.2008.05.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 05/19/2008] [Accepted: 05/22/2008] [Indexed: 10/22/2022]
Abstract
Specific phospholipids and fatty acids altered during oxidant-induced neuronal cell injury were determined using electrospray ionization mass spectrometry (ESI-MS) and ion trapping. The oxidants hydrogen peroxide (H(2)O(2), 0-1000 microM) and tert-butylhydroperoxide (TBHP, 0-400 microM) induced time- and concentration-dependent increases in reactive oxygen species in primary cultures of mouse neocortical cells as determined by 2',7'-dichlorofluorescein diacetate staining and thiobarbituric acid formation. ESI-MS analysis of 26 m/z values, representing 42 different phospholipids, demonstrated that H(2)O(2) and TBHP increased the abundance of phospholipids containing polyunsaturated fatty acids, but had minimal affect on those containing mono- or di-unsaturated fatty acids. These increases correlated to time-dependent increase in 16:1-20:4, 16:0-20:4, 18:1-20:4 and 18:0-20:4 phosphatidylcholine. Oxidant exposure also increased mystric (14:0), palmitic (16:0), and stearic (18:0) acid twofold, oleic acid (18:1) two- to threefold, and arachidonic acid (20:4) fourfold, compared to controls. Increases in arachidonic acid levels occurred prior to increases in the phospholipids, but after increases in ROS, and correlated to increases in oxidized arachidonic acid species, specifically [20:4-OOH]-H(2)O-, 20:4-OH-, and Tri-OH-20:4-arachidonic acid. Treatment of cells with methyl arachidonyl flourophosphonate an inhibitor of Group IV and VI PLA(2), decreased oxidant-induced arachidonic acid release, while bromoenol lactone, an inhibitor of Group VI PLA(2), did not. Collectively, these data identify phospholipids and fatty acids altered during oxidant treatment of neurons and suggest differential roles for Group IV and VI PLA(2) in oxidant-induced neural cell injury.
Collapse
Affiliation(s)
- Brianna Peterson
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, GA 30602-2352, United States
| | | | | | | | | |
Collapse
|
120
|
Feeney CJ, Frantseva MV, Carlen PL, Pennefather PS, Shulyakova N, Shniffer C, Mills LR. Vulnerability of glial cells to hydrogen peroxide in cultured hippocampal slices. Brain Res 2008; 1198:1-15. [DOI: 10.1016/j.brainres.2007.12.049] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 12/07/2007] [Accepted: 12/16/2007] [Indexed: 10/22/2022]
|
121
|
Comparative study of hydrogen peroxide- and 4-hydroxy-2-nonenal-induced cell death in HT22 cells. Neurochem Int 2008; 52:776-85. [DOI: 10.1016/j.neuint.2007.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 08/22/2007] [Accepted: 09/13/2007] [Indexed: 11/18/2022]
|
122
|
Yu Y, Wang JR, Sun PH, Guo Y, Zhang ZJ, Jin GZ, Zhen X. Neuroprotective effects of atypical D1 receptor agonist SKF83959 are mediated via D1 receptor-dependent inhibition of glycogen synthase kinase-3 beta and a receptor-independent anti-oxidative action. J Neurochem 2007; 104:946-56. [PMID: 18005341 DOI: 10.1111/j.1471-4159.2007.05062.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
3-methyl-6-chloro-7,8-hydroxy-1-(3-methylphenyl)-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF83959), a selective agonist for the putative phosphatidylinositol (PI)-linked dopamine receptor (DAR), has been shown to possess potent anti-Parkinson disease effects but produces less dyskinesia and motor fluctuation that are frequently observed in Parkinson disease drug therapies. The present study was designed to detect the neuroprotection of SKF83959 and its potential mechanism for the effect in cultured rat cortical cells. The presence of SKF83959 with a dose range of 0.1-30 micromol/L improved H2O2-reduced cell viability in a dose-dependent manner. The anti-apoptotic action of SKF83959 was partially abolished by pre-application of the D1 antagonist SCH23390 (30 micromol/L) and the PI 3-kinase (PI 3-K) inhibitor LY294002 but not by the MEK1/2 inhibitor PD98059 (30 micromol/L). Moreover, SKF83959 treatment significantly inhibited H2O2-activated glycogen synthase kinase-3beta (GSK-3beta) which was associated with the drug's neuroprotective effect, but this inhibition was attenuated by SCH23390 and a selective PI 3-K inhibitor. Moreover, the application of either SKF83959 or a pharmacological inhibitor of GSK-3beta attenuated the inhibition by H2O2 on the expression of inducible NO synthase and production of NO. This indicates that D1-like receptor, presumably PI-linked D1 receptor, -mediated alteration of PI 3-K/Akt/GSK-3beta pathway is involved in the neuroprotection by SKF83959. In addition, SKF83959 also effectively decreased the level of the lipid peroxidation and increased the activity of GSH-peroxidase altered by H2O2. These results suggest that SKF83959 exerts its neuroprotective effect through both receptor-dependent and independent mechanisms: Inhibition of GSK-3beta and consequently increasing the expression of inducible NO synthase via putative PI-linked DAR; and its anti-oxidative activity which is independent of DAR.
Collapse
Affiliation(s)
- Yang Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
123
|
Postresuscitation N-acetylcysteine treatment reduces cerebral hydrogen peroxide in the hypoxic piglet brain. Intensive Care Med 2007; 34:190-7. [PMID: 17938888 DOI: 10.1007/s00134-007-0880-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 09/07/2007] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Reactive oxygen species have been implicated in the pathogenesis of hypoxia-reoxygenation injury. However, little information is known regarding the temporal profile of cerebral hydrogen peroxide (HPO) production and its response to N-acetylcysteine (an antioxidant) administration during neonatal hypoxia-reoxygenation. Using an acute swine model of neonatal hypoxia-reoxygenation, we examined the short-term neuroprotective effects of N-acetylcysteine on cerebral HPO production and oxidative stress in the brain. DESIGN Controlled, block-randomized animal study. SETTING University animal research laboratory. SUBJECTS Newborn piglets (1-3 days, 1.7-2.1 kg). INTERVENTIONS At 5 min after reoxygenation, piglets were given either saline or N-acetylcysteine (20 or 100 mg/kg/h) in a blinded, randomized fashion. MEASUREMENTS AND RESULTS Newborn piglets were block-randomized into a sham-operated group (without hypoxia-reoxygenation, n = 5) and three hypoxic-reoxygenated groups (2 h of normocapnic alveolar hypoxia followed by 2h of reoxygenation, n = 7/group). Heart rate, mean arterial pressure, cortical HPO concentration, amino acid levels in cerebral microdialysate, and cerebral tissue glutathione and lipid hydroperoxide levels were examined. Hypoxic piglets were hypotensive and acidotic, and they recovered similarly in all hypoxic-reoxygenated groups. In hypoxic-reoxygenated control piglets, the cortical HPO concentration gradually increased during reoxygenation. Both doses of N-acetylcysteine abolished the increased HPO concentration and oxidized glutathione levels and tended to reduce the glutathione ratio and lipid hydroperoxide levels in the cerebral cortex (p = 0.08 and p = 0.1 vs. controls, respectively). N-acetylcysteine at 100mg/kg/h also increased the cerebral extracellular taurine levels. CONCLUSION In newborn piglets with hypoxia-reoxygenation, postresuscitation administration of N-acetylcysteine reduces cerebral HPO production and oxidative stress, probably through a taurine-related mechanism.
Collapse
|
124
|
Chung BG, Park JW, Hu JS, Huang C, Monuki ES, Jeon NL. A hybrid microfluidic-vacuum device for direct interfacing with conventional cell culture methods. BMC Biotechnol 2007; 7:60. [PMID: 17883868 PMCID: PMC2071914 DOI: 10.1186/1472-6750-7-60] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Accepted: 09/20/2007] [Indexed: 01/22/2023] Open
Abstract
Background Microfluidics is an enabling technology with a number of advantages over traditional tissue culture methods when precise control of cellular microenvironment is required. However, there are a number of practical and technical limitations that impede wider implementation in routine biomedical research. Specialized equipment and protocols required for fabrication and setting up microfluidic experiments present hurdles for routine use by most biology laboratories. Results We have developed and validated a novel microfluidic device that can directly interface with conventional tissue culture methods to generate and maintain controlled soluble environments in a Petri dish. It incorporates separate sets of fluidic channels and vacuum networks on a single device that allows reversible application of microfluidic gradients onto wet cell culture surfaces. Stable, precise concentration gradients of soluble factors were generated using simple microfluidic channels that were attached to a perfusion system. We successfully demonstrated real-time optical live/dead cell imaging of neural stem cells exposed to a hydrogen peroxide gradient and chemotaxis of metastatic breast cancer cells in a growth factor gradient. Conclusion This paper describes the design and application of a versatile microfluidic device that can directly interface with conventional cell culture methods. This platform provides a simple yet versatile tool for incorporating the advantages of a microfluidic approach to biological assays without changing established tissue culture protocols.
Collapse
Affiliation(s)
- Bong Geun Chung
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, 92697, USA
| | - Jeong Won Park
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, 92697, USA
| | - Jia Sheng Hu
- Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Carlos Huang
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, 92697, USA
| | - Edwin S Monuki
- Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Noo Li Jeon
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
125
|
Chung BG, Manbachi A, Khademhosseini A. A microfluidic device with groove patterns for studying cellular behavior. J Vis Exp 2007:270. [PMID: 18989441 DOI: 10.3791/270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
We describe a microfluidic device with microgrooved patterns for studying cellular behavior. This microfluidic platform consists of a top fluidic channel and a bottom microgrooved substrate. To fabricate the microgrooved channels, a top poly(dimethylsiloxane) (PDMS) mold containing the impression of the microfluidic channels was aligned and bonded to a microgrooved substrate. Using this device, mouse fibroblast cells were immobilized and patterned within microgrooved substrates (25, 50, 75, and 100 microm wide). To study apoptosis in a microfluidic device, media containing hydrogen peroxide, Annexin V, and propidium iodide was perfused into the fluidic channel for 2 hours. We found that cells exposed to the oxidative stress became apoptotic. These apoptotic cells were confirmed by Annexin V that bound to phosphatidylserine at the outer leaflet of the plasma membrane during the apoptosis process. Using this microfluidic device with microgrooved patterns, the apoptosis process was observed in real-time and analyzed by using an inverted microscope containing an incubation chamber (37 degrees C, 5% CO(2)). Therefore, this microfluidic device incorporated with microgrooved substrates could be useful for studying the cellular behavior and performing high-throughput drug screening.
Collapse
Affiliation(s)
- Bong Geun Chung
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | | |
Collapse
|
126
|
Mukerji SS, Katsman EA, Wilber C, Haner NA, Selman WR, Hall AK. Activin is a neuronal survival factor that is rapidly increased after transient cerebral ischemia and hypoxia in mice. J Cereb Blood Flow Metab 2007; 27:1161-72. [PMID: 17133227 DOI: 10.1038/sj.jcbfm.9600423] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
One approach for developing targeted stroke therapies is to identify the neuronal protective and destructive signaling pathways and gene expression that follow ischemic insult. In some neural injury models, the transforming growth factor-beta family member activin can provide neuroprotective effects in vivo and promote neuronal survival. This study tests if activin supports cortical neurons after ischemic challenge in vitro and if signals after cerebral ischemia involve activin in vivo. In a defined cell culture model that uses hydrogen peroxide (H(2)O(2))-free radical stress, activin addition maintained neuronal survival. H(2)O(2) treatment increased activin mRNA twofold in surviving cortical neurons, and inhibition of activin with neutralizing antibodies caused neuronal death. These data identify activin gene changes as a rapid response to oxidative stress, and indicate that endogenous activin acts as a protective factor for cortical neurons in vitro. Similarly, after transient focal cerebral ischemia in adult mice, activin mRNA increased at 1 and 4 h ipsilateral to the infarct but returned to control values at 24 h after reperfusion. Intracellular activated smad signals were detected in neurons adjacent to the infarct. Activin was also increased after 2 h of 11% hypoxia. Activin mRNA increased at 1 h but not 4 or 24 h after hypoxia, similar to the time course of erythropoietin and vascular endothelial growth factor induction. These findings identify activin as an early-regulated gene response to transient ischemia and hypoxia, and its function in cortical neuron survival during oxidative challenge provides a basis to test activin as a potential therapeutic in stroke injury.
Collapse
Affiliation(s)
- Shibani S Mukerji
- Department of Neuroscience, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|
127
|
Sarandol A, Sarandol E, Eker SS, Erdinc S, Vatansever E, Kirli S. Major depressive disorder is accompanied with oxidative stress: short-term antidepressant treatment does not alter oxidative-antioxidative systems. Hum Psychopharmacol 2007; 22:67-73. [PMID: 17299810 DOI: 10.1002/hup.829] [Citation(s) in RCA: 347] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE The aim of the present study was to investigate the oxidative-antioxidative systems and effects of different antidepressants on these systems in patients with major depressive disorder (MDD). METHOD Ninety-six patients with a Diagnostic and Statistical Manual of Mental Disorders Fourth Edition (DSM-IV) diagnosis of MDD and 54 healthy controls were included in the study. Plasma malondialdehyde (MDA) levels and susceptibility of red blood cells (RBCs) to oxidation were determined to investigate the oxidative status, plasma vitamin E, vitamin C, serum total carotenoid levels, total antioxidant capacity (TAOC), RBC superoxide dismutase (SOD) and whole blood glutathione peroxidase (GPx) activities were measured to investigate the antioxidative defence before and after 6 weeks of antidepressant treatment. RESULTS Plasma MDA levels and susceptibility of RBCs to oxidation were significantly higher in the MDD group compared with the control group. RBC SOD activity was significantly increased in patients with MDD, and furthermore there was a significant positive correlation between the severity of the disease and SOD activity. CONCLUSION MDD is accompanied with oxidative stress; however, oxidative-antioxidative systems do not seem to be affected by 6 weeks of antidepressant treatment.
Collapse
Affiliation(s)
- Asli Sarandol
- Department of Psychiatry, Uludag University Medical Faculty, Bursa, Turkey.
| | | | | | | | | | | |
Collapse
|
128
|
Wake H, Watanabe M, Moorhouse AJ, Kanematsu T, Horibe S, Matsukawa N, Asai K, Ojika K, Hirata M, Nabekura J. Early changes in KCC2 phosphorylation in response to neuronal stress result in functional downregulation. J Neurosci 2007; 27:1642-50. [PMID: 17301172 PMCID: PMC6673731 DOI: 10.1523/jneurosci.3104-06.2007] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 01/04/2007] [Accepted: 01/05/2007] [Indexed: 01/26/2023] Open
Abstract
The K+ Cl- cotransporter KCC2 plays an important role in chloride homeostasis and in neuronal responses mediated by ionotropic GABA and glycine receptors. The expression levels of KCC2 in neurons determine whether neurotransmitter responses are inhibitory or excitatory. KCC2 expression is decreased in developing neurons, as well as in response to various models of neuronal injury and epilepsy. We investigated whether there is also direct modulation of KCC2 activity by changes in phosphorylation during such neuronal stressors. We examined tyrosine phosphorylation of KCC2 in rat hippocampal neurons under different conditions of in vitro neuronal stress and the functional consequences of changes in tyrosine phosphorylation. Oxidative stress (H2O2) and the induction of seizure activity (BDNF) and hyperexcitability (0 Mg2+) resulted in a rapid dephosphorylation of KCC2 that preceded the decreases in KCC2 protein or mRNA expression. Dephosphorylation of KCC2 is correlated with a reduction of transport activity and a decrease in [Cl-]i, as well as a reduction in KCC2 surface expression. Manipulation of KCC2 tyrosine phosphorylation resulted in altered neuronal viability in response to in vitro oxidative stress. During continued neuronal stress, a second phase of functional KCC2 downregulation occurs that corresponds to decreases in KCC2 protein expression levels. We propose that neuronal stress induces a rapid loss of tyrosine phosphorylation of KCC2 that results in translocation of the protein and functional loss of transport activity. Additional understanding of the mechanisms involved may provide means for manipulating the extent of irreversible injury resulting from different neuronal stressors.
Collapse
Affiliation(s)
- Hiroaki Wake
- Division of Homeostatic Development, National Institute of Physiological Sciences, Okazaki 444-8585, Japan
- Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan
| | - Miho Watanabe
- Division of Homeostatic Development, National Institute of Physiological Sciences, Okazaki 444-8585, Japan
| | - Andrew J. Moorhouse
- Department of Physiology and Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Takashi Kanematsu
- Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Shoko Horibe
- Division of Homeostatic Development, National Institute of Physiological Sciences, Okazaki 444-8585, Japan
- School of Life Science, The Graduate University for Advanced Studies, Hayama 240-0193, Japan, and
| | - Noriyuki Matsukawa
- Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan
| | - Kiyofumi Asai
- Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Kosei Ojika
- Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan
| | - Masato Hirata
- Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Junichi Nabekura
- Division of Homeostatic Development, National Institute of Physiological Sciences, Okazaki 444-8585, Japan
- School of Life Science, The Graduate University for Advanced Studies, Hayama 240-0193, Japan, and
- Core Research for the Evolutionary Science and Technology, Japan Science and Technology Corporation, Saitama 332-0012, Japan
| |
Collapse
|
129
|
Das M, Patil S, Bhargava N, Kang JF, Riedel LM, Seal S, Hickman JJ. Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomaterials 2007; 28:1918-25. [PMID: 17222903 PMCID: PMC1913191 DOI: 10.1016/j.biomaterials.2006.11.036] [Citation(s) in RCA: 481] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Accepted: 11/18/2006] [Indexed: 11/26/2022]
Abstract
This paper describes the evaluation of the auto-catalytic anti-oxidant behavior and biocompatibility of cerium oxide nanoparticles for applications in spinal cord repair and other diseases of the central nervous system. The application of a single dose of nano-ceria at a nano-molar concentration is biocompatible, regenerative and provides a significant neuroprotective effect on adult rat spinal cord neurons. Retention of neuronal function is demonstrated from electrophysiological recordings and the possibility of its application to prevent ischemic insult is suggested from an oxidative injury assay. A mechanism is proposed to explain the auto-catalytic properties of these nanoparticles.
Collapse
Affiliation(s)
- Mainak Das
- NanoScience Technology Center, University of Central Florida, 32826
| | - Swanand Patil
- Advanced Materials Processing and Analysis Center (AMPAC) and the Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL, 32826
| | - Neelima Bhargava
- NanoScience Technology Center, University of Central Florida, 32826
| | - Jung-Fong Kang
- NanoScience Technology Center, University of Central Florida, 32826
| | - Lisa M. Riedel
- NanoScience Technology Center, University of Central Florida, 32826
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center (AMPAC) and the Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL, 32826
- *Corresponding Author: James J Hickman, NanoScience Technology Center, 12424 Research Parkway, Suite 400, University of Central Florida, Orlando, FL 32826 Phone: (407) 823-1925 Fax: (407) 882-2819 E-mail:
| | - James J. Hickman
- NanoScience Technology Center, University of Central Florida, 32826
- *Corresponding Author: James J Hickman, NanoScience Technology Center, 12424 Research Parkway, Suite 400, University of Central Florida, Orlando, FL 32826 Phone: (407) 823-1925 Fax: (407) 882-2819 E-mail:
| |
Collapse
|
130
|
Tanaka KI, Sato T, Ohnishi Y, Nishikawa T. Hydrogen peroxide-induced thymidine incorporation into cultured rat astrocytes. J Pharmacol Sci 2006; 102:296-304. [PMID: 17072101 DOI: 10.1254/jphs.fpj06012x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
We characterized [methyl-(3)H]thymidine ([(3)H]thymidine) and [5-(3)H]uridine ([(3)H]uridine) incorporation into cultured astrocytes and neurons in the presence and absence of hydrogen peroxide (H2O2) in order to define the response to oxidative stress in the central nervous system. [(3)H]Thymidine incorporation into cultured astrocytes was remarkably decreased by N(6),2'-O-dibutyryladenosine 3',5'-cyclic monophosphate (DBcAMP), a permeable analogue of cAMP, which induced a morphological change from the polygonal form (undifferentiated astrocytes) to the process-bearing one (differentiated astrocytes). H2O2 induced [(3)H]thymidine, but not [(3)H]uridine, incorporation into cultured astrocytes at only an early time from 24 h after DBcAMP treatment, although the absolute quantities of [(3)H]thymidine incorporation into astrocytes pretreated with DBcAMP were less than those into astrocytes pretreated without DBcAMP. Hydroxyurea, a replicative DNA synthesis inhibitor, suppressed dose-dependently and completely [(3)H]thymidine incorporation into astrocytes pretreated without DBcAMP, but not astrocytes pretreated with DBcAMP. H2O2 did not stimulate [(3)H]thymidine or [(3)H]uridine incorporation into astrocytes pretreated without DBcAMP and neurons. These findings indicate that only astrocytes pretreated with DBcAMP are able to increase thymidine incorporation specifically in the presence of H2O2 for a purpose other than proliferation, including the repair of H2O2-induced DNA injury, for example.
Collapse
Affiliation(s)
- Koh-ichi Tanaka
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima City, Kagoshima, Japan.
| | | | | | | |
Collapse
|
131
|
Formicki G, Stawarz R. Ultraviolet influence on catalase activity and mineral content in eyeballs of gibel carp (Carassius auratus gibelio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2006; 369:447-50. [PMID: 16905179 DOI: 10.1016/j.scitotenv.2006.07.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 07/11/2006] [Accepted: 07/13/2006] [Indexed: 05/11/2023]
Abstract
UV radiation present in the environment may induce several eye disorders including inflammation and cataract. The aim of this work was to study catalase activity and Mg, Cu, Ca and Zn contents in the eyeballs of gibel carp exposed to ecologically relevant doses of UV radiation (0.09 kJ/m2 for UV-A and 0.98 kJ/m2 for UV-B) simulated in laboratory conditions. Ultraviolet exposure resulted in significant reduction of catalase activity in the eyeballs of tested fish. Reductions in Mg, Cu and Ca contents after UV exposure were also observed. The differences in Mg and Cu levels between control and UV exposed animals were statistically significant, whereas the reduction of Ca level was insignificant. Zinc level in the eyeballs of UV-exposed fish was significantly higher than in non-irradiated specimens. The results suggest that ultraviolet radiation affects prooxidant/antioxidant balance and Mg, Cu, Zn contents in the eyes of fish living in shallow habitats. These may lead to cataract formation.
Collapse
Affiliation(s)
- Grzegorz Formicki
- Cracow Pedagogical Academy, Institute of Biology, Department of Zoology, ul. Podbrzezie 3, 31-054 Kraków, Poland.
| | | |
Collapse
|
132
|
Bejarano I, Terrón MP, Paredes SD, Barriga C, Rodríguez AB, Pariente JA. Hydrogen peroxide increases the phagocytic function of human neutrophils by calcium mobilisation. Mol Cell Biochem 2006; 296:77-84. [PMID: 16955226 DOI: 10.1007/s11010-006-9301-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Accepted: 08/10/2006] [Indexed: 10/24/2022]
Abstract
We have studied the effect of exogenous administration of hydrogen peroxide (H(2)O(2)) on phagocytic activity of human neutrophils. The treatment of cells with increasing concentrations of H(2)O(2) evoke a significant elevation of phagocytic function assayed as phagocytic index, percentage and efficiency; and was similar to that induced by the calcium mobilising agonist formyl-methionyl-leucyl-phenylalanine (fMLP). This stimulatory effect was reduced by pre-treatment of neutrophils with catalase and abolished in neutrophils loaded with the intracellular calcium quelator dimethyl BAPTA. In the absence of extracellular calcium, treatment of cells with H(2)O(2) resulted in a increase in [Ca(2+)]( i ), indicating the release of calcium from intracellular stores. H(2)O(2) abolished the typical calcium release stimulated by the physiological agonist fMLP, while depletion of agonist-sensitive calcium pools by fMLP was able to prevent H(2)O(2)-induced calcium release. We conclude that H(2)O(2) induces calcium release from agonist-sensitive stores and consequently increase the phagocytosis process.
Collapse
Affiliation(s)
- I Bejarano
- Department of Physiology, Faculty of Science, University of Extremadura, Av. De Elvas s/n, Badajoz 06071, Spain
| | | | | | | | | | | |
Collapse
|
133
|
Arimoto E, Iwai S, Sumi T, Ogawa Y, Yura Y. Involvement of intracellular free Ca2+ in enhanced release of herpes simplex virus by hydrogen peroxide. Virol J 2006; 3:62. [PMID: 16942625 PMCID: PMC1564391 DOI: 10.1186/1743-422x-3-62] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Accepted: 08/31/2006] [Indexed: 11/10/2022] Open
Abstract
Background It was reported that elevation of the intracellular concentration of free Ca2+ ([Ca2+]i) by a calcium ionophore increased the release of herpes simplex virus type 1 (HSV-1). Freely diffusible hydrogen peroxide (H2O2) is implied to alter Ca2+ homeostasis, which further enhances abnormal cellular activity, causing changes in signal transduction, and cellular dysfunction. Whether H2O2 could affect [Ca2+]i in HSV-1-infected cells had not been investigated. Results H2O2 treatment increased the amount of cell-free virus and decreased the proportion of viable cells. After the treatment, an elevation in [Ca2+]i was observed and the increase in [Ca2+]i was suppressed when intracellular and cytosolic Ca2+ were buffered by Ca2+ chelators. In the presence of Ca2+ chelators, H2O2-mediated increases of cell-free virus and cell death were also diminished. Electron microscopic analysis revealed enlarged cell junctions and a focal disintegration of the plasma membrane in H2O2-treated cells. Conclusion These results indicate that H2O2 can elevate [Ca2+]i and induces non-apoptotic cell death with membrane lesions, which is responsible for the increased release of HSV-1 from epithelial cells.
Collapse
Affiliation(s)
- Emiko Arimoto
- Department of Oral and Maxillofacial Surgery II, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Soichi Iwai
- Department of Oral and Maxillofacial Surgery II, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Tetsuro Sumi
- Department of Oral and Maxillofacial Surgery II, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yuzo Ogawa
- Department of Pathology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yoshiaki Yura
- Department of Oral and Maxillofacial Surgery II, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
134
|
Shi GF, An LJ, Jiang B, Guan S, Bao YM. Alpinia protocatechuic acid protects against oxidative damage in vitro and reduces oxidative stress in vivo. Neurosci Lett 2006; 403:206-10. [PMID: 16806694 DOI: 10.1016/j.neulet.2006.02.057] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 02/21/2006] [Accepted: 02/21/2006] [Indexed: 10/24/2022]
Abstract
In this study, the neuroprotective effects of Alpinia protocatechuic acid (PCA), a phenolic compound isolated from the dried fruits of Alpinia Oxyphylla Miq. was found. The protective effect of Alpinia PCA against H2O2-induced oxidative damage on PC12 cells was investigated by measuring cell viability via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. Rats were injected intraperitoneally with Alpinia PCA at a dose of 5mg/kg per day for 7 days, behavioral testing was performed in Y-maze. In order to make clear the neuroprotective mechanism of Alpinia PCA, the activities of endogenous antioxidants and the content of lipid peroxide in brain were assayed. The results proved that Alpinia PCA significantly prevented the H2O2-induced reduction in cell survival, improved the cognition of aged rats, reduced the content of lipid peroxide, increased the activity of glutathione peroxidase and superoxide dismutase. All these suggested that Alpinia PCA was a potential neuroprotective agent and its neuroprotective effects were achieved at least partly by promoting endogenous antioxidant enzymatic activities and inhibiting free radical generation.
Collapse
Affiliation(s)
- Gui-Fang Shi
- Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian, Liaoning 116023, PR China
| | | | | | | | | |
Collapse
|
135
|
Zheng Y, Shen X. H2O2 directly activates inositol 1,4,5-trisphosphate receptors in endothelial cells. Redox Rep 2006; 10:29-36. [PMID: 15829109 DOI: 10.1179/135100005x21660] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The mechanisms of H2O2-induced Ca2+ release from intracellular stores were investigated in human umbilical vein endothelial cells. It was found that U73122, the selective inhibitor of phospholipase C, could not inhibit the H2O2-induced cytosolic Ca2+ mobilization. No elevation of inositol 1,4,5-trisphosphate (IP3) was detected in cells exposed to H2O2. By loading mag-Fura-2, a Ca2+ indicator, into intracellular store, the H2O2-induced Ca2+ release from intracellular calcium store was directly observed in the permeabilized cells in a dose-dependent manner. This release can be completely blocked by heparin, a well-known antagonist of IP3 receptor, indicating a direct activation of IP3 receptor on endoplasmic reticulum (ER) membrane by H2O2. It was also found that H2O2 could still induce a relatively small Ca2+ release from internal stores after the Ca2+-ATPase on ER membrane and the Ca2+ uptake to mitochondria were simultaneously inhibited by thapsigargin and carbonyl cyanide p-trifluoromethoxyphenyl hydrazone. The later observation suggests that a thapsigargin-insensitive non-mitochondrial intracellular Ca2+ store might be also involved in H2O2-induced Ca2+ mobilization.
Collapse
Affiliation(s)
- Yi Zheng
- Institute of Biophysics, Chinese Academy of Science, Graduate School of the Chinese Academy of Sciences, Beijing, P. R. China
| | | |
Collapse
|
136
|
Lafemina MJ, Sheldon RA, Ferriero DM. Acute hypoxia-ischemia results in hydrogen peroxide accumulation in neonatal but not adult mouse brain. Pediatr Res 2006; 59:680-3. [PMID: 16627881 DOI: 10.1203/01.pdr.0000214891.35363.6a] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The neonatal brain responds differently to hypoxic-ischemic injury and may be more vulnerable than the mature brain due to a greater susceptibility to oxidative stress. As a measure of oxidative stress, the immature brain should accumulate more hydrogen peroxide (H2O2) than the mature brain after a similar hypoxic-ischemic insult. To test this hypothesis, H2O2 accumulation was measured in postnatal day 7 (P7, neonatal) and P42 (adult) CD1 mouse brain regionally after inducing HI by carotid ligation followed by systemic hypoxia. H2O2 accumulation was quantified at 2, 12, 24, and 120 h after HI using the aminotriazole (AT)-mediated inhibition of catalase spectrophotometric method. Histologic injury was determined by an established scoring system, and infarction volume was determined. P7 and P42 animals were subjected to different durations of hypoxia to create a similar degree of brain injury. Despite similar injury, significantly less H2O2 accumulated in P42 mouse cortex compared with P7 at 2, 12, and 24 h after HI. In addition, less H2O2 accumulated in P42 mouse hippocampus compared with P7 hippocampus at 2 h. Since immature neurons are more vulnerable to the toxic effects of H2O2 than mature neurons, this increased accumulation in the immature brain may explain why the neonatal brain may be more devastated, even after a milder degree of acute hypoxic-ischemic injury.
Collapse
Affiliation(s)
- Michael J Lafemina
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143-0663, USA
| | | | | |
Collapse
|
137
|
Bao YM, An LJ. Protective effect of protocatechuic acid from Alpinia oxyphylla on hydrogen peroxide-induced oxidative PC12 cell death. Eur J Pharmacol 2006; 538:73-9. [PMID: 16678817 DOI: 10.1016/j.ejphar.2006.03.065] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 03/27/2006] [Accepted: 03/30/2006] [Indexed: 01/20/2023]
Abstract
The neuroprotective effects of protocatechuic acid (PCA), a phenolic compound isolated from the kernels of Alpinia oxyphylla, on hydrogen peroxide (H(2)O(2))-induced apoptosis and oxidative stress in cultured PC12 cells were investigated. Exposure of PC12 cells to 0.4 mM H(2)O(2) induced a leakage of lactate dehydrogenase (LDH) and decreased cell viability denoted by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. PCA increased PC12 cellular viability and markedly attenuated H(2)O(2)-induced apoptotic cell death in a dose-dependent manner. By flow cytometric analysis, PCA showed its significant effect on protecting PC12 cells against H(2)O(2)-induced apoptosis. In these cells, the levels of glutathione (GSH) and activity of catalase were augmented, while glutathione peroxidase activity remained unchanged. In addition, PCA also protected against cell damage induced by H(2)O(2) and Fe(2+), which generated hydroxyl radicals (OH) by the Fenton reaction. These results suggest that PCA may be a candidate chemical for the treatment of oxidative stress-induced neurodegenerative disease.
Collapse
|
138
|
Carrier RL, Ma TC, Obrietan K, Hoyt KR. A sensitive and selective assay of neuronal degeneration in cell culture. J Neurosci Methods 2006; 154:239-44. [PMID: 16483667 DOI: 10.1016/j.jneumeth.2005.12.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 12/07/2005] [Accepted: 12/22/2005] [Indexed: 11/26/2022]
Abstract
We have developed a simple and sensitive assay to quantify neuron-specific death in primary cell cultures that represents a significant improvement over more commonly used methods including manual cell counting and lactate dehydrogenase release. This new method selectively detects neuronal death by combining immunolabeling for a neuron-specific marker with the ease, sensitivity, and speed of an enzyme-linked fluorescence assay. Using microtubule associated protein 2 (MAP2) as a neuron-specific marker, we assessed glutamate-receptor mediated neurotoxicity in neuron-enriched cultures and in mixed neuronal/glial cultures established from mouse forebrain and compared these results to neuronal death measured by lactate dehydrogenase (LDH) release. We were able to achieve statistically significant differences in toxicity between intermediately toxic concentrations of glutamate (30, 50, and 100 microM) with the MAP2 assay, while we were not able to discriminate among these concentrations with the LDH assay. We were also able to measure hydrogen peroxide-induced neuronal death, and demonstrate neuroprotection by antioxidant addition. This new assay is easily adaptable to high-throughput in vitro screens of neurodegeneration and of neuroprotective therapies.
Collapse
Affiliation(s)
- Raeann L Carrier
- Division of Pharmacology, The Ohio State University, Columbus, 43210, USA
| | | | | | | |
Collapse
|
139
|
Granados MP, Salido GM, González A, Pariente JA. Dose-dependent effect of hydrogen peroxide on calcium mobilization in mouse pancreatic acinar cells. Biochem Cell Biol 2006; 84:39-48. [PMID: 16462888 DOI: 10.1139/o05-150] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have employed confocal laser scanning microscopy to investigate how intracellular free calcium concentration ([Ca2+]i) is influenced by hydrogen peroxide (H2O2) in collagenase-dispersed mouse pancreatic acinar cells. In the absence of extracellular calcium, treatment of cells with increasing concentrations of H2O2 resulted in an increase in [Ca2+]i, indicating the release of calcium from intracellular stores. Micromolar concentrations of H2O2 induced an oscillatory pattern, whereas 1 mmol H2O2/L caused a slow and sustained increase in [Ca2+]i. H2O2 abolished the typical calcium release stimulated by thapsigargin or by the physiological agonist cholecystokinin octapeptide (CCK-8). Depletion of either agonist-sensitive or mitochondrial calcium pools was unable to prevent calcium release induced by 1 mmol H2O2/L, but depletion of both stores abolished it. Additionally, lower H2O2 concentrations were able to release calcium only after depletion of mitochondrial calcium stores. Treatment with either the phospholipase C inhibitor U-73122 or the inhibitor of the inositol 1,4,5-trisphosphate (IP3) receptor xestospongin C did not modify calcium release from the agonist-sensitive pool induced by 100 micromol H2O2/L, suggesting the involvement of a mechanism independent of IP3 generation. In addition, H2O2 reduced amylase release stimulated by CCK-8. Finally, either the H2O2-induced calcium mobilization or the inhibitory effect of H2O2 on CCK-8-induced amylase secretion was abolished by dithiothreitol, a sulphydryl reducing agent. We conclude that H2O2 at micromolar concentrations induces calcium release from agonist-sensitive stores, and at millimolar concentrations H2O2 can also evoke calcium release from the mitochondria. The action of H2O2 is mediated by oxidation of sulphydryl groups of calcium ATPases independently of IP3 generation.
Collapse
Affiliation(s)
- María P Granados
- Department of Physiology, Faculty of Veterinary Sc., University of Extremadura, Cáceres, Spain
| | | | | | | |
Collapse
|
140
|
Mazlan M, Sue Mian T, Mat Top G, Zurinah Wan Ngah W. Comparative effects of alpha-tocopherol and gamma-tocotrienol against hydrogen peroxide induced apoptosis on primary-cultured astrocytes. J Neurol Sci 2006; 243:5-12. [PMID: 16442562 DOI: 10.1016/j.jns.2005.10.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Revised: 10/05/2005] [Accepted: 10/06/2005] [Indexed: 10/25/2022]
Abstract
Oxidative stress is thought to be one of the factors that cause neurodegeneration and that this can be inhibited by antioxidants. Since astrocytes support the survival of central nervous system (CNS) neurons, we compared the effect of alpha-tocopherol and gamma-tocotrienol in minimizing the cytotoxic damage induced by H(2)O(2), a pro-oxidant. Primary astrocyte cultures were pretreated with either alpha-tocopherol or gamma-tocotrienol for 1 h before incubation with 100 microM H(2)O(2) for 24 h. Cell viability was then assessed using the MTS assay while apoptosis was determined using a commercial ELISA kit as well as by fluorescent staining of live and apoptotic cells. The uptake of alpha-tocopherol and gamma-tocotrienol by astrocytes were also determined using HPLC. Results showed that gamma-tocotrienol is toxic at concentrations >200 microM but protects against H(2)O(2) induced cell loss and apoptosis in a dose dependent manner up to 100 microM. alpha-Tocopherol was not cytotoxic in the concentration range tested (up to 750 microM), reduced apoptosis to the same degree as that of gamma-tocotrienol but was less effective in maintaining the viable cell number. Since the uptake of alpha-tocopherol and gamma-tocotrienol by astrocytes is similar, this may reflect the roles of these 2 vitamin E subfamilies in inhibiting apoptosis and stimulating proliferation in astrocytes.
Collapse
Affiliation(s)
- Musalmah Mazlan
- Department of Biochemistry, Medical Faculty, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | | | | | | |
Collapse
|
141
|
Kaneko S, Kawakami S, Hara Y, Wakamori M, Itoh E, Minami T, Takada Y, Kume T, Katsuki H, Mori Y, Akaike A. A Critical Role of TRPM2 in Neuronal Cell Death by Hydrogen Peroxide. J Pharmacol Sci 2006; 101:66-76. [PMID: 16651700 DOI: 10.1254/jphs.fp0060128] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
A brief exposure to hydrogen peroxide (H2O2) induces severe deterioration of primary cultured neurons in vitro. We have investigated a link between the H2O2-induced neuronal death and Ca2+-permeable TRPM2 channels regulated by ADP-ribose (ADPR). In cultured cerebral cortical neurons from fetal rat, TRPM2 proteins were detected at cell bodies and neurite extensions. Application of H2O2 to the cultured neurons elicited an increase in intracellular Ca2+ concentration ([Ca2+]i) caused by Ca2+ influx and the Ca2+-dependent neuronal death in a similar concentration range. Molecular cloning of TRPM2 cDNA from rat brain revealed several differences in amino acid sequences within the Nudix box region as compared with those of human and mouse TRPM2. ADPR-induced current responses, H2O2-induced Ca2+ influx, and H2O2-induced cell death were induced in human embryonic kidney cells heterologously expressing rat TRPM2. Treatment of cultured neurons with small interfering RNA against rat TRPM2,which efficiently suppressed immunoreactive TRPM2 content and the H2O2-induced Ca2+ influx,significantly inhibited H2O2-induced neuronal death. These results suggest that TRPM2 plays a pivotal role in H2O2-induced neuronal death as redox-sensitive Ca2+-permeable channels expressed in neurons.
Collapse
Affiliation(s)
- Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Xiong Z, Liu C, Wang F, Li C, Wang W, Wang J, Chen J. Protective Effects of Breviscapine on Ischemic Vascular Dementia in Rats. Biol Pharm Bull 2006; 29:1880-5. [PMID: 16946502 DOI: 10.1248/bpb.29.1880] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Breviscapine, a traditional Chinese medicine, is extensively used in clinic to treat cardiovascular diseases and cerebrovascular injury. In this study, we demonstrated the effects of breviscapine on vascular dementia (VD) rats, which were mimicked by permanent occlusion of bilateral common carotid arteries. Breviscapine (2 mg/kg for 14 d) improved the performance of learning and memory of VD rats in Morris water maze, decreased the level of lipid peroxidation and free radicals, and attenuated the pathological alterations, such as nuclear shrink, cellular edema and irregular arrangement of pyramidal layer in the hippocampal CA(1) area. In vitro experiment, breviscapine (50 microg/l) protected cortical neuron from injury and decreased intracellular calcium overloading induced by H2O2 (10 mM). The results suggest that breviscapine has therapeutic effect on cerebral ischemia and vascular dementia.
Collapse
Affiliation(s)
- Zhe Xiong
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
143
|
Lee HJ, Ban JY, Seong YH. Blockade of 5-HT3 receptor with MDL7222 and Y25130 reduces hydrogen peroxide-induced neurotoxicity in cultured rat cortical cells. Life Sci 2005; 78:294-300. [PMID: 16112139 DOI: 10.1016/j.lfs.2005.04.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Accepted: 04/21/2005] [Indexed: 01/24/2023]
Abstract
The present study was performed to examine the neuroprotective effects of 5-hydroxytryptamine (5-HT)(3) receptor antagonists against hydrogen peroxide (H(2)O(2))-induced neurotoxicity using cultured rat cortical neurons. Pretreatment of 5-HT(3) receptor antagonists, tropanyl-3,5-dichlorobenzoate (MDL72222, 0.1 and 1 microM) and N-(1-azabicyclo[2.2.2.]oct-3-yl)-6-chloro-4-ethyl-3-oxo-3,4-dihydro-2H-1,4-benzoxazine-8-carboxamide hydrochloride (Y25130, 0.5 and 5 microM), significantly inhibited the H(2)O(2) (100 microM)-induced neuronal cell death as assessed by a MTT assay and the number of apoptotic nuclei, evidenced by Hoechst 33342 staining. The protective effects of MDL72222 (1 microM) and Y25130 (5 microM) were completely blocked by the simultaneous treatment with 100 microM 1-phenylbiguanide, a 5-HT(3) receptor agonist, indicating that the protective effects of these compounds were due to 5-HT(3) receptor blockade. In addition, MDL72222 (1 microM) and Y25130 (5 microM) inhibited the H(2)O(2) (100 microM)-induced elevation of cytosolic Ca(2+) concentration ([Ca(2+)](c)) and glutamate release, generation of reactive oxygen species (ROS), and caspase-3 activity. These results suggest that the activation of the 5-HT(3) receptor may be partially involved in H(2)O(2)-induced neurotoxicity, by membrane depolarization for Ca(2+) influx. Therefore, the blockade of 5-HT(3) receptor with MDL72222 and Y25130 may ameliorate the H(2)O(2)-induced neurotoxicity by interfering with the increase of [Ca(2+)](c), and then by inhibiting glutamate release, generation of ROS and caspase-3 activity.
Collapse
Affiliation(s)
- Hyun Joo Lee
- College of Veterinary Medicine and Research Institute of Herbal Medicine, Chungbuk National University, 12, Gaesin-dong, Heungduk-Gu, Cheongju, Chungbuk, 361-763, Korea
| | | | | |
Collapse
|
144
|
Abstract
Three routes have been identified triggering neuronal death under physiological and pathological conditions. Excess activation of ionotropic glutamate receptors cause influx and accumulation of Ca2+ and Na+ that result in rapid swelling and subsequent neuronal death within a few hours. The second route is caused by oxidative stress due to accumulation of reactive oxygen and nitrogen species. Apoptosis or programmed cell death that often occurs during developmental process has been coined as additional route to pathological neuronal death in the mature nervous system. Evidence is being accumulated that excitotoxicity, oxidative stress, and apoptosis propagate through distinctive and mutually exclusive signal transduction pathway and contribute to neuronal loss following hypoxic-ischemic brain injury. Thus, the therapeutic intervention of hypoxic-ischemic neuronal injury should be aimed to prevent excitotoxicity, oxidative stress, and apoptosis in a concerted way.
Collapse
Affiliation(s)
- Seok Joon Won
- Center for the Interventional Therapy of Stroke and Alzheimers Disease, Department of Pharmacology, Ajou University School of Medicine, San 5, Wonchondong, Paldalgu, Suwon, Kyungkido 442-749, South Korea
| | | | | |
Collapse
|
145
|
Lee HJ, Ban JY, Cho SO, Seong YH. Stimulation of 5-HT1A receptor with 8-OH-DPAT inhibits hydrogen peroxide-induced neurotoxicity in cultured rat cortical cells. Pharmacol Res 2005; 51:261-8. [PMID: 15661577 DOI: 10.1016/j.phrs.2004.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/09/2004] [Indexed: 11/16/2022]
Abstract
We investigated the effect of 8-hydroxy-2-(N,N-dipropylamino)tetralin (8-OH-DPAT), a specific 5-HT(1A) receptor agonist, on H(2)O(2)-induced neuronal cell death in cultured rat cortical cells. H(2)O(2) produced a concentration-dependent reduction of cell viability, which was significantly reduced by (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d] cyclohepten-5,10-imine (MK-801), an N-methyl-d-aspartate (NMDA) receptor antagonist. Pretreatment of 8-OH-DPAT over the concentration range of 1-100 microM significantly inhibited the H(2)O(2) (100 microM)-induced neuronal cell death as assessed by a MTT assay and the number of apoptotic nuclei, evidenced by Hoechst 33342 staining. The protective effect of 8-OH-DPAT (100 microM) was completely blocked by the simultaneous treatment of 1-(2-methoxyphenyl)-4-[4-(2-phthalimideo)butyl]piperazine (NAN-190, 10muM), a selective 5-HT(1A) receptor antagonist, but not in the presence of the dopamine receptor blocker spiperone (10 microM), indicating that the protective effect of 8-OH-DPAT was mediated via 5-HT(1A) receptors. In addition, 8-OH-DPAT inhibited the H(2)O(2)-induced elevation of glutamate release into the medium and cytosolic Ca(2+) concentration ([Ca(2+)](c)), generation of reactive oxygen species (ROS), and caspase-3 activity. These results suggest that the activation of 5-HT(1A) receptor with 8-OH-DPAT may ameliorate an oxydative stress-induced apoptosis of neuronal cell by interfering with the increase of [Ca(2+)](c), and then by inhibiting glutamate release, generation of ROS and caspase activity.
Collapse
Affiliation(s)
- Hyun Joo Lee
- College of Veterinary Medicine and Research, Institute of Veterinary Medicine, Chungbuk National University, San 48, Gaesin-dong, Heungduk-Gu, Cheongju, Chungbuk 361-763, Republic of Korea
| | | | | | | |
Collapse
|
146
|
Zhu P, DeCoster MA, Bazan NG. Interplay among platelet-activating factor, oxidative stress, and group I metabotropic glutamate receptors modulates neuronal survival. J Neurosci Res 2004; 77:525-31. [PMID: 15264222 DOI: 10.1002/jnr.20175] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Platelet-activating factor (PAF) is a potent phospholipid messenger in the nervous system that participates in synaptic plasticity and in pathologic processes, including neurodegeneration. Oxidative stress plays important roles in neuronal cell death. To define the interaction between PAF and oxidative radicals in neuronal death, we studied the effects of PAF in the presence of oxidative radicals in primary neurons in culture. Exogenous PAF (50 microM) caused PAF receptor-independent injury to neurons. A nonneurotoxic PAF concentration (500 nM) potentiated neuronal death caused by hydrogen peroxide as determined by lactate dehydrogenase (LDH) assay, Hoechst staining, and TUNEL analysis, but it did not potentiate neuronal death caused by menadione, a superoxide donor, or by the nitric oxide donors 3-morpholino-sydnonimine (SIN-1) and sodium nitroprusside (SNP). This potentiation of the hydrogen peroxide effect was selectively blocked by a PAF membrane-receptor antagonist, BN52021 (5 microM). The neurotoxic effect of PAF and hydrogen peroxide was also completely blocked by ebselen and partially decreased by pretreatment with (S)-3,5-dihydroxyphenylglycine (DHPG), a group I metabotropic glutamate receptor (mGluR) agonist. This study suggests that PAF-receptor antagonists may be useful for neuroprotection. A similar effect might also be obtained with group I mGluR agonists, probably by way of a different underlying mechanism.
Collapse
Affiliation(s)
- Peimin Zhu
- Neuroscience Center of Excellence and Department of Ophthalmology, Louisiana State University Health Sciences Center School of Medicine, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
147
|
Aito H, Aalto KT, Raivio KO. Adenine nucleotide metabolism and cell fate after oxidant exposure of rat cortical neurons: effects of inhibition of poly(ADP-ribose) polymerase. Brain Res 2004; 1013:117-24. [PMID: 15196974 DOI: 10.1016/j.brainres.2004.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2004] [Indexed: 12/01/2022]
Abstract
We exposed cultured neurons prelabeled with 14C-adenine to H2O2 with or without the poly(ADP-ribose) polymerase (PARP) inhibitor 3,4-Dihydro-5-[4-(1-piperidinyl)butoxy]-1(2H)-isoquinolinone (DPQ) to quantify its effects on acute ATP depletion, later ATP synthesis, cellular and nuclear morphology, extent of DNA fragmentation, and PARP cleavage. According to the extent of the acute ATP depletion, the exposures were classified as 'mild' (50 microM H2O2), 'moderate' (100-250 microM H2O2), or 'severe' (500 microM-1 mM H2O2) insults. Mild exposure had no significant effects on the parameters studied. In the 'moderately' exposed neurons, ATP depletion to 59+/-6% of control was associated with a decrease in the cell counts, apoptotic morphology, and cleavage of PARP. In this group, DPQ prevented the acute ATP (to 95+/-15% of control), preserved cell morphology, and improved cell survival. In the 'severe' group, ATP depletion to 18+/-4% was associated with necrosis and intact PARP. DPQ elevated ATP levels (to 44+/-12% of control) and post-insult ATP synthesis, improved cell counts, and altered cell morphology towards apoptosis rather than necrosis. Post-insult application of DPQ was less effective. Our results show that the extent of oxidant-induced ATP depletion and cell fate can be modified by PARP inhibition, to some extent also after the insult.
Collapse
Affiliation(s)
- Henrikka Aito
- Research Laboratory, Hospital for Children and Adolescents, University of Helsinki, Biomedicum Helsinki, V Floor, Room B524b, P.O. Box 700, FIN-00029 HUS, Helsinki, Finland.
| | | | | |
Collapse
|
148
|
McCollum AT, Jafarifar F, Chan R, Guttmann RP. Oxidative stress inhibits ionomycin-mediated cell death in cortical neurons. J Neurosci Res 2004; 76:104-9. [PMID: 15048934 DOI: 10.1002/jnr.20059] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Thiol-proteases play important roles in many cellular processes, including maintenance of protein homeostasis and execution of cell death. Therefore, determining how this family of enzymes is regulated is critical for our understanding of both physiological and pathological conditions. Because these proteases require a reduced cysteine residue for activity, the cellular redox state plays a crucial role in regulating the activity of thiol proteases. Importantly, increased oxidative stress can result in the direct modification of the active site cysteine, leading to enzyme inactivation. This would suggest that oxidative stress that occurs during pathological insults could prolong cell survival by preventing the execution of thiol-protease-dependent cell death pathways. To test this hypothesis, cultured rat cortical neurons were treated with the oxidizing agent diamide or doxorubicin in the presence or absence of the calcium ionophore ionomycin. Under normoxic conditions, ionomycin treatment resulted in approximately 70% cell death, which was prevented by addition of the calpain-selective inhibitor benyzloxycarbonyl-Leu-Leu-Tyr fluoromethylketone. Similarly, pretreatment of neurons with either oxidant was also protective. Protection resulting from oxidative stress was not due to new protein synthesis, insofar as cycloheximide did not affect oxidant-mediated protection. Interestingly, treatment with the antioxidant Trolox to reverse or prevent oxidative stress blocked the protective effects of both oxidants against ionomycin-induced cell death. We interpret these findings to suggest that, in diseases or conditions in which oxidative stress is increased, the ability of thiol-proteases to execute cell death pathways fully is decreased and may prolong cell survival.
Collapse
Affiliation(s)
- Adrian T McCollum
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | |
Collapse
|
149
|
Hong H, Liu GQ. Protection against hydrogen peroxide-induced cytotoxicity in PC12 cells by scutellarin. Life Sci 2004; 74:2959-73. [PMID: 15051420 DOI: 10.1016/j.lfs.2003.09.074] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2003] [Accepted: 09/10/2003] [Indexed: 02/04/2023]
Abstract
The present study investigated the protective actions of the antioxidant scutellarin against the cytotoxicity produced by exposure to H2O2 in PC12 cells. This was done by assaying for MTT (3,(4,5-dimethylthiazole-2-yl)2,5-diphenyl-tetrazolium bromide) reduction and lactate dehydrogenase (LDH) release. Reactive oxygen species (ROS) and Ca2+ in cells were evaluated by fluorescent microplate reader using DCFH and Fura 2-AM, respectively, as probes. Lipid peroxidation was quantified using thiobarbituric acid-reactive substances (TBARS). Mitochondrial membrane potential (MMP) was assessed by the retention of rhodamine123 (Rh123), a specific fluorescent cationic dye that is readily sequestered by active mitochondria, depending on their transmembrane potential. The DNA content and percentage of apoptosis were monitored with flow cytometry. Vitamin E, a potent antioxidant, was employed as a comparative agent. Preincubation of PC12 cells with scutellarin prevented cytotoxicity induced by H2O2. Intracellular accumulation of ROS, Ca2+ and products of lipid peroxidation, resulting from H2O2 were significantly reduced by scutellarin. Incubation of cells with H2O2 caused a marked decrease in MMP, which was significantly inhibited by scutellarin. PC12 cells treated with H2O2 underwent apoptotic death as determined by flow cytometric assay. The percentage of this H2O2-induced apoptosis in the cells was decreased in the presence of different concentrations of scutellarin. Scutellarin exhibited significantly higher potency compared to the antioxidant vitamin E. The present findings showed that scutellarin attenuated H2O2-induced cytotoxicity, intracellular accumulation of ROS and Ca2+, lipid peroxidation, and loss of MMP and DNA, which may represent the cellular mechanisms for its neuroprotective action.
Collapse
Affiliation(s)
- Hao Hong
- Department of Pharmacology, China Pharmaceutical University, No 24 Tong Jia Xiang, Nanjing, 210009, People's Republic of China.
| | | |
Collapse
|
150
|
Huang F, Vemuri MC, Schneider JS. Modulation of ATP levels alters the mode of hydrogen peroxide-induced cell death in primary cortical cultures: effects of putative neuroprotective agents. Brain Res 2004; 997:79-88. [PMID: 14715152 DOI: 10.1016/j.brainres.2003.10.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxidative injury is believed to be a major factor in the pathogenesis of a variety of neurodegenerative diseases. Additionally, the mode of cell death in oxidant-stressed cells can vary. The present study was conducted to evaluate the use of a primary neuronal cell-based bioassay in which different modes of oxidant-induced cell death could be studied and in which putative neuroprotective agents could be screened. Addition of 50 microM H(2)O(2) to primary cortical neuronal cultures for 1 h under normal ATP conditions resulted in approximately 40% cell death, almost exclusively of an apoptotic nature. In this condition, cell death was effectively blocked by GM1 ganglioside, the semi-synthetic ganglioside derivative LIGA20, the dopamine receptor agonist pramipexole (PPX) and the caspase inhibitor Z-VAD-FMK but not by the poly (ADP-ribose) polymerase (PARP) inhibitor 3-aminobenzamide (3-AB). Pretreatment of cells with 0.01 microM oligomycin for 45 min prior to addition of 50 microM H(2)O(2) caused significant ATP depletion and approximately the same amount of cell death as H(2)O(2) alone. However, under these conditions, cell death was primarily non-apoptotic in nature and GM1, LIGA20 and Z-VAD-FMK had no protective effects. In contrast, AB and PPX effectively blocked cell death. These results suggest that cellular ATP plays a critical role in determining the mode of cell death in primary neurons and that these types of in vitro models may provide a useful system for screening putative neuroprotective agents.
Collapse
Affiliation(s)
- Funan Huang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 1020 Locust Street, 521 JAH, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|