101
|
West AR, Moore H, Grace AA. Direct examination of local regulation of membrane activity in striatal and prefrontal cortical neurons in vivo using simultaneous intracellular recording and microdialysis. J Pharmacol Exp Ther 2002; 301:867-77. [PMID: 12023513 DOI: 10.1124/jpet.301.3.867] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Slice preparations are typically used to study the effects of pharmacological manipulations on the electrophysiological activity of mature neurons. However, the severing of afferent inputs is known to significantly change the natural membrane activity of the neuron. To study the effects of local pharmacological manipulations on neurons in the intact brain, we combined the methods of microdialysis and intracellular recording in vivo. After implantation of a microdialysis probe into the prefrontal cortex (PFC) or striatum, intracellular recordings were conducted within approximately 500 microm of the active surface of the probe. The spontaneous membrane activity, passive membrane properties, and intracellularly and synaptically evoked responses of striatal and cortical neurons recorded during perfusion of artificial cerebral spinal fluid were not different from that of neurons recorded in intact animals. Moreover, in the PFC, local perfusion with glutamate or N-methyl-D-aspartate depolarized neurons and increased spike activity. Conversely, local perfusion of tetrodotoxin hyperpolarized neurons while markedly reducing spontaneous membrane depolarizations and eliminating spike activity. In the striatum, local perfusion of the gamma-aminobutyric acid(A) receptor antagonist bicuculline rapidly depolarized neurons and increased spontaneous spike activity. Given that striatal and PFC neurons recorded in animals undergoing microdialysis in the current study exhibited electrophysiological properties similar to those recorded in intact controls, it is likely that the effects of local microdialysis on ongoing synaptic activity, neuronal excitability, and endogenous neurotransmitter levels are minimal. We conclude that the use of local microdialysis with intracellular recording is a powerful method for studying local receptor regulation of synaptic activity in vivo.
Collapse
Affiliation(s)
- Anthony R West
- Department of Neuroscience, Center for Neuroscience, 446 Crawford Hall, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | | |
Collapse
|
102
|
Opposite influences of endogenous dopamine D1 and D2 receptor activation on activity states and electrophysiological properties of striatal neurons: studies combining in vivo intracellular recordings and reverse microdialysis. J Neurosci 2002. [PMID: 11756513 DOI: 10.1523/jneurosci.22-01-00294.2002] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The tonic influence of dopamine D1 and D2 receptors on the activity of striatal neurons in vivo was investigated by performing intracellular recordings concurrently with reverse microdialysis in chloral hydrate-anesthetized rats. Striatal neurons were recorded in the vicinity of the microdialysis probe to assess their activity during infusions of artificial CSF (aCSF), the D1 receptor antagonist SCH 23390 (10 microm), or the D2 receptor antagonist eticlopride (20 microm). SCH 23390 perfusion decreased the excitability of striatal neurons exhibiting electrophysiological characteristics of spiny projection cells as evidenced by a decrease in the maximal depolarized membrane potential, a decrease in the amplitude of up-state events, and an increase in the intracellular current injection amplitude required to elicit an action potential. Conversely, a marked depolarization of up- and down-state membrane potential modes, a decrease in the amplitude of intracellular current injection required to elicit an action potential, and an increase in the number of spikes evoked by depolarizing current steps were observed in striatal neurons after local eticlopride infusion. A significant increase in maximal EPSP amplitude evoked by electrical stimulation of the prefrontal cortex was also observed during local eticlopride but not SCH 23390 infusion. These results indicate that in intact systems, ongoing dopaminergic neurotransmission exerts a powerful tonic modulatory influence on the up- and down-state membrane properties of striatal neurons and controls their excitability differentially via both D1- and D2-like receptors. Moreover, a significant component of D2 receptor-mediated inhibition of striatal neuron activity in vivo occurs via suppression of excitatory synaptic transmission.
Collapse
|
103
|
Smith R, Musleh W, Akopian G, Buckwalter G, Walsh JP. Regional differences in the expression of corticostriatal synaptic plasticity. Neuroscience 2002; 106:95-101. [PMID: 11564420 DOI: 10.1016/s0306-4522(01)00260-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Field recordings of responses to activation of corticostriatal afferents were made in coronally sectioned rat brain slices. Each recording site was categorized according to its medial to lateral and rostral to caudal position to investigate anatomical differences in synaptic plasticity. Individual responses were highly variable exhibiting extremes of tetanus induced depression and potentiation. Consequently, averaging masked the capacity of these synapses to express long-term forms of plasticity. Block of GABA(A) inhibition and elimination of dopaminergic input with 6-hydroxydopamine lesions both acted to increase the expression of potentiation, but again considerable variability was observed. Separation of recordings into medial and lateral groups revealed clear anatomical trends which contributed to the variability observed in the total sample. Paired-pulse, post-tetanic and long-term potentiation was greater in medial than in lateral groups in normal artificial cerebral spinal fluid. Similar tendencies were seen after block of GABA(A) receptors with bicuculline. 6-Hydroxydopamine lesions in combination with bicuculline treatment reduced medial to lateral differences. Factoring in medial to lateral trends revealed block of GABA(A) receptor mediated inhibition had its greatest effect on medial corticostriatal responses and 6-hydroxydopamine lesions had their greatest effect on lateral responses. From these data we suggest anatomical variation in striatal circuitry may underlie regional differences in synaptic plasticity evoked by corticostriatal activation.
Collapse
Affiliation(s)
- R Smith
- Ethel Percy Andrus Gerontology Center, USC Program in Neuroscience, University of Southern California, Los Angeles, CA 90089-0191, USA
| | | | | | | | | |
Collapse
|
104
|
Mana S, Chevalier G. The fine organization of nigro-collicular channels with additional observations of their relationships with acetylcholinesterase in the rat. Neuroscience 2002; 106:357-74. [PMID: 11566506 DOI: 10.1016/s0306-4522(01)00283-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The nigro-collicular pathway that links the basal ganglia to the sensorimotor layers of superior colliculus plays a crucial role in promoting orienting behaviors. This connection originating in the pars reticulata and lateralis of the substantia nigra has been shown in rat and cat to be topographically organized. In rat, a functional compartmentalization of the substantia nigra has also been shown reflecting that of the striatum. In light of this, we reinvestigated the topographical arrangement of the nigro-collicular pathway by examining the innervation of each nigral functional zone. We performed small injections of either biocytin or wheatgerm agglutinin conjugated with horseradish peroxidase restricted to identified somatic, visual and auditory nigral zones. Frontally cut sections showed that innervations provided by the three main nigral zones form a mosaic of complementary domains stratified from the stratum opticum to the ventral part of the intermediate collicular layers, with the somatic afferents sandwiched between the visual and the auditory ones. When reconstructed from semi-horizontal sections, nigral innervations organized in the form of a honeycomb-like array composed of 100 cylindrical modules covering three-quarters of the collicular surface. Such a modular architecture is reminiscent of the acetylcholinesterase lattice we previously described in rat intermediate collicular layers. In the enzyme lattice, the surroundings of the cylindrical modules are composed of a mosaic of dense and diffuse enzyme subdomains. Thus, we compared the distribution of the overall nigral projection and of its constituent channels with the acetylcholinesterase lattice. The procedure combined axonal labelling with histochemistry on single sections for acetylcholinesterase activity. The results demonstrate that the overall nigral projection overlaps the acetylcholinesterase lattice and its constituent channels converge with either the dense or the diffuse enzyme subdomains. The stereometric arrangement of the nigro-collicular pathway is suggestive of an architecture promoting the selection of collicular motor programs for different classes of orienting behavior.
Collapse
Affiliation(s)
- S Mana
- Université René Descartes, Laboratoire de Neurosciences Comportementales, Centre Universitaire de Boulogne, 71 avenue Edouard Vaillant, 92774 Boulogne Billancourt, France
| | | |
Collapse
|
105
|
|
106
|
Dendritic arborizations of the rat substantia nigra pars reticulata neurons: spatial organization and relation to the lamellar compartmentation of striato-nigral projections. J Neurosci 2001. [PMID: 11517275 DOI: 10.1523/jneurosci.21-17-06874.2001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cerebral cortex provides a major source of inputs to the basal ganglia. As has been well documented, the topography of corticostriatal projections subdivides the striatum into a mosaic of functionally distinct sectors. How information flow from these striatal sectors remains segregated or not within basal ganglia output nuclei has to be established. Electrophysiologically identified neurons of the rat substantia nigra pars reticulata were labeled by juxtacellular injection of Neurobiotin, and the spatial organization of their dendritic arborizations was analyzed in relation to the projection fields of individual striatal sectors. Thirty-nine nigral neurons located in the projection territory of the distinct striatal sensorimotor sectors were reconstructed. The data show that the dendritic arborizations of nigral neurons conform to the geometry of striato-nigral projections. Like striatal projections, the arborizations formed a series of curved laminas enveloping a dorsolaterally located core. Although dendritic fields of the neurons lying in the laminae were flat, those located in the core were spherical or cylindrical, thereby conforming to the shape of the striatal projection fields. This remarkable alignment between the dendritic arborizations of nigral neurons and the projection fields from individual striatal districts supports the concept of a parallel architecture of the striato-nigral circuits. However, pars reticulata neurons usually extend part of their dendrites within adjacent striatal projection fields, thereby ensuring a continuum between channels. The extension of the dendritic arborizations within the striatal projection fields suggests that nigral neurons integrate the information that is relevant for the completion of the specific motor behavior they control.
Collapse
|
107
|
Abstract
Cortico-basal ganglia circuits are organized in parallel channels. Information flow from functionally distinct cortical areas remains segregated within the striatum and through its direct projections to basal ganglia output structures. Whether such a segregation is maintained in trans-subthalamic circuits is still questioned. The effects of electrical stimulation of prefrontal, motor, and auditory cortex were analyzed in the subthalamic nucleus as well as in the striatum of anesthetized rats. In the striatum, cells (n = 300) presenting an excitatory response to stimulation of these cortical areas were located in distinct striatal territories, and none of the cells responded to two cortical stimulation sites. In the subthalamic nucleus, both prefrontal and motor cortex stimulations induced early and late excitatory responses as a result of activation of the direct cortico-subthalamic pathway and of the indirect cortico-striato-pallido-subthalamic pathway, respectively. Stimulation of the auditory cortex, which does not send direct projection to the subthalamic nucleus, induced only late excitatory responses. Among the subthalamic responding cells (n = 441), a few received both prefrontal and motor cortex (n = 19) or prefrontal and auditory cortex (n = 10) excitatory inputs, whereas a larger number of cells were activated from both motor and auditory cortices (n = 48). The data indicate that the segregation of cortical information flow originating from prefrontal, motor, and auditory cortices that occurred in the striatum is only partly maintained in the subthalamic nucleus. It can be proposed that the existence of specific patterns of convergence of information flow from these functionally distinct cortical areas in the subthalamic nucleus allows interactions between parallel channels.
Collapse
|
108
|
Abstract
The superior colliculus (SC) projections to the midline and intralaminar thalamic nuclei were examined in the rat. The retrograde tracer cholera toxin beta (CTb) was injected into one of the midline thalamic nuclei-paraventricular, intermediodorsal, rhomboid, reuniens, submedius, mediodorsal, paratenial, anteroventral, caudal ventromedial, or parvicellular part of the ventral posteriomedial nucleus-or into one of the intralaminar thalamic nuclei-medial parafascicular, lateral parafascicular, central medial, paracentral, oval paracentral, or central lateral nucleus. After 10-14 days, the brains from these animals were processed histochemically, and the retrogradely labeled neurons in the SC were mapped. The lateral sector of the intermediate gray and white layers of the SC send axonal projections to the medial and lateral parafascicular, central lateral, paracentral, central medial, rhomboid, reuniens, and submedius nuclei. The medial sector of the intermediate and deep SC layers project to the parafascicular and central lateral thalamic nuclei. The paraventricular thalamic nucleus is innervated almost exclusively by the medial sectors of the deep SC layers. The superficial gray and optic layers of the SC do not project to any of these thalamic areas. The discussion focuses on the role these SC-thalamic inputs may have on forebrain circuits controlling orienting and defense (i.e., fight-or-flight) reactions.
Collapse
Affiliation(s)
- K E Krout
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
109
|
Gonzalez-Hernandez T, Barroso-Chinea P, Acevedo A, Salido E, Rodriguez M. Colocalization of tyrosine hydroxylase and GAD65 mRNA in mesostriatal neurons. Eur J Neurosci 2001. [DOI: 10.1046/j.1460-9568.2001.01371.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
110
|
Abstract
The goals of this article are to suggest a basic wiring diagram for the motor neural network that controls motivated behavior, and to provide a model for the organization of cerebral hemisphere inputs to this network. Cerebral projections mediate voluntary regulation of a behavior control column in the ventromedial upper brainstem that includes (from rostral to caudal) the medial preoptic, anterior hypothalamic, descending paraventricular, ventromedial, and premammillary nuclei, the mammillary body, and finally the substantia nigra and ventral tegmental area. The rostral segment of this column is involved in controlling ingestive (eating and drinking) and social (defensive and reproductive) behaviors, whereas the caudal segment is involved in controlling general exploratory or foraging behaviors (with locomotor and orienting components) that are required for obtaining any particular goal object. Virtually all parts of the cerebral hemispheres contribute to a triple descending projection - with cortical excitatory, striatal inhibitory, and pallidal disinhibitory components - to specific parts of the behavior control column. The functional dynamics of this circuitry remain to be established.
Collapse
Affiliation(s)
- L W Swanson
- The Neuroscience Program, Hedco Neuroscience Building, Rm. 428, University of Southern California, 3614 Watt Way, 90089-2520, Los Angeles, CA, USA.
| |
Collapse
|
111
|
Akopian G, Musleh W, Smith R, Walsh JP. Functional state of corticostriatal synapses determines their expression of short- and long-term plasticity. Synapse 2000; 38:271-80. [PMID: 11020230 DOI: 10.1002/1098-2396(20001201)38:3<271::aid-syn6>3.0.co;2-a] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Relationships between presynaptic function and short- and long-term plasticity were investigated at adult corticostriatal synapses. Wide variability was observed in the expression of short- and long-term synaptic plasticity. Intracellular records from 47 cells produced 17 examples of LTD (<90% of control), 10 examples of no long-term change (between 90-110% of control), and 20 examples of LTP (>110% of control). Similar variation existed in paired-pulse and posttetanic plasticities. The variability expressed in all three forms of plasticity appears to be related, based on correlations found between the paired-pulse ratio (PPR) and tetanus-induced short- (3 min posttetanus) and long-term plasticities (16-20 min posttetanus). These data suggest that tetanus-induced changes in synaptic strength are related to the intrinsic, preconditioned behavior of synapses. Every cell showing paired-pulse depression also expressed LTD in response to high-frequency activation of its afferents. Those synapses showing paired-pulse potentiation tended to express LTP, although exceptions did exist. Similar relationships were found in a parallel analysis of population spikes. PPR also changed in association with the expression of posttetanic and long-term depression. Greater paired-pulse potentiation was observed in medial intracellular recordings, but no medial to lateral differences were seen in posttetanic plasticities. Field recordings also showed a medial bias toward paired-pulse and posttetanic potentiation, but not in long-term plasticity. Block of postsynaptic L-type Ca(2+) channels with nifedipine eliminated LTD expression, but overall no differences were found between nifedipine and control cells.
Collapse
Affiliation(s)
- G Akopian
- Ethel Percy Andrus Gerontology Center, USC Program in Neuroscience, University of Southern California, Los Angeles, California 90089-0191, USA
| | | | | | | |
Collapse
|
112
|
Niemi-Junkola UJ, Westby GW. Cerebellar output exerts spatially organized influence on neural responses in the rat superior colliculus. Neuroscience 2000; 97:565-73. [PMID: 10828538 DOI: 10.1016/s0306-4522(00)00044-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The deep cerebellar nuclei project to largely segregated target regions in the contralateral superior colliculus. Single-unit recordings have previously shown that nuclear inactivation normally suppresses spontaneously active collicular target neurons. However, facilitation of activity has also been found in a proportion of collicular units. In the present study we tested the hypothesis that the type of effect is related to the cerebellotectal topography. We recorded simultaneously in the deep cerebellar nuclei and superior colliculus of 53 anaesthetized rats. GABA microinjections produced a complete, reversible, arrest of activity in the deep cerebellar nuclei. We investigated the effect of this inactivation on 292 sensory and non-sensory cells in the collicular intermediate and deep layers. Of these, 29% showed a reduced response to their preferred sensory stimulus or decreased their spontaneous firing rate in the case of non-sensory cells. However, 15% increased their sensory responsiveness and/or spontaneous firing rate following cerebellar inactivation. No effect was seen in the remaining 56% of cells. The distribution of these different effects was highly significantly related to the topography of the cerebellotectal terminal fields. Thus, 68% of the suppressive effects were obtained from cells lying in the terminal fields of the deep cerebellar nucleus inactivated. Conversely, 86% of the excitatory effects and 66% of the cells showing no effect were obtained from cells falling outside the terminal field. The results support the view that the superior colliculus is an important site for the functional integration of primary sensory information, not only with cortical and basal ganglia afferents, but also with cerebellar information. The contrasting physiological responses observed within the terminal cerebellotectal topography appear to map closely on to the known distribution of the cells of origin of the two major descending output pathways of the superior colliculus and are possibly mediated by intrinsic inhibitory connections within its intermediate and deep layers. These results provide evidence for a neural architecture in the superior colliculus whose function is the selection of appropriate actions in response to novel stimuli and the suppression of competing motor programmes.
Collapse
Affiliation(s)
- U J Niemi-Junkola
- Department of Psychology, Sheffield University, S10 2TP, Sheffield, UK
| | | |
Collapse
|
113
|
Mahon S, Delord B, Deniau JM, Charpier S. Intrinsic properties of rat striatal output neurones and time-dependent facilitation of cortical inputs in vivo. J Physiol 2000; 527 Pt 2:345-54. [PMID: 10970435 PMCID: PMC2270073 DOI: 10.1111/j.1469-7793.2000.t01-1-00345.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In vivo intracellular recordings were performed from striatal output neurones (SONs) (n = 34) to test the role of their intrinsic membrane properties in the temporal integration of excitatory cortical synaptic inputs. In a first series of experiments, intracellular injection of a test depolarising current pulse was preceded by a 200 ms suprathreshold prepulse, the two pulses having the same intensity. An increase in intrinsic excitability was observed as a decrease (55 ± 21 ms, n = 13) (mean ± s.d.) in latency to the first action potential of the test response compared to the prepulse response. This value decayed exponentially as a function of the time interval between the current pulses (τ= 364 ± 37 ms, n = 5). The voltage response of SONs was not modified by a prepulse that induced a membrane depolarisation < −62 mV. The effect of the suprathreshold prepulse was tested on monosynaptic cortically evoked excitatory postsynaptic potentials (EPSPs). The ability to induce suprathreshold EPSPs was markedly increased by the prior depolarisation (n = 11 cells). This facilitation decayed progressively as a function of the time intervals between prepulses and cortical stimuli. The potentiation was not observed on small EPSPs reaching a peak potential < −65 mV (n = 3). We conclude that SONs can optimise cortical information transfer by modifying their intrinsic excitability as a function of their past activation. It is likely that this time-dependent facilitation results, at least in part, from the kinetics of a striatal slowly inactivating potassium current available around −60 mV that recovers slowly from inactivation.
Collapse
Affiliation(s)
- S Mahon
- Institut des Neurosciences, Departement de Neurochimie-Anatomie, CNRS UMR 7624, F-75005 Paris, France
| | | | | | | |
Collapse
|
114
|
Gonz�lez-Hern�ndez T, Rodr�guez M. Compartmental organization and chemical profile of dopaminergic and GABAergic neurons in the substantia nigra of the rat. J Comp Neurol 2000. [DOI: 10.1002/(sici)1096-9861(20000522)421:1<107::aid-cne7>3.0.co;2-f] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
115
|
Joel D, Weiner I. The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum. Neuroscience 2000; 96:451-74. [PMID: 10717427 DOI: 10.1016/s0306-4522(99)00575-8] [Citation(s) in RCA: 386] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This Commentary compares the connections of the dopaminergic system with the striatum in rats and primates with respect to two levels of striatal organization: a tripartite functional (motor, associative and limbic) subdivision and a compartmental (patch/striosome-matrix) subdivision. The topography of other basal ganglia projections to the dopaminergic system with respect to their tripartite functional subdivision is also reviewed. This examination indicates that, in rats and primates, the following observations can be made. (1) The limbic striatum reciprocates its dopaminergic input and in addition innervates most of the dopaminergic neurons projecting to the associative and motor striatum, whereas the motor and associative striatum reciprocate only part of their dopaminergic input. Therefore, the connections of the three striatal subregions with the dopaminergic system are asymmetrical, but the direction of asymmetry differs between the limbic versus the motor and associative striatum. (2) The limbic striatum provides the main striatal input to dopamine cell bodies and proximal dendrites, with some contribution from a subset of neurons in the associative and motor striatum (patch neurons in rats; an unspecified group of neurons in primates), while striatal input to the ventrally extending dopamine dendrites arises mainly from a subset of neurons in the associative and motor striatum (matrix neurons in rats; an unspecified group of neurons in primates). (3) Projections from functionally corresponding subdivisions of the striatum, pallidum and subthalamic nucleus to the dopaminergic system overlap, but the specific targets (dopamine cells, dopamine dendrites, GABA cells) of these projections differ. Major differences include the following. (1) In rats, neurons projecting to the motor and associative striatum reside in distinct regions, while in primates they are arranged in interdigitating clusters. (2) In rats, the terminal fields of projections arising from the motor and associative striatum are largely segregated, while in primates they are not. (3) In rats, patch- and matrix-projecting dopamine cells are organized in spatially, morphologically, histochemically and hodologically distinct ventral and dorsal tiers, while in primates there is no (bi)division of the dopaminergic system that results in two areas which have all the characteristics of the two tiers in rats. Based on the anatomical data and known dopamine cell physiology, we forward an hypothesis regarding the influence of the basal ganglia on dopamine cell activity which captures at least part of the complex interplay taking place within the substantia nigra between projections arising from the different basal ganglia nuclei. Finally, we incorporate the striatal connections with the dopaminergic system into an open-interconnected scheme of basal ganglia-thalamocortical circuitry.
Collapse
Affiliation(s)
- D Joel
- Department of Psychology, Tel Aviv University, Ramat-Aviv, Tel Aviv, Israel.
| | | |
Collapse
|
116
|
Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 2000. [PMID: 10704511 DOI: 10.1523/jneurosci.20-06-02369.2000] [Citation(s) in RCA: 967] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Clinical manifestations in diseases affecting the dopamine system include deficits in emotional, cognitive, and motor function. Although the parallel organization of specific corticostriatal pathways is well documented, mechanisms by which dopamine might integrate information across different cortical/basal ganglia circuits are less well understood. We analyzed a collection of retrograde and anterograde tracing studies to understand how the striatonigrostriatal (SNS) subcircuit directs information flow between ventromedial (limbic), central (associative), and dorsolateral (motor) striatal regions. When viewed as a whole, the ventromedial striatum projects to a wide range of the dopamine cells and receives a relatively small dopamine input. In contrast, the dorsolateral striatum (DLS) receives input from a broad expanse of dopamine cells and has a confined input to the substantia nigra (SN). The central striatum (CS) receives input from and projects to a relatively wide range of the SN. The SNS projection from each striatal region contains three substantia nigra components: a dorsal group of nigrostriatal projecting cells, a central region containing both nigrostriatal projecting cells and its reciprocal striatonigral terminal fields, and a ventral region that receives a specific striatonigral projection but does not contain its reciprocal nigrostriatal projection. Examination of results from multiple tracing experiments simultaneously demonstrates an interface between different striatal regions via the midbrain dopamine cells that forms an ascending spiral between regions. The shell influences the core, the core influences the central striatum, and the central striatum influences the dorsolateral striatum. This anatomical arrangement creates a hierarchy of information flow and provides an anatomical basis for the limbic/cognitive/motor interface via the ventral midbrain.
Collapse
|
117
|
West AR, Grace AA. Striatal nitric oxide signaling regulates the neuronal activity of midbrain dopamine neurons in vivo. J Neurophysiol 2000; 83:1796-808. [PMID: 10758092 DOI: 10.1152/jn.2000.83.4.1796] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A major component of the cortical regulation of the nigrostriatal dopamine (DA) system is known to occur via activation of striatal efferent systems projecting to the substantia nigra. The potential intermediary role of striatal nitric oxide synthase (NOS)-containing interneurons in modulating the efferent regulation of DA neuron activity was examined using single-unit recordings of DA neurons performed concurrently with striatal microdialysis in anesthetized rats. The response of DA neurons recorded in the substantia nigra to intrastriatal artificial cerebrospinal fluid (ACSF) or drug infusion was examined in terms of mean firing rate, percent of spikes fired in bursts, cells/track, and response to electrical stimulation of the orbital prefrontal cortex (oPFC) and striatum. Intrastriatal infusion of NOS substrate concurrently with intermittent periods of striatal and cortical stimulation increased the mean DA cell population firing rate as compared with ACSF controls. This effect was reproduced via intrastriatal infusion of a NO generator. Infusion of either a NOS inhibitor or NO chelator via reverse microdialysis did not affect basal firing rate but increased the percentage of DA neurons responding to striatal stimulation with an initial inhibition followed by a rebound excitation (IE response) from 40 to 74%. NO scavenger infusion also markedly decreased the stimulation intensity required to elicit an IE response to electrical stimulation of the striatum. In single neurons in which the effects of electrical stimulation were observed before and after drug delivery, NO antagonist infusion was observed to decrease the onset latency and extend the duration of the initial inhibitory phase induced by either oPFC or striatal stimulation. This is the first report showing that striatal NO tone regulates the basal activity and responsiveness of DA neurons to cortical and striatal inputs. These studies also indicate that striatal NO signaling may play an important role in the integration of information transmitted to basal ganglia output centers via corticostriatal and striatal efferent pathways.
Collapse
Affiliation(s)
- A R West
- Departments of Neuroscience and Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
118
|
Canales JJ, Gilmour G, Iversen SD. The role of nigral and thalamic output pathways in the expression of oral stereotypies induced by amphetamine injections into the striatum. Brain Res 2000; 856:176-83. [PMID: 10677624 DOI: 10.1016/s0006-8993(99)02344-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Microinjections of amphetamine into the ventrolateral striatum (VLS) elicit a striking behavioral syndrome characterized by compulsive oral and forelimb motor stereotypies. The neural pathways that mediate these behavioral responses downstream from the striatum have not yet been identified. In a series of experiments, we investigated the involvement of the substantia nigra pars reticulata (SNr) and the ventromedial nucleus of the thalamus (VMT) in the mediation of this behavioral syndrome. We demonstrated that lidocaine-induced reversible inactivation of the SNr reduced amphetamine-induced stereotyped biting and gnawing behaviors, suggesting that the nigral output pathway plays a significant role in the expression of these behavioral responses. In turn, injections of lidocaine into the VMT only transiently reduced amphetamine-stimulated biting and increased stereotyped gnawing and paw nibbling, suggesting that the expression of oral stereotypies induced by amphetamine injections into the VLS is not dependent on thalamocortical feedback.
Collapse
Affiliation(s)
- J J Canales
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
| | | | | |
Collapse
|
119
|
Sgambato V, Maurice N, Besson MJ, Thierry AM, Deniau JM. Effect of a functional impairment of corticostriatal transmission on cortically evoked expression of c-Fos and zif 268 in the rat basal ganglia. Neuroscience 1999; 93:1313-21. [PMID: 10501455 DOI: 10.1016/s0306-4522(99)00267-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The activity-dependent induction of immediate-early genes is commonly used to map activated neuronal networks. In a previous analysis of the cortico-basal ganglia circuits, we have shown that a cortical stimulation produces Fos protein expression in the striatum and the subthalamic nucleus, with a pattern which conforms to the anatomical organization of cortical projections [Sgambato V. et al. (1996) Neuroscience 81, 93-112]. In the present study, we examined the effects of a unilateral blockade of the corticostriatal transmission on c-fos and zif 268 messenger RNA expression evoked in the substantia nigra pars reticulata and the subthalamic nucleus following stimulation of the ipsilateral motor cortex. The blockade of the corticostriatal pathway was performed either by an excitotoxic striatal lesion or by an application of the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione within the striatum. After application of the glutamate receptor antagonist, which prevented the cortical stimulation activating the GABAergic striatonigral pathway, the induction of both c-fos and zif 268 messenger RNAs was facilitated in the ipsilateral substantia nigra pars reticulata. In the subthalamic nucleus ipsilateral to the application of 6-cyano7-nitroquinoxaline-2,3-dione, the cellular discharges evoked by stimulation of the cortex were considerably shortened as a result of the blockade of the disinhibitory striato-pallido-subthalamic circuit. However, a strong expression of immediate-early genes was still induced by the cortical stimulation. By contrast, after unilateral kainate lesion of the striatum, the cortical stimulation was no longer able to induce c-fos and zif 268 messenger RNA expression in the ipsilateral subthalamic nucleus and in the substantia nigra pars reticulata bilaterally. The lack of immediate-early gene induction strongly contrasted with the neuronal discharges evoked in these nuclei by the cortical stimulation. Comparison between the cortically evoked neuronal activities and the pattern of immediate-early gene expression suggests that the induction of immediate-early genes in the basal ganglia mainly reflects the level of synaptic activity rather than the frequency of discharge of the postsynaptic neurons. Moreover, the results stress that modifications of immediate-early gene expression observed in the basal ganglia after an acute or a chronic interruption of the corticostriatal transmission are not superimposable.
Collapse
Affiliation(s)
- V Sgambato
- Laboratoire de Neurochimie-Anatomie, Institut des Neurosciences, Unité Mixte de Recherche 7624, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | |
Collapse
|
120
|
Gernert M, Richter A, Löscher W. Subconvulsive dose of pentylenetetrazole increases the firing rate of substantia nigra pars reticulata neurons in dystonic but not in nondystonic hamsters. Synapse 1999; 33:259-67. [PMID: 10421706 DOI: 10.1002/(sici)1098-2396(19990915)33:4<259::aid-syn2>3.0.co;2-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dystonic attacks, including twisting movements, can be initiated by mild stress in mutant (gene symbol dt(sz)) Syrian golden hamsters, an animal model of idiopathic paroxysmal dystonia. Previous studies suggested that dysfunctions in basal ganglia, which are not restricted to periods of attacks, are involved in the dystonic syndrome in mutant hamsters. Therefore, in the present study in anesthetized animals, we examined whether the spontaneous firing rate of extracellularly recorded neurons of the substantia nigra pars reticulata (SNr) differs between dt(sz) and age-matched nondystonic control hamsters. Furthermore, we investigated the responsiveness of these nondopaminergic, presumably GABAergic neurons to a subconvulsive dose (25mg/kg i.p.) of systemically applied pentylenetetrazole (PTZ), which exerts prodystonic effects in mutant hamsters. The mean basal (spontaneous) firing rate of SNr neurons was not altered in mutant hamsters. However, within 5 min after i.p. injection of PTZ, the mean firing rate of SNr neurons significantly increased to about 160% of predrug control values in dt(sz) but not in control hamsters. Although the present study failed to reveal changes in the basal firing rate of SNr neurons in mutant hamsters, the abnormal response to PTZ is in line with previous pharmacological and biochemical data indicating disturbed function of the GABAergic system.
Collapse
Affiliation(s)
- M Gernert
- Department of Pharmacology, Toxicology, and Pharmacy, School of Veterinary Medicine, Hannover, Germany.
| | | | | |
Collapse
|
121
|
Maurin Y, Banrezes B, Menetrey A, Mailly P, Deniau JM. Three-dimensional distribution of nigrostriatal neurons in the rat: relation to the topography of striatonigral projections. Neuroscience 1999; 91:891-909. [PMID: 10391469 DOI: 10.1016/s0306-4522(98)00681-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Functional regions of the rat striatum related to identified cortical territories were injected ionophoretically with wheat germ agglutinin coupled to horseradish peroxidase. Coronal serial sections were cut throughout the substantia nigra. The distributions of labelled striatal projections and nigrostriatal neurons were studied. Using software developed in our laboratory, three-dimensional reconstructions were calculated which confirmed and extended the organizational scheme of striatonigral projections already reported by our group. These projections were organized as a set of longitudinal lamellae spatially organized so as to segregate the flow of information emanating from striatal regions affiliated to sensorimotor and associative-limbic cortical areas. In addition, the relationship between the striatonigral projections and the nigrostriatal neurons was studied by three-dimensional reconstruction. For each striatal injection site, two populations of retrogradely labelled nigral neurons could be discriminated by their position with respect to the striatal projection field. The first one occupied a proximal position, in register with the labelled striatal projections, while the second was more distal. The populations of proximal neurons which innervate different functional striatal sectors were segregated both mediolaterally, dorsoventrally and rostrocaudally, while the populations of distal neurons were more scattered and showed a lesser degree of spatial segregation. The organization of these two populations with respect to the striatal projection fields suggests that the substantia nigra might control the flow of cortical information through the striatum via two different modalities, based respectively on a closed nigrostriatal loop involving the proximal neurons, and an open loop involving the distal ones.
Collapse
Affiliation(s)
- Y Maurin
- Laboratoire de Neurochimie-Anatomie, Institut des Neurosciences, CNRS UMR-7624, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | |
Collapse
|
122
|
Charpier S, Mahon S, Deniau JM. In vivo induction of striatal long-term potentiation by low-frequency stimulation of the cerebral cortex. Neuroscience 1999; 91:1209-22. [PMID: 10391430 DOI: 10.1016/s0306-4522(98)00719-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Both long-term depression and long-term potentiation have been described at corticostriatal synapses. These long-lasting changes in synaptic strength were classically induced by high-frequency (100 Hz) electrical stimulations of cortical afferents. The purpose of the present study was to test the ability of corticostriatal connections to express use-dependent modifications after cortical stimulation applied at the frequency of synchronization of corticostriatal inputs observed in our in vivo preparation, i.e. the barbiturate-anesthetized rat. For this study we used an identified monosynaptic corticostriatal pathway, between the orofacial motor cortex and its target region in the striatum. Intracellular recording of striatal output neurons showed spontaneous large-amplitude oscillation-like depolarizations exhibiting a strong periodicity with a narrow frequency band at 5 Hz. Using the focal electroencephalogram of the cortical region projecting to the recorded cells, we found that membrane potential oscillations in striatal neurons were in phase with episodes of spontaneous cortical spindle waves. To determine directly the pattern of activity of corticostriatal neurons, we performed intracellular recordings of electrophysiologically identified corticostriatal neurons simultaneously with the corresponding surface electroencephalogram. We found that corticostriatal cells (n = 7) exhibited periods of spontaneous 5-Hz discharges in phase with the cortical spindle waves. Therefore, we have tested the effect of repetitive cortical stimulations at this low frequency (5 Hz, 500-1000 pulses) on the corticostriatal synaptic efficacy. In 62% of cases (eight of 13 neurons tested), this conditioning was able to produce long-term potentiation in the corticostriatal synaptic efficacy. The mean increase of excitatory postsynaptic potential amplitude ranged from 13.3% to 172% (mean = 67.3%, n = 8). These results provide additional support for physiological long-term potentiation at corticostriatal connections. Furthermore, this study demonstrates that corticostriatal long-term potentiation can be induced by synchronization at low frequency of cortical afferents. Our data support the concept that the striatal output neuron may operate as a coincidence detector of converging cortical information.
Collapse
Affiliation(s)
- S Charpier
- Institut des Neurosciences, Département de Neurochimie-Anatomie, CNRS UMR 7624, Université Pierre et Marie Curie, Paris, France
| | | | | |
Collapse
|
123
|
Wang S, Redgrave P. Microinjections of muscimol into lateral superior colliculus disrupt orienting and oral movements in the formalin model of pain. Neuroscience 1997; 81:967-88. [PMID: 9330360 DOI: 10.1016/s0306-4522(97)00191-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
An important reaction in rodent models of persistent pain is for the animal to turn and bite/lick the source of discomfort (autotomy). Comparatively little is known about the supraspinal pathways which mediate this reaction. Since autotomy requires co-ordinated control of the head and mouth, it is possible that basal ganglia output via the superior colliculus may be involved; previously this projection has been implicated in the control of orienting and oral behaviour. The purpose of the present study was therefore, to test whether the striato-nigro-tectal projection plays a significant role in oral responses elicited by subcutaneous injections of formalin. Behavioural output from this system is normally associated with the release of collicular projection neurons from tonic inhibitory input from substantia nigra pars reticulata. Therefore, in the present study normal disinhibitory signals from the basal ganglia were blocked by injecting the GABA agonist muscimol into different regions of the rat superior colliculus. c-Fos immunohistochemistry was used routinely to provide regional estimates of the suppressive effects of muscimol on neuronal activity. Biting and licking directed to the site of a subcutaneous injection of formalin (50 microliters of 4%) into the hind-paw were suppressed in a dose-related manner by bilateral microinjections of muscimol into the lateral superior colliculus (10-50 ng; 0.5 microliter/side); injections into the medial superior colliculus had little effect. Bilateral injections of muscimol 20 ng into lateral colliculus caused formalin-treated animals to re-direct their attention and activity from lower to upper regions of space. Muscimol injected unilaterally into lateral superior colliculus elicited ipsilateral turning irrespective of which hind-paw was injected with formalin. Oral behaviour was blocked when the muscimol and formalin injections were contralaterally opposed; this was also true for formalin injections into the front foot. Interestingly, when formalin was injected into the perioral region, injections of muscimol into the lateral superior colliculus had no effect on the ability of animals to make appropriate contralaterally directed head and body movements to facilitate localization of the injected area with either front- or hind-paw. These findings suggest that basal ganglia output via the lateral superior colliculus is critical for responses to noxious stimuli which entail the mouth moving to and acting on the foot, but not when the foot is the active agent applied to the mouth. The data also suggest that pain produces a spatially non-specific facilitation of units throughout collicular maps, which can be converted into a spatially inappropriate signal by locally suppressing parts of the map with the muscimol.
Collapse
Affiliation(s)
- S Wang
- Department of Psychology, University of Sheffield, U.K
| | | |
Collapse
|
124
|
Sgambato V, Abo V, Rogard M, Besson MJ, Deniau JM. Effect of electrical stimulation of the cerebral cortex on the expression of the Fos protein in the basal ganglia. Neuroscience 1997; 81:93-112. [PMID: 9300404 DOI: 10.1016/s0306-4522(97)00179-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The protein Fos is a transcription factor which is quickly induced in response to a variety of extracellular signals. Since this protein is expressed in a variety of neuronal systems in response to activation of synaptic afferents, it has been suggested that it might contribute to activity-dependent plasticity in neural networks. The present study investigated the effect of cortical electrical stimulation on the expression of Fos in the basal ganglia in the rat, a group of structures that participate in sensorimotor learning. Results show that the repetitive application of electrical shocks in restricted areas of the cerebral cortex induces an expression of Fos mostly confined to the striatum and the subthalamic nucleus. The induction which can be elicited from different cortical areas (sensorimotor, auditory and limbic areas) does not require particular temporal patterns of stimulation but rather depends on the total number of shocks delivered during a given period of time. Moreover, it appears to be rather independent of the number of spikes discharged by the activated cells. In the striatum, the distribution of immunoreactive neurons is precisely delineated and conforms to the known topographical organization of stimulated corticostriatal projections. As demonstrated using a variety of double labelling techniques (combination of the immunocytochemical detection of Fos with the autoradiography of mu opioid receptors, calbindin immunocytochemistry, in situ hybridization of preproenkephalin and preprotachykinin A messenger RNAs), striatal neurons which express Fos are mostly localized in the matrix compartment and concern equally enkephaline and substance P containing efferent neurons. In the subthalamic nucleus, Fos expression evoked by cortical stimulation is also confined to discrete regions of the nucleus, the localizations corresponding to the primary projection site of the stimulated cortical cells. These results indicate that in addition to its phasic synaptic influence on the basal ganglia, the cerebral cortex could exert a long-term effect on the functional state of this system via a genomic control. Since the basal ganglia are involved in sensorimotor learning and motor habit formation, it is tempting to speculate that the activity-dependent Fos induction at corticostriatal and subthalamic synapses may contribute to consolidate the functionality of the neuronal networks activated during the completion of given motor tasks.
Collapse
Affiliation(s)
- V Sgambato
- Université Pierre et Marie Curie, Department de Neurochimie-Anatomie, U.R.A. 1488, Paris, France
| | | | | | | | | |
Collapse
|
125
|
Maurice N, Deniau JM, Menetrey A, Glowinski J, Thierry AM. Position of the ventral pallidum in the rat prefrontal cortex-basal ganglia circuit. Neuroscience 1997; 80:523-34. [PMID: 9284354 DOI: 10.1016/s0306-4522(97)00002-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The ventral pallidum receives major inputs from the nucleus accumbens, a striatal region related to the prefrontal cortex. The ventral pallidum, through its projections to the mediodorsal nucleus of the thalamus, has been considered as the main output structure of the prefrontal-basal ganglia circuits. However, as shown recently, the ventral pallidum also sends efferents to the subthalamic nucleus and the substantia nigra, suggesting that it could participate in intrinsic basal ganglia circuits. The aim of the present investigation was to determine the position of the ventral pallidum in the prefrontal-basal ganglia circuit originating from the prelimbic and medial orbital areas. Following injections of biocytin (an anterograde tracer) into the region of the core of the nucleus accumbens receiving excitatory inputs from the prelimbic and medial orbital areas, axonal terminal fields were observed in a delineated dorsal region of the ventral pallidum. When the biocytin injections were made into this ventral pallidal region, anterogradely labelled fibres were observed in both the dorsomedial substantia nigra pars reticulata and the medial subthalamic nucleus, but not in the mediodorsal nucleus of the thalamus. Confirming these anatomical observations, electrical stimulation of the core of the nucleus accumbens induced an inhibition of the spontaneous activity (D=34.9+/-13.3 ms, L=9.2+/-3.3 ms) in 46.5% of the ventral pallidal cells. Among these responding cells, 43% were antidromically driven from the subthalamic nucleus, 30% from the substantia nigra pars reticulata and only 6% from the mediodorsal nucleus of the thalamus. These data demonstrate that the region of the ventral pallidum involved in the prefrontal cortex-basal ganglia circuit originating from the prelimbic and medial orbital areas represents essentially a ventral subcommissural extension of the external segment of the globus pallidus since it exhibits similar extrinsic connections and functional characteristics. In conclusion, in this prelimbic and medial orbital channel, the ventral pallidum cannot be considered as a major output structure but is essentially involved in intrinsic basal ganglia circuits.
Collapse
Affiliation(s)
- N Maurice
- INSERM U114, Chaire de Neuropharmacologie, Collège de France, Paris
| | | | | | | | | |
Collapse
|
126
|
Charpier S, Deniau JM. In vivo activity-dependent plasticity at cortico-striatal connections: evidence for physiological long-term potentiation. Proc Natl Acad Sci U S A 1997; 94:7036-40. [PMID: 9192687 PMCID: PMC21280 DOI: 10.1073/pnas.94.13.7036] [Citation(s) in RCA: 162] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/1997] [Accepted: 04/11/1997] [Indexed: 02/04/2023] Open
Abstract
The purpose of the present study was to investigate in vivo the activity-dependent plasticity of glutamatergic cortico-striatal synapses. Electrical stimuli were applied in the facial motor cortex and intracellular recordings were performed in the ipsilateral striatal projection field of this cortical area. Recorded cells exhibited the typical intrinsic membrane properties of striatal output neurons and were identified morphologically as medium spiny type I neurons. Subthreshold cortical tetanization produced either short-term posttetanic potentiation or short-term depression of cortically-evoked excitatory postsynaptic potentials. When coupled with a postsynaptic depolarization leading the membrane potential to a suprathreshold level, the tetanus induced long-term potentiation (LTP) of cortico-striatal synaptic transmission. Induction of striatal LTP was prevented by intracellular injection of a calcium chelator suggesting that this synaptic plasticity involves an increase of postsynaptic free calcium concentration. Contrasting with previous in vitro studies our findings demonstrate that LTP constitutes the normal form of use-dependent plasticity at cortico-striatal synapses. Since excitation of striatal neurons produces a disinhibition of premotor networks, LTP at excitatory striatal inputs should favor the initiation of movements and therefore could be critical for the functions of basal ganglia in motor learning.
Collapse
Affiliation(s)
- S Charpier
- Institut des Neurosciences, Centre National de la Recherche Scientifique, Unité de Recherche Associée 1488, Université Pierre et Marie Curie, 9, quai Saint-Bernard, F-75005 Paris, France
| | | |
Collapse
|
127
|
Crocker AD. The regulation of motor control: an evaluation of the role of dopamine receptors in the substantia nigra. Rev Neurosci 1997; 8:55-76. [PMID: 9402645 DOI: 10.1515/revneuro.1997.8.1.55] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The importance of the nigrostriatal dopaminergic pathway in motor control is widely accepted and it is generally believed that the motor symptoms of Parkinson's disease result solely from reduced release of dopamine from terminals in the striatum. Over recent years there has been a growing body of evidence which suggests that dendritic dopamine release in the substantia nigra is of importance in the regulation of neuronal activity and behaviour. This evidence is reviewed together with a description of our recent findings that show nigral dopamine receptors are essential for the maintenance of normal muscle tone. It is concluded that current views of the basal ganglia circuitry involved in motor control need to be re-evaluated to take into account these recent reports. A scheme is suggested to explain how dopamine mechanisms in the substantia nigra regulate motor activity.
Collapse
Affiliation(s)
- A D Crocker
- Department of Clinical Pharmacology, Flinders University of South Australia, Australia
| |
Collapse
|