101
|
3DMorph Automatic Analysis of Microglial Morphology in Three Dimensions from Ex Vivo and In Vivo Imaging. eNeuro 2018; 5:eN-MNT-0266-18. [PMID: 30627639 PMCID: PMC6325541 DOI: 10.1523/eneuro.0266-18.2018] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/18/2018] [Accepted: 10/28/2018] [Indexed: 11/21/2022] Open
Abstract
Microglia are dynamic immune cells of the central nervous system, and their morphology is commonly used as a readout of cellular function. However, current morphological analysis techniques rely on either tracing of cells or two-dimensional projection analysis, which are time-consuming, subject to bias, and may ignore important three-dimensional (3D) information. Therefore, we have created 3DMorph, a MATLAB-based script that analyzes microglial morphology from 3D data. The program initially requires input of threshold levels, cell size expectations, and preferred methods of skeletonization. This makes 3DMorph easily scalable and adaptable to different imaging parameters or cell types. After these settings are defined, the program is completely automatic and can batch process files without user input. Output data includes cell volume, territorial volume, branch length, number of endpoints and branch points, and average distance between cells. We show that 3DMorph is accurate compared to manual tracing, with significantly decreased user input time. Importantly, 3DMorph is capable of processing in vivo microglial morphology, as well as other 3D branching cell types, from mouse cranial windows or acute hippocampal slices. Therefore, we present a novel, user-friendly, scalable, and semiautomatic method of analyzing cell morphology in 3 dimensions. This method should improve the accuracy of cell measurements, remove user bias between conditions, increase reproducibility between experimenters and labs, and reduce user input time. We provide this open source code on GitHub so that it is free and accessible to all investigators.
Collapse
|
102
|
Impact of neuroimmune activation induced by alcohol or drug abuse on adolescent brain development. Int J Dev Neurosci 2018; 77:89-98. [PMID: 30468786 DOI: 10.1016/j.ijdevneu.2018.11.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/19/2018] [Accepted: 11/19/2018] [Indexed: 12/27/2022] Open
Abstract
Evidence obtained in recent decades has demonstrated that the brain still matures in adolescence. Changes in neural connectivity occur in different regions, including cortical and subcortical structures, which undergo modifications in white and gray matter densities. These alterations concomitantly occur in some neurotransmitter systems and hormone secretion, which markedly influence the refinement of certain brain areas and neural circuits. The immaturity of the adolescent brain makes it more vulnerable to the effects of alcohol and drug abuse, whose use can trigger long-term behavioral dysfunction. This article reviews the action of alcohol and drug abuse (cannabis, cocaine, opioids, amphetamines, anabolic androgenic steroids) in the adolescent brain, and their impact on both cognition and behavioral dysfunction, including predisposition to drug abuse in later life. It also discusses recent evidence that indicates the role of the neuroimmune system response and neuroinflammation as mechanisms that participate in many actions of ethanol and drug abuse in adolescence, including the neurotoxicity and alterations in neurocircuitry that contribute to the dysfunctional behaviors associated with addiction. The new data suggest the therapeutic potential of anti-inflammatory targets to prevent the long-term consequences of drug abuse in adolescence.
Collapse
|
103
|
Kreisel T, Wolf B, Keshet E, Licht T. Unique role for dentate gyrus microglia in neuroblast survival and in VEGF-induced activation. Glia 2018; 67:594-618. [DOI: 10.1002/glia.23505] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/24/2018] [Accepted: 06/25/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Tirzah Kreisel
- Department of Developmental Biology and Cancer Research; Hadassah Medical School, The Hebrew University; Jerusalem Israel
- Edmond and Lily Safra Center for Brain Sciences (ELSC); The Hebrew University; Jerusalem Israel
| | - Brachi Wolf
- Department of Developmental Biology and Cancer Research; Hadassah Medical School, The Hebrew University; Jerusalem Israel
| | - Eli Keshet
- Department of Developmental Biology and Cancer Research; Hadassah Medical School, The Hebrew University; Jerusalem Israel
| | - Tamar Licht
- Department of Developmental Biology and Cancer Research; Hadassah Medical School, The Hebrew University; Jerusalem Israel
| |
Collapse
|
104
|
Polis B, Srikanth KD, Elliott E, Gil-Henn H, Samson AO. L-Norvaline Reverses Cognitive Decline and Synaptic Loss in a Murine Model of Alzheimer's Disease. Neurotherapeutics 2018; 15:1036-1054. [PMID: 30288668 PMCID: PMC6277292 DOI: 10.1007/s13311-018-0669-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The urea cycle is strongly implicated in the pathogenesis of Alzheimer's disease (AD). Arginase-I (ARGI) accumulation at sites of amyloid-beta (Aβ) deposition is associated with L-arginine deprivation and neurodegeneration. An interaction between the arginase II (ARGII) and mTOR-ribosomal protein S6 kinase β-1 (S6K1) pathways promotes inflammation and oxidative stress. In this study, we treated triple-transgenic (3×Tg) mice exhibiting increased S6K1 activity and wild-type (WT) mice with L-norvaline, which inhibits both arginase and S6K1. The acquisition of spatial memory was significantly improved in the treated 3×Tg mice, and the improvement was associated with a substantial reduction in microgliosis. In these mice, increases in the density of dendritic spines and expression levels of neuroplasticity-related proteins were followed by a decline in the levels of Aβ toxic oligomeric and fibrillar species in the hippocampus. The findings point to an association of local Aβ-driven and immune-mediated responses with altered L-arginine metabolism, and they suggest that arginase and S6K1 inhibition by L-norvaline may delay the progression of AD.
Collapse
Affiliation(s)
- Baruh Polis
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, 1311502, Safed, Israel.
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, 1311502, Safed, Israel.
| | - Kolluru D Srikanth
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, 1311502, Safed, Israel
- Laboratory of Molecular and Behavioral Neuroscience, The Azrieli Faculty of Medicine, Bar-Ilan University, 8th Henrietta Szold Street, P.O. Box 1589, 1311502, Safed, Israel
| | - Evan Elliott
- Laboratory of Molecular and Behavioral Neuroscience, The Azrieli Faculty of Medicine, Bar-Ilan University, 8th Henrietta Szold Street, P.O. Box 1589, 1311502, Safed, Israel
| | - Hava Gil-Henn
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, 1311502, Safed, Israel
| | - Abraham O Samson
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, 1311502, Safed, Israel
| |
Collapse
|
105
|
Frye MD, Zhang C, Hu BH. Lower level noise exposure that produces only TTS modulates the immune homeostasis of cochlear macrophages. J Neuroimmunol 2018; 323:152-166. [PMID: 30196827 DOI: 10.1016/j.jneuroim.2018.06.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/29/2018] [Accepted: 06/30/2018] [Indexed: 02/07/2023]
Abstract
Noise exposure producing temporary threshold shifts (TTS) has been demonstrated to cause permanent changes to cochlear physiology and hearing function. Several explanations have been purported to underlie these long-term changes in cochlear function, such as damage to sensory cell stereocilia and synaptic connections between sensory cells and their innervation by spiral ganglion neurons, and demyelination of the auditory nerve. Though these structural defects have been implicated in hearing difficulty, cochlear responses to this stress damage remains poorly understood. Here, we report the activation of the cochlear immune system following exposure to lower level noise (LLN) that causes only TTS. Using multiple morphological, molecular and functional parameters, we assessed the responses of macrophages, the primary immune cell population in the cochlea, to the LLN exposure. This study reveals that a LLN that causes only TTS increases the macrophage population in cochlear regions immediately adjacent to sensory cells and their innervations. Many of these cells acquire an activated morphology and express the immune molecules CCL2 and ICAM1 that are important for macrophage inflammatory activity and adhesion. However, LLN exposure reduces macrophage phagocytic ability. While the activated morphology of cochlear macrophages reverses, the complete recovery is not achieved 2 months after the LLN exposure. Taken together, these observations clearly implicate the cochlear immune system in the cochlear response to LLN that causes no permanent threshold change.
Collapse
Affiliation(s)
- Mitchell D Frye
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| | - Celia Zhang
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| | - Bo Hua Hu
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| |
Collapse
|
106
|
Distribution and Morphological Features of Microglia in the Developing Cerebral Cortex of Gyrencephalic Mammals. Neurochem Res 2018; 43:1075-1085. [PMID: 29616442 DOI: 10.1007/s11064-018-2520-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 02/23/2018] [Accepted: 03/27/2018] [Indexed: 12/11/2022]
Abstract
Microglia have been attracting much attention because of their fundamental importance in both the mature brain and the developing brain. Though important roles of microglia in the developing cerebral cortex of mice have been uncovered, their distribution and roles in the developing cerebral cortex in gyrencephalic higher mammals have remained elusive. Here we examined the distribution and morphology of microglia in the developing cerebral cortex of gyrencephalic carnivore ferrets. We found that a number of microglia were accumulated in the germinal zones (GZs), especially in the outer subventricular zone (OSVZ), which is a GZ found in higher mammals. Furthermore, we uncovered that microglia extended their processes tangentially along inner fiber layer (IFL)-like fibers in the developing ferret cortex. The OSVZ and the IFL are the prominent features of the cerebral cortex of higher mammals. Our findings indicate that microglia may play important roles in the OSVZ and the IFL in the developing cerebral cortex of higher mammals.
Collapse
|
107
|
Rübsam A, Parikh S, Fort PE. Role of Inflammation in Diabetic Retinopathy. Int J Mol Sci 2018; 19:ijms19040942. [PMID: 29565290 PMCID: PMC5979417 DOI: 10.3390/ijms19040942] [Citation(s) in RCA: 497] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/09/2018] [Accepted: 03/17/2018] [Indexed: 02/07/2023] Open
Abstract
Diabetic retinopathy is a common complication of diabetes and remains the leading cause of blindness among the working-age population. For decades, diabetic retinopathy was considered only a microvascular complication, but the retinal microvasculature is intimately associated with and governed by neurons and glia, which are affected even prior to clinically detectable vascular lesions. While progress has been made to improve the vascular alterations, there is still no treatment to counteract the early neuro-glial perturbations in diabetic retinopathy. Diabetes is a complex metabolic disorder, characterized by chronic hyperglycemia along with dyslipidemia, hypoinsulinemia and hypertension. Increasing evidence points to inflammation as one key player in diabetes-associated retinal perturbations, however, the exact underlying molecular mechanisms are not yet fully understood. Interlinked molecular pathways, such as oxidative stress, formation of advanced glycation end-products and increased expression of vascular endothelial growth factor have received a lot of attention as they all contribute to the inflammatory response. In the current review, we focus on the involvement of inflammation in the pathophysiology of diabetic retinopathy with special emphasis on the functional relationships between glial cells and neurons. Finally, we summarize recent advances using novel targets to inhibit inflammation in diabetic retinopathy.
Collapse
Affiliation(s)
- Anne Rübsam
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA.
| | - Sonia Parikh
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA.
| | - Patrice E Fort
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA.
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA.
| |
Collapse
|
108
|
Abnormal Microglia and Enhanced Inflammation-Related Gene Transcription in Mice with Conditional Deletion of Ctcf in Camk2a-Cre-Expressing Neurons. J Neurosci 2017; 38:200-219. [PMID: 29133437 DOI: 10.1523/jneurosci.0936-17.2017] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 10/21/2017] [Accepted: 11/09/2017] [Indexed: 01/22/2023] Open
Abstract
CCCTC-binding factor (CTCF) is an 11 zinc finger DNA-binding domain protein that regulates gene expression by modifying 3D chromatin structure. Human mutations in CTCF cause intellectual disability and autistic features. Knocking out Ctcf in mouse embryonic neurons is lethal by neonatal age, but the effects of CTCF deficiency in postnatal neurons are less well studied. We knocked out Ctcf postnatally in glutamatergic forebrain neurons under the control of Camk2a-Cre. CtcfloxP/loxP;Camk2a-Cre+ (Ctcf CKO) mice of both sexes were viable and exhibited profound deficits in spatial learning/memory, impaired motor coordination, and decreased sociability by 4 months of age. Ctcf CKO mice also had reduced dendritic spine density in the hippocampus and cerebral cortex. Microarray analysis of mRNA from Ctcf CKO mouse hippocampus identified increased transcription of inflammation-related genes linked to microglia. Separate microarray analysis of mRNA isolated specifically from Ctcf CKO mouse hippocampal neurons by ribosomal affinity purification identified upregulation of chemokine signaling genes, suggesting crosstalk between neurons and microglia in Ctcf CKO hippocampus. Finally, we found that microglia in Ctcf CKO mouse hippocampus had abnormal morphology by Sholl analysis and increased immunostaining for CD68, a marker of microglial activation. Our findings confirm that Ctcf KO in postnatal neurons causes a neurobehavioral phenotype in mice and provide novel evidence that CTCF depletion leads to overexpression of inflammation-related genes and microglial dysfunction.SIGNIFICANCE STATEMENT CCCTC-binding factor (CTCF) is a DNA-binding protein that organizes nuclear chromatin topology. Mutations in CTCF cause intellectual disability and autistic features in humans. CTCF deficiency in embryonic neurons is lethal in mice, but mice with postnatal CTCF depletion are less well studied. We find that mice lacking Ctcf in Camk2a-expressing neurons (Ctcf CKO mice) have spatial learning/memory deficits, impaired fine motor skills, subtly altered social interactions, and decreased dendritic spine density. We demonstrate that Ctcf CKO mice overexpress inflammation-related genes in the brain and have microglia with abnormal morphology that label positive for CD68, a marker of microglial activation. Our findings suggest that inflammation and dysfunctional neuron-microglia interactions are factors in the pathology of CTCF deficiency.
Collapse
|
109
|
Cătălin B, Stopper L, Bălşeanu TA, Scheller A. The in situ morphology of microglia is highly sensitive to the mode of tissue fixation. J Chem Neuroanat 2017; 86:59-66. [PMID: 28866082 DOI: 10.1016/j.jchemneu.2017.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/20/2017] [Accepted: 08/29/2017] [Indexed: 01/11/2023]
Abstract
Microglia are known as the most motile cells in the central nervous system (CNS). It was shown in vivo that they permanently scan their direct microenvironment and react to pathological conditions within minutes. Many studies of brain pathologies use fixed brain tissue to investigate cellular changes. Unfortunately, due to technical reasons, the time span between the induction of the fixation procedure (start of the perfusion) and the finally-fixed tissue lasts several minutes, giving time to microglia to start reacting to the ischemic conditions due to perfusion start. Here, we investigated the microglial changes generated by the fixation itself in TgH(CX3CR1-EGFP) mice with fluorescent labelled microglia using confocal laser scanning microscopy (CLSM) of fixed brain tissue as well as two-photon laser scanning microscopy (2P-LSM) during the perfusion of a living animal. We revealed the impact of fixation and buffer parameters on cell morphology. The largest morphological differences compared to physiological in vivo branch arborization were observed when the directly dissected brain was immersed in paraformaldehyde fixation solution overnight, without prior fixative perfusion of the animal. But even perfusion with a fixative, followed by post-fixation leads to small changes in microglial process length and number and could not be prevented when compared to physiological in vivo microglia morphology acquired using in vivo 2P-LSM. Interestingly, perfusion with different buffers either oxygenated artificial cerebrospinal fluid or phosphate buffered saline prior to perfusion-fixation showed minor microglia changes in arborization and/or number of processes. Fixation methods influence microglia morphology. Therefore, to define microglia activation states immunohistochemical stainings or genetic labelling of the cells have to be included in addition to morphological analysis.
Collapse
Affiliation(s)
- Bogdan Cătălin
- Department of Molecular Physiology, CIPMM (Center for Integrative Physiology and Molecular Medicine), Building 48, University of Saarland, Homburg, Germany; Department of Functional Sciences, University of Medicine and Pharmacy of Craiova, Romania.
| | - Laura Stopper
- Department of Molecular Physiology, CIPMM (Center for Integrative Physiology and Molecular Medicine), Building 48, University of Saarland, Homburg, Germany
| | - Tudor-Adrian Bălşeanu
- Department of Functional Sciences, University of Medicine and Pharmacy of Craiova, Romania; Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, Romania
| | - Anja Scheller
- Department of Molecular Physiology, CIPMM (Center for Integrative Physiology and Molecular Medicine), Building 48, University of Saarland, Homburg, Germany.
| |
Collapse
|
110
|
Fernández-Arjona MDM, Grondona JM, Granados-Durán P, Fernández-Llebrez P, López-Ávalos MD. Microglia Morphological Categorization in a Rat Model of Neuroinflammation by Hierarchical Cluster and Principal Components Analysis. Front Cell Neurosci 2017; 11:235. [PMID: 28848398 PMCID: PMC5550745 DOI: 10.3389/fncel.2017.00235] [Citation(s) in RCA: 265] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/25/2017] [Indexed: 12/24/2022] Open
Abstract
It is known that microglia morphology and function are closely related, but only few studies have objectively described different morphological subtypes. To address this issue, morphological parameters of microglial cells were analyzed in a rat model of aseptic neuroinflammation. After the injection of a single dose of the enzyme neuraminidase (NA) within the lateral ventricle (LV) an acute inflammatory process occurs. Sections from NA-injected animals and sham controls were immunolabeled with the microglial marker IBA1, which highlights ramifications and features of the cell shape. Using images obtained by section scanning, individual microglial cells were sampled from various regions (septofimbrial nucleus, hippocampus and hypothalamus) at different times post-injection (2, 4 and 12 h). Each cell yielded a set of 15 morphological parameters by means of image analysis software. Five initial parameters (including fractal measures) were statistically different in cells from NA-injected rats (most of them IL-1β positive, i.e., M1-state) compared to those from control animals (none of them IL-1β positive, i.e., surveillant state). However, additional multimodal parameters were revealed more suitable for hierarchical cluster analysis (HCA). This method pointed out the classification of microglia population in four clusters. Furthermore, a linear discriminant analysis (LDA) suggested three specific parameters to objectively classify any microglia by a decision tree. In addition, a principal components analysis (PCA) revealed two extra valuable variables that allowed to further classifying microglia in a total of eight sub-clusters or types. The spatio-temporal distribution of these different morphotypes in our rat inflammation model allowed to relate specific morphotypes with microglial activation status and brain location. An objective method for microglia classification based on morphological parameters is proposed. Main pointsMicroglia undergo a quantifiable morphological change upon neuraminidase induced inflammation. Hierarchical cluster and principal components analysis allow morphological classification of microglia. Brain location of microglia is a relevant factor.
Collapse
Affiliation(s)
- María Del Mar Fernández-Arjona
- Departamento de Biología Celular, Facultad de Ciencias, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de MálagaMálaga, Spain
| | - Jesús M Grondona
- Departamento de Biología Celular, Facultad de Ciencias, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de MálagaMálaga, Spain
| | - Pablo Granados-Durán
- Departamento de Biología Celular, Facultad de Ciencias, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de MálagaMálaga, Spain
| | - Pedro Fernández-Llebrez
- Departamento de Biología Celular, Facultad de Ciencias, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de MálagaMálaga, Spain
| | - María D López-Ávalos
- Departamento de Biología Celular, Facultad de Ciencias, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de MálagaMálaga, Spain
| |
Collapse
|
111
|
Abscopal Activation of Microglia in Embryonic Fish Brain Following Targeted Irradiation with Heavy-Ion Microbeam. Int J Mol Sci 2017; 18:ijms18071428. [PMID: 28677658 PMCID: PMC5535919 DOI: 10.3390/ijms18071428] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/23/2017] [Accepted: 06/28/2017] [Indexed: 12/17/2022] Open
Abstract
Microglia remove apoptotic cells by phagocytosis when the central nervous system is injured in vertebrates. Ionizing irradiation (IR) induces apoptosis and microglial activation in embryonic midbrain of medaka (Oryzias latipes), where apolipoprotein E (ApoE) is upregulated in the later phase of activation of microglia In this study, we found that another microglial marker, l-plastin (lymphocyte cytosolic protein 1), was upregulated at the initial phase of the IR-induced phagocytosis when activated microglia changed their morphology and increased motility to migrate. We further conducted targeted irradiation to the embryonic midbrain using a collimated microbeam of carbon ions (250 μm diameter) and found that the l-plastin upregulation was induced only in the microglia located in the irradiated area. Then, the activated microglia might migrate outside of the irradiated area and spread through over the embryonic brain, expressing ApoE and with activated morphology, for longer than 3 days after the irradiation. These findings suggest that l-plastin and ApoE can be the biomarkers of the activated microglia in the initial and later phase, respectively, in the medaka embryonic brain and that the abscopal and persisted activation of microglia by IR irradiation could be a cause of the abscopal and/or adverse effects following irradiation.
Collapse
|
112
|
Lee KY, Kang JY, Yun JI, Chung JY, Hwang IK, Won MH, Choi JH. Age-related change of Iba-1 immunoreactivity in the adult and aged gerbil spinal cord. Anat Cell Biol 2017; 50:135-142. [PMID: 28713617 PMCID: PMC5509897 DOI: 10.5115/acb.2017.50.2.135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/14/2017] [Accepted: 03/28/2017] [Indexed: 11/27/2022] Open
Abstract
In the present study, we examined change of ionized calcium-binding adapter molecule 1 (Iba-1) in the adult and aged gerbil spinal cords. Significant change of morphological feature and neuronal cell loss were not observed in both adult and aged spinal cords of gerbil after NeuN immunohistochemistry and Fluoro-Jade B histofluoresce staining. Iba-1-immunoreactive microglia broadly distributed in the spinal cord. Most of Iba-1-immunoreactive microglia showed ramified forms in the adult gerbil cervical and lumbar spinal cords. However, morphological changes of Iba-1-immunoreactive microglia were observed in the cervical and lumbar regions of the aged gerbil spinal cord. These microglia were showed a hypertrophied body with shortened swollen processes which was characteristic of activated microglia. In addition, Iba-1 protein level significantly higher in aged cervical and lumbar spinal cords than those in the adult gerbil. The present study showed an increase of activated forms of Iba-1-immunoreactive microglia and its protein level without marked changes in morphological features and neuronal loss in the aged spinal cord compared to those in the adult gerbil spinal cord. This result suggests that the increase of Iba-1 expression in the aged spinal cord may be closely associated with age-related changes in aged gerbil spinal cord.
Collapse
Affiliation(s)
- Kwon Young Lee
- Department of Anatomy, College of Veterinary Medicine, Kangwon National University, Chuncheon, Korea
| | - Joo Yeon Kang
- Department of Anatomy, College of Veterinary Medicine, Kangwon National University, Chuncheon, Korea
| | - Jung Im Yun
- Department of Anatomy, College of Veterinary Medicine, Kangwon National University, Chuncheon, Korea
| | - Jin Young Chung
- Department of Veterinary Internal Medicine and Geriatrics, College of Veterinary Medicine, Kangwon National University, Chuncheon, Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Moo Ho Won
- Department of Neurobiology, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
113
|
Collery RF, Volberding PJ, Bostrom JR, Link BA, Besharse JC. Loss of Zebrafish Mfrp Causes Nanophthalmia, Hyperopia, and Accumulation of Subretinal Macrophages. Invest Ophthalmol Vis Sci 2017; 57:6805-6814. [PMID: 28002843 PMCID: PMC5215506 DOI: 10.1167/iovs.16-19593] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Purpose Mutations in membrane frizzled-related protein (MFRP) are associated with nanophthalmia, hyperopia, foveoschisis, irregular patches of RPE atrophy, and optic disc drusen in humans. Mouse mfrp mutants show retinal degeneration but no change in eye size or refractive state. The goal of this work was to generate zebrafish mutants to investigate the loss of Mfrp on eye size and refractive state, and to characterize other phenotypes observed. Methods Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 methods were used to generate multiple frameshift mutations in zebrafish mfrp causing premature translational stops in Mfrp. Spectral-domain optical coherence tomography (SD-OCT) was used to measure eye metrics and refractive state, and immunohistochemistry was used to study adult eyes. Gene expression levels were measured using quantitative PCR. Results Zebrafish Mfrp was shown to localize to apical and basal regions of RPE cells, as well as the ciliary marginal zone. Loss of Mfrp in mutant zebrafish was verified histologically. Zebrafish eyes that were mfrp mutant showed reduced axial length causing hyperopia, RPE folding, and macrophages were observed subretinally. Visual acuity was reduced in mfrp mutant animals. Conclusions Mutation of zebrafish mfrp results in hyperopia with subretinal macrophage infiltration, phenocopying aspects of human and mouse Mfrp deficiency. These mutant zebrafish will be useful in studying the onset and progression of Mfrp-related nanophthalmia, the cues that initiate the recruitment of macrophages, and the mechanisms of Mfrp function.
Collapse
Affiliation(s)
- Ross F Collery
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Peter J Volberding
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Jonathan R Bostrom
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Brian A Link
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Joseph C Besharse
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
114
|
Lee AS, Azmitia EC, Whitaker-Azmitia PM. Developmental microglial priming in postmortem autism spectrum disorder temporal cortex. Brain Behav Immun 2017; 62:193-202. [PMID: 28159644 DOI: 10.1016/j.bbi.2017.01.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/13/2017] [Accepted: 01/26/2017] [Indexed: 10/20/2022] Open
Abstract
Microglia can shift into different complex morphologies depending on the microenvironment of the central nervous system (CNS). The distinct morphologies correlate with specific functions and can indicate the pathophysiological state of the CNS. Previous postmortem studies of autism spectrum disorder (ASD) showed neuroinflammation in ASD indicated by increased microglial density. These changes in the microglia density can be accompanied by changes in microglia phenotype but the individual contribution of different microglia phenotypes to the pathophysiology of ASD remains unclear. Here, we used an unbiased stereological approach to quantify six structurally and functionally distinct microglia phenotypes in postmortem human temporal cortex, which were immuno-stained with Iba1. The total density of all microglia phenotypes did not differ between ASD donors and typically developing individual donors. However, there was a significant decrease in ramified microglia in both gray matter and white matter of ASD, and a significant increase in primed microglia in gray matter of ASD compared to typically developing individuals. This increase in primed microglia showed a positive correlation with donor age in both gray matter and white of ASD, but not in typically developing individuals. Our results provide evidence of a shift in microglial phenotype that may indicate impaired synaptic plasticity and a chronic vulnerability to exaggerated immune responses.
Collapse
Affiliation(s)
- Andrew S Lee
- Department of Psychology, Stony Brook University, Stony Brook, NY 11794, USA; Department of Biology, New York University, New York, NY 10003, USA; Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany.
| | - Efrain C Azmitia
- Department of Biology, New York University, New York, NY 10003, USA
| | | |
Collapse
|
115
|
Frye MD, Yang W, Zhang C, Xiong B, Hu BH. Dynamic activation of basilar membrane macrophages in response to chronic sensory cell degeneration in aging mouse cochleae. Hear Res 2016; 344:125-134. [PMID: 27837652 DOI: 10.1016/j.heares.2016.11.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/11/2016] [Accepted: 11/07/2016] [Indexed: 12/20/2022]
Abstract
In the sensory epithelium, macrophages have been identified on the scala tympani side of the basilar membrane. These basilar membrane macrophages are the spatially closest immune cells to sensory cells and are able to directly respond to and influence sensory cell pathogenesis. While basilar membrane macrophages have been studied in acute cochlear stresses, their behavior in response to chronic sensory cell degeneration is largely unknown. Here we report a systematic observation of the variance in phenotypes, the changes in morphology and distribution of basilar membrane tissue macrophages in different age groups of C57BL/6J mice, a mouse model of age-related sensory cell degeneration. This study reveals that mature, fully differentiated tissue macrophages, not recently infiltrated monocytes, are the major macrophage population for immune responses to chronic sensory cell death. These macrophages display dynamic changes in their numbers and morphologies as age increases, and the changes are related to the phases of sensory cell degeneration. Notably, macrophage activation precedes sensory cell pathogenesis, and strong macrophage activity is maintained until sensory cell degradation is complete. Collectively, these findings suggest that mature tissue macrophages on the basilar membrane are a dynamic group of cells that are capable of vigorous adaptation to changes in the local sensory epithelium environment influenced by sensory cell status.
Collapse
Affiliation(s)
- Mitchell D Frye
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| | - Weiping Yang
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| | - Celia Zhang
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| | - Binbin Xiong
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| | - Bo Hua Hu
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| |
Collapse
|
116
|
Diniz DG, Silva GO, Naves TB, Fernandes TN, Araújo SC, Diniz JAP, de Farias LHS, Sosthenes MCK, Diniz CG, Anthony DC, da Costa Vasconcelos PF, Picanço Diniz CW. Hierarchical Cluster Analysis of Three-Dimensional Reconstructions of Unbiased Sampled Microglia Shows not Continuous Morphological Changes from Stage 1 to 2 after Multiple Dengue Infections in Callithrix penicillata. Front Neuroanat 2016; 10:23. [PMID: 27047345 PMCID: PMC4801861 DOI: 10.3389/fnana.2016.00023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/23/2016] [Indexed: 11/18/2022] Open
Abstract
It is known that microglial morphology and function are related, but few studies have explored the subtleties of microglial morphological changes in response to specific pathogens. In the present report we quantitated microglia morphological changes in a monkey model of dengue disease with virus CNS invasion. To mimic multiple infections that usually occur in endemic areas, where higher dengue infection incidence and abundant mosquito vectors carrying different serotypes coexist, subjects received once a week subcutaneous injections of DENV3 (genotype III)-infected culture supernatant followed 24 h later by an injection of anti-DENV2 antibody. Control animals received either weekly anti-DENV2 antibodies, or no injections. Brain sections were immunolabeled for DENV3 antigens and IBA-1. Random and systematic microglial samples were taken from the polymorphic layer of dentate gyrus for 3-D reconstructions, where we found intense immunostaining for TNFα and DENV3 virus antigens. We submitted all bi- or multimodal morphological parameters of microglia to hierarchical cluster analysis and found two major morphological phenotypes designated types I and II. Compared to type I (stage 1), type II microglia were more complex; displaying higher number of nodes, processes and trees and larger surface area and volumes (stage 2). Type II microglia were found only in infected monkeys, whereas type I microglia was found in both control and infected subjects. Hierarchical cluster analysis of morphological parameters of 3-D reconstructions of random and systematic selected samples in control and ADE dengue infected monkeys suggests that microglia morphological changes from stage 1 to stage 2 may not be continuous.
Collapse
Affiliation(s)
- Daniel G Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros BarretoBelém, Brasil; Experimental Neuropathology Laboratory, Department of Pharmacology, University of OxfordOxford, UK
| | - Geane O Silva
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto Belém, Brasil
| | - Thaís B Naves
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto Belém, Brasil
| | | | - Sanderson C Araújo
- Departamento de Microscopia Eletrônica, Instituto Evandro Chagas Belém, Brasil
| | - José A P Diniz
- Departamento de Microscopia Eletrônica, Instituto Evandro Chagas Belém, Brasil
| | - Luis H S de Farias
- Instituto de Ciências Biológicas, Universidade Federal do Pará Belém, Brasil
| | - Marcia C K Sosthenes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto Belém, Brasil
| | - Cristovam G Diniz
- Laboratório de Biologia Molecular e Ambiental, Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus de Bragança, Bragança Pará, Brasil
| | - Daniel C Anthony
- Experimental Neuropathology Laboratory, Department of Pharmacology, University of Oxford Oxford, UK
| | | | - Cristovam W Picanço Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros BarretoBelém, Brasil; Experimental Neuropathology Laboratory, Department of Pharmacology, University of OxfordOxford, UK
| |
Collapse
|
117
|
Kallianpur KJ, Gerschenson M, Mitchell BI, LiButti DE, Umaki TM, Ndhlovu LC, Nakamoto BK, Chow DC, Shikuma CM. Oxidative mitochondrial DNA damage in peripheral blood mononuclear cells is associated with reduced volumes of hippocampus and subcortical gray matter in chronically HIV-infected patients. Mitochondrion 2016; 28:8-15. [PMID: 26923169 DOI: 10.1016/j.mito.2016.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 01/20/2016] [Accepted: 02/22/2016] [Indexed: 10/22/2022]
Abstract
Cross-sectional relationships were examined between regional brain volumes and mitochondrial DNA (mtDNA) 8-hydroxy-2-deoxyguanosine (8-oxo-dG) in peripheral blood mononuclear cells (PBMCs) of 47 HIV patients [mean age 51years; 81% with HIV RNA ≤50copies/mL] on combination antiretroviral therapy. The gene-specific DNA damage and repair assay measured mtDNA 8-oxo-dG break frequency. Magnetic resonance imaging was performed at 3T. Higher mtDNA 8-oxo-dG was associated with lateral ventricular enlargement and with decreased volumes of hippocampus, pallidum, and total subcortical gray matter, suggesting the involvement of systemic mitochondrial-specific oxidative stress in chronic HIV-related structural brain changes and cognitive difficulties. Clarification of the mechanism may provide potential therapeutic targets.
Collapse
Affiliation(s)
- Kalpana J Kallianpur
- Hawaii Center for AIDS, Department of Medicine, John A. Burns School of Medicine, Honolulu HI 96813, United States.
| | - Mariana Gerschenson
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, Honolulu HI 96813, United States
| | - Brooks I Mitchell
- Department of Tropical Medicine, John A. Burns School of Medicine, Honolulu HI 96813, United States
| | - Daniel E LiButti
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, Honolulu HI 96813, United States
| | - Tracie M Umaki
- Hawaii Center for AIDS, Department of Medicine, John A. Burns School of Medicine, Honolulu HI 96813, United States
| | - Lishomwa C Ndhlovu
- Hawaii Center for AIDS, Department of Medicine, John A. Burns School of Medicine, Honolulu HI 96813, United States; Department of Tropical Medicine, John A. Burns School of Medicine, Honolulu HI 96813, United States
| | - Beau K Nakamoto
- Hawaii Center for AIDS, Department of Medicine, John A. Burns School of Medicine, Honolulu HI 96813, United States; Straub Clinics and Hospital, Honolulu HI 96813, United States
| | - Dominic C Chow
- Hawaii Center for AIDS, Department of Medicine, John A. Burns School of Medicine, Honolulu HI 96813, United States
| | - Cecilia M Shikuma
- Hawaii Center for AIDS, Department of Medicine, John A. Burns School of Medicine, Honolulu HI 96813, United States
| |
Collapse
|
118
|
Xu F, Huang J, He Z, Chen J, Tang X, Song Z, Guo Q, Huang C. Microglial polarization dynamics in dorsal spinal cord in the early stages following chronic sciatic nerve damage. Neurosci Lett 2016; 617:6-13. [PMID: 26820376 DOI: 10.1016/j.neulet.2016.01.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/14/2016] [Accepted: 01/21/2016] [Indexed: 11/19/2022]
Abstract
Peripheral nerve injury can lead to activation of spinal microglia, which can mediate neuroinflammation and contribute to neuropathic pain following nerve injury. Activated microglia may manifest with either pro-inflammatory M1 phenotype or anti-inflammatory M2 phenotype, which may lead to detrimental or beneficial roles in the nervous system. In this study, microglia numbers, morphology and gene profiles were examined in the dorsal spinal cord of rats over 14 days following sciatic nerve chronic constriction injury (CCI). The morphology of some microglia changed from a surveying to an activated state within 1 day of CCI. Neuropathic pain developed within seven to 14 days following injury and microglia numbers were increased, with almost all in the dorsal spinal cord morphologically defined as activated. At day one after CCI, both M1 and M2 microglia-related genes were increased but only M1 microglia-related genes remained elevated at day seven and 14 thereafter. These results indicate that both M1 and M2 microglia were activated in the dorsal spinal cord one day after CCI but the microglia skewed towards M1 phenotype during the following seven and 14 days.
Collapse
Affiliation(s)
- Fangting Xu
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Juan Huang
- Department of Breast Surgery, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Zhenghua He
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Jia Chen
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Xiaoting Tang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Zongbin Song
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Changsheng Huang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, China.
| |
Collapse
|
119
|
Vasconcelos BCB, Vieira JA, Silva GO, Fernandes TN, Rocha LC, Viana AP, Serique CDS, Filho CS, Bringel RAR, Teixeira FFDL, Ferreira MS, Casseb SMM, Carvalho VL, de Melo KFL, de Castro PHG, Araújo SC, Diniz JAP, Demachki S, Anaissi AKM, Sosthenes MCK, Vasconcelos PFDC, Anthony DC, Diniz CWP, Diniz DG. Antibody-enhanced dengue disease generates a marked CNS inflammatory response in the black-tufted marmoset Callithrix penicillata. Neuropathology 2015; 36:3-16. [PMID: 26303046 DOI: 10.1111/neup.12229] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/01/2015] [Indexed: 10/23/2022]
Abstract
Severe dengue disease is often associated with long-term neurological impairments, but it is unclear what mechanisms are associated with neurological sequelae. Previously, we demonstrated antibody-enhanced dengue disease (ADE) dengue in an immunocompetent mouse model with a dengue virus 2 (DENV2) antibody injection followed by DENV3 virus infection. Here we migrated this ADE model to Callithrix penicillata. To mimic human multiple infections of endemic zones where abundant vectors and multiple serotypes co-exist, three animals received weekly subcutaneous injections of DENV3 (genotype III)-infected supernatant of C6/36 cell cultures, followed 24 h later by anti-DENV2 antibody for 12 weeks. There were six control animals, two of which received weekly anti-DENV2 antibodies, and four further animals received no injections. After multiple infections, brain, liver, and spleen samples were collected and tissue was immunolabeled for DENV3 antigens, ionized calcium binding adapter molecule 1, Ki-67, TNFα. There were marked morphological changes in the microglial population of ADE monkeys characterized by more highly ramified microglial processes, higher numbers of trees and larger surface areas. These changes were associated with intense TNFα-positive immunolabeling. It is unclear why ADE should generate such microglial activation given that IgG does not cross the blood-brain barrier, but this study reveals that in ADE dengue therapy targeting the CNS host response is likely to be important.
Collapse
Affiliation(s)
| | - Juliana Almeida Vieira
- Universidade Federal do Pará, UFPA, Instituto de Ciências Biológicas, Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto
| | - Geane Oliveira Silva
- Universidade Federal do Pará, UFPA, Instituto de Ciências Biológicas, Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto
| | | | - Luciano Chaves Rocha
- Universidade Federal do Pará, UFPA, Instituto de Ciências Biológicas, Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto
| | - André Pereira Viana
- Universidade Federal do Pará, UFPA, Instituto de Ciências Biológicas, Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto
| | - Cássio Diego Sá Serique
- Universidade Federal do Pará, UFPA, Instituto de Ciências Biológicas, Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto
| | - Carlos Santos Filho
- Universidade Federal do Pará, UFPA, Instituto de Ciências Biológicas, Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto
| | - Raissa Aires Ribeiro Bringel
- Universidade Federal do Pará, UFPA, Instituto de Ciências Biológicas, Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto
| | - Francisco Fernando Dacier Lobato Teixeira
- Universidade Federal do Pará, UFPA, Instituto de Ciências Biológicas, Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto
| | | | | | | | | | | | | | | | - Samia Demachki
- Universidade Federal do Pará, UFPA, Instituto de Ciências da Saúde, Laboratório de Anatomia Patológica, Hospital Universitário João de Barros Barreto, Belém, Pará, Brasil
| | - Ana Karyssa Mendes Anaissi
- Universidade Federal do Pará, UFPA, Instituto de Ciências da Saúde, Laboratório de Anatomia Patológica, Hospital Universitário João de Barros Barreto, Belém, Pará, Brasil
| | - Marcia Consentino Kronka Sosthenes
- Universidade Federal do Pará, UFPA, Instituto de Ciências Biológicas, Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto
| | | | - Daniel Clive Anthony
- Department of Pharmacology, Laboratory of Experimental Neuropathology, University of Oxford, Mansfield Road, Oxford, United Kingdom
| | - Cristovam Wanderley Picanço Diniz
- Universidade Federal do Pará, UFPA, Instituto de Ciências Biológicas, Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto
| | - Daniel Guerreiro Diniz
- Universidade Federal do Pará, UFPA, Instituto de Ciências Biológicas, Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto
| |
Collapse
|
120
|
de Sousa AA, Dos Reis RR, de Lima CM, de Oliveira MA, Fernandes TN, Gomes GF, Diniz DG, Magalhães NM, Diniz CG, Sosthenes MCK, Bento-Torres J, Diniz JAP, Vasconcelos PFDC, Diniz CWP. Three-dimensional morphometric analysis of microglial changes in a mouse model of virus encephalitis: age and environmental influences. Eur J Neurosci 2015; 42:2036-50. [PMID: 25980955 DOI: 10.1111/ejn.12951] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 04/16/2015] [Accepted: 05/13/2015] [Indexed: 02/05/2023]
Abstract
Many RNA virus CNS infections cause neurological disease. Because Piry virus has a limited human pathogenicity and exercise reduces activation of microglia in aged mice, possible influences of environment and aging on microglial morphology and behavior in mice sublethal encephalitis were investigated. Female albino Swiss mice were raised either in standard (S) or in enriched (EE) cages from age 2 to 6 months (young - Y), or from 2 to 16 months (aged - A). After behavioral tests, mice nostrils were instilled with Piry-virus-infected or with normal brain homogenates. Brain sections were immunolabeled for virus antigens or microglia at 8 days post-infection (dpi), when behavioral changes became apparent, and at 20 and 40 dpi, after additional behavioral testing. Young infected mice from standard (SYPy) and enriched (EYPy) groups showed similar transient impairment in burrowing activity and olfactory discrimination, whereas aged infected mice from both environments (EAPy, SAPy) showed permanent reduction in both tasks. The beneficial effects of an enriched environment were smaller in aged than in young mice. Six-hundred and forty microglial cells, 80 from each group were reconstructed. An unbiased, stereological sampling approach and multivariate statistical analysis were used to search for microglial morphological families. This procedure allowed distinguishing between microglial morphology of infected and control subjects. More severe virus-associated microglial changes were observed in young than in aged mice, and EYPy seem to recover microglial homeostatic morphology earlier than SYPy . Because Piry-virus encephalitis outcomes were more severe in aged mice, it is suggested that the reduced inflammatory response in those individuals may aggravate encephalitis outcomes.
Collapse
Affiliation(s)
- Aline A de Sousa
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Belém, Pará, Brazil
| | - Renata R Dos Reis
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Belém, Pará, Brazil
| | - Camila M de Lima
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Belém, Pará, Brazil
| | - Marcus A de Oliveira
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Belém, Pará, Brazil
| | | | - Giovanni F Gomes
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Belém, Pará, Brazil
| | - Daniel G Diniz
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Belém, Pará, Brazil
| | - Nara M Magalhães
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Belém, Pará, Brazil
| | - Cristovam G Diniz
- Instituto Federal de Educação, Ciência e Tecnologia do Pará, Bragança, Pará, Brazil
| | - Marcia C K Sosthenes
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Belém, Pará, Brazil
| | - João Bento-Torres
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Belém, Pará, Brazil
| | - José Antonio P Diniz
- Instituto Evandro Chagas (IEC), Departamento de Arbovirologia e Febres Hemorrágicas, Ananindeua, Pará, Brazil
| | - Pedro F da C Vasconcelos
- Instituto Evandro Chagas (IEC), Departamento de Arbovirologia e Febres Hemorrágicas, Ananindeua, Pará, Brazil
| | - Cristovam Wanderley P Diniz
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Belém, Pará, Brazil.,Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| |
Collapse
|
121
|
Vecino E, Rodriguez FD, Ruzafa N, Pereiro X, Sharma SC. Glia-neuron interactions in the mammalian retina. Prog Retin Eye Res 2015; 51:1-40. [PMID: 26113209 DOI: 10.1016/j.preteyeres.2015.06.003] [Citation(s) in RCA: 553] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/18/2015] [Accepted: 06/02/2015] [Indexed: 02/07/2023]
Abstract
The mammalian retina provides an excellent opportunity to study glia-neuron interactions and the interactions of glia with blood vessels. Three main types of glial cells are found in the mammalian retina that serve to maintain retinal homeostasis: astrocytes, Müller cells and resident microglia. Müller cells, astrocytes and microglia not only provide structural support but they are also involved in metabolism, the phagocytosis of neuronal debris, the release of certain transmitters and trophic factors and K(+) uptake. Astrocytes are mostly located in the nerve fibre layer and they accompany the blood vessels in the inner nuclear layer. Indeed, like Müller cells, astrocytic processes cover the blood vessels forming the retinal blood barrier and they fulfil a significant role in ion homeostasis. Among other activities, microglia can be stimulated to fulfil a macrophage function, as well as to interact with other glial cells and neurons by secreting growth factors. This review summarizes the main functional relationships between retinal glial cells and neurons, presenting a general picture of the retina recently modified based on experimental observations. The preferential involvement of the distinct glia cells in terms of the activity in the retina is discussed, for example, while Müller cells may serve as progenitors of retinal neurons, astrocytes and microglia are responsible for synaptic pruning. Since different types of glia participate together in certain activities in the retina, it is imperative to explore the order of redundancy and to explore the heterogeneity among these cells. Recent studies revealed the association of glia cell heterogeneity with specific functions. Finally, the neuroprotective effects of glia on photoreceptors and ganglion cells under normal and adverse conditions will also be explored.
Collapse
Affiliation(s)
- Elena Vecino
- Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, Leioa 48940, Vizcaya, Spain
| | - F David Rodriguez
- Department of Biochemistry and Molecular Biology, E-37007, University of Salamanca, Salamanca, Spain
| | - Noelia Ruzafa
- Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, Leioa 48940, Vizcaya, Spain
| | - Xandra Pereiro
- Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, Leioa 48940, Vizcaya, Spain
| | - Sansar C Sharma
- Department of Ophthalmology, Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA; IKERBASQUE, Basque Foundation for Science at Dept. Cell Biology and Histology, UPV/EHU, Spain
| |
Collapse
|
122
|
Paris JJ, Singh HD, Carey AN, McLaughlin JP. Exposure to HIV-1 Tat in brain impairs sensorimotor gating and activates microglia in limbic and extralimbic brain regions of male mice. Behav Brain Res 2015; 291:209-218. [PMID: 26005128 DOI: 10.1016/j.bbr.2015.05.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/07/2015] [Accepted: 05/13/2015] [Indexed: 12/27/2022]
Abstract
Human immunodeficiency virus (HIV) infection is associated with mood disorders and behavioral disinhibition. Impairments in sensorimotor gating and associated neurocognitive disorders are reported, but the HIV-proteins and mechanisms involved are not known. The regulatory HIV-1 protein, Tat, is neurotoxic and its expression in animal models increases anxiety-like behavior concurrent with neuroinflammation and structural changes in limbic and extra-limbic brain regions. We hypothesized that conditional expression of HIV-1 Tat1-86 in the GT-tg bigenic mouse model would impair sensorimotor gating and increase microglial reactivity in limbic and extralimbic brain regions. Conditional Tat induction via doxycycline (Dox) treatment (0-125 mg/kg, i.p., for 1-14 days) significantly potentiated the acoustic startle reflex (ASR) of GT-tg mice and impaired prepulse inhibition (PPI) of this response in a dose-dependent manner when Dox (100mg/kg) was administered for brief (1 day) or prolonged (daily for 7 days) intervals. A greater proportion of active/reactive Iba1-labeled microglia was seen in the anterior cingulate cortex (ACC), dentate gyrus, and nucleus accumbens core when Tat protein was induced under either brief or prolonged expression conditions. Other subregions of the medial prefrontal cortex, amygdala, hippocampal formation, ventral tegmental area, and ventral pallidum also displayed Tat-induced microglial activation, but only the activation observed in the ACC recapitulated the pattern of ASR and PPI behaviors. Tat exposure also increased frontal cortex GFAP. Pretreatment with indomethacin attenuated the behavioral effects of brief (but not prolonged) Tat-exposure. Overall, exposure to HIV-1 Tat protein induced sensorimotor deficits associated with acute and persistent neuroinflammation in limbic/extralimbic brain regions.
Collapse
Affiliation(s)
- Jason J Paris
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL 34987, USA
| | - Harminder D Singh
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL 34987, USA
| | - Amanda N Carey
- Northeastern University, Department of Psychology, Boston, MA 02115, USA
| | - Jay P McLaughlin
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL 34987, USA; Northeastern University, Department of Psychology, Boston, MA 02115, USA.
| |
Collapse
|
123
|
Amantea D, Micieli G, Tassorelli C, Cuartero MI, Ballesteros I, Certo M, Moro MA, Lizasoain I, Bagetta G. Rational modulation of the innate immune system for neuroprotection in ischemic stroke. Front Neurosci 2015; 9:147. [PMID: 25972779 PMCID: PMC4413676 DOI: 10.3389/fnins.2015.00147] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/09/2015] [Indexed: 01/08/2023] Open
Abstract
The innate immune system plays a dualistic role in the evolution of ischemic brain damage and has also been implicated in ischemic tolerance produced by different conditioning stimuli. Early after ischemia, perivascular astrocytes release cytokines and activate metalloproteases (MMPs) that contribute to blood–brain barrier (BBB) disruption and vasogenic oedema; whereas at later stages, they provide extracellular glutamate uptake, BBB regeneration and neurotrophic factors release. Similarly, early activation of microglia contributes to ischemic brain injury via the production of inflammatory cytokines, including tumor necrosis factor (TNF) and interleukin (IL)-1, reactive oxygen and nitrogen species and proteases. Nevertheless, microglia also contributes to the resolution of inflammation, by releasing IL-10 and tumor growth factor (TGF)-β, and to the late reparative processes by phagocytic activity and growth factors production. Indeed, after ischemia, microglia/macrophages differentiate toward several phenotypes: the M1 pro-inflammatory phenotype is classically activated via toll-like receptors or interferon-γ, whereas M2 phenotypes are alternatively activated by regulatory mediators, such as ILs 4, 10, 13, or TGF-β. Thus, immune cells exert a dualistic role on the evolution of ischemic brain damage, since the classic phenotypes promote injury, whereas alternatively activated M2 macrophages or N2 neutrophils prompt tissue remodeling and repair. Moreover, a subdued activation of the immune system has been involved in ischemic tolerance, since different preconditioning stimuli act via modulation of inflammatory mediators, including toll-like receptors and cytokine signaling pathways. This further underscores that the immuno-modulatory approach for the treatment of ischemic stroke should be aimed at blocking the detrimental effects, while promoting the beneficial responses of the immune reaction.
Collapse
Affiliation(s)
- Diana Amantea
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria Rende, Italy
| | | | - Cristina Tassorelli
- C. Mondino National Neurological Institute Pavia, Italy ; Department of Brain and Behavioral Sciences, University of Pavia Pavia, Italy
| | - María I Cuartero
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid and Instituto de Investigación Hospital 12 de Octubre Madrid, Spain
| | - Iván Ballesteros
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid and Instituto de Investigación Hospital 12 de Octubre Madrid, Spain
| | - Michelangelo Certo
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria Rende, Italy
| | - María A Moro
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid and Instituto de Investigación Hospital 12 de Octubre Madrid, Spain
| | - Ignacio Lizasoain
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid and Instituto de Investigación Hospital 12 de Octubre Madrid, Spain
| | - Giacinto Bagetta
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria Rende, Italy ; Section of Neuropharmacology of Normal and Pathological Neuronal Plasticity, University Consortium for Adaptive Disorders and Head Pain, University of Calabria Rende, Italy
| |
Collapse
|
124
|
Yoo DY, Chae J, Jung HY, Yim HS, Kim JW, Nam SM, Kim DW, Choi JH, Seong JK, Yoon YS, Hwang IK. Treadmill exercise is associated with reduction of reactive microgliosis and pro-inflammatory cytokine levels in the hippocampus of type 2 diabetic rats. Neurol Res 2015; 37:732-8. [PMID: 25797150 DOI: 10.1179/1743132815y.0000000015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES In the present study, we investigated the effects of treadmill exercise on microglial activation and the subsequent release of tumour necrosis factor-alpha (TNF-alpha), interleukin (IL)-6 and IL-1-beta in the hippocampus in a rat model of type 2 diabetes. METHODS At 30 weeks of age, diabetic (Zucker diabetic fatty, ZDF) rats and their littermate control (Zucker lean control, ZLC) rats were either placed on a stationary treadmill or made to run for 1 hour/day at 12-16 m/minute on five consecutive days, for 10 weeks. Once the rats reached 40 weeks, they were perfused and their hippocampus collected for immunohistochemistry or hippocampus collected fresh for the Western blotting or enzyme-linked immunosorbent assay (ELISA). RESULTS The whole blood glucose levels in exercised ZDF rats were significantly higher than in the sedentary or exercised ZLC rats, but were significantly lower than in the sedentary ZDF rats. In the sedentary ZLC and exercised ZLC rats, ionised calcium-binding adapter molecule 1 (Iba-1) immunoreactive microglia showed normal morphology which had small cytoplasm with ramified processes. In the sedentary ZDF rats, some Iba-1 immunoreactive microglia showed abnormal morphology which had hypertrophied cytoplasm with retracted processes. However, exercised ZDF rats had small cytoplasm with highly ramified processes. Levels of TNF-alpha, IL-6 and IL-1beta in the hippocampal homogenates were significantly increased in sedentary ZDF rats compared to sedentary ZLC rats, respectively. However, TNF-alpha, IL-6 and IL-1beta levels in the exercised ZDF rats were significantly decreased compared with those of sedentary ZDF rats, respectively. DISCUSSION These results suggest that exercise in type 2 diabetic rats reduces microglial activation and the subsequent increase of pro-inflammatory cytokine levels in the hippocampus.
Collapse
|
125
|
Li HY, Ruan YW, Kau PWF, Chiu K, Chang RCC, Chan HHL, So KF. Effect of Lycium barbarum (Wolfberry) on alleviating axonal degeneration after partial optic nerve transection. Cell Transplant 2015; 24:403-17. [PMID: 25622224 DOI: 10.3727/096368915x686896] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Our previous results showed that the polysaccharides extracted from Lycium barbarum (LBP) could delay secondary degeneration of retinal ganglion cell bodies and improve the function of the retinas after partial optic nerve transection (PONT). Although the common degeneration mechanisms were believed to be shared by both neuronal bodies and axons, recently published data from slow Wallerian degeneration mutant (Wld(s)) mice supported the divergence in the mechanisms of them. Therefore, we want to determine if LBP could also delay the degeneration of axons after PONT. Microglia/macrophages were thought to be a source of reactive oxygen species after central nervous system (CNS) injury. After PONT, however, oxidative stress was believed to occur prior to the activation of microglia/macrophages in the areas vulnerable to secondary degeneration both in the optic nerves (ONs) and the retinas. But the results did not take into account the morphological changes of microglia/macrophages after their activation. So we examined the morphology in addition to the response magnitude of microglia/macrophages to determine their time point of activation. In addition, the effects of LBP on the activation of microglia/macrophages were investigated. The results showed that (1) LBP reduced the loss of axons in the central ONs and preserved the g-ratio (axon diameter/fiber diameter) in the ventral ONs although no significant effect was detected in the dorsal ONs; (2) microglia/macrophages were activated in the ONs by 12 h after PONT; (3) LBP decreased the response magnitude of microglia/macrophages 4 weeks after PONT. In conclusion, our results showed that LBP could delay secondary degeneration of the axons, and LBP could also inhibit the activation of microglia/macrophages. Therefore, LBP could be a promising herbal medicine to delay secondary degeneration in the CNS via modulating the function of microglia/macrophages.
Collapse
Affiliation(s)
- Hong-Ying Li
- GHM Institute of CNS Regeneration and Guangdong Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
126
|
Nagayach A, Patro N, Patro I. Astrocytic and microglial response in experimentally induced diabetic rat brain. Metab Brain Dis 2014; 29:747-61. [PMID: 24833555 DOI: 10.1007/s11011-014-9562-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 04/30/2014] [Indexed: 02/06/2023]
Abstract
Diabetes Mellitus is associated with increased risk of cognitive and behavioural disorders with hitherto undeciphered role of glia. Glia as majority population in brain serve several vital functions, thus require pertinent revelation to further explicate the mechanisms affecting the brain function following diabetes. In this study we have evaluated glial changes in terms of phenotypic switching, proliferation and expression of activation cell surface markers and associated cellular degeneration in hippocampus following STZ-induced diabetes and caused cognitive impairments. Experimental diabetes was induced in Wistar rats by a single dose of STZ (45 mg/kg body weight; intraperitoneally) and changes were studied in 2nd, 4th and 6th week post diabetes confirmation using Barnes maze and T-maze test, immunohistochemistry and image analysis. An increase in GFAP expression sequentially from 2nd to 6th weeks of diabetes was analogous with the phenotypic changes and increased astrocyte number. Elevated level of S100β with defined stellate morphology further confirmed the astrocytosis following diabetes. Enhanced level of Iba-1 and MHC-II revealed the corroborated microglial activation and proliferation following diabetes, which was unresolved till date. Increased caspase-3 activity induced profound cell death upto 6th weeks post diabetes confirmation. Such caspase 3 mediated cellular damage with a concomitant activation of the astrocytes and microglia suggests that diabetes linked cell death activates the astrocytes and microglia in hippocampus which further underpin the progression and severity of brain disorders resulting in cognitive and behavioural impairments.
Collapse
Affiliation(s)
- Aarti Nagayach
- School of Studies in Neuroscience, Jiwaji University, Gwalior, 474011, Madhya Pradesh, India
| | | | | |
Collapse
|
127
|
Chen X, Zhou H, Gong Y, Wei S, Zhang M. Early spatiotemporal characterization of microglial activation in the retinas of rats with streptozotocin-induced diabetes. Graefes Arch Clin Exp Ophthalmol 2014; 253:519-25. [PMID: 25023148 DOI: 10.1007/s00417-014-2727-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 05/22/2014] [Accepted: 06/30/2014] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Microglial activation has been recognized as a neuropathological feature in diabetic retinopathy. But the early spatiotemporal characterization of microglial activation in the retina and the optic nerve of diabetic animals has not been fully investigated. The purpose of this study was to investigate early sequential changes of microglia in the retinas of rats with streptozotocin-induced diabetes. Microglia in the optic nerves of rats with streptozotocin-induced diabetes were also studied. METHODS In 4-week, 8-week, and 12-week diabetic and normal control rats, microglial activation in the retinas and optic nerves was evaluated by immunolabeling with OX-42 antibody. Density, proportion of activation, and laminar distribution of retinal microglia were quantified. The retinal mRNA level of Iba-1, a microglial-specific marker, was measured by real-time PCR. RESULTS The density of retinal microglia was not different between diabetic and control rats, but the proportion of activated microglia increased significantly in diabetic rats at each time point. The proportion of microglia increased obviously in the nerve fiber layer and the ganglion cell layer while decreasing in the inner plexiform layer in 12-week diabetic rats. Moreover, retinal Iba-1 mRNA expression increased in 8-week and 12-week diabetic rats. Processes of microglia in the optic nerves of control rats were aligned with the long axis of nerve fibers, while the alignment was disturbed in diabetic rats. CONCLUSIONS Morphology, proportion of activation, distribution, and mRNA expression of retinal microglia changed characteristically with the progression of the disease in early-stage diabetic rats.
Collapse
Affiliation(s)
- Xiaofei Chen
- Department of Ophthalmology, Chinese PLA General Hospital, 28, Fuxing Road, 100853, Beijing, China
| | | | | | | | | |
Collapse
|
128
|
Walker FR, Nilsson M, Jones K. Acute and chronic stress-induced disturbances of microglial plasticity, phenotype and function. Curr Drug Targets 2014; 14:1262-76. [PMID: 24020974 PMCID: PMC3788324 DOI: 10.2174/13894501113149990208] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/19/2013] [Accepted: 08/26/2013] [Indexed: 12/16/2022]
Abstract
Traditionally, microglia have been considered to act as macrophages of the central nervous system. While this concept still remains true it is also becoming increasingly apparent that microglia are involved in a host of non-immunological activities, such as monitoring synaptic function and maintaining synaptic integrity. It has also become apparent that microglia are exquisitely sensitive to perturbation by environmental challenges. The aim of the current review is to critically examine the now substantial literature that has developed around the ability of acute, sub-chronic and chronic stressors to alter microglial structure and function. The vast majority of studies have demonstrated that stress promotes significant structural remodelling of microglia, and can enhance the release of pro-inflammatory cytokines from microglia. Mechanistically, many of these effects appear to be driven by traditional stress-linked signalling molecules, namely corticosterone and norepinephrine. The specific effects of these signalling molecules are, however, complex as they can exert both inhibitory and suppressive effects on microglia depending upon the duration and intensity of exposure. Importantly, research has now shown that these stress-induced microglial alterations, rather than being epiphenomena, have broader behavioural implications, with the available evidence implicating microglia in directly regulating certain aspects of cognitive function and emotional regulation.
Collapse
Affiliation(s)
- Frederick Rohan Walker
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia.
| | | | | |
Collapse
|
129
|
Wu HM, Zhang LF, Ding PS, Liu YJ, Wu X, Zhou JN. Microglial activation mediates host neuronal survival induced by neural stem cells. J Cell Mol Med 2014; 18:1300-12. [PMID: 24725889 PMCID: PMC4124015 DOI: 10.1111/jcmm.12281] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 02/12/2014] [Indexed: 12/19/2022] Open
Abstract
The rational of neural stem cells (NSCs) in the therapy of neurological disease is either to replace dead neurons or to improve host neuronal survival, the latter of which has got less attention and the underlying mechanism is as yet little known. Using a transwell co-culture system, we reported that, in organotypic brain slice cultures, NSCs significantly improved host neuronal viability. Interestingly, this beneficial effect of NSCs was abrogated by a microglial inhibitor minocycline, while it was mimicked by a microglial agonist, Toll-like receptor 9 (TLR9) ligand CpG-ODN, which supports the pro-vital mediation by microglia on this NSCs-improved neuronal survival. Moreover, we showed that NSCs significantly induced host microglial movement and higher expression of a microglial marker IBA-1, the latter of which was positively correlated with TLR9 or extracellular-regulated protein kinases 1/2 (ERK1/2) activation. Real-time PCR revealed that NSCs inhibited the expression of pro-inflammatory molecules, but significantly increased the expression of molecules associated with a neuroprotective phenotype such as CX3CR1, triggering receptor expressed on myeloid cells-2 (TREM2) and insulin growth factor 1 (IGF-1). Similarly, in the microglia cells, NSCs induced the same microglial response as that in the slices. Further treatment with TLR9 ligand CpG-ODN, TLR9 inhibitor chloroquine (CQ) or ERK1/2 inhibitor U0126 demonstrated that TLR9-ERK1/2 pathway was involved in the NSCs-induced microglial activation. Collectively, this study indicated that NSCs improve host neuronal survival by switching microglia from a detrimental to a neuroprotective phenotype in adult mouse brain, and the microglial TLR9-ERK1/2 pathway seems to participate in this NSCs-mediated rescue action.
Collapse
Affiliation(s)
- Hui-Mei Wu
- CAS Key Laboratory of Brain Function and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China; Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | | | | | | | | | | |
Collapse
|
130
|
Belaïd-Nouira Y, Bakhta H, Samoud S, Trimech M, Haouas Z, Ben Cheikh H. A novel insight on chronic AlCl3 neurotoxicity through IL-6 and GFAP expressions: modulating effect of functional food fenugreek seeds. Nutr Neurosci 2014; 16:218-24. [PMID: 23928220 DOI: 10.1179/1476830512y.0000000048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE This study was designed to review the effect of chronic aluminium exposure on interleukin-6 (IL-6) secretion in the posterior brain and test the putative modulating effect of fenugreek seeds. METHODS Female Wistar rats were divided into four groups: control; AlCl3 during 5 months (500 mg/kg body weight, intragastric for 1 month then 1600 ppm via the drinking water); AlCl3 plus fenugreek seed powder (FSP) (5%) during the last 2 months and FSP alone. RESULTS Oral administration of aluminium chloride during 5 months caused hypoproduction of IL-6 together with a decrease in GFAP reactivity and an alteration of antioxidant status in the posterior brain. On the other hand, fenugreek seeds supplementation was able to enhance IL-6 expression, re-increase GFAP reactivity, and modulate the pro-oxidant-related effect. DISCUSSION In the context of recent researches, IL-6 hypoproduction in the posterior brain could be a novel mechanism of Al chronic toxicity with a direct effect on glial cells. Using FSP as a diet supplement could offer a neuroprotective effect against Al toxicity. This could be mediated by astroglial cells protection, antioxidant and immunomodulatory actions.
Collapse
Affiliation(s)
- Yosra Belaïd-Nouira
- Laboratory of Histology and Cytogenetic (Research unit of Genetic 02/UR/08-03), Faculty of Medicine, Monastir, Tunisia.
| | | | | | | | | | | |
Collapse
|
131
|
Raj DDA, Jaarsma D, Holtman IR, Olah M, Ferreira FM, Schaafsma W, Brouwer N, Meijer MM, de Waard MC, van der Pluijm I, Brandt R, Kreft KL, Laman JD, de Haan G, Biber KPH, Hoeijmakers JHJ, Eggen BJL, Boddeke HWGM. Priming of microglia in a DNA-repair deficient model of accelerated aging. Neurobiol Aging 2014; 35:2147-60. [PMID: 24799273 DOI: 10.1016/j.neurobiolaging.2014.03.025] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 03/21/2014] [Accepted: 03/23/2014] [Indexed: 12/16/2022]
Abstract
Aging is associated with reduced function, degenerative changes, and increased neuroinflammation of the central nervous system (CNS). Increasing evidence suggests that changes in microglia cells contribute to the age-related deterioration of the CNS. The most prominent age-related change of microglia is enhanced sensitivity to inflammatory stimuli, referred to as priming. It is unclear if priming is due to intrinsic microglia ageing or induced by the ageing neural environment. We have studied this in Ercc1 mutant mice, a DNA repair-deficient mouse model that displays features of accelerated aging in multiple tissues including the CNS. In Ercc1 mutant mice, microglia showed hallmark features of priming such as an exaggerated response to peripheral lipopolysaccharide exposure in terms of cytokine expression and phagocytosis. Specific targeting of the Ercc1 deletion to forebrain neurons resulted in a progressive priming response in microglia exemplified by phenotypic alterations. Summarizing, these data show that neuronal genotoxic stress is sufficient to switch microglia from a resting to a primed state.
Collapse
Affiliation(s)
- Divya D A Raj
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Dick Jaarsma
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Inge R Holtman
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marta Olah
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Filipa M Ferreira
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Wandert Schaafsma
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Nieske Brouwer
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Michel M Meijer
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Monique C de Waard
- Department of Genetics, Cancer Genomics Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ingrid van der Pluijm
- Department of Genetics, Cancer Genomics Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Renata Brandt
- Department of Genetics, Cancer Genomics Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Karim L Kreft
- Department of Immunology, Erasmus University Medical Center and MS Center ErasMS, Rotterdam, the Netherlands; Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jon D Laman
- Department of Immunology, Erasmus University Medical Center and MS Center ErasMS, Rotterdam, the Netherlands
| | - Gerald de Haan
- Department of Cell Biology, European Research Institute on the Biology of Aging, University of Groningen, University Medical Center, Groningen, the Netherlands
| | - Knut P H Biber
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Psychiatry and Psychotherapy, University Medical Center, Freiburg, Germany
| | - Jan H J Hoeijmakers
- Department of Genetics, Cancer Genomics Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Bart J L Eggen
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Hendrikus W G M Boddeke
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
132
|
Walker FR, Beynon SB, Jones KA, Zhao Z, Kongsui R, Cairns M, Nilsson M. Dynamic structural remodelling of microglia in health and disease: a review of the models, the signals and the mechanisms. Brain Behav Immun 2014; 37:1-14. [PMID: 24412599 DOI: 10.1016/j.bbi.2013.12.010] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 12/11/2013] [Accepted: 12/12/2013] [Indexed: 01/14/2023] Open
Abstract
Microglia are unique cells within the central nervous system because of their biophysical independence. As a result of this unusual property the cells must undergo significant structural remodelling in order to engage and connect with other elements within the central nervous system. Efficient remodelling is required for all activities that microglia are involved in ranging from monitoring synaptic information flow through to phagocytosis of tissue debris. Despite the fact that morphological remodelling is a pre-requisite to all microglial activities, relatively little research has been undertaken on the topic. This review examines what is known about how microglia transform themselves during development, under physiological conditions in response to changes in neuronal activity, and under pathological circumstances. Specific attention is given to exploring a variety of models that have been proposed to account for microglial transformation as well as the signals that are known to trigger these transformations.
Collapse
Affiliation(s)
- F Rohan Walker
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Australia; Centre for Translational Neuroscience and Mental Health Research, University of Newcastle, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia.
| | - Sarah B Beynon
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Australia; Centre for Translational Neuroscience and Mental Health Research, University of Newcastle, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Kimberley A Jones
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Australia; Centre for Translational Neuroscience and Mental Health Research, University of Newcastle, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Zidan Zhao
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Australia; Centre for Translational Neuroscience and Mental Health Research, University of Newcastle, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Ratchaniporn Kongsui
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Australia; Centre for Translational Neuroscience and Mental Health Research, University of Newcastle, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Murray Cairns
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Australia; Centre for Translational Neuroscience and Mental Health Research, University of Newcastle, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Michael Nilsson
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Australia; Centre for Translational Neuroscience and Mental Health Research, University of Newcastle, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| |
Collapse
|
133
|
Hwang IK, Choi JH, Nam SM, Park OK, Yoo DY, Kim W, Yi SS, Won MH, Seong JK, Yoon YS. Activation of microglia and induction of pro-inflammatory cytokines in the hippocampus of type 2 diabetic rats. Neurol Res 2014; 36:824-32. [PMID: 24571083 DOI: 10.1179/1743132814y.0000000330] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The majority of immune cells in the brain are comprised of microglia, which undergo morphological changes when activated to remove damaged neurons and infectious agents from the brain tissue. In this study, we investigated the effects of type 2 diabetes on microglial activation and the subsequent secretion of pro-inflammatory cytokines, such as interferon-gamma (IFN-gamma) and interleukin-1beta (IL-1beta), in the hippocampus using Zucker diabetic fatty (ZDF) rats and Zucker lean control (ZLC) rats at various diabetic stages. METHODS Zucker lean control and Zucker diabetic fatty rats were sacrificed at 12 (early diabetic stage), 20, or 30 weeks of age (chronic diabetic stage), and the hippocampus was obtained via transcardiac perfusion or dissection for immunohistochemistry and western blot analysis, respectively. RESULTS Zucker diabetic fatty rats demonstrated significantly higher glucose levels at 12 and 30 weeks of age compared to ZLC rats. Microglia immunoreactive to ionized calcium-binding adapter molecule 1 (Iba-1) had hypertrophied cytoplasm with retracted processes at 30 weeks of age. In contrast, Iba-1-immunoreactive microglia displayed similar morphology in ZDF and ZLC rats at 12 and 20 weeks of age. Similarly, IFN-gamma and IL-1beta protein levels were significantly increased in ZDF rats compared to ZLC rats at 30 weeks of age, but not at 12 and 20 weeks of age. Interleukin-1beta immunoreactivity in the ZDF rats predominantly increased in the dentate gyrus and CA1 region of the hippocampus compared to that of ZLC rats at 30 weeks of age. In addition, IL-1beta immunoreactive structures in ZDF rats at 30 weeks of age were detected near the astrocytes and microglia. CONCLUSION These results suggest that chronic diabetes activates microglia and significantly increases pro-inflammatory cytokine levels in the hippocampus.
Collapse
|
134
|
Kabadi SV, Faden AI. Neuroprotective strategies for traumatic brain injury: improving clinical translation. Int J Mol Sci 2014; 15:1216-36. [PMID: 24445258 PMCID: PMC3907865 DOI: 10.3390/ijms15011216] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/07/2014] [Accepted: 01/13/2014] [Indexed: 01/15/2023] Open
Abstract
Traumatic brain injury (TBI) induces secondary biochemical changes that contribute to delayed neuroinflammation, neuronal cell death, and neurological dysfunction. Attenuating such secondary injury has provided the conceptual basis for neuroprotective treatments. Despite strong experimental data, more than 30 clinical trials of neuroprotection in TBI patients have failed. In part, these failures likely reflect methodological differences between the clinical and animal studies, as well as inadequate pre-clinical evaluation and/or trial design problems. However, recent changes in experimental approach and advances in clinical trial methodology have raised the potential for successful clinical translation. Here we critically analyze the current limitations and translational opportunities for developing successful neuroprotective therapies for TBI.
Collapse
Affiliation(s)
- Shruti V Kabadi
- Department of Anesthesiology, Center for Shock, Trauma and Anesthesiology Research (STAR), National Study Center for Trauma and EMS, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Alan I Faden
- Department of Anesthesiology, Center for Shock, Trauma and Anesthesiology Research (STAR), National Study Center for Trauma and EMS, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
135
|
Houdek HM, Larson J, Watt JA, Rosenberger TA. Bacterial lipopolysaccharide induces a dose-dependent activation of neuroglia and loss of basal forebrain cholinergic cells in the rat brain. INFLAMMATION AND CELL SIGNALING 2014; 1. [PMID: 26052539 DOI: 10.14800/ics.47] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In a rat model of neuroinflammation induced with a low-dose infusion lipopolysaccharide (5.0 ng/hr, LPS), we reported that brain arachidonic acid (ARA, 20:4 n-6), but not docosahexaenoic acid (DHA, 22:6n-3), metabolism is increased compared to control rats. To further characterize the impact LPS has on the induction of injury in this model, we quantified the dose-dependent activation of neuroglia and the loss of cholinergic cells in rats subjected to increasing doses of LPS. In this study, we found that LPS produced a statistically significant and linear dose-dependent increase in the percentage of activated CD11b-positive microglia ranging from 26% to 82% following exposure to doses ranging between 0.05 and 500 ng/hr, respectively. The percentage of activated GFAP-positive astrocytes also increased linearly and significantly from 35% to 91%. Significant astroglial scaring was evident at the lateral ventricular boarder of rats treated with 50 and 500 ng/hr LPS, but not evident in control treated rats or rats treated with lower doses of LPS. A dose-dependent decrease in the numbers of ChAT-positive cells in the basal forebrain of LPS-treated rats was found at higher doses of LPS (5, 50, and 500 ng/hr) but not at lower doses. The numbers of ChAT-positive cells within individual regions of the basal forebrain (medial septum and diagonal bands) and the composite basal forebrain were similar in their response. These data demonstrate that extremely low doses of LPS are sufficient to induce significant neuroglia activation while moderate doses above 5.0 ng/hr are required to induce cholinergic cell loss.
Collapse
Affiliation(s)
- Heidi M Houdek
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203, USA
| | - Jordan Larson
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203, USA
| | - John A Watt
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203, USA
| | - Thad A Rosenberger
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203, USA
| |
Collapse
|
136
|
Ferrazoli EG, Blanco MM, Bittencourt S, Bachi ALL, Bahia L, Soares MBP, Ribeiro-Dos-Santos R, Mello LE, Longo BM. Anticonvulsant activity of bone marrow cells in electroconvulsive seizures in mice. BMC Neurosci 2013; 14:97. [PMID: 24011127 PMCID: PMC3846761 DOI: 10.1186/1471-2202-14-97] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 09/03/2013] [Indexed: 11/16/2022] Open
Abstract
Background Bone marrow is an accessible source of progenitor cells, which have been investigated as treatment for neurological diseases in a number of clinical trials. Here we evaluated the potential benefit of bone marrow cells in protecting against convulsive seizures induced by maximum electroconvulsive shock (MES), a widely used model for screening of anti-epileptic drugs. Behavioral and inflammatory responses were measured after MES induction in order to verify the effects promoted by transplantation of bone marrow cells. To assess the anticonvulsant effects of bone marrow cell transplantation, we measured the frequency and duration of tonic seizure, the mortality rate, the microglial expression and the blood levels of cytokine IL-1, IL-6, IL-10 and TNF-α after MES induction. We hypothesized that these behavioral and inflammatory responses to a strong stimulus such as a convulsive seizure could be modified by the transplantation of bone marrow cells. Results Bone marrow transplanted cells altered the convulsive threshold and showed anticonvulsant effect by protecting from tonic seizures. Bone marrow cells modified the microglial expression in the analyzed brain areas, increased the IL-10 and attenuate IL-6 levels. Conclusions Bone marrow cells exert protective effects by blocking the course of electroconvulsive seizures. Additionally, electroconvulsive seizures induced acute inflammatory responses by altering the pattern of microglia expression, as well as in IL-6 and IL-10 levels. Our findings also indicated that the anticonvulsant effects of these cells can be tested with the MES model following the same paradigm used for drug testing in pharmacological screening. Studies on the inflammatory reaction in response to acute seizures in the presence of transplanted bone marrow cells might open a wide range of discussions on the mechanisms relevant to the pathophysiology of epilepsies.
Collapse
Affiliation(s)
- Enéas Galdini Ferrazoli
- Laboratório de Neurofisiologia, Departamento de Fisiologia, Federal University of São Paulo - UNIFESP, R, Botucatu, 862 5 andar, V, Clementino - CEP, 04023-066, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Schaible EV, Steinsträßer A, Jahn-Eimermacher A, Luh C, Sebastiani A, Kornes F, Pieter D, Schäfer MK, Engelhard K, Thal SC. Single administration of tripeptide α-MSH(11-13) attenuates brain damage by reduced inflammation and apoptosis after experimental traumatic brain injury in mice. PLoS One 2013; 8:e71056. [PMID: 23940690 PMCID: PMC3733710 DOI: 10.1371/journal.pone.0071056] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/24/2013] [Indexed: 12/29/2022] Open
Abstract
Following traumatic brain injury (TBI) neuroinflammatory processes promote neuronal cell loss. Alpha-melanocyte-stimulating hormone (α-MSH) is a neuropeptide with immunomodulatory properties, which may offer neuroprotection. Due to short half-life and pigmentary side-effects of α-MSH, the C-terminal tripeptide α-MSH(11-13) may be an anti-inflammatory alternative. The present study investigated the mRNA concentrations of the precursor hormone proopiomelanocortin (POMC) and of melanocortin receptors 1 and 4 (MC1R/MC4R) in naive mice and 15 min, 6, 12, 24, and 48 h after controlled cortical impact (CCI). Regulation of POMC and MC4R expression did not change after trauma, while MC1R levels increased over time with a 3-fold maximum at 12 h compared to naive brain tissue. The effect of α-MSH(11-13) on secondary lesion volume determined in cresyl violet stained sections (intraperitoneal injection 30 min after insult of 1 mg/kg α-MSH(11-13) or 0.9% NaCl) showed a considerable smaller trauma in α-MSH(11-13) injected mice. The expression of the inflammatory markers TNF-α and IL-1β as well as the total amount of Iba-1 positive cells were not reduced. However, cell branch counting of Iba-1 positive cells revealed a reduced activation of microglia. Furthermore, tripeptide injection reduced neuronal apoptosis analyzed by cleaved caspase-3 and NeuN staining. Based on the results single α-MSH(11-13) administration offers a promising neuroprotective property by modulation of inflammation and prevention of apoptosis after traumatic brain injury.
Collapse
Affiliation(s)
- Eva-Verena Schaible
- Department of Anesthesiology, Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Arne Steinsträßer
- Department of Anesthesiology, Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Antje Jahn-Eimermacher
- Institute of Medical Biostatistics, Epidemiology and Informatics, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Clara Luh
- Department of Anesthesiology, Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Anne Sebastiani
- Department of Anesthesiology, Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Frida Kornes
- Department of Anesthesiology, Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Dana Pieter
- Department of Anesthesiology, Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Michael K. Schäfer
- Department of Anesthesiology, Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Focus Program Translational Neuroscience, Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kristin Engelhard
- Department of Anesthesiology, Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Focus Program Translational Neuroscience, Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Serge C. Thal
- Department of Anesthesiology, Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Focus Program Translational Neuroscience, Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- * E-mail:
| |
Collapse
|
138
|
Abstract
The chorda tympani (CT) nerve innervates lingual taste buds and is susceptible to damage during dental and inner ear procedures. Interruption of the CT results in a disappearance of taste buds, which can be accompanied by taste disturbances. Because the CT usually regenerates to reinnervate taste buds successfully within a few weeks, a persistence of taste disturbances may indicate alterations in central nervous function. Peripheral injury to other sensory nerves leads to glial responses at central terminals, which actively contribute to abnormal sensations arising from nerve damage. Therefore, the current study examined microglial and astrocytic responses in the first central gustatory relay, the nucleus of the solitary tract (nTS), after transection of the CT. Damage to the CT resulted in significant microglial responses in terms of morphological reactivity and an increased density of microglial cells from 2 to 20 days after injury. This increased microglial population resulted primarily from microglial proliferation from 1.5 to 3 days, which was supplemented by microglial migration within subdivisions of the nTS between days 2 and 3. Unlike other nerve injuries, CT injury did not result in recruitment of bone marrow-derived precursors. Astrocytes also reacted in the nTS with increased levels of glial fibrillary acidic protein (GFAP) by 3 days, although none showed evidence of cell division. GFAP levels remained increased at 30 days, by which time microglial responses had resolved. These results show that nerve damage to the CT results in central glial responses, which may participate in long-lasting taste alterations following CT lesion.
Collapse
Affiliation(s)
- Dianna L Bartel
- Rocky Mountain Taste and Smell Center, Neuroscience Program, Department of Cellular and Developmental Biology, University of Colorado Anschutz Medical Center, Aurora, Colorado 80045, USA.
| |
Collapse
|
139
|
Hazlerigg DG, Wyse CA, Dardente H, Hanon EA, Lincoln GA. Photoperiodic Variation in CD45-Positive Cells and Cell Proliferation in the Mediobasal Hypothalamus of the Soay Sheep. Chronobiol Int 2013; 30:548-58. [DOI: 10.3109/07420528.2012.754450] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
140
|
Heynen SR, Meneau I, Caprara C, Samardzija M, Imsand C, Levine EM, Grimm C. CDC42 is required for tissue lamination and cell survival in the mouse retina. PLoS One 2013; 8:e53806. [PMID: 23372671 PMCID: PMC3553133 DOI: 10.1371/journal.pone.0053806] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 12/05/2012] [Indexed: 11/28/2022] Open
Abstract
The small GTPase CDC42 has pleiotropic functions during development and in the adult. These functions include intra- as well as intercellular tasks such as organization of the cytoskeleton and, at least in epithelial cells, formation of adherens junctions. To investigate CDC42 in the neuronal retina, we generated retina-specific Cdc42-knockdown mice (Cdc42-KD) and analyzed the ensuing consequences for the developing and postnatal retina. Lack of CDC42 affected organization of the developing retina as early as E17.5, prevented correct tissue lamination, and resulted in progressive retinal degeneration and severely reduced retinal function of the postnatal retina. Despite the disorganization of the retina, formation of the primary vascular plexus was not strongly affected. However, both deeper vascular plexi developed abnormally with no clear layering of the vessels. Retinas of Cdc42-KD mice showed increased expression of pro-survival, but also of pro-apoptotic and pro-inflammatory genes and exhibited prolonged Müller glia hypertrophy. Thus, functional CDC42 is important for correct tissue organization already during retinal development. Its absence leads to severe destabilization of the postnatal retina with strong degeneration and loss of retinal function.
Collapse
Affiliation(s)
- Severin Reinhard Heynen
- Laboratory of Retinal Cell Biology, Ophthalmology Department, University of Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Isabelle Meneau
- Laboratory of Retinal Cell Biology, Ophthalmology Department, University of Zurich, Switzerland
| | - Christian Caprara
- Laboratory of Retinal Cell Biology, Ophthalmology Department, University of Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Marijana Samardzija
- Laboratory of Retinal Cell Biology, Ophthalmology Department, University of Zurich, Switzerland
| | - Cornelia Imsand
- Laboratory of Retinal Cell Biology, Ophthalmology Department, University of Zurich, Switzerland
| | - Edward M. Levine
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States of America
| | - Christian Grimm
- Laboratory of Retinal Cell Biology, Ophthalmology Department, University of Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
- Center for Neuroscience, University of Zurich, Switzerland
- * E-mail:
| |
Collapse
|
141
|
Exposure to 1-bromopropane induces microglial changes and oxidative stress in the rat cerebellum. Toxicology 2012; 302:18-24. [DOI: 10.1016/j.tox.2012.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 07/12/2012] [Accepted: 07/13/2012] [Indexed: 11/22/2022]
|
142
|
Shen Y, Sun A, Wang Y, Cha D, Wang H, Wang F, Feng L, Fang S, Shen Y. Upregulation of mesencephalic astrocyte-derived neurotrophic factor in glial cells is associated with ischemia-induced glial activation. J Neuroinflammation 2012; 9:254. [PMID: 23173607 PMCID: PMC3576245 DOI: 10.1186/1742-2094-9-254] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 10/19/2012] [Indexed: 11/23/2022] Open
Abstract
Background Mesencephalic astrocyte-derived neurotrophic factor (MANF), a 20 kDa secreted protein, was originally derived from a rat mesencephalic type-1 astrocyte cell line. MANF belongs to a novel evolutionally conserved family of neurotrophic factors along with conserved dopamine neurotrophic factor. In recent years, ever-increasing evidence has shown that both of them play a remarkable protective role against various injuries to neurons in vivo or in vitro. However, the characteristics of MANF expression in the different types of glial cells, especially in astrocytes, remain unclear. Methods The model of focal cerebral ischemia was induced by rat middle cerebral artery occlusion. Double-labeled immunofluorescent staining was used to identify the types of neural cells expressing MANF. Primarily cultured glial cells were used to detect the response of glial cells to endoplasmic reticulum stress stimulation. Propidium iodide staining was used to determine dead cells. Reverse transcription PCR and western blotting were used to detect the levels of mRNA and proteins. Results We found that MANF was predominantly expressed in neurons in both normal and ischemic cortex. Despite its name, MANF was poorly expressed in glial cells, including astrocytes, in normal brain tissue. However, the expression of MANF was upregulated in the glial cells under focal cerebral ischemia, including the astrocytes. This expression was also induced by several endoplasmic reticulum stress inducers and nutrient deprivation in cultured primary glial cells. The most interesting phenomenon observed in this study was the pattern of MANF expression in the microglia. The expression of MANF was closely associated with the morphology and state of microglia, accompanied by the upregulation of BIP/Grp78. Conclusions These results indicate that MANF expression was upregulated in the activated glial cells, which may contribute to the mechanism of ischemia-induced neural injury.
Collapse
Affiliation(s)
- Yujun Shen
- Biopharmaceutical Research Institute, Hefei 230032, P R China
| | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Siddiq I, Park E, Liu E, Spratt SK, Surosky R, Lee G, Ando D, Giedlin M, Hare GMT, Fehlings MG, Baker AJ. Treatment of traumatic brain injury using zinc-finger protein gene therapy targeting VEGF-A. J Neurotrauma 2012; 29:2647-59. [PMID: 23016562 DOI: 10.1089/neu.2012.2444] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) plays a role in angiogenesis and has been shown to be neuroprotective following central nervous system trauma. In the present study we evaluated the pro-angiogenic and neuroprotective effects of an engineered zinc-finger protein transcription factor transactivator targeting the vascular endothelial growth factor A (VEGF-ZFP). We used two virus delivery systems, adeno-virus and adeno-associated virus, to examine the effects of early and delayed VEGF-A upregulation after brain trauma, respectively. Male Sprague-Dawley rats were subject to a unilateral fluid percussion injury (FPI) of moderate severity (2.2-2.5 atm) followed by intracerebral microinjection of either adenovirus vector (Adv) or an adeno-associated vector (AAV) carrying the VEGF-ZFP construct. Adv-VEGF-ZFP-treated animals had significantly fewer TUNEL positive cells in the injured penumbra of the cortex (p<0.001) and hippocampus (p=0.001) relative to untreated rats at 72 h post-injury. Adv-VEGF-ZFP treatment significantly improved fEPSP values (p=0.007) in the CA1 region relative to injury alone. Treatment with AAV2-VEGF-ZFP resulted in improved post-injury microvascular diameter and improved functional recovery on the balance beam and rotarod task at 30 days post-injury. Collectively, the results provide supportive evidence for the concept of acute and delayed treatment following TBI using VEGF-ZFP to induce angiogenesis, reduce cell death, and enhance functional recovery.
Collapse
Affiliation(s)
- Ishita Siddiq
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Beynon SB, Walker FR. Microglial activation in the injured and healthy brain: what are we really talking about? Practical and theoretical issues associated with the measurement of changes in microglial morphology. Neuroscience 2012; 225:162-71. [PMID: 22824429 DOI: 10.1016/j.neuroscience.2012.07.029] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/12/2012] [Accepted: 07/12/2012] [Indexed: 12/14/2022]
Abstract
Recently it has become apparent that microglia play a role not only in responding to insults within the central nervous system but also in responding to changes in synaptic activity and potentially modulating synaptic function. This has led to an enormous expansion of interest in how microglia respond to both pathological and nonpathological challenges, with activities that are associated with unique morphological transformations. Examining changes in microglial morphology can provide direct insight into the cells' functional activities, as morphological status is recognized to be tightly coupled with function. Despite these advances in knowledge, many of the image-based morphometric procedures used to investigate changes in microglial morphology have not kept pace. This has created a situation in which morphometric approaches that have been extensively employed in the past can no longer provide accurate information on the complex transformations that microglia can undergo, particularly under non-pathological conditions. This review critically examines the strengths and weaknesses of existing morphometric analysis procedures. This review further examines efforts to improve the utility of existing approaches and discusses new developments, such as digital reconstruction, that yield more accurate and specific information on how microglia remodel themselves. Ultimately, an improved understanding of the strengths and limitations of existing, and emerging, morphometric approaches will greatly facilitate efforts to understand how microglia remodel themselves in response to the full spectrum of challenges that they are known to encounter.
Collapse
Affiliation(s)
- S B Beynon
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | | |
Collapse
|
145
|
Byrnes V, Miller A, Lowry D, Hill E, Weinstein C, Alsop D, Lenkinski R, Afdhal NH. Effects of anti-viral therapy and HCV clearance on cerebral metabolism and cognition. J Hepatol 2012; 56:549-56. [PMID: 22027578 DOI: 10.1016/j.jhep.2011.09.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 07/25/2011] [Accepted: 09/15/2011] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Chronic hepatitis C virus (HCV) infection is associated with altered cerebral metabolism and cognitive dysfunction. We aimed to evaluate the effect of pegylated interferon/ribavirin (PIFN/R) and HCV clearance on cerebral metabolism, and neuropsychological performance. METHODS Fifteen non-cirrhotic HCV positive subjects underwent (1)H MR spectroscopy (MRS) before, during, and after treatment with PIFN/R. The metabolites of interest namely, N-acetylaspartate (NAA), choline (Cho), myo-inositol (MI), and the control metabolite creatine (Cr), were acquired from 3 different brain regions; left basal ganglia, left frontal cortex, and left dorso-lateral pre-frontal cortex. Coinciding with this, subjects also underwent a battery of neuropsychological tests to evaluate the domains of verbal learning, memory, attention, language, executive functioning, and motor skills. Seven HCV positive controls (not receiving anti-viral therapy) underwent MRS and neuropsychological testing at two time points, 12 weeks apart, to examine for variation in cerebral metabolites over time and the practice effect of repeat neuropsychological testing. RESULTS Significant reductions in basal ganglia Cho/Cr (p=0.03) and basal ganglia MI/Cr (p=0.03) were observed in sustained virological responders (SVRs, n=8), but not non-responders/relapsers (NR/R, n=6), indicative of reduced cerebral infection and/or immune activation in those who cleared virus. SVRs demonstrated significant improvements in verbal learning, memory, and visuo-spatial memory. A small but significant improvement in neurocognitive function secondary to the practice effect was seen in both HCV controls and HCV subjects during treatment. CONCLUSIONS HCV eradication has a beneficial effect on cerebral metabolism and selective aspects of neurocognitive function and is an important factor when contemplating anti-viral therapy in HCV, especially in those with mild disease.
Collapse
Affiliation(s)
- Valerie Byrnes
- Department of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
146
|
Byrnes KR, Loane DJ, Stoica BA, Zhang J, Faden AI. Delayed mGluR5 activation limits neuroinflammation and neurodegeneration after traumatic brain injury. J Neuroinflammation 2012; 9:43. [PMID: 22373400 PMCID: PMC3308916 DOI: 10.1186/1742-2094-9-43] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 02/28/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Traumatic brain injury initiates biochemical processes that lead to secondary neurodegeneration. Imaging studies suggest that tissue loss may continue for months or years after traumatic brain injury in association with chronic microglial activation. Recently we found that metabotropic glutamate receptor 5 (mGluR5) activation by (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) decreases microglial activation and release of associated pro-inflammatory factors in vitro, which is mediated in part through inhibition of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Here we examined whether delayed CHPG administration reduces chronic neuroinflammation and associated neurodegeneration after experimental traumatic brain injury in mice. METHODS One month after controlled cortical impact traumatic brain injury, C57Bl/6 mice were randomly assigned to treatment with single dose intracerebroventricular CHPG, vehicle or CHPG plus a selective mGluR5 antagonist, 3-((2-Methyl-4-thiazolyl)ethynyl)pyridine. Lesion volume, white matter tract integrity and neurological recovery were assessed over the following three months. RESULTS Traumatic brain injury resulted in mGluR5 expression in reactive microglia of the cortex and hippocampus at one month post-injury. Delayed CHPG treatment reduced expression of reactive microglia expressing NADPH oxidase subunits; decreased hippocampal neuronal loss; limited lesion progression, as measured by repeated T2-weighted magnetic resonance imaging (at one, two and three months) and white matter loss, as measured by high field ex vivo diffusion tensor imaging at four months; and significantly improved motor and cognitive recovery in comparison to the other treatment groups. CONCLUSION Markedly delayed, single dose treatment with CHPG significantly improves functional recovery and limits lesion progression after experimental traumatic brain injury, likely in part through actions at mGluR5 receptors that modulate neuroinflammation.
Collapse
Affiliation(s)
- Kimberly R Byrnes
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | | | | | | | | |
Collapse
|
147
|
Lorger M. Tumor microenvironment in the brain. Cancers (Basel) 2012; 4:218-43. [PMID: 24213237 PMCID: PMC3712675 DOI: 10.3390/cancers4010218] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 01/29/2012] [Accepted: 02/16/2012] [Indexed: 12/21/2022] Open
Abstract
In addition to malignant cancer cells, tumors contain a variety of different stromal cells that constitute the tumor microenvironment. Some of these cell types provide crucial support for tumor growth, while others have been suggested to actually inhibit tumor progression. The composition of tumor microenvironment varies depending on the tumor site. The brain in particular consists of numerous specialized cell types such as microglia, astrocytes, and brain endothelial cells. In addition to these brain-resident cells, primary and metastatic brain tumors have also been shown to be infiltrated by different populations of bone marrow-derived cells. The role of different cell types that constitute tumor microenvironment in the progression of brain malignancies is only poorly understood. Tumor microenvironment has been shown to be a promising therapeutic target and diagnostic marker in extracranial malignancies. A better understanding of tumor microenvironment in the brain would therefore be expected to contribute to the development of improved therapies for brain tumors that are urgently required due to a poor availability of treatments for these malignancies. This review summarizes some of the known interactions between brain tumors and different stromal cells, and also discusses potential therapeutic approaches within this context.
Collapse
Affiliation(s)
- Mihaela Lorger
- Leeds Institute of Molecular Medicine, University of Leeds, St. James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK.
| |
Collapse
|
148
|
Posthuma D, Meulenbelt I, de Craen AJM, de Geus EJC, Slagboom PE, Boomsma DI, Westendorp RGJ. Human Cytokine Response to ex vivo Amyloid-β Stimulation is Mediated by Genetic Factors. Twin Res Hum Genet 2012. [DOI: 10.1375/twin.8.2.132] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractThrough its ability to induce the enhanced release and production of cytokines, amyloid-β is responsible for the chronic inflammatory response that contributes to Alzheimer's disease (AD). Determining whether the response of monocytes to amyloid-β stimulation is under genetic control may help understand the basis of why some people are more prone to develop neuronal degeneration than others. In the current study we investigated the heritability of the cytokine (IL-10, IL-6, IL-1β, IL-1ra, TNF-[.alpha]) production capacity upon ex vivo stimulation with amyloid-β in whole blood samples of 222 twins and 85 singleton siblings from 139 extended twin families. It was found that individual differences in amyloid-β-induced cytokine production capacity are to a large extent of genetic origin, with heritability estimates ranging from 55% (IL-1β) to 68% (IL-6). We conclude that genes influencing amyloid-β-induced cytokine response may provide clues to the progression of AD pathology.
Collapse
|
149
|
Kabadi SV, Stoica BA, Loane DJ, Byrnes KR, Hanscom M, Cabatbat RM, Tan MT, Faden AI. Cyclin D1 gene ablation confers neuroprotection in traumatic brain injury. J Neurotrauma 2012; 29:813-27. [PMID: 21895533 DOI: 10.1089/neu.2011.1980] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cell cycle activation (CCA) is one of the principal secondary injury mechanisms following brain trauma, and it leads to neuronal cell death, microglial activation, and neurological dysfunction. Cyclin D1 (CD1) is a key modulator of CCA and is upregulated in neurons and microglia following traumatic brain injury (TBI). In this study we subjected CD1-wild-type (CD1(+/+)) and knockout (CD1(-/-)) mice to controlled cortical impact (CCI) injury to evaluate the role of CD1 in post-traumatic neurodegeneration and neuroinflammation. As early as 24 h post-injury, CD1(+/+) mice showed markers of CCA in the injured hemisphere, including increased CD1, E2F1, and proliferating cell nuclear antigen (PCNA), as well as increased Fluoro-Jade B staining, indicating neuronal degeneration. Progressive neuronal loss in the hippocampus was observed through 21 days post-injury in these mice, which correlated with a decline in cognitive function. Microglial activation in the injured hemisphere peaked at 7 days post-injury, with sustained increases at 21 days. In contrast, CD1(-/-) mice showed reduced CCA and neurodegeneration at 24 h, as well as improved cognitive function, attenuated hippocampal neuronal cell loss, decreased lesion volume, and cortical microglial activation at 21 days post-injury. These findings indicate that CD1-dependent CCA plays a significant role in the neuroinflammation, progressive neurodegeneration, and related neurological dysfunction resulting from TBI. Our results further substantiate the proposed role of CCA in post-traumatic secondary injury, and suggest that inhibition of CD1 may be a key therapeutic target for TBI.
Collapse
Affiliation(s)
- Shruti V Kabadi
- Center for Shock, Trauma and Anesthesiology Research (STAR), Department of Anesthesiology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
150
|
Selective CDK inhibitor limits neuroinflammation and progressive neurodegeneration after brain trauma. J Cereb Blood Flow Metab 2012; 32:137-49. [PMID: 21829212 PMCID: PMC3323296 DOI: 10.1038/jcbfm.2011.117] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Traumatic brain injury (TBI) induces secondary injury mechanisms, including cell-cycle activation (CCA), which lead to neuronal cell death, microglial activation, and neurologic dysfunction. Here, we show progressive neurodegeneration associated with microglial activation after TBI induced by controlled cortical impact (CCI), and also show that delayed treatment with the selective cyclin-dependent kinase inhibitor roscovitine attenuates posttraumatic neurodegeneration and neuroinflammation. CCI resulted in increased cyclin A and D1 expressions and fodrin cleavage in the injured cortex at 6 hours after injury and significant neurodegeneration by 24 hours after injury. Progressive neuronal loss occurred in the injured hippocampus through 21 days after injury and correlated with a decline in cognitive function. Microglial activation associated with a reactive microglial phenotype peaked at 7 days after injury with sustained increases at 21 days. Central administration of roscovitine at 3 hours after CCI reduced subsequent cyclin A and D1 expressions and fodrin cleavage, improved functional recovery, decreased lesion volume, and attenuated hippocampal and cortical neuronal cell loss and cortical microglial activation. Furthermore, delayed systemic administration of roscovitine improved motor recovery and attenuated microglial activation after CCI. These findings suggest that CCA contributes to progressive neurodegeneration and related neurologic dysfunction after TBI, likely in part related to its induction of microglial activation.
Collapse
|