101
|
Silva APC, Macêdo AA, Costa LF, Turchetti AP, Bull V, Pessoa MS, Araújo MSS, Nascimento EF, Martins-Filho OA, Paixão TA, Santos RL. Brucella ovis lacking a species-specific putative ATP-binding cassette transporter is attenuated but immunogenic in rams. Vet Microbiol 2013; 167:546-53. [PMID: 24075357 DOI: 10.1016/j.vetmic.2013.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 09/02/2013] [Accepted: 09/04/2013] [Indexed: 01/16/2023]
Abstract
Ovine brucellosis caused by Brucella ovis is considered one of the most important reproductive diseases of rams worldwide. This study aimed to characterize the kinetics of infection of a ΔabcAB B. ovis mutant strain in rams. Twelve 1-year-old crossbred rams were used. Six rams were challenged with 2 mL of a suspension containing 1.2×10(9) CFU/mL of B. ovis strain ATCC25840 (wild type) by intraprepucial inoculation and additional 50 μL in each conjunctival sac of a suspension containing 1.2×10(10) CFU/mL of the same strain. The other six rams were challenged with an equivalent number of CFU of the mutant strain ΔabcAB B. ovis through the same routes. Serum samples for serology and semen and urine samples for bacteriologic culture and PCR were collected weekly during 24 weeks. At 24 weeks post infection, tissue samples were collected for bacteriologic culture and PCR. All rams inoculated with wild type or the ΔabcAB strain seroconverted at the fourth week post infection, remaining positive up to the 16th week post infection. PCR and bacteriology demonstrated that only rams inoculated with the wild type strain shed the organism in semen and urine. Lymphocytes from rams inoculated with wild type or ΔabcAB B. ovis had significantly higher proliferation in response to B. ovis antigens when compared with unstimulated controls. Tissue bacteriology and PCR detected B. ovis in all rams challenged with the wild type strain, whereas only one ΔabcAB-infected ram had a positive iliac lymph node sample by PCR.
Collapse
Affiliation(s)
- Ana Patrícia C Silva
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Mohammed H, Olivares-Fuster O, LaFrentz S, Arias CR. New attenuated vaccine against columnaris disease in fish: choosing the right parental strain is critical for vaccine efficacy. Vaccine 2013; 31:5276-80. [PMID: 24012568 DOI: 10.1016/j.vaccine.2013.08.052] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 08/15/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
Abstract
Flavobacterium columnare, the causative agent of columnaris disease, is a highly diverse species comprised by three genomovars. Genomovar II strains are more virulent toward catfishes than genomovar I isolates. The objective of this study was to compare the vaccine efficacy of avirulent mutants derived from genomovars I and II using a rifampicin-resistance strategy. First, we compared the efficacy of 13 genomovar II mutants in channel catfish (Ictalurus punctatus) fingerlings and identified mutant 17-23 as the best vaccine candidate based on their relative percent survival (RPS) against a highly virulent genomovar II strain (BGFS-27). In the second experiment, we vaccinated zebrafish (Danio rerio) with two genomovar II mutants (17-23 and 16-534) and FCRR (genomovar I mutant) followed by exposure to BGFS-27 strain. RPS values were 28.4, 20.3 and 8.1% for 17-23, 16-534, and FCRR, respectively. For experiments 3 and 4, we tested both 17-23 and FCRR in channel catfish fry and Nile tilapia (Oreochromis niloticus). In both experiments, vaccinated fish were divided in two groups and each challenged with either a genomovar I (ARS-1) or a II (BGFS-27) strain. Channel catfish fry vaccinated with 17-23 and FCRR followed by challenge with BGFS-27 resulted in RPS values of 37.0% and 4.4%. When fish were challenged with ARS-1, RPS values were 90.9% and 72.7% for fish vaccinated with 17-23 and FCRR, respectively. Nile tilapia vaccinated with 17-23 and FCRR followed by challenged with BGFS-27 had RPS values of 82.1% and 16.1%, respectively. When fish were challenged with strain ARS-1, RPS values were 86.9% and 75.5%. Overall, our results demonstrated that vaccination with genomovar II mutant 17-23 confers better protection in channel catfish and Nile tilapia than FCRR against columnaris disease caused by genomovar II. Both mutants were equally protective against columnaris caused by genomovar I showing that 17-23 mutant cross-protected against both genomovars.
Collapse
Affiliation(s)
- Haitham Mohammed
- Aquatic Microbiology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL 36849, USA
| | | | | | | |
Collapse
|
103
|
Jain S, Kumar S, Dohre S, Afley P, Sengupta N, Alam SI. Identification of a protective protein from stationary-phase exoproteome of Brucella abortus. Pathog Dis 2013; 70:75-83. [PMID: 23913725 DOI: 10.1111/2049-632x.12079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 07/26/2013] [Accepted: 07/26/2013] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is a worldwide zoonotic disease. No Brucella vaccine is available for use in humans, and existing animal vaccines have limitations. To search the putative vaccine candidates, we studied the exoproteome of Brucella abortus NCTC 10093 using 2-DE-MS approach. Twenty-six proteins were identified using MALDI-TOF/TOF tandem mass spectrometry. Outer membrane protein 25, d-galactose periplasmic-binding protein, oligopeptide ABC transporter protein and isopropylmalate synthase were found to be the most abundant proteins. Most proteins (6, 23%) were predicted to be involved in amino acid transport and metabolism followed by carbohydrate transport and metabolism (4, 15%). Outer membrane protein 25, Omp2b porin and one hypothetical protein were predicted as outer membrane proteins. In addition, Omp28, Omp31 and one ribosomal protein (L9) were also identified. The ribosomal protein L9 was produced as a recombinant protein and was studied in mouse model for vaccine potential. It was found to be immunogenic in terms of generating serum antibody response and release of IFN-γ from mice spleen cells. Recombinant L9-immunized mice were protected against challenge with virulent B. abortus strain 544, suggesting usefulness of ribosomal protein L9 as a good vaccine candidate against brucellosis.
Collapse
Affiliation(s)
- Shikha Jain
- Division of Microbiology, Defence Research & Development Establishment, Gwalior, Madhya Pradesh, India
| | | | | | | | | | | |
Collapse
|
104
|
Surendran N, Sriranganathan N, Boyle SM, Hiltbold EM, Tenpenny N, Walker M, Zimmerman K, Werre S, Witonsky SG. Protection to respiratory challenge of Brucella abortus strain 2308 in the lung. Vaccine 2013; 31:4103-10. [PMID: 23845817 DOI: 10.1016/j.vaccine.2013.06.078] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/21/2013] [Accepted: 06/25/2013] [Indexed: 10/26/2022]
Abstract
Brucella is amongst the top 5 causes of zoonotic disease worldwide. Infection is through ingestion, inhalation or contact exposure. Brucella is characterized as a class B pathogen by Centers of Disease Control and Prevention (CDC). Currently, there are no efficacious vaccines available in people. Currently available USDA approved vaccines for animals include B. abortus strain RB51 and B. melitensis Rev1. Protection is mediated by a strong innate and CD4 Th1, CD8 Tc1 immune response. If protective vaccines can be developed, disease in people and animals can be controlled. While strain RB51 protects in cattle, and against intraperitoneal challenge in mice, it does not protect against respiratory challenge. Therefore, we assessed the efficacy of strain RB51 combined with different TLR agonists, and O-side chain from LPS, to enhance protection against respiratory challenge with strain 2308. We hypothesized that TLR agonists and O-side chain would enhance protection. Strains RB51 with TLR2 agonist, RB51 with TLR4 agonist and strain 19 provided significant protection in the lung. Protection using strain RB51 with TLR agonists was associated with increased IgG2a and IgG1 in the (bronchoalveolar lavage) BAL and serum, and increased IgA (serum). Splenocytes from strain RB51 with TLR2 vaccinated mice up-regulated antigen specific interferon-gamma and TNF-alpha production. Vaccination and challenge resulted in significant increases in activated dendritic cells (DCs), and increased CD4 and CD8 cells in the BAL. Overall, this study demonstrates the ability of TLR agonists 2 and 4 to up-regulate strain RB51 mediated protection in the lung to respiratory challenge against strain 2308.
Collapse
Affiliation(s)
- Naveen Surendran
- Department of Large Animal Clinical Sciences, Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061-0342, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
105
|
A history of the development of Brucella vaccines. BIOMED RESEARCH INTERNATIONAL 2013; 2013:743509. [PMID: 23862154 PMCID: PMC3686056 DOI: 10.1155/2013/743509] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 05/09/2013] [Indexed: 01/18/2023]
Abstract
Brucellosis is a worldwide zoonosis affecting animal and human health. In the last several decades, much research has been performed to develop safer Brucella vaccines to control the disease mainly in animals. Till now, no effective human vaccine is available. The aim of this paper is to review and discuss the importance of methodologies used to develop Brucella vaccines in pursuing this challenge.
Collapse
|
106
|
Jain S, Afley P, Kumar S. Immunological responses to recombinant cysteine synthase A of Brucella abortus in BALB/c mice. World J Microbiol Biotechnol 2013; 29:907-13. [PMID: 23269507 DOI: 10.1007/s11274-012-1247-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 12/20/2012] [Indexed: 10/27/2022]
Abstract
Brucellosis is a worldwide zoonotic disease. No Brucella vaccine is available for use in humans, and existing animal vaccines have limitations. There is a need to develop a safe and effective vaccine against human and animal brucellosis. In the present study, we generated recombinant cysteine synthase A (rCysK) of Brucella abortus in Escherichia coli and purified it up to homogeneity by metal affinity chromatography. The immunogenicity and protective efficacy of purified rCysK were evaluated in BALB/c mice with Freund's adjuvant, aluminium hydroxide gel or without any adjuvant. High titres of anti-rCysK IgG antibody predominated by IgG1 were observed in all immunized mice. After stimulation with rCysK, the spleen lymphocytes of mice immunized with CysK formulated with aluminium hydroxide gel produced significant levels of IFN-γ. Protection against challenge with virulent B. abortus strain 544 was determined in BALB/c mice, and significant protection was observed in all CysK immunized groups when compared with PBS control. Among all the CysK vaccine groups, comparatively better protection was observed in mice immunized with aluminium hydroxide gel (1.064 units of protection). Overall, the results of the study suggest that rCysK induces primarily Th2 type of immune response and provides partial protection against B. abortus challenge.
Collapse
Affiliation(s)
- Shikha Jain
- Division of Microbiology, Defence Research and Development Establishment, Jhansi Road, Gwalior, 474 002 MP, India
| | | | | |
Collapse
|
107
|
Todd TE, Tibi O, Lin Y, Sayers S, Bronner DN, Xiang Z, He Y. Meta-analysis of variables affecting mouse protection efficacy of whole organism Brucella vaccines and vaccine candidates. BMC Bioinformatics 2013; 14 Suppl 6:S3. [PMID: 23735014 PMCID: PMC3633026 DOI: 10.1186/1471-2105-14-s6-s3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vaccine protection investigation includes three processes: vaccination, pathogen challenge, and vaccine protection efficacy assessment. Many variables can affect the results of vaccine protection. Brucella, a genus of facultative intracellular bacteria, is the etiologic agent of brucellosis in humans and multiple animal species. Extensive research has been conducted in developing effective live attenuated Brucella vaccines. We hypothesized that some variables play a more important role than others in determining vaccine protective efficacy. Using Brucella vaccines and vaccine candidates as study models, this hypothesis was tested by meta-analysis of Brucella vaccine studies reported in the literature. RESULTS Nineteen variables related to vaccine-induced protection of mice against infection with virulent brucellae were selected based on modeling investigation of the vaccine protection processes. The variable "vaccine protection efficacy" was set as a dependent variable while the other eighteen were set as independent variables. Discrete or continuous values were collected from papers for each variable of each data set. In total, 401 experimental groups were manually annotated from 74 peer-reviewed publications containing mouse protection data for live attenuated Brucella vaccines or vaccine candidates. Our ANOVA analysis indicated that nine variables contributed significantly (P-value < 0.05) to Brucella vaccine protection efficacy: vaccine strain, vaccination host (mouse) strain, vaccination dose, vaccination route, challenge pathogen strain, challenge route, challenge-killing interval, colony forming units (CFUs) in mouse spleen, and CFU reduction compared to control group. The other 10 variables (e.g., mouse age, vaccination-challenge interval, and challenge dose) were not found to be statistically significant (P-value > 0.05). The protection level of RB51 was sacrificed when the values of several variables (e.g., vaccination route, vaccine viability, and challenge pathogen strain) change. It is suggestive that it is difficult to protect against aerosol challenge. Somewhat counter-intuitively, our results indicate that intraperitoneal and subcutaneous vaccinations are much more effective to protect against aerosol Brucella challenge than intranasal vaccination. CONCLUSIONS Literature meta-analysis identified variables that significantly contribute to Brucella vaccine protection efficacy. The results obtained provide critical information for rational vaccine study design. Literature meta-analysis is generic and can be applied to analyze variables critical for vaccine protection against other infectious diseases.
Collapse
Affiliation(s)
- Thomas E Todd
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
108
|
Kondo K, Umezu T, Shimura S, Narizuka R, Koizumi JI, Mashima T, Katahira M, Takeda M. Structure of perosamine-containing polysaccharide, a component of the sheath of Thiothrix fructosivorans. Int J Biol Macromol 2013; 59:59-66. [PMID: 23587998 DOI: 10.1016/j.ijbiomac.2013.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 03/22/2013] [Accepted: 04/07/2013] [Indexed: 11/29/2022]
Abstract
A sheath-forming and sulfur-oxidizing bacterium, Thiothrix fructosivorans, was heterotrophically cultured. The sheath, which is an extracellular microtube, was prepared by selectively removing the cells using lysozyme, sodium dodecyl sulfate, and sodium hydroxide. Solid-state (13)C-nuclear magnetic resonance (NMR) spectrum revealed that the sheath is assembled from a glycan possessing acetyl and methyl groups. When the sheath was deacetylated, the original microtube structure was lost and the sheath became soluble under acidic conditions, revealing the importance of acetyl groups in maintaining the sheath structure. Equimolar d-glucose, d-glucosamine, and l-fucose were detected in the acid hydrolysate of the sheath by gas liquid chromatography. In addition to these sugars, β-GlcN-(1→4)-Glc and unidentified sugar were detected by analyzing the hydrolysate using high-performance liquid chromatography analysis. (1)H and (13)C NMR spectroscopy was used to identify a disaccharide composed of 4-deoxy-4-aminorhamnose (perosamine, Rha4N) and fucose. N-Acetyl-perosamine prepared from the disaccharide was polarimetric and exhibited a d-configuration. The previously unidentified disaccharide was found to be α-d-Rhap4N-(1→3)-d-Fuc. According to (1)H and (13)C NMR analyses, the deacetylated sheath-forming polysaccharide was found to h have a main chain of [→4)-β-d-GlcpN-(1→4)-β-d-Glcp-(1→]n, to which disaccharide side chains of α-d-Rhap4N-(1→3)-α-l-Fucp-(1→ were attached at position 3 of Glc.
Collapse
Affiliation(s)
- Keiko Kondo
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
109
|
YANG X, SKYBERG JA, CAO L, CLAPP B, THORNBURG T, PASCUAL DW. Progress in Brucella vaccine development. FRONTIERS IN BIOLOGY 2013; 8:60-77. [PMID: 23730309 PMCID: PMC3666581 DOI: 10.1007/s11515-012-1196-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 01/16/2012] [Indexed: 01/18/2023]
Abstract
Brucella spp. are zoonotic, facultative intracellular pathogens, which cause animal and human disease. Animal disease results in abortion of fetuses; in humans, it manifests flu-like symptoms with an undulant fever, with osteoarthritis as a common complication of infection. Antibiotic regimens for human brucellosis patients may last several months and are not always completely effective. While there are no vaccines for humans, several licensed live Brucella vaccines are available for use in livestock. The performance of these animal vaccines is dependent upon the host species, dose, and route of immunization. Newly engineered live vaccines, lacking well-defined virulence factors, retain low residual virulence, are highly protective, and may someday replace currently used animal vaccines. These also have possible human applications. Moreover, due to their enhanced safety and efficacy in animal models, subunit vaccines for brucellosis show great promise for their application in livestock and humans. This review summarizes the progress of brucellosis vaccine development and presents an overview of candidate vaccines.
Collapse
Affiliation(s)
- Xinghong YANG
- Department of Immunology & Infectious Diseases, Montana State University, Bozeman, MT 59717-3610, USA
| | - Jerod A. SKYBERG
- Department of Immunology & Infectious Diseases, Montana State University, Bozeman, MT 59717-3610, USA
| | - Ling CAO
- Department of Immunology & Infectious Diseases, Montana State University, Bozeman, MT 59717-3610, USA
| | - Beata CLAPP
- Department of Immunology & Infectious Diseases, Montana State University, Bozeman, MT 59717-3610, USA
| | - Theresa THORNBURG
- Department of Immunology & Infectious Diseases, Montana State University, Bozeman, MT 59717-3610, USA
| | - David W. PASCUAL
- Department of Immunology & Infectious Diseases, Montana State University, Bozeman, MT 59717-3610, USA
| |
Collapse
|
110
|
Wang Z, Niu J, Wang S, Lv Y, Wu Q. In vivo differences in the virulence, pathogenicity, and induced protective immunity of wboA mutants from genetically different parent Brucella spp. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:174-80. [PMID: 23239800 PMCID: PMC3571281 DOI: 10.1128/cvi.00573-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 11/27/2012] [Indexed: 11/20/2022]
Abstract
To explore the effects of the genetic background on the characteristics of wboA gene deletion rough mutants generated from different parent Brucella sp. strains, we constructed the rough-mutant strains Brucella melitensis 16 M-MB6, B. abortus 2308-SB6, B. abortus S19-RB6, and B. melitensis NI-NB6 and evaluated their survival, pathogenicity, and induced protective immunity in mice and sheep. In mice, the survival times of the four mutants were very different in the virulence assay, from less than 6 weeks for B. abortus S19-RB6 to 11 weeks for B. abortus 2308-SB6 and B. melitensis NI-NB6. However, B. abortus S19-RB6 and B. melitensis 16 M-MB6, with a shorter survival time in mice, offered better protection against challenges with B. abortus 2308 in protection tests than B. abortus 2308-SB6 and B. melitensis NI-NB6. It seems that the induced protective immunity of each mutant might not be associated with its survival time in vivo. In the cross-protection assay, both B. melitensis 16 M-MB6 and B. abortus S19-RB6 induced greater protection against homologous challenges than heterologous challenges. When pregnant sheep were inoculated with B. abortus S19-RB6 and B. melitensis 16 M-MB6, B. abortus S19-RB6 did not induce abortion, whereas B. melitensis 16 M-MB6 did. These results demonstrated the differences in virulence, pathogenicity, and protective immunity in vivo in the wboA deletion mutants from genetically different parent Brucella spp. and also indicated that future rough vaccine strain development could be promising if suitable parent Brucella strains and/or genes were selected.
Collapse
Affiliation(s)
- Zhen Wang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | | | | | | | | |
Collapse
|
111
|
Lin Y, He Y. Ontology representation and analysis of vaccine formulation and administration and their effects on vaccine immune responses. J Biomed Semantics 2012; 3:17. [PMID: 23256535 PMCID: PMC3639077 DOI: 10.1186/2041-1480-3-17] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 11/22/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A vaccine is a processed material that if administered, is able to stimulate an adaptive immune response to prevent or ameliorate a disease. A vaccination process may protect the host against subsequent exposure to an infectious agent and result in reduced disease or total prevention of the disease. Vaccine formulation and administration methods may affect vaccine safety and efficacy significantly. RESULTS In this report, the detailed classification and definitions of vaccine components and vaccine administration processes are represented using OWL within the framework of the Vaccine Ontology (VO). Different use cases demonstrate how different vaccine formulations and routes of vaccine administration affect the protection efficacy, general immune responses, and adverse events following vaccination. For example, vaccinations of mice with Brucella abortus vaccine strain RB51 using intraperitoneal or intranasal administration resulted in different protection levels. As shown in the vaccine adverse event data provided by US FDA, live attenuated and nonliving vaccines are usually administered in different routes and have different local and systematic adverse effect manifestations. CONCLUSIONS Vaccine formulation and administration route can independently or collaboratively affect host response outcomes (positive protective immunity or adverse events) after vaccination. Ontological representation of different vaccine and vaccination factors in these two areas allows better understanding and analysis of the causal effects between different factors and immune responses.
Collapse
Affiliation(s)
- Yu Lin
- Unit of Laboratory Animal Medicine, Department of Microbiology and Immunology, Center for Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
112
|
Kim DH, Son BG, Lim JJ, Lee JJ, Kim DG, Lee HJ, Min W, Rhee MH, Kim KD, Chang HH, Kim S. The role of a Brucella abortus lipoprotein in intracellular replication and pathogenicity in experimentally infected mice. Microb Pathog 2012; 54:34-9. [PMID: 23006628 DOI: 10.1016/j.micpath.2012.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 08/11/2012] [Accepted: 09/10/2012] [Indexed: 01/18/2023]
Abstract
Brucella abortus, the causative agent of brucellosis, can survive and replicate within host cells. Understanding bacterial virulence factors and bacteria-host cell interactions is critical for controlling brucellosis. However, little is known regarding the pathogenic mechanisms of brucellosis. A lipoprotein mutant (Gene Bank ID: 3339351) of B. abortus showed a lower rate of intracellular replication than did the wild-type strain in HeLa cells and RAW 264.7 macrophages. The adherent activity of the lipoprotein mutant was slightly increased compared to that of the wild-type strain in HeLa cells. After infection into macrophages, the lipoprotein mutant co-localized with either late endosomes or lysosomes. In mice infected with the lipoprotein mutant, fewer lipoprotein mutants were recovered from the spleen at 8 weeks post-infection compared to the wild-type strain. The ability to protect the lipoprotein mutant against infection by the virulent B. abortus strain 544 was similar to that of strain RB51. Our results indicate that the B. abortus lipoprotein is an important factor for survival within phagocytes and mice, and the B. abortus lipoprotein mutant may help improve live vaccines used to control brucellosis.
Collapse
Affiliation(s)
- Dong Hyeok Kim
- College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Liu W, Dong H, Liu W, Gao X, Zhang C, Wu Q. OtpR regulated the growth, cell morphology of B. melitensis and tolerance to β-lactam agents. Vet Microbiol 2012; 159:90-8. [DOI: 10.1016/j.vetmic.2012.03.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 02/10/2012] [Accepted: 03/20/2012] [Indexed: 11/17/2022]
|
114
|
Li X, He Y. Caspase-2-dependent dendritic cell death, maturation, and priming of T cells in response to Brucella abortus infection. PLoS One 2012; 7:e43512. [PMID: 22927979 PMCID: PMC3425542 DOI: 10.1371/journal.pone.0043512] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 07/23/2012] [Indexed: 01/18/2023] Open
Abstract
Smooth virulent Brucella abortus strain 2308 (S2308) causes zoonotic brucellosis in cattle and humans. Rough B. abortus strain RB51, derived from S2308, is a live attenuated cattle vaccine strain licensed in the USA and many other countries. Our previous report indicated that RB51, but not S2308, induces a caspase-2-dependent apoptotic and necrotic macrophage cell death. Dendritic cells (DCs) are professional antigen presenting cells critical for bridging innate and adaptive immune responses. In contrast to Brucella-infected macrophages, here we report that S2308 induced higher levels of apoptotic and necrotic cell death in wild type bone marrow-derived DCs (WT BMDCs) than RB51. The RB51 and S2308-induced BMDC cell death was regulated by caspase-2, indicated by the minimal cell death in RB51 and S2308-infected BMDCs isolated from caspase-2 knockout mice (Casp2KO BMDCs). More S2308 bacteria were taken up by Casp2KO BMDCs than wild type BMDCs. Higher levels of S2308 and RB51 cells were found in infected Casp2KO BMDCs compared to infected WT BMDCs at different time points. RB51-infected wild type BMDCs were mature and activated as shown by significantly up-regulated expression of CD40, CD80, CD86, MHC-I, and MHC-II. RB51 induced the production of cytokines TNF-α, IL-6, IFN-γ and IL12/IL23p40 in infected BMDCs. RB51-infected WT BMDCs also stimulated the proliferation of CD4+ and CD8+ T cells compared to uninfected WT BMDCs. However, the maturation, activation, and cytokine secretion are significantly impaired in Casp2KO BMDCs infected with RB51 or Salmonella (control). S2308-infected WT and Casp2KO BMDCs were not activated and could not induce cytokine production. These results demonstrated that virulent smooth strain S2308 induced more apoptotic and necrotic dendritic cell death than live attenuated rough vaccine strain RB51; however, RB51, but not its parent strain S2308, induced caspase-2-mediated DC maturation, cytokine production, antigen presentation, and T cell priming.
Collapse
Affiliation(s)
- Xinna Li
- Unit for Laboratory Animal Medicine and Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Yongqun He
- Unit for Laboratory Animal Medicine and Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
115
|
Martins RDC, Irache JM, Gamazo C. Acellular vaccines for ovine brucellosis: a safer alternative against a worldwide disease. Expert Rev Vaccines 2012; 11:87-95. [PMID: 22149711 DOI: 10.1586/erv.11.172] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Ovine brucellosis is a very contagious zoonotic disease distributed worldwide and constitutes a very important zoosanitary and economic problem. The control of the disease includes animal vaccination and slaughter of infected flocks. However, the commercially available vaccine in most countries is based on the attenuated strain Brucella melitensis Rev 1, which presents important safety drawbacks. This review is focused on the most recent and promising acellular vaccine proposals.
Collapse
Affiliation(s)
- Raquel Da Costa Martins
- Department of Pharmaceutics and Pharmaceutical Technology, University of Navarra, C/Irunlarrea, 1 31008-Pamplona, Spain
| | | | | |
Collapse
|
116
|
Adone R, Francia M, Pistoia C, Petrucci P, Pesciaroli M, Pasquali P. Protective role of antibodies induced by Brucella melitensis B115 against B. melitensis and Brucella abortus infections in mice. Vaccine 2012; 30:3992-5. [PMID: 22521283 DOI: 10.1016/j.vaccine.2012.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/30/2012] [Accepted: 04/05/2012] [Indexed: 11/26/2022]
Abstract
It has been demonstrated that antibodies specific for O-PS antigen of Brucella smooth strains are involved in the protective immunity of brucellosis. Since the rough strain Brucella melitensis B115 was able to protect mice against wild Brucella strains brucellosis despite the lack of anti-OPS antibodies, in this study we evaluated the biological significance of antibodies induced by this strain, directed to antigens other than O-PS, passively tranferred to untreated mice prior to infection with Brucella abortus 2308 and B. melitensis 16M virulent strains. The protective ability of specific antisera collected from mice vaccinated with B. melitensis B115, B. abortus RB51 and B. abortus S19 strains was compared. The results indicated that antibodies induced by B115 were able to confer a satisfactory protection, especially against B. abortus 2308, similar to that conferred by the antiserum S19, while the RB51 antiserum was ineffective. These findings suggest that antibodies induced by B115 could act as opsonins as well as antibodies anti-O-PS, thus triggering more efficient internalization and degradation of bacteria within phagocytes. This is the first study assessing the efficacy of antibodies directed to antigens other than O-PS in the course of brucellosis infection.
Collapse
Affiliation(s)
- Rosanna Adone
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
117
|
Sandalakis V, Psaroulaki A, De Bock PJ, Christidou A, Gevaert K, Tsiotis G, Tselentis Y. Investigation of rifampicin resistance mechanisms in Brucella abortus using MS-driven comparative proteomics. J Proteome Res 2012; 11:2374-85. [PMID: 22360387 DOI: 10.1021/pr201122w] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Mutations in the rpoB gene have already been shown to contribute to rifampicin resistance in many bacterial strains including Brucella species. Resistance against this antibiotic easily occurs and resistant strains have already been detected in human samples. We here present the first research project that combines proteomic, genomic, and microbiological analysis to investigate rifampicin resistance in an in vitro developed rifampicin resistant strain of Brucella abortus 2308. In silico analysis of the rpoB gene was performed and several antibiotics used in the therapy of Brucellosis were used for cross resistance testing. The proteomic profiles were examined and compared using MS-driven comparative proteomics. The resistant strain contained an already described mutation in the rpoB gene, V154F. A correlation between rifampicin resistance and reduced susceptibility on trimethoprim/sulfamethoxazole was detected by E-test and supported by the proteomics results. Using 12 836 MS/MS spectra we identified 6753 peptides corresponding to 456 proteins. The resistant strain presented 39 differentially regulated proteins most of which are involved in various metabolic pathways. Results from our research suggest that rifampicin resistance in Brucella mostly involves mutations in the rpoB gene, excitation of several metabolic processes, and perhaps the use of the already existing secretion mechanisms at a more efficient level.
Collapse
Affiliation(s)
- Vassilios Sandalakis
- Department of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine, Medical School, University of Crete, GR-71110 Heraklion, Greece
| | | | | | | | | | | | | |
Collapse
|
118
|
Saeedzadeh A, Sharifiyazdi H, Firouzi R. Molecular characterization of Brucella melitensis Rev.1 strain in aborted sheep and goats in Iran. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s00580-012-1424-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
119
|
Serological and bacteriological responses of water buffalo (Bubalus bubalis) vaccinated with two doses of Brucella abortus strain RB51 vaccine. Trop Anim Health Prod 2012; 44:1451-8. [PMID: 22297422 DOI: 10.1007/s11250-012-0086-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2012] [Indexed: 10/14/2022]
Abstract
Thirty-two water buffalo (Bubalus bubalis) calves aged 6–10 months were used to evaluate serological responses to Brucella abortus strain RB51 (RB51) vaccination in a dose-response study and to compare the use of two selective media for the isolation of RB51. The animals were randomly divided into three treatment groups. Groups I-III received the recommended vaccine dose (RD) twice 4 weeks apart, RD twice 18 weeks apart and saline once, respectively. Lymph nodes were excised from the three groups and subjected to bacteriological examination to determine the frequency of detection of RB51. Pre- and post-vaccination blood samples were collected and tested for B. abortus antibodies using the buffered plate agglutination test (BPAT), complement fixation test (CFT), and dot-blot assay. Sera taken at all post-inoculation weeks (PIW) were negative for field strain B. abortus using the BPAT. Antibody responses to RB51 were demonstrated in all vaccinates but not in controls by CFT and dot-blot assay from 1 PIW up to 16 weeks following booster vaccination. The agreement for both assays was 80.7% and there was a linear interdependence with a Pearson's correlation coefficient value of 0.578. The frequency of isolation of RB51 from the two selective media used was not significantly different (P > 0.05).
Collapse
|
120
|
He Y. Analyses of Brucella pathogenesis, host immunity, and vaccine targets using systems biology and bioinformatics. Front Cell Infect Microbiol 2012; 2:2. [PMID: 22919594 PMCID: PMC3417401 DOI: 10.3389/fcimb.2012.00002] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 01/12/2012] [Indexed: 12/20/2022] Open
Abstract
Brucella is a Gram-negative, facultative intracellular bacterium that causes zoonotic brucellosis in humans and various animals. Out of 10 classified Brucella species, B. melitensis, B. abortus, B. suis, and B. canis are pathogenic to humans. In the past decade, the mechanisms of Brucella pathogenesis and host immunity have been extensively investigated using the cutting edge systems biology and bioinformatics approaches. This article provides a comprehensive review of the applications of Omics (including genomics, transcriptomics, and proteomics) and bioinformatics technologies for the analysis of Brucella pathogenesis, host immune responses, and vaccine targets. Based on more than 30 sequenced Brucella genomes, comparative genomics is able to identify gene variations among Brucella strains that help to explain host specificity and virulence differences among Brucella species. Diverse transcriptomics and proteomics gene expression studies have been conducted to analyze gene expression profiles of wild type Brucella strains and mutants under different laboratory conditions. High throughput Omics analyses of host responses to infections with virulent or attenuated Brucella strains have been focused on responses by mouse and cattle macrophages, bovine trophoblastic cells, mouse and boar splenocytes, and ram buffy coat. Differential serum responses in humans and rams to Brucella infections have been analyzed using high throughput serum antibody screening technology. The Vaxign reverse vaccinology has been used to predict many Brucella vaccine targets. More than 180 Brucella virulence factors and their gene interaction networks have been identified using advanced literature mining methods. The recent development of community-based Vaccine Ontology and Brucellosis Ontology provides an efficient way for Brucella data integration, exchange, and computer-assisted automated reasoning.
Collapse
Affiliation(s)
- Yongqun He
- Unit for Laboratory Animal Medicine, Department of Microbiology and Immunology, University of Michigan Medical School Ann Arbor, MI, USA.
| |
Collapse
|
121
|
Surendran N, Hiltbold EM, Heid B, Akira S, Standiford TJ, Sriranganathan N, Boyle SM, Zimmerman KL, Makris MR, Witonsky SG. Role of TLRs in Brucella mediated murine DC activation in vitro and clearance of pulmonary infection in vivo. Vaccine 2012; 30:1502-12. [DOI: 10.1016/j.vaccine.2011.12.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 10/09/2011] [Accepted: 12/05/2011] [Indexed: 02/03/2023]
|
122
|
Oral immunization of mice with recombinant Lactococcus lactis expressing Cu,Zn superoxide dismutase of Brucella abortus triggers protective immunity. Vaccine 2012; 30:1283-90. [PMID: 22222868 DOI: 10.1016/j.vaccine.2011.12.088] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 12/17/2011] [Accepted: 12/19/2011] [Indexed: 11/20/2022]
Abstract
Brucella infections mainly occur through mucosal surfaces. Thus, the development of mucosal administered vaccines could be instrumental for the control of brucellosis. Here, we evaluated the usefulness of recombinant Lactococcus lactis secreting Brucella abortus Cu-Zn superoxide dismutase (SOD) as oral antigen delivery system, when administered alone or in combination with L. lactis expressing IL-12. To this end, mice were vaccinated by oral route with L. lactis NZ9000 transformed with pSEC derivatives encoding for SOD (pSEC:SOD) and IL-12 (pSEC:scIL-12). In animals receiving L. lactis pSEC:SOD alone, anti-SOD-specific IgM antibodies were detected in sera at day 28 post-vaccination, together with an IgG2a dominated IgG response. SOD-specific sIgA was also detected in nasal and bronchoalveolar lavages. In addition, T-cell-proliferative responses upon re-stimulation with either recombinant SOD or crude Brucella protein extracts were observed up to 6 months after the last boost, suggesting the induction of long term memory. Vaccinated animals were also protected against challenge with the virulent B. abortus 2308 strain. Responses were mildly improved when L. lactis pSEC:SOD was co-administered with L. lactis pSEC:scIL-12. These results indicated that vaccines based on lactococci-derived live carriers are promising interventions against B. abortus infections.
Collapse
|
123
|
Adone R, Muscillo M, La Rosa G, Francia M, Tarantino M. Antigenic, immunologic and genetic characterization of rough strains B. abortus RB51, B. melitensis B115 and B. melitensis B18. PLoS One 2011; 6:e24073. [PMID: 22065984 PMCID: PMC3204967 DOI: 10.1371/journal.pone.0024073] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 07/29/2011] [Indexed: 11/19/2022] Open
Abstract
The lipopolysaccharide (LPS) is considered the major virulent factor in Brucella spp. Several genes have been identified involved in the synthesis of the three LPS components: lipid A, core and O-PS. Usually, Brucella strains devoid of O-PS (rough mutants) are less virulent than the wild type and do not induce undesirable interfering antibodies. Such of them proved to be protective against brucellosis in mice. Because of these favorable features, rough strains have been considered potential brucellosis vaccines. In this study, we evaluated the antigenic, immunologic and genetic characteristics of rough strains B.abortus RB51, B.melitensis B115 and B.melitensis B18. RB51 derived from B.abortus 2308 virulent strain and B115 is a natural rough strain in which the O-PS is present in the cytoplasm. B18 is a rough rifampin-resistan mutant isolated in our laboratory. The surface antigenicity of RB51, B115 and B18 was evaluated by testing their ability to bind antibodies induced by rough or smooth Brucella strains. The antibody response induced by each strain was evaluated in rabbits. Twenty-one genes, involved in the LPS-synthesis, were sequenced and compared with the B.melitensis 16M strain. The results indicated that RB51, B115 and B18 have differences in antigenicity, immunologic and genetic properties. Particularly, in B115 a nonsense mutation was detected in wzm gene, which could explain the intracellular localization of O-PS in this strain. Complementation studies to evaluate the precise role of each mutation in affecting Brucella morphology and its virulence, could provide useful information for the assessment of new, attenuated vaccines for brucellosis.
Collapse
Affiliation(s)
- Rosanna Adone
- Dipartimento Sanità Pubblica Veterinaria e Sicurezza Alimentare, Istituto Superiore di Sanità, Roma, Italy.
| | | | | | | | | |
Collapse
|
124
|
Mancilla M, Ulloa M, López-Goñi I, Moriyón I, María Zárraga A. Identification of new IS711 insertion sites in Brucella abortus field isolates. BMC Microbiol 2011; 11:176. [PMID: 21813003 PMCID: PMC3163539 DOI: 10.1186/1471-2180-11-176] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 08/03/2011] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Brucellosis is a zoonosis caused by Brucella spp., a group of highly homogeneous bacteria. The insertion sequence IS711 is characteristic of these bacteria, and occurs in variable numbers and positions, but always constant within a given species. This species-associated polymorphism is used in molecular typing and identification. Field isolates of B. abortus, the most common species infecting cattle, typically carry seven IS711 copies (one truncated). Thus far, IS711 transposition has only been shown in vitro and only for B. ovis and B. pinnipedialis, two species carrying a high number of IS711 copies, but never in other Brucella species, neither in vitro nor in field strains. RESULTS We found several B. abortus strains isolated from milk and aborted fetuses that carried additional IS711 copies in two hitherto undescribed insertion sites: one in an intergenic region near to the 3' end of a putative lactate permease gene and the other interrupting the sequence of a marR transcriptional regulator gene. Interestingly, the second type of insertion was identified in isolates obtained repeatedly from the same herd after successive brucellosis outbreaks, an observation that proves the stability and virulence of the new genotype under natural conditions. Sequence analyses revealed that the new copies probably resulted from the transposition of a single IS711 copy common to all Brucella species sequenced so far. CONCLUSIONS Our results show that the replicative transposition of IS711 can occur under field conditions. Therefore, it represents an active mechanism for the emergence of genetic diversity in B. abortus thus contributing to intra-species genetic polymorphism.
Collapse
Affiliation(s)
- Marcos Mancilla
- Instituto de Bioquímica, Facultad de Ciencias, Universidad Austral de Chile, casilla 567, Valdivia, Chile
| | | | | | | | | |
Collapse
|
125
|
Singha H, Mallick AI, Jana C, Fatima N, Owais M, Chaudhuri P. Co-immunization with interlukin-18 enhances the protective efficacy of liposomes encapsulated recombinant Cu-Zn superoxide dismutase protein against Brucella abortus. Vaccine 2011; 29:4720-7. [PMID: 21565241 DOI: 10.1016/j.vaccine.2011.04.088] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 04/20/2011] [Accepted: 04/25/2011] [Indexed: 11/30/2022]
Abstract
Brucellosis is a worldwide zoonotic disease caused by Brucella abortus and a number of closely related species. Brucellosis has severe impact on the health and economic prosperity of the developing countries due to the persistent nature of infection and unavailability of effective control measures. The Cu-Zn superoxide dismuatse (SOD) protein of Brucella have been extensively studied as a major antigen involved in bacterial evading mechanism of host defence. Being a critical pro-inflammatory cytokine interleukin-18 (IL-18) plays key role in induction of immune mediated protection against intracellular pathogens. In the present study, we aimed to investigate the immunogenic potential of fusogenic liposomes (escheriosomes) encapsulated recombinant Cu-Zn SOD (rSOD) protein alone or in combination with recombinant IL-18 (rIL-18). Escheriosomes encapsulated rSOD mediated immune responses were further increased upon co-immunization with rIL-18. Furthermore, immunization with escheriosomes encapsulated rSOD alone or in combination with rIL-18, increased resistance in mice against challenge with B. abortus 544.
Collapse
Affiliation(s)
- Harisankar Singha
- Division of Biotechnology, Indian Veterinary Research Institute, Izatnagar 243122, India.
| | | | | | | | | | | |
Collapse
|
126
|
Olivares-Fuster O, Arias CR. Development and characterization of rifampicin-resistant mutants from high virulent strains of Flavobacterium columnare. JOURNAL OF FISH DISEASES 2011; 34:385-394. [PMID: 21488906 DOI: 10.1111/j.1365-2761.2011.01253.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Flavobacterium columnare is divided into three genetic groups or genomovars, genomovar II being highly virulent for channel catfish. A modified live vaccine is currently available to prevent columnaris disease under the licensed name Aquavac-Col(®) . The strain of F. columnare used to generate the avirulent rifampicin-resistant mutant used in Aquavac-Col(®) belonged to genomovar I, the less virulent group towards channel catfish. In this study, we describe the generation and characterization of rifampicin-resistant mutants from genomovar II strains. A total of 13 new mutants were obtained, and eight of them (two from each parent strain) were genetically and phenotypically characterized. Highly conserved regions within the ribosomal operons were identical between parent and mutant strains. Genetic differences between mutants and their parent strains were revealed by amplified fragment length polymorphism (AFLP). Genetic changes were distinctive among different mutants. Analysis of the lipopolysaccharide (LPS) showed that while some mutants lacked a few molecular bands of the LPS, some exhibited the same LPS profiles as their parent strains. Comparison between immunogenic proteins from mutants and parents was carried out by immunoblot analysis and further confirmed the uniqueness of individual mutants. A complete set of rifampicin-resistant mutants with different genetic and immunogenic properties from the highly virulent genomovar II has been created. These mutants may have the potential of becoming vaccine candidates against columnaris disease.
Collapse
Affiliation(s)
- O Olivares-Fuster
- Aquatic Microbiology Laboratory, Department of Fisheries and Allied Aquacultures, Auburn University, Auburn, AL 36849, USA
| | | |
Collapse
|
127
|
Surendran N, Sriranganathan N, Lawler H, Boyle SM, Hiltbold EM, Heid B, Zimmerman K, Witonsky SG. Efficacy of vaccination strategies against intranasal challenge with Brucella abortus in BALB/c mice. Vaccine 2011; 29:2749-55. [PMID: 21316499 DOI: 10.1016/j.vaccine.2011.01.090] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 01/14/2011] [Accepted: 01/27/2011] [Indexed: 11/28/2022]
Abstract
Brucellosis is a zoonotic disease affecting 500,000 people worldwide annually. Inhalation of aerosol containing a pathogen is one of the major routes of disease transmission in humans. Currently there are no licensed human vaccines available. Brucella abortus strain RB51 is a USDA approved live attenuated vaccine against cattle brucellosis. In a mouse model, strain RB51 over-expressing superoxide dismutase (SOD) administered intraperitoneally (IP) has been shown to be more protective than strain RB51 against an IP challenge with B. abortus pathogenic strain 2308. However, there is lack of information on the ability of these vaccine strains to protect against intranasal challenge. With the long-term goal of developing a protective vaccine for animals and people against respiratory challenge of Brucella spp., we tested a number of different vaccination strategies against intranasal infection with strain 2308. We employed strains RB51 and RB51SOD to assess the efficacy of route, dose, and prime-boost strategies against strain 2308 challenge. Despite using multiple protocols to enhance mucosal and systemic protection, neither rough RB51 vaccine strains provided respiratory protection against intranasal pathogenic Brucella infection. However, intranasal (IN) administration of B. abortus vaccine strain 19 induced significant (p≤0.05) pulmonary clearance of strain 2308 upon IN challenge infection compared to saline. Further studies are necessary to address host-pathogen interaction in the lung microenvironment and elucidate immune mechanisms to enhance protection against aerosol infection.
Collapse
Affiliation(s)
- Naveen Surendran
- Department of Large Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061-0342, USA
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Adone R, Francia M, Pistoia C, Pesciaroli M, Pasquali P. B. melitensis rough strain B115 is protective against heterologous Brucella spp. infections. Vaccine 2011; 29:2523-9. [PMID: 21300102 DOI: 10.1016/j.vaccine.2011.01.072] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 01/19/2011] [Accepted: 01/24/2011] [Indexed: 11/30/2022]
Abstract
Brucellosis is one of the most serious zoonoses all over the world, with B. melitensis, B. abortus and B. suis being the most pathogenic species for humans. Vaccination of domesticated livestock still represents the most efficient way to prevent human infection. However, the available Brucella vaccines retain an important residual virulence and induce antibodies interfering with surveillance programs. Moreover, each vaccine shows different protective effects versus different Brucella species and different animal hosts. Nowadays, while B. melitensis and B. suis infections in cattle are emerging as a significant problem, there are no available vaccines to overcome such issue. B. melitensis strain B115, a natural, attenuated rough strain in our previous studies proved to be highly protective against B. melitensis and B. ovis infections in mice, without inducing interfering antibodies. In this study, we tested the efficiency of B115 as vaccine against B. abortus and B. suis. Vaccination of mice with 10(8) CFU/mouse of B. melitensis B115 conferred a satisfactory protection against B. abortus 2308. On the contrary, mice vaccinated once with 10(8) or 10(9) CFU/mouse of B115 were weakly protected against B. suis infection. Conversely, when mice were vaccinated twice with 10(9) CFU B115/mouse, the protective activity significantly increased. Unlike its rough phenotype, B115 showed an adequate persistence in mice accompanied to a solid humoral and cell-mediated immunity. All together, these findings suggest the potential usefulness of B115 to control brucellosis in animal hosts due to heterologous challenges.
Collapse
Affiliation(s)
- Rosanna Adone
- Istituto Superiore di Sanità, Department of Food Safety and Veterinary Public Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | | | | | | | | |
Collapse
|
129
|
Genç O, Büyüktanir Ö, Yurdusev N. Development of an Individual Rapid Test Based on Enzymatic Immunofiltration Assay for Detection of Anti–Brucella Abortus Antibody in Bovine Sera. J Vet Diagn Invest 2011; 23:49-56. [DOI: 10.1177/104063871102300107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
To detect bovine antibody directed to smooth lipopolysaccharide (LPS), cell lysate (LYS), O-polysaccharide (OPS), and LPS-deprived chromatographic fractions (ChF) of Brucella abortus, 2 bi-antigenic diagnostic models based on the enzymatic rapid immunofiltration assay (ERIFA), ERIFALPS/LYS and ERIFAOPS/ChF, were developed. Their diagnostic performance was compared with complement fixation test (CFT), Rose Bengal test (RBT), indirect in-house and commercial enzyme-linked immunosorbent assays (iELISA and com-ELISA, respectively), based on the smooth LPS antigen, by using a total of 420 cattle sera collected from aborted-unvaccinated, aborted-unvaccinated and culture-positive, healthy-unvaccinated, and healthy-vaccinated cattle. The results demonstrated excellent agreement and no statistical difference between iELISAs and LPS-, LYS-, OPS-based ERIFA models. However, diagnostic performance of CFT, RBT, and ChF-based ERIFA was less significant than that of LPS-, LYS-, and OPS-based ERIFA models, and iELISAs. The results demonstrated a successful adaptation of the multi-antigenic ERIFA model to anti– B. abortus antibody in bovine sera and suggest that the ERIFA model can be considered as an “individual rapid ELISA” due to its similarity with ELISA, individual applicability, and rapidity in determining reactor animals within 5 minutes. In conclusion, the potential of multi-antigenic applications can make the rapid ERIFA model not only an alternative screening method but also a confirmatory test for bovine brucellosis diagnosis.
Collapse
Affiliation(s)
- Oktay Genç
- Ondokuz Mayis University, Faculty of Veterinary Medicine, Department of Microbiology, Samsun, Turkey
| | - Özlem Büyüktanir
- Ondokuz Mayis University, Faculty of Veterinary Medicine, Department of Microbiology, Samsun, Turkey
| | - Nevzat Yurdusev
- Ondokuz Mayis University, Faculty of Veterinary Medicine, Department of Microbiology, Samsun, Turkey
| |
Collapse
|
130
|
Revolledo L, Ferreira AJP. Salmonella antibiotic-mutant strains reduce fecal shedding and organ invasion in broiler chicks. Poult Sci 2010; 89:2130-40. [PMID: 20852104 DOI: 10.3382/ps.2010-00920] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the exposure to antibiotics in the production of antibiotic-mutant strains of Salmonella. Ten isolates of poultry origin were assayed for antibiotic susceptibilities. One strain of Salmonella Enteritidis, one of Salmonella Heidelberg, and one of Salmonella Typhimurium were selected to induce antimicrobial resistance. Each strain was exposed to high concentrations of streptomycin, rifampicin, and nalidixic acid, respectively. Parent and antibiotic-mutant strains were assayed for antibiotic susceptibilities using a commercial microdilution test and the disk susceptibility test. The strains were assessed for virulence genes and evaluated for fecal shedding, cecal colonization, organ invasion, and mean Salmonella counts after inoculation in 1-day-old chicks. The study revealed that exposure to high concentrations of streptomycin produced the antibiotic-mutant strain SE/LABOR/USP/08 and the exposure to rifampicin produced the antibiotic-mutant SH/LABOR/USP/08. These strains showed significantly reduced fecal shedding (P≤0.05) and organ invasion, persisting less than the parental strains and showing no clinical signs in inoculated chicks. High concentrations of nalidixic acid produced the antibiotic-mutant strain ST/LABOR/USP/08, which did not show any differences compared with the parent strain. Likewise, SE/LABOR/USP/08 did not show the expression of plasmid-encoded fimbriae (pefA) and plasmid virulence protein (spvC), suggesting that after exposure to streptomycin, the parent isolate lost the original gene expression, reducing fecal shedding and organ invasion in inoculated chicks.
Collapse
Affiliation(s)
- L Revolledo
- Department of Pathology, College of Veterinary Medicine, University of São Paulo, Av. Prof. Orlando Marques de Paiva 87, CEP 05508-270, Cidade Universitária, Brazil
| | | |
Collapse
|
131
|
Importance of Lipopolysaccharide and Cyclic β-1,2-Glucans in Brucella-Mammalian Infections. Int J Microbiol 2010; 2010:124509. [PMID: 21151694 PMCID: PMC2995898 DOI: 10.1155/2010/124509] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 10/04/2010] [Indexed: 01/28/2023] Open
Abstract
Brucella species are the causative agents of one of the most prevalent zoonotic diseases: brucellosis. Infections by Brucella species cause major economic losses in agriculture, leading to abortions in infected animals and resulting in a severe, although rarely lethal, debilitating disease in humans. Brucella species persist as intracellular pathogens that manage to effectively evade recognition by the host's immune system. Sugar-modified components in the Brucella cell envelope play an important role in their host interaction. Brucella lipopolysaccharide (LPS), unlike Escherichia coli LPS, does not trigger the host's innate immune system. Brucella produces cyclic β-1,2-glucans, which are important for targeting them to their replicative niche in the endoplasmic reticulum within the host cell. This paper will focus on the role of LPS and cyclic β-1,2-glucans in Brucella-mammalian infections and discuss the use of mutants, within the biosynthesis pathway of these cell envelope structures, in vaccine development.
Collapse
|
132
|
Immunization of mice with gamma-irradiated Brucella neotomae and its recombinant strains induces protection against virulent B. abortus, B. melitensis, and B. suis challenge. Vaccine 2010; 29:784-94. [PMID: 21109033 DOI: 10.1016/j.vaccine.2010.11.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 10/30/2010] [Accepted: 11/03/2010] [Indexed: 01/27/2023]
Abstract
Human brucellosis, a zoonotic disease of major public health concern in several developing countries, is primarily caused by Brucella abortus, Brucella melitensis, and Brucella suis. No brucellosis vaccine is available for human use. The aim of this study was to determine if Brucella neotomae, a bacterium not known to cause disease in any host, can be used for developing brucellosis vaccines. B. neotomae and its recombinant strains overexpressing superoxide dismutase and a 26 kDa periplasmic protein were rendered non-replicative through exposure to gamma-radiation and used as vaccines in a murine brucellosis model. All three vaccines induced antigen-specific antibody and T cell responses. The vaccinated mice showed significant resistance against challenge with virulent B. abortus 2308, B. melitensis 16 M, and B. suis 1330. These results demonstrate that the avirulent B. neotomae is a promising platform for developing a safe and effective vaccine for human brucellosis.
Collapse
|
133
|
Wagar EA, Mitchell MJ, Carroll KC, Beavis KG, Petti CA, Schlaberg R, Yasin B. A review of sentinel laboratory performance: identification and notification of bioterrorism agents. Arch Pathol Lab Med 2010; 134:1490-503. [PMID: 20923306 DOI: 10.5858/2010-0098-cp.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT The anthrax incident of 2001 in the United States prompted the College of American Pathologists (CAP), the Association of Public Health Laboratories, and the Centers for Disease Control and Prevention to develop exercises for Laboratory Response Network (LRN) sentinel laboratories. OBJECTIVE To provide an overview of the results of the CAP bioterrorism Laboratory Preparedness Survey (LPS, 2007) and Laboratory Preparedness Exercise (LPX, 2008) and assist LRN sentinel laboratories and public health agencies in planning for bioterrorism events. DESIGN Bioterrorism agents and nonbiothreat mimic organisms were provided in 2 mailings per year (2007 and 2008, 20 total challenges). Within each mailing, 2 to 3 agents were category A or category B bioterrorism agents (total of 10 categoric challenges). Some category A/B isolates were modified/vaccine strains. The total number of laboratories participating in these exercises ranged from 1316 to 1381. Isolate characteristics used to identify the organisms were compiled along with the participants' reporting actions. Educational commentary was provided with each exercise. RESULTS Acceptable identification responses were as follows: Bacillus anthracis, 90% (2007) and 99.9% (2008); Yersinia pestis, 83.8% (2007) and 87.6% (2008); and Francisella tularensis subsp Holarctica, 86.6% (2007) and 91.6% (2008). The time interval between specimen receipt and notification of results to an LRN reference laboratory decreased from more than 10 days in 2007 to 3 or 4 days in 2008 for some challenges. CONCLUSIONS The bioterrorism challenge program (LPS, LPX) provides important comparative data from more than 1300 sentinel laboratories that can be used by individual laboratories to evaluate their identification and LRN reporting performance.
Collapse
Affiliation(s)
- Elizabeth A Wagar
- Department of Laboratory Medicine, University of Texas, M. D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
134
|
Mass vaccination as a complementary tool in the control of a severe outbreak of bovine brucellosis due to Brucella abortus in Extremadura, Spain. Prev Vet Med 2010; 97:119-25. [DOI: 10.1016/j.prevetmed.2010.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 08/04/2010] [Accepted: 08/05/2010] [Indexed: 11/20/2022]
|
135
|
Surendran N, Zimmerman K, Seleem MN, Sriranganathan N, Boyle SM, Hiltbold EM, Lawler H, Heid B, Witonsky SG. Ability of Brucella abortus rough vaccine strains to elicit DC and innate immunity in lung using a murine respiratory model. Vaccine 2010; 28:7009-15. [DOI: 10.1016/j.vaccine.2010.08.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 07/31/2010] [Accepted: 08/03/2010] [Indexed: 01/22/2023]
|
136
|
Denisov AA, Karpova OM, Korobovtseva YS, Salmakov KM, Sklyarov OD, Klimanov AI, Brynskykh MN, Shumilov KV, Borovick RV. Development and characterization of a modified Komarov's bullet for ballistic delivery of live Brucella abortus strains 82 and 19 to cattle and bison. Vaccine 2010; 28 Suppl 5:F23-30. [DOI: 10.1016/j.vaccine.2010.03.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 03/19/2010] [Indexed: 10/19/2022]
|
137
|
Salmakov K, Fomin A, Plotnikova E, Safina G, Galimova G, Salmakova A, Ivanov A, Panin A, Sklyarov O, Shumilov K, Klimanov A. Comparative study of the immunobiological properties of live brucellosis vaccines. Vaccine 2010; 28 Suppl 5:F35-40. [DOI: 10.1016/j.vaccine.2010.03.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 03/19/2010] [Indexed: 10/19/2022]
|
138
|
Surendran N, Hiltbold EM, Heid B, Sriranganathan N, Boyle SM, Zimmerman KL, Witonsky SG. Heat-killed and γ-irradiated Brucella strain RB51 stimulates enhanced dendritic cell activation, but not function compared with the virulent smooth strain 2308. ACTA ACUST UNITED AC 2010; 60:147-55. [PMID: 20812951 DOI: 10.1111/j.1574-695x.2010.00729.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Brucella spp. are Gram-negative, facultative intracellular bacterial pathogens that cause abortion in livestock and undulant fever in humans worldwide. Brucella abortus strain 2308 is a pathogenic strain that affects cattle and humans. Currently, there are no efficacious human vaccines available. However, B. abortus strain RB51, which is approved by the USDA, is a live-attenuated rough vaccine against bovine brucellosis. Live strain RB51 induces protection via CD4(+) and CD8(+) T-cell-mediated immunity. To generate an optimal T-cell response, strong innate immune responses by dendritic cells (DCs) are crucial. Because of safety concerns, the use of live vaccine strain RB51 in humans is limited. Therefore, in this study, we analyzed the differential ability of the same doses of live, heat-killed (HK) and γ-irradiated (IR) strain RB51 in inducing DC activation and function. Smooth strain 2308, live strain RB51 and lipopolysaccharide were used as controls. Studies using mouse bone marrow-derived DCs revealed that, irrespective of viability, strain RB51 induced greater DC activation than smooth strain 2308. Live strain RB51 induced significantly (P≤0.05) higher DC maturation than HK and IR strains, and only live strain RB51-infected DCs (at multiplicity of infection 1:100) induced significant (P≤0.05) tumor necrosis factor-α and interleukin-12 secretion.
Collapse
Affiliation(s)
- Naveen Surendran
- Department of Large Animal Clinical Sciences, Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | | | | | | | | | | | | |
Collapse
|
139
|
Godfroid J, Nielsen K, Saegerman C. Diagnosis of brucellosis in livestock and wildlife. Croat Med J 2010; 51:296-305. [PMID: 20718082 PMCID: PMC2931434 DOI: 10.3325/cmj.2010.51.296] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 06/18/2010] [Indexed: 11/05/2022] Open
Abstract
AIM To describe and discuss the merits of various direct and indirect methods applied in vitro (mainly on blood or milk) or in vivo (allergic test) for the diagnosis of brucellosis in animals. METHODS The recent literature on brucellosis diagnostic tests was reviewed. These diagnostic tests are applied with different goals, such as national screening, confirmatory diagnosis, certification, and international trade. The validation of such diagnostic tests is still an issue, particularly in wildlife. The choice of the testing strategy depends on the prevailing brucellosis epidemiological situation and the goal of testing. RESULTS Measuring the kinetics of antibody production after Brucella spp. infection is essential for analyzing serological results correctly and may help to predict abortion. Indirect ELISAs help to discriminate 1) between false positive serological reactions and true brucellosis and 2) between vaccination and infection. Biotyping of Brucella spp. provides valuable epidemiological information that allows tracing an infection back to the sources in instances where several biotypes of a given Brucella species are circulating. Polymerase chain reaction and new molecular methods are likely to be used as routine typing and fingerprinting methods in the coming years. CONCLUSION The diagnosis of brucellosis in livestock and wildlife is complex and serological results need to be carefully analyzed. The B. abortus S19 and B. melitensis Rev. 1 vaccines are the cornerstones of control programs in cattle and small ruminants, respectively. There is no vaccine available for pigs or for wildlife. In the absence of a human brucellosis vaccine, prevention of human brucellosis depends on the control of the disease in animals.
Collapse
Affiliation(s)
- Jacques Godfroid
- Section of Arctic Veterinary Medicine, Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, Stakkevollveien 2, 9010 Tromso, Norway.
| | | | | |
Collapse
|
140
|
Adesiyun AA, Fosgate GT, Persad A, Campbell M, Seebaransingh R, Stewart-Johnson A. Comparative study on responses of cattle and water buffalo (Bubalus bubalis) to experimental inoculation of Brucella abortus biovar 1 by the intraconjunctival route—a preliminary report. Trop Anim Health Prod 2010; 42:1685-94. [DOI: 10.1007/s11250-010-9621-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2010] [Indexed: 11/28/2022]
|
141
|
Lacerda TLS, Cardoso PG, Augusto de Almeida L, Camargo ILBDC, Afonso DAF, Trant CC, Macedo GC, Campos E, Cravero SL, Salcedo SP, Gorvel JP, Oliveira SC. Inactivation of formyltransferase (wbkC) gene generates a Brucella abortus rough strain that is attenuated in macrophages and in mice. Vaccine 2010; 28:5627-34. [PMID: 20580469 DOI: 10.1016/j.vaccine.2010.06.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/04/2010] [Accepted: 06/07/2010] [Indexed: 10/19/2022]
Abstract
Rough mutants of Brucella abortus were generated by disruption of wbkC gene which encodes the formyltransferase enzyme involved in LPS biosynthesis. In bone marrow-derived macrophages the B. abortusDeltawbkC mutants were attenuated, could not reach a replicative niche and induced higher levels of IL-12 and TNF-alpha when compared to parental smooth strains. Additionally, mutants exhibited attenuation in vivo in C57BL/6 and interferon regulatory factor-1 knockout mice. DeltawbkC mutant strains induced lower protective immunity in C56BL/6 than smooth vaccine S19 but similar to rough vaccine RB51. Finally, we demonstrated that Brucella wbkC is critical for LPS biosynthesis and full bacterial virulence.
Collapse
Affiliation(s)
- Thaís Lourdes Santos Lacerda
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Pampulha, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Live Brucella abortus rough vaccine strain RB51 stimulates enhanced innate immune response in vitro compared to rough vaccine strain RB51SOD and virulent smooth strain 2308 in murine bone marrow-derived dendritic cells. Vet Microbiol 2010; 147:75-82. [PMID: 20594772 DOI: 10.1016/j.vetmic.2010.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 05/26/2010] [Accepted: 06/02/2010] [Indexed: 01/18/2023]
Abstract
Brucella spp. are Gram-negative, coccobacillary, facultative intracellular pathogens. B. abortus strain 2308 is a pathogenic strain affecting cattle and humans. Rough B. abortus strain RB51, which lacks the O-side chain of lipopolysaccharide (LPS), is the live attenuated USDA approved vaccine for cattle in the United States. Strain RB51SOD, which overexpresses Cu-Zn superoxide dismutase (SOD), has been shown to confer better protection than strain RB51 in a murine model. Protection against brucellosis is mediated by a strong CD4+ Th(1) and CD8+ Tc(1) adaptive immune response. In order to stimulate a robust adaptive response, a solid innate immune response, including that mediated by dendritic cells, is essential. As dendritic cells (DCs) are highly susceptible to Brucella infection, it is possible that pathogenic strains could limit the innate and thereby adaptive immune response. By contrast, vaccine strains could limit or bolster the innate and subsequent adaptive immune response. Identifying how Brucella vaccines stimulate innate and adaptive immunity is critical for enhancing vaccine efficacy. The ability of rough vaccine strains RB51 and RB51SOD to stimulate DC function has not been characterized. We report that live rough vaccine strain RB51 induced significantly better (p ≤ 0.05) DC maturation and function compared to either strain RB51SOD or smooth virulent strain 2308, based on costimulatory marker expression and cytokine production.
Collapse
|
143
|
Identification of Brucella abortus genes in elk (Cervus elaphus) using in vivo-induced antigen technology (IVIAT) reveals novel markers of infection. Vet Microbiol 2010; 142:367-72. [DOI: 10.1016/j.vetmic.2009.10.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 10/12/2009] [Accepted: 10/13/2009] [Indexed: 01/11/2023]
|
144
|
Neta AVC, Mol JP, Xavier MN, Paixão TA, Lage AP, Santos RL. Pathogenesis of bovine brucellosis. Vet J 2010; 184:146-55. [DOI: 10.1016/j.tvjl.2009.04.010] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 02/05/2009] [Accepted: 04/13/2009] [Indexed: 12/14/2022]
|
145
|
Herrera-López E, Suárez-Güemes F, Hernández-Andrade L, Córdova-López D, Díaz-Aparicio E. Epidemiological study of Brucellosis in cattle, immunized with Brucella abortus RB51 vaccine in endemic zones. Vaccine 2010; 28 Suppl 5:F59-63. [PMID: 20362623 DOI: 10.1016/j.vaccine.2010.03.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 03/19/2010] [Indexed: 11/16/2022]
Abstract
In this study the behavior of the Brucella abortus RB51 vaccine was evaluated in bovine herds, with different prevalence of Brucellosis. A prospective longitudinal study was made, in two dairies, one of low prevalence (9%) with 538 cows, and the other of high prevalence (15%) with 612 cows. The cattle were vaccinated twice 90 days apart with RB51 at a dose of 1×10(9)cfu/ml. The monthly incidence was determined during 660 days of observation. In the low prevalence dairy, all positive animals were eliminated as soon as they were diagnosed as positive and in this herd the number of new cases decreased to less than 1% between days 120, and day 660. In the dairy with high prevalence, positive cows were not eliminate resulting in the herd increasing its incidence by the end of the first year. Once positive animals were eliminated the incidence diminishes by day 660 to less of 1%. The odds ratio (OR) in the group of cows with abortion history, in the low prevalence dairy, was of 4.5 (1.2; 16.6), in the dairy ranch with high prevalence it presented an OR of 3.6 (1.5; 8.5). The conclusion from this study was that in brucellosis endemic zones, vaccination with RB51 by itself is not enough to control disease. It is mandatory that the initial elimination of all positive cows at the time of vaccination, the continued elimination of all new positive animals be adhered to for long periods of time.
Collapse
Affiliation(s)
- Enrique Herrera-López
- CENID Microbiología INIFAP. Carretera México-Toluca. Km 15.5, Palo Alto, Cuajimalpa, D.F., México, Mexico
| | | | | | | | | |
Collapse
|
146
|
Rapid and reliable single nucleotide polymorphism-based differentiation of Brucella live vaccine strains from field strains. J Clin Microbiol 2010; 48:1461-4. [PMID: 20181906 DOI: 10.1128/jcm.02193-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The reliable differentiation of live Brucella vaccine strains from field isolates is an important element in brucellosis control programs. We describe the design, validation, and implementation of a novel single nucleotide polymorphism (SNP)-based typing platform that offers a rapid, reliable, and robust tool to achieve this with improved diagnostic accuracy compared to existing molecular tests. Furthermore, the assays described are designed such that they supplement, and can be run as an intrinsic part of, a previously described assay identifying Brucella isolates to the species level (K. K. Gopaul, C. J. Smith, M. S. Koylass, and A. M. Whatmore, BMC Microbiol. 8:86), giving a comprehensive molecular typing platform.
Collapse
|
147
|
Yang X, Thornburg T, Walters N, Pascual DW. DeltaznuADeltapurE Brucella abortus 2308 mutant as a live vaccine candidate. Vaccine 2010; 28:1069-74. [PMID: 19914192 PMCID: PMC9811401 DOI: 10.1016/j.vaccine.2009.10.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 10/15/2009] [Accepted: 10/19/2009] [Indexed: 01/18/2023]
Abstract
To create a new, safe brucellosis live vaccine, a double mutant strain was constructed from Brucella abortus 2308. Using the DeltaznuA B. abortus 2308 mutant, a second mutation was introduced by deleting purE gene. The DeltaznuA DeltapurE B. abortus 2308 strain was less capable of surviving in macrophages. When evaluated in vivo, it was cleared within 8 weeks (wks) from mice, causing significantly less inflammation than spleens obtained from wild-type B. abortus 2308-infected mice. Furthermore, two doses of DeltaznuA DeltapurE B. abortus 2308 conferred 0.79 log protection, similar to S19 as did a single dose of DeltaznuA B. abortus 2308. Thus, this study shows the DeltaznuA DeltapurE B. abortus 2308 strain to be a potential livestock vaccine candidate.
Collapse
Affiliation(s)
| | | | | | - David W. Pascual
- Corresponding author at: Veterinary Molecular Biology, Molecular Biosciences Building, 960 Technology Blvd., Bozeman, MT 59718-4000, United States. Tel.: +1 406 994 6244; fax: +1 406 994 4303. (D.W. Pascual)
| |
Collapse
|
148
|
Islam MA, Khatun MM, Baek BK, Lee SI. Efficacy of strain RB51 vaccine in protecting infection and vertical transmission against Brucella abortus in Sprague-Dawley rats. J Vet Sci 2009; 10:211-8. [PMID: 19687621 PMCID: PMC2801131 DOI: 10.4142/jvs.2009.10.3.211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immunizing animals in the wild against Brucella (B.) abortus is essential to control bovine brucellosis because cattle can get the disease through close contact with infected wildlife. The aim of this experiment was to evaluate the effectiveness of the B. abortus strain RB51 vaccine in protecting infection as well as vertical transmission in Sprague-Dawley (SD) rats against B. abortus biotype 1. Virgin female SD rats (n = 48) two months of age were divided into two groups: one group (n = 24) received RB51 vaccine intraperitoneally with 3 × 1010 colony forming units (CFU) and the other group (n = 24) was used as non-vaccinated control. Non-vaccinated and RB51-vaccinated rats were challenged with 1.5 × 109 CFU of virulent B. abortus biotype 1 six weeks after vaccination. Three weeks after challenge, all rats were bred. Verification of RB51-vaccine induced protection in SD rats was determined by bacteriological, serological and molecular screening of maternal and fetal tissues at necropsy. The RB51 vaccine elicited 81.25% protection in SD rats against infection with B. abortus biotype 1. Offspring from rats vaccinated with RB51 had a decreased (p < 0.05) prevalence of vertical transmission of B. abortus biotype 1 compared to the offspring from non-vaccinated rats (20.23% and 87.50%, respectively). This is the first report of RB51 vaccination efficacy against the vertical transmission of B. abortus in the SD rat model.
Collapse
Affiliation(s)
- Md Ariful Islam
- Korean Zoonoses Research Institute, Chonbuk National University, Jeonju 561-756, Korea
| | | | | | | |
Collapse
|
149
|
Sharifi Yazdi H, Kafi M, Tamadon A, Ghane M, Haghkhah M, Behroozikhah AM. Abortions in pregnant dairy cows after vaccination with Brucella abortus strain RB51. Vet Rec 2009; 165:570-1. [DOI: 10.1136/vr.165.19.570] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - M. Kafi
- Department of Clinical Sciences
| | | | | | - M. Haghkhah
- Department of Pathobiology; School of Veterinary Medicine; Shiraz University, 1731; Shiraz 71345 Iran
| | - A. M. Behroozikhah
- Department of Brucella Vaccine Research and Production; Razi Vaccine and Serum Research Institute; Karadj Iran
| |
Collapse
|
150
|
Chen F, He Y. Caspase-2 mediated apoptotic and necrotic murine macrophage cell death induced by rough Brucella abortus. PLoS One 2009; 4:e6830. [PMID: 19714247 PMCID: PMC2729395 DOI: 10.1371/journal.pone.0006830] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 07/29/2009] [Indexed: 12/15/2022] Open
Abstract
Brucella species are Gram-negative, facultative intracellular bacteria that cause zoonotic brucellosis. Survival and replication inside macrophages is critical for establishment of chronic Brucella infection. Virulent smooth B. abortus strain 2308 inhibits programmed macrophage cell death and replicates inside macrophages. Cattle B. abortus vaccine strain RB51 is an attenuated rough, lipopolysaccharide O antigen-deficient mutant derived from smooth strain 2308. B. abortus rough mutant RA1 contains a single wboA gene mutation in strain 2308. Our studies demonstrated that live RB51 and RA1, but not strain 2308 or heat-killed Brucella, induced both apoptotic and necrotic cell death in murine RAW264.7 macrophages and bone marrow derived macrophages. The same phenomenon was also observed in primary mouse peritoneal macrophages from mice immunized intraperitoneally with vaccine strain RB51 using the same dose as regularly performed in protection studies. Programmed macrophage cell death induced by RB51 and RA1 was inhibited by a caspase-2 inhibitor (Z-VDVAD-FMK). Caspase-2 enzyme activation and cleavage were observed at the early infection stage in macrophages infected with RB51 and RA1 but not strain 2308. The inhibition of macrophage cell death promoted the survival of rough Brucella cells inside macrophages. The critical role of caspase-2 in mediating rough B. abortus induced macrophage cell death was confirmed using caspase-2 specific shRNA. The mitochondrial apoptosis pathway was activated in macrophages infected with rough B. abortus as demonstrated by increase in mitochondrial membrane permeability and the release of cytochrome c to cytoplasm in macrophages infected with rough Brucella. These results demonstrate that rough B. abortus strains RB51 and RA1 induce apoptotic and necrotic murine macrophage cell death that is mediated by caspase-2. The biological relevance of Brucella O antigen and caspase-2-mediated macrophage cell death in Brucella pathogenesis and protective Brucella immunity is discussed.
Collapse
Affiliation(s)
- Fang Chen
- Unit for Laboratory Animal Medicine and Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Yongqun He
- Unit for Laboratory Animal Medicine and Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|