101
|
Corlier F, Rivals I, Lagarde J, Hamelin L, Corne H, Dauphinot L, Ando K, Cossec JC, Fontaine G, Dorothée G, Malaplate-Armand C, Olivier JL, Dubois B, Bottlaender M, Duyckaerts C, Sarazin M, Potier MC. Modifications of the endosomal compartment in peripheral blood mononuclear cells and fibroblasts from Alzheimer's disease patients. Transl Psychiatry 2015; 5:e595. [PMID: 26151923 PMCID: PMC5068716 DOI: 10.1038/tp.2015.87] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/21/2015] [Indexed: 12/16/2022] Open
Abstract
Identification of blood-based biomarkers of Alzheimer's disease (AD) remains a challenge. Neuropathological studies have identified enlarged endosomes in post-mortem brains as the earliest cellular change associated to AD. Here the presence of enlarged endosomes was investigated in peripheral blood mononuclear cells from 48 biologically defined AD patients (25 with mild cognitive impairment and 23 with dementia (AD-D)), and 23 age-matched healthy controls using immunocytochemistry and confocal microscopy. The volume and number of endosomes were not significantly different between AD and controls. However, the percentage of cells containing enlarged endosomes was significantly higher in the AD-D group as compared with controls. Furthermore, endosomal volumes significantly correlated to [C(11)]PiB cortical index measured by positron emission tomography in the AD group, independently of the APOE genotype, but not to the levels of amyloid-beta, tau and phosphorylated tau measured in the cerebrospinal fluid. Importantly, we confirmed the presence of enlarged endosomes in fibroblasts from six unrelated AD-D patients as compared with five cognitively normal controls. This study is the first, to our knowledge, to report morphological alterations of the endosomal compartment in peripheral cells from AD patients correlated to amyloid load that will now be evaluated as a possible biomarker.
Collapse
Affiliation(s)
- F Corlier
- UPMC University Paris 06, UMRS 1127, Sorbonne Universités, Paris, France,INSERM U 1127, Paris, France,ICM Research Centre, CNRS UMR 7225, Paris, France
| | - I Rivals
- Équipe de Statistique Appliquée, ESPCI ParisTech, PSL Research University, INSERM UMRS 1158, Paris, France
| | - J Lagarde
- Neurologie de la Mémoire et du Langage, Service de Neurologie, Université Paris Descartes, Sorbonne Paris Cité, INSERM UMR S894, Centre Hospitalier Sainte Anne, Paris, France
| | - L Hamelin
- Neurologie de la Mémoire et du Langage, Service de Neurologie, Université Paris Descartes, Sorbonne Paris Cité, INSERM UMR S894, Centre Hospitalier Sainte Anne, Paris, France
| | - H Corne
- Neurologie de la Mémoire et du Langage, Service de Neurologie, Université Paris Descartes, Sorbonne Paris Cité, INSERM UMR S894, Centre Hospitalier Sainte Anne, Paris, France
| | - L Dauphinot
- UPMC University Paris 06, UMRS 1127, Sorbonne Universités, Paris, France,INSERM U 1127, Paris, France,ICM Research Centre, CNRS UMR 7225, Paris, France
| | - K Ando
- UPMC University Paris 06, UMRS 1127, Sorbonne Universités, Paris, France,INSERM U 1127, Paris, France,ICM Research Centre, CNRS UMR 7225, Paris, France
| | - J-C Cossec
- UPMC University Paris 06, UMRS 1127, Sorbonne Universités, Paris, France,INSERM U 1127, Paris, France,ICM Research Centre, CNRS UMR 7225, Paris, France
| | - G Fontaine
- UPMC University Paris 06, UMRS 1127, Sorbonne Universités, Paris, France,INSERM U 1127, Paris, France,ICM Research Centre, CNRS UMR 7225, Paris, France
| | - G Dorothée
- INSERM UMRS 938, Laboratoire Système Immunitaire et Maladies Conformationnelles, Hôpital Saint-Antoine, Paris, France,Université Pierre et Marie Curie, Université Paris 6, Centre de Recherche Saint-Antoine, Hôpital Saint-Antoine, Paris, France
| | - C Malaplate-Armand
- Laboratoire de Biochimie et Biologie Moléculaire, UF Oncologie—Endocrinologie—Neurobiologie, Hôpital Central, Centre Hospitalier Universitaire, Nancy, France,UR AFPA—USC 340, Equipe BFLA, Université de Lorraine, Nancy, France
| | - J-L Olivier
- Laboratoire de Biochimie et Biologie Moléculaire, UF Oncologie—Endocrinologie—Neurobiologie, Hôpital Central, Centre Hospitalier Universitaire, Nancy, France,UR AFPA—USC 340, Equipe BFLA, Université de Lorraine, Nancy, France
| | - B Dubois
- Institut de la mémoire et de la maladie d'Alzheimer, IMMA, Hôpital de la Pitié-Salpêtrière, AP-HP, Paris, France
| | - M Bottlaender
- CEA (MB), DSV, Institut d'Imagerie Biomédicale, Service Hospitalier Frédéric Joliot, Orsay, France
| | - C Duyckaerts
- UPMC University Paris 06, UMRS 1127, Sorbonne Universités, Paris, France,INSERM U 1127, Paris, France,ICM Research Centre, CNRS UMR 7225, Paris, France,Laboratoire de Neuropathologie Escourolle, Hôpital de la Pitié-Salpêtrière, AP-HP, Paris, France
| | - M Sarazin
- Neurologie de la Mémoire et du Langage, Service de Neurologie, Université Paris Descartes, Sorbonne Paris Cité, INSERM UMR S894, Centre Hospitalier Sainte Anne, Paris, France
| | - M-C Potier
- UPMC University Paris 06, UMRS 1127, Sorbonne Universités, Paris, France,INSERM U 1127, Paris, France,ICM Research Centre, CNRS UMR 7225, Paris, France,ICM Research Centre, Group of Alzheimer's and Prion's diseases, CNRS UMR7225, INSERM URM975, UPMC, Hôpital de la Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France. E-mail:
| | | |
Collapse
|
102
|
Riancho J, Ruiz-Soto M, Berciano MT, Berciano J, Lafarga M. Neuroprotective Effect of Bexarotene in the SOD1(G93A) Mouse Model of Amyotrophic Lateral Sclerosis. Front Cell Neurosci 2015; 9:250. [PMID: 26190974 PMCID: PMC4486838 DOI: 10.3389/fncel.2015.00250] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/18/2015] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive weakness and muscle atrophy related to the loss of upper and lower motor neurons (MNs) without a curative treatment. There is experimental evidence suggesting that retinoids may be involved in ALS pathogenesis. Bexarotene (Bxt) is a retinoid-X receptor agonist used in the treatment of cutaneous lymphoma with a favorable safety profile whose effects have been recently investigated in other neurodegenerative diseases. In this study, we analyze the potential therapeutic effect of Bxt in the SOD1(G93A) mouse model of ALS. Mice were treated with Bxt or vehicle five times per week from day 60 onward. Survival, weight, and neuromuscular function studies together with histological and biochemical analyses were performed. Bxt significantly delayed motor function deterioration, ameliorated the loss of body weight, and extended mice survival up to 30% of the symptomatic period. Histological analyses of the lumbosacral spinal cord revealed that Bxt markedly delayed the early motor-neuron degeneration occurring at presymptomatic stages in ALS-transgenic mice. Bxt treatment contributed to preserve the MN homeostasis in the SOD1(G93A) mice. Particularly, it reduced the neuronal loss and the chromatolytic response, induced nucleolar hypertrophy, decreased the formation of ubiquitylated inclusions, and modulated the lysosomal response. As an agonist of the retinoic-X receptor (RXR) pathway, Bxt notably increased the nuclear expression of the RXRα throughout transcriptionally active euchromatin domains. Bxt also contributed to protect the MN environment by reducing reactive astrogliosis and preserving perisomatic synapsis. Overall, these neuroprotective effects suggest that treatment with Bxt could be useful in ALS, particularly in those cases related to SOD1 mutations.
Collapse
Affiliation(s)
- Javier Riancho
- Neurology Service, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Marqués de Valdecilla (IDIVAL), University Hospital Marqués de Valdecilla, University of Cantabria, Santander, Spain
| | - María Ruiz-Soto
- Department of Anatomy and Cell Biology, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Marqués de Valdecilla (IDIVAL), University of Cantabria, Santander, Spain
| | - María T. Berciano
- Department of Anatomy and Cell Biology, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Marqués de Valdecilla (IDIVAL), University of Cantabria, Santander, Spain
| | - José Berciano
- Neurology Service, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Marqués de Valdecilla (IDIVAL), University Hospital Marqués de Valdecilla, University of Cantabria, Santander, Spain
| | - Miguel Lafarga
- Department of Anatomy and Cell Biology, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Marqués de Valdecilla (IDIVAL), University of Cantabria, Santander, Spain
| |
Collapse
|
103
|
Hippocampal endosomal, lysosomal, and autophagic dysregulation in mild cognitive impairment: correlation with aβ and tau pathology. J Neuropathol Exp Neurol 2015; 74:345-58. [PMID: 25756588 DOI: 10.1097/nen.0000000000000179] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Endosomal-lysosomal and autophagic dysregulation occurs in the hippocampus in prodromal Alzheimer disease (AD), but its relationship with β-amyloid (Aβ) and tau pathology remains unclear. To investigate this issue, we performed immunoblot analysis of hippocampal homogenates from cases with an antemortem clinical diagnosis of no cognitive impairment, mild cognitive impairment (MCI), and AD. Western blot analysis revealed significant increases in the acid hydrolase cathepsin D and early endosome marker rabaptin5 in the MCI group compared with AD, whereas levels of phosphorylated mammalian target of rapamycin proteins (pmTOR), total mammalian target of rapamycin (mTOR), p62, traf6, and LilrB2 were comparable across clinical groups. Hippocampal Aβ1-40 and Aβ1-42 concentrations and AT8-immunopositive neurofibrillary tangle density were not significantly different across the clinical groups. Greater cathepsin D expression was associated with global cognitive score and episodic memory score but not with mini mental state examination or advanced neuropathology criteria. These results indicate that alterations in hippocampal endosomal-lysosomal proteins in MCI are independent of tau or Aβ pathology.
Collapse
|
104
|
Okabayashi S, Shimozawa N, Yasutomi Y, Yanagisawa K, Kimura N. Diabetes mellitus accelerates Aβ pathology in brain accompanied by enhanced GAβ generation in nonhuman primates. PLoS One 2015; 10:e0117362. [PMID: 25675436 PMCID: PMC4326359 DOI: 10.1371/journal.pone.0117362] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 12/21/2014] [Indexed: 11/18/2022] Open
Abstract
Growing evidence suggests that diabetes mellitus (DM) is one of the strongest risk factors for developing Alzheimer’s disease (AD). However, it remains unclear why DM accelerates AD pathology. In cynomolgus monkeys older than 25 years, senile plaques (SPs) are spontaneously and consistently observed in their brains, and neurofibrillary tangles are present at 32 years of age and older. In laboratory-housed monkeys, obesity is occasionally observed and frequently leads to development of type 2 DM. In the present study, we performed histopathological and biochemical analyses of brain tissue in cynomolgus monkeys with type 2 DM to clarify the relationship between DM and AD pathology. Here, we provide the evidence that DM accelerates Aβ pathology in vivo in nonhuman primates who had not undergone any genetic manipulation. In DM-affected monkey brains, SPs were observed in frontal and temporal lobe cortices, even in monkeys younger than 20 years. Biochemical analyses of brain revealed that the amount of GM1-ganglioside-bound Aβ (GAβ)—the endogenous seed for Aβ fibril formation in the brain—was clearly elevated in DM-affected monkeys. Furthermore, the level of Rab GTPases was also significantly increased in the brains of adult monkeys with DM, almost to the same levels as in aged monkeys. Intraneuronal accumulation of enlarged endosomes was also observed in DM-affected monkeys, suggesting that exacerbated endocytic disturbance may underlie the acceleration of Aβ pathology due to DM.
Collapse
Affiliation(s)
- Sachi Okabayashi
- Tsukuba Primate Research Center, National Institute of Biomedical Innovation, 1–1 Hachimandai, Tsukuba-shi, Ibaraki, 305–0843, Japan
- The Corporation for Production and Research of Laboratory Primates, 1–1 Hachimandai, Tsukuba-shi, Ibaraki, 305–0843, Japan
| | - Nobuhiro Shimozawa
- Tsukuba Primate Research Center, National Institute of Biomedical Innovation, 1–1 Hachimandai, Tsukuba-shi, Ibaraki, 305–0843, Japan
| | - Yasuhiro Yasutomi
- Tsukuba Primate Research Center, National Institute of Biomedical Innovation, 1–1 Hachimandai, Tsukuba-shi, Ibaraki, 305–0843, Japan
| | - Katsuhiko Yanagisawa
- Section of Cell Biology and Pathology, Department of Alzheimer's Disease Research, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), Gengo 35, Moriika, Obu, Aichi, 474–8511, Japan
| | - Nobuyuki Kimura
- Tsukuba Primate Research Center, National Institute of Biomedical Innovation, 1–1 Hachimandai, Tsukuba-shi, Ibaraki, 305–0843, Japan
- Section of Cell Biology and Pathology, Department of Alzheimer's Disease Research, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), Gengo 35, Moriika, Obu, Aichi, 474–8511, Japan
- * E-mail:
| |
Collapse
|
105
|
Sokolow S, Henkins KM, Bilousova T, Gonzalez B, Vinters HV, Miller CA, Cornwell L, Poon WW, Gylys KH. Pre-synaptic C-terminal truncated tau is released from cortical synapses in Alzheimer's disease. J Neurochem 2015; 133:368-79. [PMID: 25393609 DOI: 10.1111/jnc.12991] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/02/2014] [Accepted: 11/06/2014] [Indexed: 12/31/2022]
Abstract
The microtubule-associated protein tau has primarily been associated with axonal location and function; however, recent work shows tau release from neurons and suggests an important role for tau in synaptic plasticity. In our study, we measured synaptic levels of total tau using synaptosomes prepared from cryopreserved human postmortem Alzheimer's disease (AD) and control samples. Flow cytometry data show that a majority of synaptic terminals are highly immunolabeled with the total tau antibody (HT7) in both AD and control samples. Immunoblots of synaptosomal fractions reveal increases in a 20 kDa tau fragment and in tau dimers in AD synapses, and terminal-specific antibodies show that in many synaptosome samples tau lacks a C-terminus. Flow cytometry experiments to quantify the extent of C-terminal truncation reveal that only 15-25% of synaptosomes are positive for intact C-terminal tau. Potassium-induced depolarization demonstrates release of tau and tau fragments from pre-synaptic terminals, with increased release from AD compared to control samples. This study indicates that tau is normally highly localized to synaptic terminals in cortex where it is well-positioned to affect synaptic plasticity. Tau cleavage may facilitate tau aggregation as well as tau secretion and propagation of tau pathology from the pre-synaptic compartment in AD. Results demonstrate the abundance of tau, mainly C-terminal truncated tau, in synaptic terminals in aged control and in Alzheimer's disease (AD) samples. Tau fragments and dimers/oligomers are prominent in AD synapses. Following depolarization, tau release is potentiated in AD nerve terminals compared to aged controls. We hypothesize (i) endosomal release of the different tau peptides from AD synapses, and (ii) together with phosphorylation, fragmentation of synaptic tau exacerbates tau aggregation, synaptic dysfunction, and the spread of tau pathology in AD. Aβ = amyloid-beta.
Collapse
Affiliation(s)
- Sophie Sokolow
- UCLA School of Nursing, Los Angeles, California, USA; UCLA Brain Research Institute, Los Angeles, California, USA; UCLA Center for the Advancement of Gerontological Nursing Sciences, Los Angeles, California, USA; UCLA Clinical and Translational Science Institute, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Saez I, Vilchez D. Protein clearance mechanisms and their demise in age-related neurodegenerative diseases. AIMS MOLECULAR SCIENCE 2015. [DOI: 10.3934/molsci.2015.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
107
|
Coutinho MF, Matos L, Alves S. From bedside to cell biology: A century of history on lysosomal dysfunction. Gene 2015; 555:50-8. [DOI: 10.1016/j.gene.2014.09.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 12/25/2022]
|
108
|
Friedman LG, Qureshi YH, Yu WH. Promoting autophagic clearance: viable therapeutic targets in Alzheimer's disease. Neurotherapeutics 2015; 12:94-108. [PMID: 25421002 PMCID: PMC4322072 DOI: 10.1007/s13311-014-0320-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Many neurodegenerative disorders are characterized by the aberrant accumulation of aggregate-prone proteins. Alzheimer's disease (AD) is associated with the buildup of β-amyloid peptides and tau, which aggregate into extracellular plaques and neurofibrillary tangles, respectively. Multiple studies have linked dysfunctional intracellular degradation mechanisms with AD pathogenesis. One such pathway is the autophagy-lysosomal system, which involves the delivery of large protein aggregates/inclusions and organelles to lysosomes through the formation, trafficking, and degradation of double-membrane structures known as autophagosomes. Converging data suggest that promoting autophagic degradation, either by inducing autophagosome formation or enhancing lysosomal digestion, provides viable therapeutic strategies. In this review, we discuss compounds that can augment autophagic clearance and may ameliorate disease-related pathology in cell and mouse models of AD. Canonical autophagy induction is associated with multiple signaling cascades; on the one hand, the best characterized is mammalian target of rapamycin (mTOR). Accordingly, multiple mTOR-dependent and mTOR-independent drugs that stimulate autophagy have been tested in preclinical models. On the other hand, there is a growing list of drugs that can enhance the later stages of autophagic flux by stabilizing microtubule-mediated trafficking, promoting lysosomal fusion, or bolstering lysosomal enzyme function. Although altering the different stages of autophagy provides many potential targets for AD therapeutic interventions, it is important to consider how autophagy drugs might also disturb the delicate balance between autophagosome formation and lysosomal degradation.
Collapse
Affiliation(s)
- Lauren G. Friedman
- Department of Pathology and Cell Biology, Taub Institute for Alzheimer’s Disease Research, Columbia University, 630 West 168th St., New York, NY 10032 USA
| | - Yasir H. Qureshi
- Department of Pathology and Cell Biology, Taub Institute for Alzheimer’s Disease Research, Columbia University, 630 West 168th St., New York, NY 10032 USA
| | - Wai Haung Yu
- Department of Pathology and Cell Biology, Taub Institute for Alzheimer’s Disease Research, Columbia University, 630 West 168th St., New York, NY 10032 USA
| |
Collapse
|
109
|
Magini A, Polchi A, Tozzi A, Tancini B, Tantucci M, Urbanelli L, Borsello T, Calabresi P, Emiliani C. Abnormal cortical lysosomal β-hexosaminidase and β-galactosidase activity at post-synaptic sites during Alzheimer's disease progression. Int J Biochem Cell Biol 2015; 58:62-70. [DOI: 10.1016/j.biocel.2014.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/16/2014] [Accepted: 11/03/2014] [Indexed: 12/17/2022]
|
110
|
Abstract
Epidemiologic and experimental data suggest the involvement of cholesterol metabolism in the development and progression of Alzheimer disease and Niemann-Pick type C disease, but not of frontotemporal dementias. In these 3 neurodegenerative diseases, however, protein tau hyperphosphorylation and aggregation into neurofibrillary tangles are observed. To elucidate the relationship between cholesterol and tau, we compared sterol levels of neurons burdened with neurofibrillary tangles with those of their unaffected neighbors using semiquantitative filipin fluorescence microscopy in mice expressing P301L mutant human tau (a well-described model of FTDP-17) and in P301L transgenic mice lacking apolipoprotein E (the major cholesterol transporter in the brain). Cellular unesterified cholesterol was higher in neurons affected by tau pathology irrespective of apolipoprotein E deficiency. This argues for an impact of tau pathology on cellular cholesterol homeostasis. We suggest that there is a bidirectional mode of action: Disturbances in cellular cholesterol metabolism may promote tau pathology, but tau pathology may also alter neuronal cholesterol homeostasis; once it is established, a vicious cycle may promote neurofibrillary tangle formation.
Collapse
|
111
|
The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat Commun 2014; 5:5659. [DOI: 10.1038/ncomms6659] [Citation(s) in RCA: 442] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 10/24/2014] [Indexed: 12/27/2022] Open
|
112
|
Joshi G, Gan KA, Johnson DA, Johnson JA. Increased Alzheimer's disease-like pathology in the APP/ PS1ΔE9 mouse model lacking Nrf2 through modulation of autophagy. Neurobiol Aging 2014; 36:664-79. [PMID: 25316599 DOI: 10.1016/j.neurobiolaging.2014.09.004] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 07/01/2014] [Accepted: 09/01/2014] [Indexed: 12/21/2022]
Abstract
The presence of senile plaques is one of the major pathologic hallmarks of the brain with Alzheimer's disease (AD). The plaques predominantly contain insoluble amyloid β-peptide, a cleavage product of the larger amyloid precursor protein (APP). Two enzymes, named β and γ secretase, generate the neurotoxic amyloid-β peptide from APP. Mature APP is also turned over endogenously by autophagy, more specifically by the endosomal-lysosomal pathway. A defective lysosomal system is known to be pathogenic in AD. Modulation of NF-E2 related factor 2 (Nrf2) has been shown in several neurodegenerative disorders, and Nrf2 has become a potential therapeutic target for various neurodegenerative disorders, including AD, Parkinson's disease, and amyotrophic lateral sclerosis. In the current study, we explored the effect of genetic ablation of Nrf2 on APP/Aβ processing and/or aggregation as well as changes in autophagic dysfunction in APP/PS1 mice. There was a significant increase in inflammatory response in APP/PS1 mice lacking Nrf2. This was accompanied by increased intracellular levels of APP, Aβ (1-42), and Aβ (1-40), without a change total full-length APP. There was a shift of APP and Aβ into the insoluble fraction, as well as increased poly-ubiquitin conjugated proteins in mice lacking Nrf2. APP/PS1-mediated autophagic dysfunction is also enhanced in Nrf2-deficient mice. Finally, neurons in the APP/PS1/Nrf2-/- mice had increased accumulation of multivesicular bodies, endosomes, and lysosomes. These outcomes provide a better understanding of the role of Nrf2 in modulating autophagy in an AD mouse model and may help design better Nrf2 targeted therapeutics that could be efficacious in the treatment of AD.
Collapse
Affiliation(s)
- Gururaj Joshi
- School of Pharmacy, University of Wisconsin-Madison, WI, USA
| | - Kok Ann Gan
- School of Pharmacy, University of Wisconsin-Madison, WI, USA
| | - Delinda A Johnson
- School of Pharmacy, University of Wisconsin-Madison, WI, USA; Center of Neuroscience, University of Wisconsin-Madison, WI, USA; Waisman Center, University of Wisconsin-Madison, WI, USA
| | - Jeffrey A Johnson
- School of Pharmacy, University of Wisconsin-Madison, WI, USA; Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, WI, USA; Center of Neuroscience, University of Wisconsin-Madison, WI, USA; Waisman Center, University of Wisconsin-Madison, WI, USA.
| |
Collapse
|
113
|
Chang RYK, Etheridge N, Dodd PR, Nouwens AS. Targeted quantitative analysis of synaptic proteins in Alzheimer’s disease brain. Neurochem Int 2014; 75:66-75. [DOI: 10.1016/j.neuint.2014.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/22/2014] [Accepted: 05/26/2014] [Indexed: 11/15/2022]
|
114
|
Braidy N, Brew BJ, Inestrosa NC, Chung R, Sachdev P, Guillemin GJ. Changes in Cathepsin D and Beclin-1 mRNA and protein expression by the excitotoxin quinolinic acid in human astrocytes and neurons. Metab Brain Dis 2014; 29:873-83. [PMID: 24833554 DOI: 10.1007/s11011-014-9557-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 04/28/2014] [Indexed: 01/18/2023]
Abstract
Quinolinic acid (QUIN) is an excitotoxin that has been implicated in the pathogenesis of several neurodegenerative diseases including Alzheimer's disease (AD). While QUIN has been shown to induce neuronal and astrocytic apoptosis as well as excitotoxic cell death, other mechanisms such as autophagy remain unexplored. We investigated the role of Cathepsin D (CatD) and Beclin-1 (Bc1) in QUIN-treated primary human astrocytes and neurons. We demonstrated that the expression patterns of CatD, a lysosomal aspartic protease associated with autophagy, are increased at 24 h after QUIN treatment. However, unlike CatD, the expression patterns of Bc1, a tumour suppressor protein, are significantly reduced at 24 h after QUIN treatment in both brain cell types. Furthermore, we showed that the NMDA ion channel blockers, MK801, can attenuate QUIN-induced changes CatD and Bc1 expression in both astrocytes and neurons. Taken together, these results suggest that induction of deficits in CatD and Bc1 is a significant mechanism for QUIN toxicity in glial and neuronal cells. Maintenance of autophagy may play a crucial role in neuroprotection in the setting of AD.
Collapse
Affiliation(s)
- Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | | | | | | | | | | |
Collapse
|
115
|
Wang Y, Thinakaran G, Kar S. Overexpression of the IGF-II/M6P receptor in mouse fibroblast cell lines differentially alters expression profiles of genes involved in Alzheimer's disease-related pathology. PLoS One 2014; 9:e98057. [PMID: 24846272 PMCID: PMC4028253 DOI: 10.1371/journal.pone.0098057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 04/25/2014] [Indexed: 11/29/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common type of senile dementia affecting elderly people. The processing of amyloid precursor protein (APP) leading to the generation of β-amyloid (Aβ) peptide contributes to neurodegeneration and development of AD pathology. The endocytic trafficking pathway, which comprises of the endosomes and lysosomes, acts as an important site for Aβ generation, and endocytic dysfunction has been linked to increased Aβ production and loss of neurons in AD brains. Since insulin-like growth factor-II (IGF-II) receptor plays a critical role in the transport of lysosomal enzymes from the trans-Golgi network to endosomes, it is likely that the receptor may have a role in regulating Aβ metabolism in AD pathology. However, very little is known on how altered levels of the IGF-II receptor can influence the expression/function of various molecules involved in AD pathology. To address this issue, we evaluated the expression profiles of 87 selected genes related to AD pathology in mouse fibroblast MS cells that are deficient in murine IGF-II receptor and corresponding MS9II cells overexpressing ∼500 times the human IGF-II receptors. Our results reveal that an elevation in IGF-II receptor levels alters the expression profiles of a number of genes including APP as well as enzymes regulating Aβ production, degradation and clearance mechanisms. Additionally, it influences the expression of various lysosomal enzymes and protein kinases that are involved in Aβ toxicity. IGF-II receptor overexpression also alters expression of several genes involved in intracellular signalling as well as cholesterol metabolism, which play a critical role in AD pathology. The altered gene profiles observed in this study closely match with the corresponding protein levels, with a few exceptions. These results, taken together, suggest that an elevation in IGF-II receptor levels can influence the expression profiles of transcripts as well as proteins that are involved in AD pathogenesis.
Collapse
Affiliation(s)
- Yanlin Wang
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Gopal Thinakaran
- Departments of Neurobiology, Neurology and Pathology, The University of Chicago, Chicago, Illinois, United States of America
| | - Satyabrata Kar
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
116
|
Bouter Y, Kacprowski T, Weissmann R, Dietrich K, Borgers H, Brauß A, Sperling C, Wirths O, Albrecht M, Jensen LR, Kuss AW, Bayer TA. Deciphering the molecular profile of plaques, memory decline and neuron loss in two mouse models for Alzheimer's disease by deep sequencing. Front Aging Neurosci 2014; 6:75. [PMID: 24795628 PMCID: PMC3997018 DOI: 10.3389/fnagi.2014.00075] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 04/02/2014] [Indexed: 12/23/2022] Open
Abstract
One of the central research questions on the etiology of Alzheimer’s disease (AD) is the elucidation of the molecular signatures triggered by the amyloid cascade of pathological events. Next-generation sequencing allows the identification of genes involved in disease processes in an unbiased manner. We have combined this technique with the analysis of two AD mouse models: (1) The 5XFAD model develops early plaque formation, intraneuronal Aβ aggregation, neuron loss, and behavioral deficits. (2) The Tg4–42 model expresses N-truncated Aβ4–42 and develops neuron loss and behavioral deficits albeit without plaque formation. Our results show that learning and memory deficits in the Morris water maze and fear conditioning tasks in Tg4–42 mice at 12 months of age are similar to the deficits in 5XFAD animals. This suggested that comparative gene expression analysis between the models would allow the dissection of plaque-related and -unrelated disease relevant factors. Using deep sequencing differentially expressed genes (DEGs) were identified and subsequently verified by quantitative PCR. Nineteen DEGs were identified in pre-symptomatic young 5XFAD mice, and none in young Tg4–42 mice. In the aged cohort, 131 DEGs were found in 5XFAD and 56 DEGs in Tg4–42 mice. Many of the DEGs specific to the 5XFAD model belong to neuroinflammatory processes typically associated with plaques. Interestingly, 36 DEGs were identified in both mouse models indicating common disease pathways associated with behavioral deficits and neuron loss.
Collapse
Affiliation(s)
- Yvonne Bouter
- Division of Molecular Psychiatry, Georg-August-University Goettingen, University Medicine Goettingen , Goettingen , Germany
| | - Tim Kacprowski
- Department of Bioinformatics, Institute of Biometrics and Medical Informatics, University Medicine Greifswald , Greifswald , Germany ; Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald , Greifswald , Germany
| | - Robert Weissmann
- Human Molecular Genetics, Department for Human Genetics of the Institute for Genetics and Functional Genomics, Institute for Human Genetics, University Medicine Greifswald, Ernst-Moritz-Arndt University Greifswald , Greifswald , Germany
| | - Katharina Dietrich
- Division of Molecular Psychiatry, Georg-August-University Goettingen, University Medicine Goettingen , Goettingen , Germany
| | - Henning Borgers
- Division of Molecular Psychiatry, Georg-August-University Goettingen, University Medicine Goettingen , Goettingen , Germany
| | - Andreas Brauß
- Division of Molecular Psychiatry, Georg-August-University Goettingen, University Medicine Goettingen , Goettingen , Germany
| | - Christian Sperling
- Human Molecular Genetics, Department for Human Genetics of the Institute for Genetics and Functional Genomics, Institute for Human Genetics, University Medicine Greifswald, Ernst-Moritz-Arndt University Greifswald , Greifswald , Germany
| | - Oliver Wirths
- Division of Molecular Psychiatry, Georg-August-University Goettingen, University Medicine Goettingen , Goettingen , Germany
| | - Mario Albrecht
- Department of Bioinformatics, Institute of Biometrics and Medical Informatics, University Medicine Greifswald , Greifswald , Germany ; Institute for Knowledge Discovery, Graz University of Technology , Graz , Austria
| | - Lars R Jensen
- Human Molecular Genetics, Department for Human Genetics of the Institute for Genetics and Functional Genomics, Institute for Human Genetics, University Medicine Greifswald, Ernst-Moritz-Arndt University Greifswald , Greifswald , Germany
| | - Andreas W Kuss
- Human Molecular Genetics, Department for Human Genetics of the Institute for Genetics and Functional Genomics, Institute for Human Genetics, University Medicine Greifswald, Ernst-Moritz-Arndt University Greifswald , Greifswald , Germany
| | - Thomas A Bayer
- Division of Molecular Psychiatry, Georg-August-University Goettingen, University Medicine Goettingen , Goettingen , Germany
| |
Collapse
|
117
|
Kovacs GG, Adle-Biassette H, Milenkovic I, Cipriani S, van Scheppingen J, Aronica E. Linking pathways in the developing and aging brain with neurodegeneration. Neuroscience 2014; 269:152-72. [PMID: 24699227 DOI: 10.1016/j.neuroscience.2014.03.045] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/21/2014] [Accepted: 03/21/2014] [Indexed: 12/12/2022]
Abstract
The molecular and cellular mechanisms, which coordinate the critical stages of brain development to reach a normal structural organization with appropriate networks, are progressively being elucidated. Experimental and clinical studies provide evidence of the occurrence of developmental alterations induced by genetic or environmental factors leading to the formation of aberrant networks associated with learning disabilities. Moreover, evidence is accumulating that suggests that also late-onset neurological disorders, even Alzheimer's disease, might be considered disorders of aberrant neural development with pathological changes that are set up at early stages of development before the appearance of the symptoms. Thus, evaluating proteins and pathways that are important in age-related neurodegeneration in the developing brain together with the characterization of mechanisms important during brain development with relevance to brain aging are of crucial importance. In the present review we focus on (1) aspects of neurogenesis with relevance to aging; (2) neurodegenerative disease (NDD)-associated proteins/pathways in the developing brain; and (3) further pathways of the developing or neurodegenerating brains that show commonalities. Elucidation of complex pathogenetic routes characterizing the earliest stage of the detrimental processes that result in pathological aging represents an essential first step toward a therapeutic intervention which is able to reverse these pathological processes and prevent the onset of the disease. Based on the shared features between pathways, we conclude that prevention of NDDs of the elderly might begin during the fetal and childhood life by providing the mothers and their children a healthy environment for the fetal and childhood development.
Collapse
Affiliation(s)
- G G Kovacs
- Institute of Neurology, Medical University of Vienna, Austria.
| | - H Adle-Biassette
- Inserm U1141, F-75019 Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMRS 676, F-75019 Paris, France; Department of Pathology, Lariboisière Hospital, APHP, Paris, France
| | - I Milenkovic
- Institute of Neurology, Medical University of Vienna, Austria
| | | | - J van Scheppingen
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, The Netherlands
| | - E Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, The Netherlands; SEIN - Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, The Netherlands
| |
Collapse
|
118
|
Goy C, Czypiorski P, Altschmied J, Jakob S, Rabanter LL, Brewer AC, Ale-Agha N, Dyballa-Rukes N, Shah AM, Haendeler J. The imbalanced redox status in senescent endothelial cells is due to dysregulated Thioredoxin-1 and NADPH oxidase 4. Exp Gerontol 2014; 56:45-52. [PMID: 24632182 DOI: 10.1016/j.exger.2014.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/28/2014] [Accepted: 03/04/2014] [Indexed: 11/15/2022]
Abstract
Environmental stressors as well as genetic modifications are known to enhance oxidative stress and aging processes. Mitochondrial and nuclear dysfunctions contribute to the onset of aging. One of the most important redox regulators in primary human endothelial cells is Thioredoxin-1 (Trx-1), a 12 kD protein with additional anti-apoptotic properties. Cellular generators of reactive oxygen species are NADPH oxidases (NOXs), of which NOX4 shows highest expression levels in endothelial cells. Therefore, the aim of the study was to investigate how Trx-1 and NOX4 are regulated during stress-induced premature senescence in endothelial cells. We treated primary human endothelial cells for two weeks with H2O2 to generate stress-induced premature senescence in these cells. In this model senescence-associated β-Galactosidase and nuclear p21 as senescence markers are increased. Moreover, total and mitochondrial reactive oxygen species formation is enhanced. An imbalanced redox homeostasis is detected by elevated NOX4 and decreased Trx-1 levels. This can be rescued by lentiviral expression of Trx-1. Moreover, the lysosomal protease Cathepsin D is over-activated, which results in reduced Trx-1 protein levels. Inhibition of "over-active" Cathepsin D by the specific, cell-permeable inhibitor pepstatin A abolishes the increase in nuclear p21 protein, ROS formation and degradation of Trx-1 protein, thus leading to blockade of stress-induced premature senescence by stabilizing the cellular redox homeostasis. Aortic Trx-1 levels are decreased and Cathepsin D activity is increased in NOX4 transgenic mice exclusively expressing NOX4 in the endothelium when compared to their wildtype littermates. Thus, loss of Trx-1 and upregulation of NOX4 importantly contribute to the imbalance in the redox-status of senescent endothelial cells ex vivo and in vivo.
Collapse
Affiliation(s)
- Christine Goy
- IUF - Leibniz Research Institute for Environmental Medicine at the University of Duesseldorf gGmbH, 40225 Duesseldorf, Germany.
| | - Philip Czypiorski
- IUF - Leibniz Research Institute for Environmental Medicine at the University of Duesseldorf gGmbH, 40225 Duesseldorf, Germany.
| | - Joachim Altschmied
- IUF - Leibniz Research Institute for Environmental Medicine at the University of Duesseldorf gGmbH, 40225 Duesseldorf, Germany.
| | - Sascha Jakob
- IUF - Leibniz Research Institute for Environmental Medicine at the University of Duesseldorf gGmbH, 40225 Duesseldorf, Germany.
| | - Lothar L Rabanter
- IUF - Leibniz Research Institute for Environmental Medicine at the University of Duesseldorf gGmbH, 40225 Duesseldorf, Germany.
| | - Alison C Brewer
- King's College London BHF Centre of Excellence, The James Black Centre, London SE5 9NU, UK.
| | - Niloofar Ale-Agha
- IUF - Leibniz Research Institute for Environmental Medicine at the University of Duesseldorf gGmbH, 40225 Duesseldorf, Germany.
| | - Nadine Dyballa-Rukes
- IUF - Leibniz Research Institute for Environmental Medicine at the University of Duesseldorf gGmbH, 40225 Duesseldorf, Germany.
| | - Ajay M Shah
- King's College London BHF Centre of Excellence, The James Black Centre, London SE5 9NU, UK.
| | - Judith Haendeler
- Central Institute of Clinical Chemistry and Laboratory Medicine, University of Duesseldorf, 40225 Duesseldorf, Germany; IUF - Leibniz Research Institute for Environmental Medicine at the University of Duesseldorf gGmbH, 40225 Duesseldorf, Germany.
| |
Collapse
|
119
|
Götzl JK, Mori K, Damme M, Fellerer K, Tahirovic S, Kleinberger G, Janssens J, van der Zee J, Lang CM, Kremmer E, Martin JJ, Engelborghs S, Kretzschmar HA, Arzberger T, Van Broeckhoven C, Haass C, Capell A. Common pathobiochemical hallmarks of progranulin-associated frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis. Acta Neuropathol 2014; 127:845-60. [PMID: 24619111 DOI: 10.1007/s00401-014-1262-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/13/2014] [Accepted: 02/13/2014] [Indexed: 01/13/2023]
Abstract
Heterozygous loss-of-function mutations in the progranulin (GRN) gene and the resulting reduction of GRN levels is a common genetic cause for frontotemporal lobar degeneration (FTLD) with accumulation of TAR DNA-binding protein (TDP)-43. Recently, it has been shown that a complete GRN deficiency due to a homozygous GRN loss-of-function mutation causes neuronal ceroid lipofuscinosis (NCL), a lysosomal storage disorder. These findings suggest that lysosomal dysfunction may also contribute to some extent to FTLD. Indeed, Grn(-/-) mice recapitulate not only pathobiochemical features of GRN-associated FTLD-TDP (FTLD-TDP/GRN), but also those which are characteristic for NCL and lysosomal impairment. In Grn(-/-) mice the lysosomal proteins cathepsin D (CTSD), LAMP (lysosomal-associated membrane protein) 1 and the NCL storage components saposin D and subunit c of mitochondrial ATP synthase (SCMAS) were all found to be elevated. Moreover, these mice display increased levels of transmembrane protein (TMEM) 106B, a lysosomal protein known as a risk factor for FTLD-TDP pathology. In line with a potential pathological overlap of FTLD and NCL, Ctsd(-/-) mice, a model for NCL, show elevated levels of the FTLD-associated proteins GRN and TMEM106B. In addition, pathologically phosphorylated TDP-43 occurs in Ctsd(-/-) mice to a similar extent as in Grn(-/-) mice. Consistent with these findings, some NCL patients accumulate pathologically phosphorylated TDP-43 within their brains. Based on these observations, we searched for pathological marker proteins, which are characteristic for NCL or lysosomal impairment in brains of FTLD-TDP/GRN patients. Strikingly, saposin D, SCMAS as well as the lysosomal proteins CTSD and LAMP1/2 are all elevated in patients with FTLD-TDP/GRN. Thus, our findings suggest that lysosomal storage disorders and GRN-associated FTLD may share common features.
Collapse
Affiliation(s)
- Julia K Götzl
- Adolf-Butenandt Institute, Biochemistry, Ludwig-Maximilians-University Munich, Schillerstrasse 44, 80336, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Tiribuzi R, Crispoltoni L, Porcellati S, Di Lullo M, Florenzano F, Pirro M, Bagaglia F, Kawarai T, Zampolini M, Orlacchio A, Orlacchio A. miR128 up-regulation correlates with impaired amyloid β(1-42) degradation in monocytes from patients with sporadic Alzheimer's disease. Neurobiol Aging 2014; 35:345-56. [DOI: 10.1016/j.neurobiolaging.2013.08.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 07/23/2013] [Accepted: 08/03/2013] [Indexed: 11/26/2022]
|
121
|
Mo C, Peng Q, Sui J, Wang J, Deng Y, Xie L, Li T, He Y, Qin X, Li S. Lack of association between cathepsin D C224T polymorphism and Alzheimer's disease risk: an update meta-analysis. BMC Neurol 2014; 14:13. [PMID: 24423188 PMCID: PMC3901763 DOI: 10.1186/1471-2377-14-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 11/27/2013] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Cathepsin D C224T polymorphism has been reported to associate with AD susceptibility. But the results were inconsistent. This study aimed to assess the relationship between C224T polymorphism and AD risk. METHODS The relevant studies were identified by searching PubMed, Embase, Web of Science, Google Scholar and Wan fang electronic databases updated on July 2013. The relationship between Cathepsin D C224T polymorphism and AD risk was evaluated by ORs and 95% CIs. RESULTS A total of 25 case-control studies including 5,602 cases and 11,049 controls were included in the meta-analysis. There was no association between C224T polymorphism and AD risk with all the studies were pooled in the meta-analysis (CT vs. CC: OR = 1.125, 95% CI = 0.974-1.299, P = 0.109; CT + TT vs. CC: OR = 1.136, 95% CI = 0.978-1.320, P = 0.094). Furthermore, when stratified by ethnicity, age of onset and APOEϵ4 status, significant association did not found in all subgroups. CONCLUSION The present meta-analysis suggested that the Cathepsin D C224T polymorphism was not associated with AD susceptibility.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xue Qin
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.
| | | |
Collapse
|
122
|
Moreira PI, Santos RX, Zhu X, Lee HG, Smith MA, Casadesus G, Perry G. Autophagy in Alzheimer’s disease. Expert Rev Neurother 2014; 10:1209-18. [DOI: 10.1586/ern.10.84] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
123
|
Biochemical characterization of protein quality control mechanisms during disease progression in the C22 mouse model of CMT1A. ASN Neuro 2013; 5:e00128. [PMID: 24175617 PMCID: PMC3848555 DOI: 10.1042/an20130024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Charcot–Marie–Tooth disease type 1A (CMT1A) is a hereditary demyelinating neuropathy linked with duplication of the peripheral myelin protein 22 (PMP22) gene. Transgenic C22 mice, a model of CMT1A, display many features of the human disease, including slowed nerve conduction velocity and demyelination of peripheral nerves. How overproduction of PMP22 leads to compromised myelin and axonal pathology is not fully understood, but likely involves subcellular alterations in protein homoeostatic mechanisms within affected Schwann cells. The subcellular response to abnormally localized PMP22 includes the recruitment of the ubiquitin–proteasome system (UPS), autophagosomes and heat-shock proteins (HSPs). Here we assessed biochemical markers of these protein homoeostatic pathways in nerves from PMP22-overexpressing neuropathic mice between the ages of 2 and 12 months to ascertain their potential contribution to disease progression. In nerves of 3-week-old mice, using endoglycosidases and Western blotting, we found altered processing of the exogenous human PMP22, an abnormality that becomes more prevalent with age. Along with the ongoing accrual of misfolded PMP22, the activity of the proteasome becomes compromised and proteins required for autophagy induction and lysosome biogenesis are up-regulated. Moreover, cytosolic chaperones are consistently elevated in nerves from neuropathic mice, with the most prominent change in HSP70. The gradual alterations in protein homoeostatic response are accompanied by Schwann cell de-differentiation and macrophage infiltration. Together, these results show that while subcellular protein quality control mechanisms respond appropriately to the presence of the overproduced PMP22, with aging they are unable to prevent the accrual of misfolded proteins. In peripheral nerves of neuropathic C22 mice the frequency of cytosolic PMP22 aggregates increases with age, which elicits a response from protein quality control mechanisms. The combined effects of aging and neuropathic genotype exacerbate disease progression leading to nerve defects.
Collapse
|
124
|
Tsakiri EN, Iliaki KK, Höhn A, Grimm S, Papassideri IS, Grune T, Trougakos IP. Diet-derived advanced glycation end products or lipofuscin disrupts proteostasis and reduces life span in Drosophila melanogaster. Free Radic Biol Med 2013; 65:1155-1163. [PMID: 23999505 DOI: 10.1016/j.freeradbiomed.2013.08.186] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/01/2013] [Accepted: 08/23/2013] [Indexed: 01/05/2023]
Abstract
Advanced glycation end product (AGE)-modified proteins are formed by the nonenzymatic glycation of free amino groups of proteins and, along with lipofuscin (a highly oxidized aggregate of covalently cross-linked proteins, sugars, and lipids), have been found to accumulate during aging and in several age-related diseases. As the in vivo effects of diet-derived AGEs or lipofuscin remain elusive, we sought to study the impact of oral administration of glucose-, fructose-, or ribose-modified albumin or of artificial lipofuscin in a genetically tractable model organism. We report herein that continuous feeding of young Drosophila flies with culture medium enriched in AGEs or in lipofuscin resulted in reduced locomotor performance and in accelerated rates of AGE-modified proteins and carbonylated proteins accumulation in the somatic tissues and hemolymph of flies, as well as in a significant reduction of flies health span and life span. These phenotypic effects were accompanied by reduced proteasome peptidase activities in both the hemolymph and the somatic tissues of flies and higher levels of oxidative stress; furthermore, oral administration of AGEs or lipofuscin in flies triggered an upregulation of the lysosomal cathepsin B, L activities. Finally, RNAi-mediated cathepsin D knockdown reduced flies longevity and significantly augmented the deleterious effects of AGEs and lipofuscin, indicating that lysosomal cathepsins reduce the toxicity of diet-derived AGEs or lipofuscin. Our in vivo studies demonstrate that chronic ingestion of AGEs or lipofuscin disrupts proteostasis and accelerates the functional decline that occurs with normal aging.
Collapse
Affiliation(s)
- Eleni N Tsakiri
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens 15784, Greece
| | - Kalliopi K Iliaki
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens 15784, Greece
| | - Annika Höhn
- Institute of Nutrition, Department of Nutritional Toxicology, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Stefanie Grimm
- Institute of Nutrition, Department of Nutritional Toxicology, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Issidora S Papassideri
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens 15784, Greece
| | - Tilman Grune
- Institute of Nutrition, Department of Nutritional Toxicology, Friedrich Schiller University Jena, 07743 Jena, Germany.
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens 15784, Greece.
| |
Collapse
|
125
|
Li W, Tang Y, Fan Z, Meng Y, Yang G, Luo J, Ke ZJ. Autophagy is involved in oligodendroglial precursor-mediated clearance of amyloid peptide. Mol Neurodegener 2013; 8:27. [PMID: 23938027 PMCID: PMC3751621 DOI: 10.1186/1750-1326-8-27] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 08/06/2013] [Indexed: 01/09/2023] Open
Abstract
Background Accumulation of β-amyloid peptides is an important hallmark of Alzheimer’s disease (AD). Tremendous efforts have been directed to elucidate the mechanisms of β-amyloid peptides degradation and develop strategies to remove β-amyloid accumulation. In this study, we demonstrated that a subpopulation of oligodendroglial precursor cells, also called NG2 cells, were a new cell type that can clear β-amyloid peptides in the AD transgene mice and in NG2 cell line. Results NG2 cells were recruited and clustered around the amyloid plaque in the APPswe/PS1dE9 mice, which is Alzheimer’s disease mouse model. In vitro, NG2 cell line and primary NG2 cells engulfed β-amyloid peptides through the mechanisms of endocytosis in a time dependent manner. Endocytosis is divided into pinocytosis and phagocytosis. Aβ42 internalization by NG2 cells was mediated by actin-dependent macropinocytosis. The presence of β-amyloid peptides stimulated the autophagic pathway in NG2 cells. Once inside the cells, the β-amyloid peptides in NG2 cells were transported to lysosomes and degraded by autophagy. Conclusions Our findings suggest that NG2 cells are a new cell type that can clear β-amyloid peptides through endocytosis and autophagy.
Collapse
Affiliation(s)
- Wenxia Li
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | |
Collapse
|
126
|
Cho K, Yoon SY, Choi JE, Kang HJ, Jang HY, Kim DH. CA-074Me, a cathepsin B inhibitor, decreases APP accumulation and protects primary rat cortical neurons treated with okadaic acid. Neurosci Lett 2013; 548:222-7. [DOI: 10.1016/j.neulet.2013.05.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/06/2013] [Accepted: 05/18/2013] [Indexed: 10/26/2022]
|
127
|
Zhang S, Zhang M, Cai F, Song W. Biological function of Presenilin and its role in AD pathogenesis. Transl Neurodegener 2013; 2:15. [PMID: 23866842 PMCID: PMC3718700 DOI: 10.1186/2047-9158-2-15] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 07/14/2013] [Indexed: 01/06/2023] Open
Abstract
Presenilins (PSs) are the catalytic core of γ-secretase complex. However, the mechanism of FAD-associated PS mutations in AD pathogenesis still remains elusive. Here we review the general biology and mechanism of γ-secretase and focus on the catalytic components – presenilins and their biological functions and contributions to the AD pathogenesis. The functions of presenilins are divided into γ-secretase dependent and γ-secretase independent ones. The γ-secretase dependent functions of presenilins are exemplified by the sequential cleavages in the processing of APP and Notch; the γ-secretase independent functions of presenilins include stabilizing β-catenin in Wnt signaling pathway, regulating calcium homeostasis and their interaction with synaptic transmission.
Collapse
Affiliation(s)
- Shuting Zhang
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada.
| | | | | | | |
Collapse
|
128
|
Impairment of proteostasis network in Down syndrome prior to the development of Alzheimer's disease neuropathology: redox proteomics analysis of human brain. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1249-59. [PMID: 23603808 DOI: 10.1016/j.bbadis.2013.04.013] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 03/18/2013] [Accepted: 04/10/2013] [Indexed: 01/06/2023]
Abstract
DS is the most frequent genetic cause of intellectual disability characterized by the anomalous presence of three copies of chromosome 21. One of the peculiar features of DS is the onset of Alzheimer's disease neuropathology after the age of 40years characterized by deposition of senile plaques and neurofibrillary tangles. Growing studies demonstrated that increased oxidative damage, accumulation of unfolded/damaged protein aggregates and dysfunction of intracellular degradative system are key players in neurodegenerative processes. In this study, redox proteomics approach was used to analyze the frontal cortex from DS subjects under the age of 40 compared with age-matched controls, and proteins found to be increasingly carbonylated were identified. Interestingly, our results showed that oxidative damage targets specifically different components of the intracellular quality control system such as GRP78, UCH-L1, V0-ATPase, cathepsin D and GFAP that couples with decreased activity of the proteasome and autophagosome formation observed. We also reported a slight but consistent increase of Aβ 1-42 SDS- and PBS-soluble form and tau phosphorylation in DS versus CTR. We suggest that disturbance in the proteostasis network could contribute to the accumulation of protein aggregates, such as amyloid deposits and NFTs, which occur very early in DS. It is likely that a sub-optimal functioning of degradative systems occur in DS neurons, which in turn provide the basis for further accumulation of toxic protein aggregates. The results of this study suggest that oxidation of protein members of the proteostatis network is an early event in DS and might contribute to neurodegenerative phenomena.
Collapse
|
129
|
Puyal J, Ginet V, Clarke PGH. Multiple interacting cell death mechanisms in the mediation of excitotoxicity and ischemic brain damage: a challenge for neuroprotection. Prog Neurobiol 2013; 105:24-48. [PMID: 23567504 DOI: 10.1016/j.pneurobio.2013.03.002] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 03/05/2013] [Accepted: 03/13/2013] [Indexed: 02/09/2023]
Abstract
There is currently no approved neuroprotective pharmacotherapy for acute conditions such as stroke and cerebral asphyxia. One of the reasons for this may be the multiplicity of cell death mechanisms, because inhibition of a particular mechanism leaves the brain vulnerable to alternative ones. It is therefore essential to understand the different cell death mechanisms and their interactions. We here review the multiple signaling pathways underlying each of the three main morphological types of cell death--apoptosis, autophagic cell death and necrosis--emphasizing their importance in the neuronal death that occurs during cerebral ischemia and hypoxia-ischemia, and we analyze the interactions between the different mechanisms. Finally, we discuss the implications of the multiplicity of cell death mechanisms for the design of neuroprotective strategies.
Collapse
Affiliation(s)
- Julien Puyal
- Département des Neurosciences Fondamentales, Université de Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland.
| | | | | |
Collapse
|
130
|
Jadhav S, Zilka N, Novak M. Protein truncation as a common denominator of human neurodegenerative foldopathies. Mol Neurobiol 2013; 48:516-32. [PMID: 23516100 DOI: 10.1007/s12035-013-8440-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/05/2013] [Indexed: 12/13/2022]
Abstract
Neurodegenerative foldopathies are characterized by aberrant folding of diseased modified proteins, which are major constituents of the intracellular and extracellular lesions. These lesions correlate with the cognitive and/or motor impairment seen in these diseases. The majority of the disease modified proteins in neurodegenerative foldopathies belongs to the group of proteins termed as intrinsically disordered proteins (IDPs). Several independent studies have showed that abnormal protein processing constitutes the key pathological feature of these disorders. The current review focuses on protein truncation as a common denominator of neurodegenerative foldopathies, which is considered to be the major driving force behind the pathological metamorphosis of brain IDPs. The aim of the review is to emphasize the key role of the protein truncation in the pathogenic pathways of neurodegenerative diseases. A deeper understanding of the complex downstream processing of the IDPs, resulting in the generation of pathologically modified proteins might be a prerequisite for the successful therapeutic strategies of several fatal neurodegenerative diseases.
Collapse
Affiliation(s)
- Santosh Jadhav
- Institute of Neuroimmunology, Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Dubravska cesta 9, 845 10, Bratislava, Slovak Republic
| | | | | |
Collapse
|
131
|
Yamashima T. Reconsider Alzheimer's disease by the 'calpain-cathepsin hypothesis'--a perspective review. Prog Neurobiol 2013; 105:1-23. [PMID: 23499711 DOI: 10.1016/j.pneurobio.2013.02.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/08/2013] [Accepted: 02/28/2013] [Indexed: 01/24/2023]
Abstract
Alzheimer's disease (AD) is characterized by slowly progressive neuronal death, but its molecular cascade remains elusive for over 100 years. Since accumulation of autophagic vacuoles (also called granulo-vacuolar degenerations) represents one of the pathologic hallmarks of degenerating neurons in AD, a causative connection between autophagy failure and neuronal death should be present. The aim of this perspective review is at considering such underlying mechanism of AD that age-dependent oxidative stresses may affect the autophagic-lysosomal system via carbonylation and cleavage of heat-shock protein 70.1 (Hsp70.1). AD brains exhibit gradual but continual ischemic insults that cause perturbed Ca(2+) homeostasis, calpain activation, amyloid β deposition, and oxidative stresses. Membrane lipids such as linoleic and arachidonic acids are vulnerable to the cumulative oxidative stresses, generating a toxic peroxidation product 'hydroxynonenal' that can carbonylate Hsp70.1. Recent data advocate for dual roles of Hsp70.1 as a molecular chaperone for damaged proteins and a guardian of lysosomal integrity. Accordingly, impairments of lysosomal autophagy and stabilization may be driven by the calpain-mediated cleavage of carbonylated Hsp70.1, and this causes lysosomal permeabilization and/or rupture with the resultant release of the cell degradation enzyme, cathepsins (calpain-cathepsin hypothesis). Here, the author discusses three topics; (1) how age-related decrease in lysosomal and autophagic activities has a causal connection to programmed neuronal necrosis in sporadic AD, (2) how genetic factors such as apolipoprotein E and presenilin 1 can facilitate lysosomal destabilization in the sequential molecular events, and (3) whether a single cascade can simultaneously account for implications of all players previously reported. In conclusion, Alzheimer neuronal death conceivably occurs by the similar 'calpain-hydroxynonenal-Hsp70.1-cathepsin cascade' with ischemic neuronal death. Blockade of calpain and/or extra-lysosomal cathepsins as well as scavenging of hydroxynonenal would become effective AD therapeutic approaches.
Collapse
Affiliation(s)
- Tetsumori Yamashima
- Department of Restorative Neurosurgery, Kanazawa University Graduate School of Medical Science, Takara-machi 13-1, Kanazawa 920-8641, Japan.
| |
Collapse
|
132
|
Abstract
AbstractRecent investigations into the etiology and pathogenesis of Alzheimer’s disease (AD) in the past few years have expanded to include previously unexplored and/or disconnected aspects of AD and related conditions at both the cellular and systemic levels of organization. These include how AD-associated abnormalities affect the cell cycle and neuronal differentiation state and how they recruit signal transduction, membrane trafficking and protein transcytosis mechanisms to produce a neurotoxic syndrome capable of spreading itself throughout the brain. The recent expansion of AD research into intercellular and new aspects of cellular degenerative mechanisms is causing a systemic re-evaluation of AD pathogenesis, including the roles played by well-studied elements, such as the generation of Aβ and tau protein aggregates. It is also changing our view of neurodegenerative diseases as a whole. Here we propose a conceptual framework to account for some of the emerging aspects of the role of tau in AD pathogenesis.
Collapse
|
133
|
Koike M, Shibata M, Ezaki J, Peters C, Saftig P, Kominami E, Uchiyama Y. Differences in expression patterns of cathepsin C/dipeptidyl peptidase I in normal, pathological and aged mouse central nervous system. Eur J Neurosci 2012; 37:816-30. [PMID: 23279039 DOI: 10.1111/ejn.12096] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/05/2012] [Accepted: 11/16/2012] [Indexed: 12/18/2022]
Abstract
Cathepsin C (CC) (EC 3.4.14.1, dipeptidyl peptidase I) is a lysosomal cysteine protease that is required for the activation of several granule-associated serine proteases in vivo. CC has been shown to be constitutively expressed in various tissues, but the enzyme is hardly detectable in central nervous system (CNS) tissues. In the present study, we investigated the regional and cellular distribution of CC in normal, aging and pathological mouse brains. Immunoblotting failed to detect CC protein in whole brain tissues of normal mice, as previously described. However, low proteolytic activity of CC was detected in a brain region-dependent manner, and granular immunohistochemical signals were found in neuronal perikarya of particular brain regions, including the accessory olfactory bulb, the septum, CA2 of the hippocampus, a part of the cerebral cortex, the medial geniculate, and the inferior colliculus. In aged mice, the number of CC-positive neurons increased to some extent. The protein level of CC and its proteolytic activity showed significant increases in particular brain regions of mouse models with pathological conditions--the thalamus in cathepsin D-deficient mice, the hippocampus of ipsilateral brain hemispheres after hypoxic-ischemic brain injury, and peri-damaged portions of brains after penetrating injury. In such pathological conditions, the majority of the cells that were strongly immunopositive for CC were activated microglia. These lines of evidence suggest that CC is involved in normal neuronal function in certain brain regions, and also participates in inflammatory processes accompanying pathogenesis in the CNS.
Collapse
Affiliation(s)
- Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | | | | | | | | | | | | |
Collapse
|
134
|
Viswanathan K, Hoover DJ, Hwang J, Wisniewski ML, Ikonne US, Bahr BA, Wright DL. Nonpeptidic lysosomal modulators derived from z-phe-ala-diazomethylketone for treating protein accumulation diseases. ACS Med Chem Lett 2012; 3:920-4. [PMID: 24900408 DOI: 10.1021/ml300197h] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 09/09/2012] [Indexed: 11/29/2022] Open
Abstract
Lysosomes are involved in protein turnover and removing misfolded species, and their enzymes have the potential to offset the defect in proteolytic clearance that contributes to the age-related dementia Alzheimer's disease (AD). The weak cathepsin B and L inhibitor Z-Phe-Ala-diazomethylketone (PADK) enhances lysosomal cathepsin levels at low concentrations, thereby eliciting protective clearance of PHF-τ and Aβ42 in the hippocampus and other brain regions. Here, a class of positive modulators is established with compounds decoupled from the cathepsin inhibitory properties. We utilized PADK as a departure point to develop nonpeptidic structures with the hydroxyethyl isostere. The first-in-class modulators SD1002 and SD1003 exhibit improved levels of cathepsin up-regulation but almost complete removal of cathepsin inhibitory properties as compared to PADK. Isomers of the lead compound SD1002 were synthesized, and the modulatory activity was determined to be stereoselective. In addition, the lead compound was tested in transgenic mice with results indicating protection against AD-type protein accumulation pathology.
Collapse
Affiliation(s)
- Kishore Viswanathan
- Department of Pharmaceutical
Sciences, University of Connecticut, Storrs,
Connecticut 06269, United States
| | - Dennis J. Hoover
- Synaptic Dynamics Inc., Farmington, Connecticut 06032, United States
| | - Jeannie Hwang
- Department of Pharmaceutical
Sciences, University of Connecticut, Storrs,
Connecticut 06269, United States
- William C. Friday Laboratory,
Biotechnology Research and Training Center, University of North Carolina—Pembroke, Pembroke, North Carolina
28372, United States
| | - Meagan L. Wisniewski
- William C. Friday Laboratory,
Biotechnology Research and Training Center, University of North Carolina—Pembroke, Pembroke, North Carolina
28372, United States
| | - Uzoma S. Ikonne
- William C. Friday Laboratory,
Biotechnology Research and Training Center, University of North Carolina—Pembroke, Pembroke, North Carolina
28372, United States
| | - Ben A. Bahr
- Department of Pharmaceutical
Sciences, University of Connecticut, Storrs,
Connecticut 06269, United States
- William C. Friday Laboratory,
Biotechnology Research and Training Center, University of North Carolina—Pembroke, Pembroke, North Carolina
28372, United States
| | - Dennis L. Wright
- Department of Pharmaceutical
Sciences, University of Connecticut, Storrs,
Connecticut 06269, United States
- Synaptic Dynamics Inc., Farmington, Connecticut 06032, United States
| |
Collapse
|
135
|
van Echten-Deckert G, Walter J. Sphingolipids: Critical players in Alzheimer’s disease. Prog Lipid Res 2012; 51:378-93. [DOI: 10.1016/j.plipres.2012.07.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 07/06/2012] [Indexed: 12/20/2022]
|
136
|
Abstract
Autophagy is implicated in the pathogenesis of major neurodegenerative disorders although concepts about how it influences these diseases are still evolving. Once proposed to be mainly an alternative cell death pathway, autophagy is now widely viewed as both a vital homeostatic mechanism in healthy cells and as an important cytoprotective response mobilized in the face of aging- and disease-related metabolic challenges. In Alzheimer's, Parkinson's, Huntington's, amyotrophic lateral sclerosis, and other diseases, impairment at different stages of autophagy leads to the buildup of pathogenic proteins and damaged organelles, while defeating autophagy's crucial prosurvival and antiapoptotic effects on neurons. The differences in the location of defects within the autophagy pathway and their molecular basis influence the pattern and pace of neuronal cell death in the various neurological disorders. Future therapeutic strategies for these disorders will be guided in part by understanding the manifold impact of autophagy disruption on neurodegenerative diseases.
Collapse
|
137
|
Bahr BA, Wisniewski ML, Butler D. Positive lysosomal modulation as a unique strategy to treat age-related protein accumulation diseases. Rejuvenation Res 2012; 15:189-97. [PMID: 22533430 DOI: 10.1089/rej.2011.1282] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Lysosomes are involved in degrading and recycling cellular ingredients, and their disruption with age may contribute to amyloidogenesis, paired helical filaments (PHFs), and α-synuclein and mutant huntingtin aggregation. Lysosomal cathepsins are upregulated by accumulating proteins and more so by the modulator Z-Phe-Ala-diazomethylketone (PADK). Such positive modulators of the lysosomal system have been studied in the well-characterized hippocampal slice model of protein accumulation that exhibits the pathogenic cascade of tau aggregation, tubulin breakdown, microtubule destabilization, transport failure, and synaptic decline. Active cathepsins were upregulated by PADK; Rab proteins were modified as well, indicating enhanced trafficking, whereas lysosome-associated membrane protein and proteasome markers were unchanged. Lysosomal modulation reduced the pre-existing PHF deposits, restored tubulin structure and transport, and recovered synaptic components. Further proof-of-principle studies used Alzheimer disease mouse models. It was recently reported that systemic PADK administration caused dramatic increases in cathepsin B protein and activity levels, whereas neprilysin, insulin-degrading enzyme, α-secretase, and β-secretase were unaffected by PADK. In the transgenic models, PADK treatment resulted in clearance of intracellular amyloid beta (Aβ) peptide and concomitant reduction of extracellular deposits. Production of the less pathogenic Aβ(1-38) peptide corresponded with decreased levels of Aβ(1-42), supporting the lysosome's antiamyloidogenic role through intracellular truncation. Amelioration of synaptic and behavioral deficits also indicates a neuroprotective function of the lysosomal system, identifying lysosomal modulation as an avenue for disease-modifying therapies. From the in vitro and in vivo findings, unique lysosomal modulators represent a minimally invasive, pharmacologically controlled strategy against protein accumulation disorders to enhance protein clearance, promote synaptic integrity, and slow the progression of dementia.
Collapse
Affiliation(s)
- Ben A Bahr
- William C. Friday Laboratory, Biotechnology Research and Training Center, University of North Carolina Pembroke, Pembroke, North Carolina 28372-1510, USA.
| | | | | |
Collapse
|
138
|
Abstract
Changes in expression and secretion levels of cystatin C (CysC) in the brain in various neurological disorders and in animal models of neurodegeneration underscore a role for CysC in these conditions. A polymorphism in the CysC gene (CST3) is linked to increased risk for Alzheimer's disease (AD). AD pathology is characterized by deposition of oligomeric and fibrillar forms of amyloid β (Aβ) in the neuropil and cerebral vessel walls, neurofibrillary tangles composed mainly of hyperphosphorylated tau, and neurodegeneration. The implication of CysC in AD was initially suggested by its co-localization with Aβ in amyloid-laden vascular walls, and in senile plaque cores of amyloid in the brains of patients with AD, Down's syndrome, hereditary cerebral hemorrhage with amyloidosis, Dutch type (HCHWA-D), and cerebral infarction. CysC also co-localizes with Aβ amyloid deposits in the brains of non-demented aged individuals. Multiple lines of research show that CysC plays protective roles in AD. In vitro studies have shown that CysC binds Aβ and inhibits Aβ oligomerization and fibril formation. In vivo results from the brains and plasma of Aβ-depositing transgenic mice confirmed the association of CysC with the soluble, non-pathological form of Aβ and the inhibition of Aβ plaques formation. The association of CysC with Aβ was also found in brain and in cerebrospinal fluid (CSF) from AD patients and non-demented control individuals. Moreover, in vitro results showed that CysC protects neuronal cells from a variety of insults that may cause cell death, including cell death induced by oligomeric and fibrillar Aβ. These data suggest that the reduced levels of CysC manifested in AD contribute to increased neuronal vulnerability and impaired neuronal ability to prevent neurodegeneration. This review elaborates on the neuroprotective roles of CysC in AD and the clinical relevance of this protein as a therapeutic agent.
Collapse
Affiliation(s)
- Gurjinder Kaur
- Departments of Psychiatry, Biochemistry, and Molecular Pharmacology, Center for Dementia Research, Nathan S. Kline Institute, New York University School of Medicine, Orangeburg NY, USA
| | | |
Collapse
|
139
|
Di Carlo M, Giacomazza D, San Biagio PL. Alzheimer's disease: biological aspects, therapeutic perspectives and diagnostic tools. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012; 24:244102. [PMID: 22595372 DOI: 10.1088/0953-8984/24/24/244102] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia among older people. Dementia is an irreversible brain disorder that seriously affects a person's ability to carry out daily activities. It is characterized by loss of cognitive functioning and behavioral abilities, to such an extent that it interferes with the daily life and activities of the affected patients. Although it is still unknown how the disease process begins, it seems that brain damage starts a decade or more before problems become evident. Scientific data seem to indicate that changes in the generation or the degradation of the amyloid-b peptide (Aβ) lead to the formation of aggregated structures that are the triggering molecular events in the pathogenic cascade of AD. This review summarizes some characteristic features of Aβ misfolding and aggregation and how cell damage and death mechanisms are induced by these supramolecular and toxic structures. Further, some interventions for the early diagnosis of AD are described and in the last part the potential therapeutic strategies adoptable to slow down, or better block, the progression of the pathology are reported.
Collapse
Affiliation(s)
- M Di Carlo
- Istituto di Biomedicina ed Immunologia Molecolare (IBIM), CNR, Palermo, Italy.
| | | | | |
Collapse
|
140
|
Henkins KM, Sokolow S, Miller CA, Vinters HV, Poon WW, Cornwell LB, Saing T, Gylys KH. Extensive p-tau pathology and SDS-stable p-tau oligomers in Alzheimer's cortical synapses. Brain Pathol 2012; 22:826-33. [PMID: 22486774 DOI: 10.1111/j.1750-3639.2012.00598.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Like amyloid beta (Aβ) oligomers, tau aggregates are increasingly recognized as potential key toxic intermediates in Alzheimer's disease (AD) and as therapeutic targets. P-tau co-localizes with Aβ in cortical AD synapses and may contribute to synapse dysfunction and loss. Flow cytometry analysis of synaptosomes from AD compared with aged cognitively normal cortex demonstrates increased immunolabeling for three p-tau antibodies (AT8, PHF-1 and pS422), indicating phosphorylation at multiple tau epitopes. Sequential extraction experiments show increased soluble p-tau in AD synapses, but a sizable pool of p-tau requires detergent solubilization, suggesting endosomal/lysosomal localization. P-tau is co-localized with Aβ in individual synaptosomes in dual labeling experiments, and flow cytometry sorting of Aβ-positive synaptosomes from an AD case reveals a marked enrichment of p-tau aggregates. The p-tau enrichment, a 76-fold increase over the initial homogenate, is consistent with sequestration of p-tau in internal synaptic compartments. Western analysis of a series of AD and normal cases shows SDS-stable tau oligomers in the dimer/trimer size range in AD samples. These results indicate that widespread synaptic p-tau pathology accompanies Aβ accumulations in surviving synaptic terminals, particularly in late-stage AD.
Collapse
Affiliation(s)
- Kristen M Henkins
- Neuroscience Interdepartmental Program, UCLA School of Medicine, Los Angeles, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Abstract
Alzheimer’s disease (AD) is one key medical challenge of the aging society and despite a great amount of effort and a huge collection of acquired data on molecular mechanisms that are associated with the onset and progression of this devastating disorder, no causal therapy is in sight. The two main hypotheses of AD, the amyloid cascade hypothesis and the Tau hypothesis, are still in the focus of AD research. With aging as the accepted main risk factor of the most important non familial and late onset sporadic forms of AD, it is now mandatory to discuss more intensively aspects of cellular aging and aging biochemistry and its impact on neurodegeneration. Since aging is accompanied by changes in cellular protein homeostasis and an increasing demand for protein degradation, aspects of protein folding, misfolding, refolding and, importantly, protein degradation need to be linked to AD pathogenesis. This is the purpose of this short review.
Collapse
|
142
|
Selfridge JE, E L, Lu J, Swerdlow RH. Role of mitochondrial homeostasis and dynamics in Alzheimer's disease. Neurobiol Dis 2012; 51:3-12. [PMID: 22266017 DOI: 10.1016/j.nbd.2011.12.057] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 12/27/2011] [Accepted: 12/31/2011] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that affects a staggering percentage of the aging population and causes memory loss and cognitive decline. Mitochondrial abnormalities can be observed systemically and in brains of patients suffering from AD, and may account for part of the disease phenotype. In this review, we summarize some of the key findings that indicate mitochondrial dysfunction is present in AD-affected subjects, including cytochrome oxidase deficiency, endophenotype data, and altered mitochondrial morphology. Special attention is given to recently described perturbations in mitochondrial autophagy, fission-fusion dynamics, and biogenesis. We also briefly discuss how mitochondrial dysfunction may influence amyloidosis in Alzheimer's disease, why mitochondria are a valid therapeutic target, and strategies for addressing AD-specific mitochondrial dysfunction.
Collapse
Affiliation(s)
- J Eva Selfridge
- Department of Molecular and Integrative Physiology, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
143
|
Nixon RA, Yang DS. Autophagy failure in Alzheimer's disease--locating the primary defect. Neurobiol Dis 2011; 43:38-45. [PMID: 21296668 PMCID: PMC3096679 DOI: 10.1016/j.nbd.2011.01.021] [Citation(s) in RCA: 486] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 12/31/2010] [Accepted: 01/27/2011] [Indexed: 12/21/2022] Open
Abstract
Autophagy, the major degradative pathway for organelles and long-lived proteins, is essential for the survival of neurons. Mounting evidence has implicated defective autophagy in the pathogenesis of several major neurodegenerative diseases, particularly Alzheimer's disease (AD). A continuum of abnormalities of the lysosomal system has been identified in neurons of the AD brain, including pathological endocytic pathway responses at the very earliest disease stage and a progressive disruption of autophagy leading to the massive buildup of incompletely digested substrates within dystrophic axons and dendrites. In this review, we examine research on autophagy in AD and evaluate evidence addressing the specific step or steps along the autophagy pathway that may be defective. Current evidence strongly points to disruption of substrate proteolysis within autolysosomes for the principal mechanism underlying autophagy failure in AD. In the most common form of familial early onset AD, mutant presenilin 1 disrupts autophagy directly by impeding lysosomal proteolysis while, in other forms of AD, autophagy impairments may involve different genetic or environmental factors. Attempts to restore more normal lysosomal proteolysis and autophagy efficiency in mouse models of AD pathology have yielded promising therapeutic effects on neuronal function and cognitive performance, demonstrating the relevance of autophagy failure to the pathogenesis of AD and the potential of autophagy modulation as a therapeutic strategy. This article is part of a Special Issue entitled "Autophagy and protein degradation in neurological diseases."
Collapse
Affiliation(s)
- Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
| | | |
Collapse
|
144
|
Butler D, Hwang J, Estick C, Nishiyama A, Kumar SS, Baveghems C, Young-Oxendine HB, Wisniewski ML, Charalambides A, Bahr BA. Protective effects of positive lysosomal modulation in Alzheimer's disease transgenic mouse models. PLoS One 2011; 6:e20501. [PMID: 21695208 PMCID: PMC3112200 DOI: 10.1371/journal.pone.0020501] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 05/03/2011] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative pathology in which defects in proteolytic clearance of amyloid β peptide (Aβ) likely contribute to the progressive nature of the disorder. Lysosomal proteases of the cathepsin family exhibit up-regulation in response to accumulating proteins including Aβ1–42. Here, the lysosomal modulator Z-Phe-Ala-diazomethylketone (PADK) was used to test whether proteolytic activity can be enhanced to reduce the accumulation events in AD mouse models expressing different levels of Aβ pathology. Systemic PADK injections in APPSwInd and APPswe/PS1ΔE9 mice caused 3- to 8-fold increases in cathepsin B protein levels and 3- to 10-fold increases in the enzyme's activity in lysosomal fractions, while neprilysin and insulin-degrading enzyme remained unchanged. Biochemical analyses indicated the modulation predominantly targeted the active mature forms of cathepsin B and markedly changed Rab proteins but not LAMP1, suggesting the involvement of enhanced trafficking. The modulated lysosomal system led to reductions in both Aβ immunostaining as well as Aβx-42 sandwich ELISA measures in APPSwInd mice of 10–11 months. More extensive Aβ deposition in 20-22-month APPswe/PS1ΔE9 mice was also reduced by PADK. Selective ELISAs found that a corresponding production of the less pathogenic Aβ1–38 occurs as Aβ1–42 levels decrease in the mouse models, indicating that PADK treatment leads to Aβ truncation. Associated with Aβ clearance was the elimination of behavioral and synaptic protein deficits evident in the two transgenic models. These findings indicate that pharmacologically-controlled lysosomal modulation reduces Aβ1–42 accumulation, possibly through intracellular truncation that also influences extracellular deposition, and in turn offsets the defects in synaptic composition and cognitive functions. The selective modulation promotes clearance at different levels of Aβ pathology and provides proof-of-principle for small molecule therapeutic development for AD and possibly other protein accumulation disorders.
Collapse
Affiliation(s)
- David Butler
- Neurosciences Program, University of Connecticut, Storrs, Connecticut, United States of America
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, United States of America
| | - Jeannie Hwang
- Neurosciences Program, University of Connecticut, Storrs, Connecticut, United States of America
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, United States of America
- William C. Friday Laboratory, Biotechnology Research and Training Center, University of North Carolina Pembroke, Pembroke, North Carolina, United States of America
| | - Candice Estick
- Neurosciences Program, University of Connecticut, Storrs, Connecticut, United States of America
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Saranya Santhosh Kumar
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, United States of America
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Clive Baveghems
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, United States of America
| | - Hollie B. Young-Oxendine
- William C. Friday Laboratory, Biotechnology Research and Training Center, University of North Carolina Pembroke, Pembroke, North Carolina, United States of America
| | - Meagan L. Wisniewski
- William C. Friday Laboratory, Biotechnology Research and Training Center, University of North Carolina Pembroke, Pembroke, North Carolina, United States of America
| | - Ana Charalambides
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, United States of America
- William C. Friday Laboratory, Biotechnology Research and Training Center, University of North Carolina Pembroke, Pembroke, North Carolina, United States of America
| | - Ben A. Bahr
- Neurosciences Program, University of Connecticut, Storrs, Connecticut, United States of America
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, United States of America
- William C. Friday Laboratory, Biotechnology Research and Training Center, University of North Carolina Pembroke, Pembroke, North Carolina, United States of America
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, United States of America
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
145
|
Belinson H, Kariv-Inbal Z, Kayed R, Masliah E, Michaelson DM. Following activation of the amyloid cascade, apolipoprotein E4 drives the in vivo oligomerization of amyloid-β resulting in neurodegeneration. J Alzheimers Dis 2011; 22:959-70. [PMID: 20858958 DOI: 10.3233/jad-2010-101008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
According to the amyloid hypothesis, the accumulation of oligomerized amyloid-β (Aβ) is a primary event in the pathogenesis of Alzheimer's disease (AD). The trigger of the amyloid cascade and of Aβ oligomerization in sporadic AD, the most prevalent form of the disease, remains elusive. Here, we examined the hypothesis that apolipoprotein E4 (ApoE4), the most prevalent genetic risk factor for AD, triggers the accumulation of intraneuronal oligomerized Aβ following activation of the amyloid cascade. We investigated the intracellular organelles that are targeted by these processes and govern their pathological consequences. This revealed that activation of the amyloid cascade in vivo by inhibition of the Aβ degrading enzyme neprilysin specifically results in accumulation of Aβ and oligomerized Aβ and of ApoE4 in the CA1 neurons of ApoE4 mice. This was accompanied by lysosomal and mitochondrial pathology and the co-localization of Aβ, oligomerized Aβ, and ApoE4 with enlarged lysosomes and of Aβ and oligomerized Aβ with mitochondria. The time course of the lysosomal effects paralleled that of the loss of CA1 neurons, whereas the mitochondrial effects reached an earlier plateau. These findings suggest that ApoE4 potentiates the pathological effects of Aβ and the amyloid cascade by triggering the oligomerization of Aβ, which in turn, impairs intraneuronal mitochondria and lysosomes and drives neurodegeneration.
Collapse
Affiliation(s)
- Haim Belinson
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | |
Collapse
|
146
|
Mohamed A, Posse de Chaves E. Aβ internalization by neurons and glia. Int J Alzheimers Dis 2011; 2011:127984. [PMID: 21350608 PMCID: PMC3042623 DOI: 10.4061/2011/127984] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Accepted: 12/23/2010] [Indexed: 11/20/2022] Open
Abstract
In the brain, the amyloid β peptide (Aβ) exists extracellularly and inside neurons. The intracellular accumulation of Aβ in Alzheimer's disease brain has been questioned for a long time. However, there is now sufficient strong evidence indicating that accumulation of Aβ inside neurons plays an important role in the pathogenesis of Alzheimer's disease. Intraneuronal Aβ originates from intracellular cleavage of APP and from Aβ internalization from the extracellular milieu. We discuss here the different molecular mechanisms that are responsible for Aβ internalization in neurons and the links between Aβ internalization and neuronal dysfunction and death. A brief description of Aβ uptake by glia is also presented.
Collapse
Affiliation(s)
- Amany Mohamed
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | | |
Collapse
|
147
|
Cathepsin D plays a crucial role in the trimethyltin-induced hippocampal neurodegeneration process. Neuroscience 2011; 174:160-70. [DOI: 10.1016/j.neuroscience.2010.11.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/21/2010] [Accepted: 11/11/2010] [Indexed: 11/20/2022]
|
148
|
Abstract
OBJECTIVES The role of proteases in the regulation of apoptosis is becoming increasingly apparent. Whilst many of these proteases are already characterised, some have yet to be identified. Traditionally caspases held the traditional role as the prime mediators of apoptosis; however, attention is now turning towards the contribution made by serine proteases. KEY FINDINGS As unregulated apoptosis is implicated in various disease states, the emergence of this proteolytic family as apoptotic regulators offers novel and alterative opportunities for therapeutic targets. SUMMARY This review presents a brief introduction and overview of proteases in general with particular attention given to those involved in apoptotic processing.
Collapse
Affiliation(s)
- Kelly L Moffitt
- Biomolecular Sciences Group, School of Pharmacy, Queen's University of Belfast, Belfast BT97BL, Northern Ireland, UK.
| | | | | |
Collapse
|
149
|
Gauthier S, Kaur G, Mi W, Tizon B, Levy E. Protective mechanisms by cystatin C in neurodegenerative diseases. Front Biosci (Schol Ed) 2011; 3:541-54. [PMID: 21196395 DOI: 10.2741/s170] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neurodegeneration occurs in acute pathological conditions such as stroke, ischemia, and head trauma and in chronic disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. While the cause of neuronal death is different and not always known in these varied conditions, hindrance of cell death would be beneficial in the prevention of, slowing of, or halting disease progression. Enhanced cystatin C (CysC) expression in these conditions caused a debate as to whether CysC up-regulation facilitates neurodegeneration or it is an endogenous neuroprotective attempt to prevent the progression of the pathology. However, recent in vitro and in vivo data have demonstrated that CysC plays protective roles via pathways that are dependent on inhibition of cysteine proteases, such as cathepsin B, or by induction of autophagy, induction of proliferation, and inhibition of amyloid-beta aggregation. Here we review the data demonstrating the protective roles of CysC under conditions of neuronal challenge and the protective pathways induced under various conditions. These data suggest that CysC is a therapeutic candidate that can potentially prevent brain damage and neurodegeneration.
Collapse
|
150
|
Abstract
Some hypothesize that aging in humans is a cumulative process of macromolecular and mitochondrial damage starting years, even decades before any symptoms arise. Aging may begin when the rate of damage exceeds the rate of continual repair and turnover. Quality control for damaged mitochondria entails cellular digestion by mitophagy, a specialized kind of autophagy. Insufficient protective autophagy could cause damaged cellular components to accumulate over many years until they affect normal function in the cell. Alternatively, aging could be the result of overactive, pathologic autophagy. Current knowledge supports both hypotheses with conflicting data, depending on which stage of autophagy is examined. To distinguish these opposite hypotheses, two criteria need to be observed. First, is there a buildup of undigested waste that can be removed by stimulation of autophagy? Or second, if autophagy is overactive, does inhibition of autophagy rescue cell, organ and organism demise. Both of these are best determined by rate measures rather than measures at a single time point. Here, we review the generalized process of autophagy, with a focus on the limited information available for neuron mitophagy, aging, and Alzheimer's disease (AD). In two mouse models, treatment with rapamycin abolishes the AD pathology and reverses memory deficits. As a working model, we hypothesize that insufficient protective autophagy accelerates both aging and AD pathology, possibly caused by defects in autophagosome fusion with lysosomes.
Collapse
Affiliation(s)
- Aaron Barnett
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA.
| | | |
Collapse
|