101
|
Puray-Chavez M, LaPak KM, Schrank TP, Elliott JL, Bhatt DP, Agajanian MJ, Jasuja R, Lawson DQ, Davis K, Rothlauf PW, Jo H, Lee N, Tenneti K, Eschbach JE, Mugisha CS, Vuong HR, Bailey AL, Hayes DN, Whelan SP, Horani A, Brody SL, Goldfarb D, Major MB, Kutluay SB. Systematic analysis of SARS-CoV-2 infection of an ACE2-negative human airway cell. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.01.433431. [PMID: 33688646 PMCID: PMC7941617 DOI: 10.1101/2021.03.01.433431] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Established in vitro models for SARS-CoV-2 infection are limited and include cell lines of non-human origin and those engineered to overexpress ACE2, the cognate host cell receptor. We identified human H522 lung adenocarcinoma cells as naturally permissive to SARS-CoV-2 infection despite complete absence of ACE2. Infection of H522 cells required the SARS-CoV-2 spike protein, though in contrast to ACE2-dependent models, spike alone was not sufficient for H522 infection. Temporally resolved transcriptomic and proteomic profiling revealed alterations in cell cycle and the antiviral host cell response, including MDA5-dependent activation of type-I interferon signaling. Focused chemical screens point to important roles for clathrin-mediated endocytosis and endosomal cathepsins in SARS-CoV-2 infection of H522 cells. These findings imply the utilization of an alternative SARS-CoV-2 host cell receptor which may impact tropism of SARS-CoV-2 and consequently human disease pathogenesis.
Collapse
Affiliation(s)
- Maritza Puray-Chavez
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Kyle M. LaPak
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Travis P. Schrank
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Jennifer L. Elliott
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Dhaval P. Bhatt
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Megan J. Agajanian
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ria Jasuja
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Dana Q. Lawson
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Keanu Davis
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Paul W. Rothlauf
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
- Program in Virology, Harvard Medical School, Boston, MA, USA
| | - Heejoon Jo
- University of Tennessee Health Science Center for Cancer Research, Department of Medicine, Division of Hematology and Oncology, University of Tennessee, Memphis, TN, USA
| | - Nakyung Lee
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Kasyap Tenneti
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Jenna E. Eschbach
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Christian Shema Mugisha
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Hung R. Vuong
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Adam L. Bailey
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - D. Neil Hayes
- University of Tennessee Health Science Center for Cancer Research, Department of Medicine, Division of Hematology and Oncology, University of Tennessee, Memphis, TN, USA
| | - Sean P.J. Whelan
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Amjad Horani
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
| | - Steven L. Brody
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University in St Louis, St Louis, Mo
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO, USA
- Institute for Informatics, Washington University in St. Louis, St. Louis, MO, USA
| | - M. Ben Major
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Otolaryngology, Washington University in St. Louis, St. Louis, MO, USA
| | - Sebla B. Kutluay
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
- Lead Contact
| |
Collapse
|
102
|
Nigella sativa (Black Seed) as a Natural Remedy against Viruses. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.1.26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The currently available antiviral agents are associated with serious adverse effects, coupled with the increasing rate of viral resistance to the existing antiviral drugs. Hence, the search for alternative natural remedies is gaining momentum across the globe. Nigella sativa Linnen, also called Black seed, is a medicinal plant that is gaining worldwide recognition and has been extensively investigated. The present work is aimed to review the existing literature on the antiviral efficacy of Nigella sativa extracts (oil & bioactive compounds). The findings reveal that numerous articles have been published on Nigella sativa and its beneficial effects against different kinds of diseases. However, the antiviral efficacy of Nigella sativa is yet to be given the proper research attention it deserves.
Collapse
|
103
|
Kadam SB, Sukhramani GS, Bishnoi P, Pable AA, Barvkar VT. SARS-CoV-2, the pandemic coronavirus: Molecular and structural insights. J Basic Microbiol 2021; 61:180-202. [PMID: 33460172 PMCID: PMC8013332 DOI: 10.1002/jobm.202000537] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022]
Abstract
The outbreak of a novel coronavirus associated with acute respiratory disease, called COVID-19, marked the introduction of the third spillover of an animal coronavirus (CoV) to humans in the last two decades. The genome analysis with various bioinformatics tools revealed that the causative pathogen (SARS-CoV-2) belongs to the subgenus Sarbecovirus of the genus Betacoronavirus, with highly similar genome as bat coronavirus and receptor-binding domain (RBD) of spike glycoprotein as Malayan pangolin coronavirus. Based on its genetic proximity, SARS-CoV-2 is likely to have originated from bat-derived CoV and transmitted to humans via an unknown intermediate mammalian host, probably Malayan pangolin. Further, spike protein S1/S2 cleavage site of SARS-CoV-2 has acquired polybasic furin cleavage site which is absent in bat and pangolin suggesting natural selection either in an animal host before zoonotic transfer or in humans following zoonotic transfer. In the current review, we recapitulate a preliminary opinion about the disease, origin and life cycle of SARS-CoV-2, roles of virus proteins in pathogenesis, commonalities, and differences between different corona viruses. Moreover, the crystal structures of SARS-CoV-2 proteins with unique characteristics differentiating it from other CoVs are discussed. Our review also provides comprehensive information on the molecular aspects of SARS-CoV-2 including secondary structures in the genome and protein-protein interactions which can be useful to understand the aggressive spread of the SARS-CoV-2. The mutations and the haplotypes reported in the SARS-CoV-2 genome are summarized to understand the virus evolution.
Collapse
Affiliation(s)
| | | | | | - Anupama A. Pable
- Department of MicrobiologySavitribai Phule Pune UniversityPuneIndia
| | | |
Collapse
|
104
|
Lapointe CP, Grosely R, Johnson AG, Wang J, Fernández IS, Puglisi JD. Dynamic competition between SARS-CoV-2 NSP1 and mRNA on the human ribosome inhibits translation initiation. Proc Natl Acad Sci U S A 2021; 118:e2017715118. [PMID: 33479166 PMCID: PMC8017934 DOI: 10.1073/pnas.2017715118] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a beta-CoV that recently emerged as a human pathogen and is the causative agent of the COVID-19 pandemic. A molecular framework of how the virus manipulates host cellular machinery to facilitate infection remains unclear. Here, we focus on SARS-CoV-2 NSP1, which is proposed to be a virulence factor that inhibits protein synthesis by directly binding the human ribosome. We demonstrate biochemically that NSP1 inhibits translation of model human and SARS-CoV-2 messenger RNAs (mRNAs). NSP1 specifically binds to the small (40S) ribosomal subunit, which is required for translation inhibition. Using single-molecule fluorescence assays to monitor NSP1-40S subunit binding in real time, we determine that eukaryotic translation initiation factors (eIFs) allosterically modulate the interaction of NSP1 with ribosomal preinitiation complexes in the absence of mRNA. We further elucidate that NSP1 competes with RNA segments downstream of the start codon to bind the 40S subunit and that the protein is unable to associate rapidly with 80S ribosomes assembled on an mRNA. Collectively, our findings support a model where NSP1 proteins from viruses in at least two subgenera of beta-CoVs associate with the open head conformation of the 40S subunit to inhibit an early step of translation, by preventing accommodation of mRNA within the entry channel.
Collapse
Affiliation(s)
- Christopher P Lapointe
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Rosslyn Grosely
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Alex G Johnson
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Jinfan Wang
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Israel S Fernández
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York City, NY 10032
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305;
| |
Collapse
|
105
|
Lapointe CP, Grosely R, Johnson AG, Wang J, Fernández IS, Puglisi JD. Dynamic competition between SARS-CoV-2 NSP1 and mRNA on the human ribosome inhibits translation initiation. Proc Natl Acad Sci U S A 2021. [PMID: 33479166 DOI: 10.1101/2020.08.20.259770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a beta-CoV that recently emerged as a human pathogen and is the causative agent of the COVID-19 pandemic. A molecular framework of how the virus manipulates host cellular machinery to facilitate infection remains unclear. Here, we focus on SARS-CoV-2 NSP1, which is proposed to be a virulence factor that inhibits protein synthesis by directly binding the human ribosome. We demonstrate biochemically that NSP1 inhibits translation of model human and SARS-CoV-2 messenger RNAs (mRNAs). NSP1 specifically binds to the small (40S) ribosomal subunit, which is required for translation inhibition. Using single-molecule fluorescence assays to monitor NSP1-40S subunit binding in real time, we determine that eukaryotic translation initiation factors (eIFs) allosterically modulate the interaction of NSP1 with ribosomal preinitiation complexes in the absence of mRNA. We further elucidate that NSP1 competes with RNA segments downstream of the start codon to bind the 40S subunit and that the protein is unable to associate rapidly with 80S ribosomes assembled on an mRNA. Collectively, our findings support a model where NSP1 proteins from viruses in at least two subgenera of beta-CoVs associate with the open head conformation of the 40S subunit to inhibit an early step of translation, by preventing accommodation of mRNA within the entry channel.
Collapse
Affiliation(s)
- Christopher P Lapointe
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Rosslyn Grosely
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Alex G Johnson
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Jinfan Wang
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Israel S Fernández
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York City, NY 10032
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305;
| |
Collapse
|
106
|
The genomic structure of a human chromosome 22 nucleolar organizer region determined by TAR cloning. Sci Rep 2021; 11:2997. [PMID: 33542373 PMCID: PMC7862453 DOI: 10.1038/s41598-021-82565-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
The rDNA clusters and flanking sequences on human chromosomes 13, 14, 15, 21 and 22 represent large gaps in the current genomic assembly. The organization and the degree of divergence of the human rDNA units within an individual nucleolar organizer region (NOR) are only partially known. To address this lacuna, we previously applied transformation-associated recombination (TAR) cloning to isolate individual rDNA units from chromosome 21. That approach revealed an unexpectedly high level of heterogeneity in human rDNA, raising the possibility of corresponding variations in ribosome dynamics. We have now applied the same strategy to analyze an entire rDNA array end-to-end from a copy of chromosome 22. Sequencing of TAR isolates provided the entire NOR sequence, including proximal and distal junctions that may be involved in nucleolar function. Comparison of the newly sequenced rDNAs to reference sequence for chromosomes 22 and 21 revealed variants that are shared in human rDNA in individuals from different ethnic groups, many of them at high frequency. Analysis infers comparable intra- and inter-individual divergence of rDNA units on the same and different chromosomes, supporting the concerted evolution of rDNA units. The results provide a route to investigate further the role of rDNA variation in nucleolar formation and in the empirical associations of nucleoli with pathology.
Collapse
|
107
|
Cardenas MC, Bustos SS, Enninga EAL, Mofenson L, Chakraborty R. Characterising and managing paediatric SARSCoV-2 infection: Learning about the virus in a global classroom. Acta Paediatr 2021; 110:409-422. [PMID: 33175403 DOI: 10.1111/apa.15662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/26/2020] [Accepted: 11/06/2020] [Indexed: 01/08/2023]
Abstract
AIM This study is a comprehensive review with the purpose of collecting the most relevant data in several sections including current treatment guidelines in the paediatric population. METHODS Literature was systematically searched in different databases. Results were limited to 2019+ and English, French and Spanish language. RESULTS Children can exhibit mild and less severe COVID-19 disease than adults and also have asymptomatic carriage of SARS-CoV-2, while severe disease is more frequently noted during infancy (<1 year). SARS-CoV-2 binds the angiotensin-converting enzyme 2 (ACE-2) receptor; age-, racial-, and gender-specific differences in ACE-2 expression need to be elucidated in order to explain the differential clinical profiles between children and adults. Multisystem inflammatory syndrome in children (MIS-C) is an important condition to recognise in children. The decision to use antiviral or immunomodulatory therapy in a child or adolescent should be individualised based on the clinical scenario. Remdesivir is the only FDA-approved therapy available for children older than 12 years old who require hospitalisation for COVID-19. CONCLUSION Further studies are urgently required to address prevention and treatment in at-risk and infected children, especially with underlying comorbidities. The chapter on the overall impact of COVID-19 in children has not yet been written. Nevertheless, SARS-CoV-2 has now joined a long list of human pandemics, which may forever change the world's history.
Collapse
Affiliation(s)
- Maria C. Cardenas
- Division of Pediatric Infectious Diseases Department of Mayo Clinic Rochester Minnesota USA
| | - Samyd S. Bustos
- Department of Surgery Mayo Clinic Rochester Minnesota USA
- Center for Regenerative Medicine Mayo Clinic Rochester Minnesota USA
| | | | - Lynne Mofenson
- Elizabeth Glaser Pediatric AIDS Foundation Washington District of Columbia USA
| | - Rana Chakraborty
- Division of Pediatric Infectious Diseases Department of Mayo Clinic Rochester Minnesota USA
- Department of Obstetrics and Gynecology Mayo Clinic Rochester Minnesota USA
| |
Collapse
|
108
|
Kumar V, Kancharla S, Jena MK. In silico virtual screening-based study of nutraceuticals predicts the therapeutic potentials of folic acid and its derivatives against COVID-19. Virusdisease 2021; 32:29-37. [PMID: 33532517 PMCID: PMC7843005 DOI: 10.1007/s13337-020-00643-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
The recent outbreak of the novel coronavirus (SARS-CoV-2) in the Wuhan province of China has taken millions of lives worldwide. In this pandemic situation and absence of known drugs and vaccines against novel coronavirus disease (COVID-19), there is an urgent need for the repurposing of the existing drugs against it. So, here we have examined a safe and cheap alternative against this virus by screening hundreds of nutraceuticals compounds against known therapeutic targets of SARS-COV-2 by molecular docking. The virtual screening results were then analyzed for binding energy and interactive residues and compared with some already known hits in the best binding pose. All these analyses of this study strongly predicted the potential of Folic acid and its derivates like Tetrahydrofolic acid and 5-methyl tetrahydrofolic acid against SARS-COV-2. The strong and stable binding affinity of this water-soluble vitamin and its derivatives against the SARS-COV-2, indicating that they could be valuable drugs against the management of this COVID-19 pandemic. This study could serve as the starting point for further investigation of these molecules through in vitro and in vivo assays.
Collapse
Affiliation(s)
- Vipul Kumar
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411 India
| | | | - Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411 India
| |
Collapse
|
109
|
Luo L, Li Z, Zhao T, Ju X, Ma P, Jin B, Zhou Y, He S, Huang J, Xu X, Zou Y, Li P, Liang A, Liu J, Chi T, Huang X, Ding Q, Jin Z, Huang C, Zhang Y. SARS-CoV-2 nucleocapsid protein phase separates with G3BPs to disassemble stress granules and facilitate viral production. Sci Bull (Beijing) 2021; 66:1194-1204. [PMID: 33495715 PMCID: PMC7816596 DOI: 10.1016/j.scib.2021.01.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/13/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022]
Abstract
A key to tackling the coronavirus disease 2019 (COVID-19) pandemic is to understand how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) manages to outsmart host antiviral defense mechanisms. Stress granules (SGs), which are assembled during viral infection and function to sequester host and viral mRNAs and proteins, are part of the antiviral responses. Here, we show that the SARS-CoV-2 nucleocapsid (N) protein, an RNA binding protein essential for viral production, interacted with Ras-GTPase-activating protein SH3-domain-binding protein (G3BP) and disrupted SG assembly, both of which require intrinsically disordered region1 (IDR1) in N protein. The N protein partitioned into SGs through liquid-liquid phase separation with G3BP, and blocked the interaction of G3BP1 with other SG-related proteins. Moreover, the N protein domains important for phase separation with G3BP and SG disassembly were required for SARS-CoV-2 viral production. We propose that N protein-mediated SG disassembly is crucial for SARS-CoV-2 production.
Collapse
Affiliation(s)
- Lingling Luo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhean Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Tiejun Zhao
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaohui Ju
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Peixiang Ma
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Boxing Jin
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yulin Zhou
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Su He
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jinhua Huang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xun Xu
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yan Zou
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Ping Li
- Department of Hematology, Tongji Hospital of Tongji University, Shanghai 200065, China
| | - Aibin Liang
- Department of Hematology, Tongji Hospital of Tongji University, Shanghai 200065, China
| | - Jia Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Tian Chi
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qiang Ding
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Zhigang Jin
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
110
|
Identification and characterization of a silent mutation in RNA binding domain of N protein coding gene from SARS-CoV-2. BMC Res Notes 2021; 14:10. [PMID: 33407800 PMCID: PMC7787625 DOI: 10.1186/s13104-020-05439-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
Objective This study describes the occurrence of a silent mutation in the RNA binding domain of nucleocapsid phosphoprotein (N protein) coding gene from SARS-CoV-2 that may consequence to a missense mutation by onset of another single nucleotide mutation. Results In the DNA sequence isolated from severe acute respiratory syndrome (SARS-CoV-2) in Iran, a coding sequence for the RNA binding domain of N protein was detected. The comparison of Chinese and Iranian DNA sequences displayed that a thymine (T) was mutated to cytosine (C), so “TTG” from China was changed to “CTG” in Iran. Both DNA sequences from Iran and China have been encoded for leucine. In addition, the second T in “CTG” in the DNA or uracil (U) in “CUG” in the RNA sequences from Iran can be mutated to another C by a missense mutation resulting from thymine DNA glycosylase (TDG) of human and base excision repair mechanism to produce “CCG” encoding for proline, which consequently may increase the affinity of the RNA binding domain of N protein to viral RNA and improve the transcription rate, pathogenicity, evasion from human immunity system, spreading in the human body, and risk of human-to-human transmission rate of SARS-CoV-2.
Collapse
|
111
|
Liu D, Zhang T, Wang Y, Xia L. The Centrality of Obesity in the Course of Severe COVID-19. Front Endocrinol (Lausanne) 2021; 12:620566. [PMID: 33776917 PMCID: PMC7992974 DOI: 10.3389/fendo.2021.620566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/11/2021] [Indexed: 12/15/2022] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global public health challenge. Most patients do not experience severe complications, but approximately 25% of patients progress to acute respiratory distress syndrome (ARDS), and the mortality rate is approximately 5-7%. Clinical findings have determined several risk factors for severe complications and mortality in COVID-19 patients, such as advanced age, smoking, obesity, and chronic diseases. Obesity is a common and serious health problem worldwide that initiates a cascade of disorders, including hypertension, cardiovascular disease (CVD), diabetes mellitus, and chronic kidney disease (CKD). The presence of these disorders is linked to a more severe course of COVID-19. Given the "epidemic" of obesity worldwide and the importance of obesity in the progression of COVID-19, we investigated the mechanisms through which obesity increases the susceptibility to and severity of COVID-19 to support the selection of more appropriate therapies for individuals with obesity.
Collapse
|
112
|
Chepur SV, Pluzhnikov NN, Chubar OV, Bakulina LS, Litvinenko IV, Makarov VA, Gogolevsky AS, Myasnikov VA, Myasnikova IA, Al-Shehadat RI. Respiratory RNA Viruses: How to Be Prepared for an Encounter with New Pandemic Virus Strains. BIOLOGY BULLETIN REVIEWS 2021; 11. [PMCID: PMC8078390 DOI: 10.1134/s207908642102002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The characteristics of the biology of influenza viruses and coronavirus that determine the implementation of the infectious process are presented. With provision for pathogenesis of infection possible effects of serine proteinase inhibitors, heparin, and inhibitors of heparan sulfate receptors in the prevention of cell contamination by viruses are examined. It has been determined that chelators of metals of variable valency and antioxidants should be used for the reduction of replicative activity of viruses and anti-inflammatory therapy. The possibility of a pH-dependent impairment of glycosylation of cellular and viral proteins was traced for chloroquine and its derivatives. The use of low-toxicity drugs as part of adjunct therapy increases the effectiveness of synthetic antiviral drugs and interferons and ensures the safety of baseline therapy.
Collapse
Affiliation(s)
- S. V. Chepur
- State Scientific Research Test Institute of Military Medicine of the Ministry of Defense of the Russian Federation, 195043 St. Petersburg, Russia
| | - N. N. Pluzhnikov
- State Scientific Research Test Institute of Military Medicine of the Ministry of Defense of the Russian Federation, 195043 St. Petersburg, Russia
| | - O. V. Chubar
- State Scientific Research Test Institute of Military Medicine of the Ministry of Defense of the Russian Federation, 195043 St. Petersburg, Russia
| | - L. S. Bakulina
- Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | | | - V. A. Makarov
- Fundamentals of Biotechnology Federal Research Center, 119071 Moscow, Russia
| | - A. S. Gogolevsky
- State Scientific Research Test Institute of Military Medicine of the Ministry of Defense of the Russian Federation, 195043 St. Petersburg, Russia
| | - V. A. Myasnikov
- State Scientific Research Test Institute of Military Medicine of the Ministry of Defense of the Russian Federation, 195043 St. Petersburg, Russia
| | - I. A. Myasnikova
- State Scientific Research Test Institute of Military Medicine of the Ministry of Defense of the Russian Federation, 195043 St. Petersburg, Russia
| | - R. I. Al-Shehadat
- State Scientific Research Test Institute of Military Medicine of the Ministry of Defense of the Russian Federation, 195043 St. Petersburg, Russia
| |
Collapse
|
113
|
Liu Q, Gerdts V. Transmissible Gastroenteritis Virus of Pigs and Porcine Epidemic Diarrhea Virus (Coronaviridae). ENCYCLOPEDIA OF VIROLOGY 2021. [PMCID: PMC7157468 DOI: 10.1016/b978-0-12-809633-8.20928-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
114
|
Neto MLR, da Silva CGL, do Socorro Vieira dos Santos M, Cândido EL, de Lima MAP, de França Lacerda Pinheiro S, Junior RFFP, Teixeira CS, Machado SSF, Pinheiro LFG, de Sousa GO, Galvão LMA, Gomes KGS, Medeiros KA, Diniz LA, de Oliveira ÍGP, Santana JRP, Rocha MAB, Damasceno IA, Cordeiro TL, da Silva Sales W. Epidemiology and Etiopathogeny of COVID-19. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1352:45-71. [DOI: 10.1007/978-3-030-85109-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
115
|
Bharti R, Srivastava A, Roy T, Verma K, Reddy DS, Shafi H, Verma S, Raman SK, Singh AK, Singh J, Ray L, Misra A. Transient Transfection of the Respiratory Epithelium with Gamma Interferon for Host-Directed Therapy in Pulmonary Tuberculosis. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:1121-1128. [PMID: 33110704 PMCID: PMC7581375 DOI: 10.1016/j.omtn.2020.10.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022]
Abstract
Nebulized gamma interferon (IFN-γ) protein has been studied for clinical safety and efficacy against pulmonary tuberculosis (TB). The protein is expensive, requires a cold chain, and is difficult to deploy in limited-resource, high-incidence settings. We generated a preclinical proof of concept (PoC) for a dry powder inhalation (DPI) containing DNA constructs to transiently transfect the lung and airway epithelium of mice with murine IFN-γ. Bacterial colony-forming units (CFU) in the lungs of mice infected with Mycobacterium tuberculosis (Mtb) reduced from about 106/g of tissue to ~104 after four doses given once a week. Nodular inflammatory lesions in the lungs reduced significantly in number. Immunohistochemistry of infected lung sections for LC3-1 and LAMP-1 indicated autophagy induction between 18 and 48 h after inhalation. ELISA on bronchoalveolar lavage (BAL) fluid showed differences in kinetics of IFN-γ concentrations in the epithelial lining fluid of healthy versus infected mice. Uninfected mice receiving DNA constructs expressing a fluorescent protein were live-imaged. The fluorescence signals from the intracellular protein peaked at about 36 h after inhalation and declined by 48 h. These results establish preclinical PoC of the efficacy of a DPI and dosing regimen as a host-directed and transient gene therapy of experimental pulmonary TB in mice, justifying preclinical development.
Collapse
Affiliation(s)
- Reena Bharti
- CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
| | - Ashish Srivastava
- CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
| | - Trisha Roy
- CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
| | - Khushboo Verma
- CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
| | - D.V. Siva Reddy
- CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
| | - Hasham Shafi
- CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
| | - Sonia Verma
- CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
| | - Sunil K. Raman
- CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
| | - Amit K. Singh
- National JALMA Institute for Leprosy and Other Mycobacterial Disease, Agra 282004, UP, India
| | - Jyotsna Singh
- CSIR-Indian Institute of Toxicology Research, Lucknow 226001, UP, India
| | - Lipika Ray
- CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
| | - Amit Misra
- CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
| |
Collapse
|
116
|
Tidu A, Janvier A, Schaeffer L, Sosnowski P, Kuhn L, Hammann P, Westhof E, Eriani G, Martin F. The viral protein NSP1 acts as a ribosome gatekeeper for shutting down host translation and fostering SARS-CoV-2 translation. RNA (NEW YORK, N.Y.) 2020; 27:rna.078121.120. [PMID: 33268501 PMCID: PMC7901841 DOI: 10.1261/rna.078121.120] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/29/2020] [Indexed: 05/10/2023]
Abstract
SARS-CoV-2 coronavirus is responsible for Covid-19 pandemic. In the early phase of infection, the single-strand positive RNA genome is translated into non-structural proteins (NSP). One of the first proteins produced during viral infection, NSP1, binds to the host ribosome and blocks the mRNA entry channel. This triggers translation inhibition of cellular translation. In spite of the presence of NSP1 on the ribosome, viral translation proceeds however. The molecular mechanism of the so-called viral evasion to NSP1 inhibition remains elusive. Here, we confirm that viral translation is maintained in the presence of NSP1. The evasion to NSP1-inhibition is mediated by the cis-acting RNA hairpin SL1 in the 5'UTR of SARS-CoV-2. NSP1-evasion can be transferred on a reporter transcript by SL1 transplantation. The apical part of SL1 is only required for viral translation. We show that NSP1 remains bound on the ribosome during viral translation. We suggest that the interaction between NSP1 and SL1 frees the mRNA accommodation channel while maintaining NSP1 bound to the ribosome. Thus, NSP1 acts as a ribosome gatekeeper, shutting down host translation or fostering SARS-CoV-2 translation depending on the presence of the SL1 5'UTR hairpin. SL1 is also present and necessary for translation of sub-genomic RNAs in the late phase of the infectious program. Consequently, therapeutic strategies targeting SL1 should affect viral translation at early and late stages of infection. Therefore, SL1 might be seen as a genuine 'Achille heel' of the virus.
Collapse
Affiliation(s)
- Antonin Tidu
- Institut de Biologie Moleculaire et Cellulaire, Architecture et Reactivite de l ARN CNRS UPR9002, Universite de Strasbourg, 2, allee Konrad Roentgen, F-67084 Strasbourg (France)
| | - Aurelie Janvier
- Institut de Biologie Moleculaire et Cellulaire, Architecture et Reactivite de l ARN CNRS UPR9002, Universite de Strasbourg, 2, allee Konrad Roentgen, F-67084 Strasbourg (France)
| | - Laure Schaeffer
- Institut de Biologie Moleculaire et Cellulaire, Architecture et Reactivite de l ARN CNRS UPR9002, Universite de Strasbourg, 2, allee Konrad Roentgen F-67084 Strasbourg (France)
| | - Piotr Sosnowski
- Institut de Biologie Moleculaire et Cellulaire, Architecture et Reactivite de l ARN CNRS UPR9002, Universite de Strasbourg, 2, allee Konrad Roentgen, F-67084 Strasbourg (France)
| | - Lauriane Kuhn
- Institut de Biologie Moleculaire et Cellulaire, Plateforme Proteomique Strasbourg Esplanade, CNRS FRC1589, Universite de Strasbourg, 2, allee Konrad Roentgen, F-67084 Strasbourg (France)
| | - Philippe Hammann
- Institut de Biologie Moleculaire et Cellulaire, Plateforme Proteomique Strasbourg Esplanade, CNRS FRC1589, Universite de Strasbourg, 2, allee Konrad Roentgen, F-67084 Strasbourg (France)
| | - Eric Westhof
- Institut de Biologie Moleculaire et Cellulaire, Architecture et Reactivite de l ARN CNRS UPR9002, Universite de Strasbourg, 2, allee Konrad Roentgen, F-67084 Strasbourg (France)
| | - Gilbert Eriani
- Institut de Biologie Moleculaire et Cellulaire, Architecture et Reactivite de l ARN CNRS UPR9002, Universite de Strasbourg, 2, allee Konrad Roentgen, F-67084 Strasbourg (France)
| | - Franck Martin
- Institut de Biologie Moleculaire et Cellulaire, Architecture et Reactivite de l ARN CNRS UPR9002, Universite de Strasbourg, 2, allee Konrad Roentgen, F-67084 Strasbourg (France);
| |
Collapse
|
117
|
Identification of Persuasive Antiviral Natural Compounds for COVID-19 by Targeting Endoribonuclease NSP15: A Structural-Bioinformatics Approach. Molecules 2020; 25:molecules25235657. [PMID: 33271751 PMCID: PMC7729992 DOI: 10.3390/molecules25235657] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 is a positive-stranded RNA virus that bundles its genomic material as messenger-sense RNA in infectious virions and replicates these genomes through RNA intermediates. Several virus-encoded nonstructural proteins play a key role during the viral life cycle. Endoribonuclease NSP15 is vital for the replication and life cycle of the virus, and is thus considered a compelling druggable target. Here, we performed a combination of multiscoring virtual screening and molecular docking of a library of 1624 natural compounds (Nuclei of Bioassays, Ecophysiology and Biosynthesis of Natural Products (NuBBE) database) on the active sites of NSP15 (PDB:6VWW). After sequential high-throughput screening by LibDock and GOLD, docking optimization by CDOCKER, and final scoring by calculating binding energies, top-ranked compounds NuBBE-1970 and NuBBE-242 were further investigated via an indepth molecular-docking and molecular-dynamics simulation of 60 ns, which revealed that the binding of these two compounds with active site residues of NSP15 was sufficiently strong and stable. The findings strongly suggest that further optimization and clinical investigations of these potent compounds may lead to effective SARS-CoV-2 treatment.
Collapse
|
118
|
Almas K, Khan AS, Tabassum A, Nazir MA, Afaq A, Majeed A. Knowledge, Attitudes, and Clinical Practices of Dental Professionals during COVID-19 Pandemic in Pakistan. Eur J Dent 2020; 14:S63-S69. [PMID: 33285570 PMCID: PMC7840435 DOI: 10.1055/s-0040-1718785] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE The aim of this study is to assess knowledge, attitudes, and clinical practices of dental professionals regarding the prevention and control of coronavirus disease 2019 (COVID-19) in Pakistan. MATERIALS AND METHODS General dentists and dental specialists working in public and private dental practices, hospitals, and academic institutions participated in this cross-sectional study. A pilot-tested questionnaire was sent to dental professionals through an online link in Pakistan and data collection was completed in April-May 2020. The knowledge score was calculated from 22 variables about the COVID-19. RESULTS The study included data of 343 dental professionals with 47.2% of males and 52.8% of females. The mean knowledge score was 16.78 ± 2.25, and it significantly differed between general dentists (16.55 ± 2.36) and dental specialists (17.15 ± 2.04) (p = 0.020), and those with up to 10 years of experience (16.58 ± 2.28) and those with more than 10 years of experience (17.05 ± 2.2) (p = 0.026). Only 15.5% of the participants were comfortable in treating patients during the COVID-19 pandemic. A workshop/seminar on the COVID-19 was attended by 23% of the participants. In multivariate analysis, being comfortable in treating patients (odds ratio = 3.31, 95% confidence interval = 1.63, 6.73) was associated with the attendance of workshop/seminar on COVID-19. CONCLUSIONS Dental professionals had adequate knowledge about COVID-19, but a few of them were comfortable in treating patients during the pandemic. A minority of dental professionals attended a workshop/seminar on the COVID-19. Continuous education activities should be provided to dental professionals to enhance their role in the prevention of COVID-19 spread and promotion of oral health.
Collapse
Affiliation(s)
- Khalid Almas
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Afsheen Tabassum
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Muhammad Ashraf Nazir
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ashar Afaq
- Department of Community Dentistry, Dow International Dental College, Karachi, Pakistan
| | - Abdul Majeed
- School of Dental Medicine, University of Colorado, Anschutz Medical Campus, Aurora, USA
| |
Collapse
|
119
|
Pasrija R, Naime M. The deregulated immune reaction and cytokines release storm (CRS) in COVID-19 disease. Int Immunopharmacol 2020; 90:107225. [PMID: 33302033 PMCID: PMC7691139 DOI: 10.1016/j.intimp.2020.107225] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
COVID-19 caused by the SARS-CoV-2 virus, accompanies an unprecedented spike in cytokines levels termed cytokines release syndrome (CRS), in critically ill patients. Clinicians claim that the surge demonstrates a deregulated immune defence in host, as infected cell expression analysis depicts a delay in type-I (interferon-I) and type-III IFNs expression, along with a limited Interferon-Stimulated Gene (ISG) response, which later resume and culminates in elicitation of several cytokines including- IL-6, IL-8, IL-12, TNFα, IL-17, MCP-1, IP-10 and IL-10 etc. Although cytokines are messenger molecules of the immune system, but their increased concentration results in inflammation, infiltration of macrophages, neutrophils and lung injury in patients. This inflammatory response results in the precarious pathogenesis of COVID-19; thus, a complete estimation of the immune response against SARS-CoV-2 is vital in designing a harmless and effective vaccine. In pathogenesis analysis, it emerges that a timely forceful type-I IFN production (18-24hrs post infection) promotes innate and acquired immune responses, while a delay in IFNs production (3-4 days post infection) actually renders both innate and acquired responses ineffective in fighting infection. Further, underlying conditions including hypertension, obesity, cardio-vascular disease etc may increase the chances of putting people in risk groups, which end up having critical form of infection. This review summarizes the events starting from viral entry, its struggle with the immune system and failure of host immunological parameters to obliterate the infections, which finally culminate into massive release of CRS and inflammation in gravely ill patients.
Collapse
Affiliation(s)
- Ritu Pasrija
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Mohammad Naime
- Central Research Institute of Unani Medicine, Central Council for Research in Unani Medicine, Ministry of AYUSH, Government of India, Lucknow, Uttar Pradesh, India
| |
Collapse
|
120
|
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide since its first incidence in Wuhan, China, in December 2019. Although the case fatality rate of COVID-19 appears to be lower than that of SARS and Middle East respiratory syndrome (MERS), the higher transmissibility of SARS-CoV-2 has caused the total fatality to surpass other viral diseases, reaching more than 1 million globally as of October 6, 2020. The rate at which the disease is spreading calls for a therapy that is useful for treating a large population. Multiple intersecting viral and host factor targets involved in the life cycle of the virus are being explored. Because of the frequent mutations, many coronaviruses gain zoonotic potential, which is dependent on the presence of cell receptors and proteases, and therefore the targeting of the viral proteins has some drawbacks, as strain-specific drug resistance can occur. Moreover, the limited number of proteins in a virus makes the number of available targets small. Although SARS-CoV and SARS-CoV-2 share common mechanisms of entry and replication, there are substantial differences in viral proteins such as the spike (S) protein. In contrast, targeting cellular factors may result in a broader range of therapies, reducing the chances of developing drug resistance. In this Review, we discuss the role of primary host factors such as the cell receptor angiotensin-converting enzyme 2 (ACE2), cellular proteases of S protein priming, post-translational modifiers, kinases, inflammatory cells, and their pharmacological intervention in the infection of SARS-CoV-2 and related viruses.
Collapse
Affiliation(s)
- Anil Mathew Tharappel
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA
| | - Subodh Kumar Samrat
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA
| | - Zhong Li
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA
| | - Hongmin Li
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY 12201, USA
| |
Collapse
|
121
|
Li N, Wang P, Wang X, Geng C, Chen J, Gong Y. Molecular diagnosis of COVID-19: Current situation and trend in China (Review). Exp Ther Med 2020; 20:13. [PMID: 32934678 PMCID: PMC7471877 DOI: 10.3892/etm.2020.9142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
COVID-19 is caused by a novel coronavirus (2019-nCoV or SARS-CoV-2) and has become a global public health emergency. Rapid and accurate molecular diagnostic technologies are crucial for the screening, isolation, treatment, prevention and control of COVID-19. Currently, nucleic acid detection-based techniques and rapid diagnostic tests that detect antigens or antibodies specific to 2019-nCoV infections are the primary diagnostic tools. China National Medical Products Administration has opened a special channel for approval of new pharmaceuticals owing to urgent clinical needs, with 18 nucleic acid detection kits, 11 protein detection kits and 1 sequencing-related equipment and supporting software having been approved until April 23, 2020. The current review summarizes the application situation, advantages, disadvantages and associated technology improvement trends of molecular diagnostics for COVID-19 in China, identifies knowledge gaps and indicates future priorities for research in this field. The most effective way to prevent and control COVID-19 is early detection, diagnosis, isolation and treatment. In the clinical application of molecular diagnosis technology, it is necessary to combine pathogenic microbiology, immunology and other associated detection technologies, advocate the combination of multiple technologies, determine how they complement each other, enhance practicability and improve the ability of rapid and accurate diagnosis and differential diagnosis of COVID-19.
Collapse
Affiliation(s)
- Ning Li
- Institute of Disaster Medicine, Tianjin University, Tianjin 300070, P.R. China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, P.R. China
| | - Pengtao Wang
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, P.R. China
- General Hospital of Tianjin Medical University, Tianjin 300070, P.R. China
| | - Xinyue Wang
- Institute of Disaster Medicine, Tianjin University, Tianjin 300070, P.R. China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, P.R. China
| | - Chenhao Geng
- Institute of Disaster Medicine, Tianjin University, Tianjin 300070, P.R. China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, P.R. China
| | - Jiale Chen
- Institute of Disaster Medicine, Tianjin University, Tianjin 300070, P.R. China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, P.R. China
| | - Yanhua Gong
- Institute of Disaster Medicine, Tianjin University, Tianjin 300070, P.R. China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, P.R. China
| |
Collapse
|
122
|
Haddad C, Davila-Calderon J, Tolbert BS. Integrated approaches to reveal mechanisms by which RNA viruses reprogram the cellular environment. Methods 2020; 183:50-56. [PMID: 32622045 PMCID: PMC7329689 DOI: 10.1016/j.ymeth.2020.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
RNA viruses are major threats to global society and mass outbreaks can cause long-lasting damage to international economies. RNA and related retro viruses represent a large and diverse family that contribute to the onset of human diseases such as AIDS; certain cancers like T cell lymphoma; severe acute respiratory illnesses as seen with COVID-19; and others. The hallmark of this viral family is the storage of genetic material in the form of RNA, and upon infecting host cells, their RNA genomes reprogram the cellular environment to favor productive viral replication. RNA is a multifunctional biomolecule that not only stores and transmits heritable information, but it also has the capacity to catalyze complex biochemical reactions. It is therefore no surprise that RNA viruses use this functional diversity to their advantage to sustain chronic or lifelong infections. Efforts to subvert RNA viruses therefore requires a deep understanding of the mechanisms by which these pathogens usurp cellular machinery. Here, we briefly summarize several experimental techniques that individually inform on key physicochemical features of viral RNA genomes and their interactions with proteins. Each of these techniques provide important vantage points to understand the complexities of virus-host interactions, but we attempt to make the case that by integrating these and similar methods, more vivid descriptions of how viruses reprogram the cellular environment emerges. These vivid descriptions should expedite the identification of novel therapeutic targets.
Collapse
|
123
|
Makarov V, Riabova O, Ekins S, Pluzhnikov N, Chepur S. The past, present and future of RNA respiratory viruses: influenza and coronaviruses. Pathog Dis 2020; 78:ftaa046. [PMID: 32860686 PMCID: PMC7499567 DOI: 10.1093/femspd/ftaa046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Influenza virus and coronaviruses continue to cause pandemics across the globe. We now have a greater understanding of their functions. Unfortunately, the number of drugs in our armory to defend us against them is inadequate. This may require us to think about what mechanisms to address. Here, we review the biological properties of these viruses, their genetic evolution and antiviral therapies that can be used or have been attempted. We will describe several classes of drugs such as serine protease inhibitors, heparin, heparan sulfate receptor inhibitors, chelating agents, immunomodulators and many others. We also briefly describe some of the drug repurposing efforts that have taken place in an effort to rapidly identify molecules to treat patients with COVID-19. While we put a heavy emphasis on the past and present efforts, we also provide some thoughts about what we need to do to prepare for respiratory viral threats in the future.
Collapse
Affiliation(s)
- Vadim Makarov
- Federal Research Center Fundamentals of Biotechnology of the Russian Academy of Sciences, 33-2 Leninsky Prospect, Moscow 119071, Russia
| | - Olga Riabova
- Federal Research Center Fundamentals of Biotechnology of the Russian Academy of Sciences, 33-2 Leninsky Prospect, Moscow 119071, Russia
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
| | - Nikolay Pluzhnikov
- State Research Institute of Military Medicine of the Ministry of Defence of the Russian Federation, St Petersburg 195043, Russia
| | - Sergei Chepur
- State Research Institute of Military Medicine of the Ministry of Defence of the Russian Federation, St Petersburg 195043, Russia
| |
Collapse
|
124
|
Temple MD. Real-time audio and visual display of the Coronavirus genome. BMC Bioinformatics 2020; 21:431. [PMID: 33008363 PMCID: PMC7530539 DOI: 10.1186/s12859-020-03760-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND This paper describes a web based tool that uses a combination of sonification and an animated display to inquire into the SARS-CoV-2 genome. The audio data is generated in real time from a variety of RNA motifs that are known to be important in the functioning of RNA. Additionally, metadata relating to RNA translation and transcription has been used to shape the auditory and visual displays. Together these tools provide a unique approach to further understand the metabolism of the viral RNA genome. This audio provides a further means to represent the function of the RNA in addition to traditional written and visual approaches. RESULTS Sonification of the SARS-CoV-2 genomic RNA sequence results in a complex auditory stream composed of up to 12 individual audio tracks. Each auditory motive is derived from the actual RNA sequence or from metadata. This approach has been used to represent transcription or translation of the viral RNA genome. The display highlights the real-time interaction of functional RNA elements. The sonification of codons derived from all three reading frames of the viral RNA sequence in combination with sonified metadata provide the framework for this display. Functional RNA motifs such as transcription regulatory sequences and stem loop regions have also been sonified. Using the tool, audio can be generated in real-time from either genomic or sub-genomic representations of the RNA. Given the large size of the viral genome, a collection of interactive buttons has been provided to navigate to regions of interest, such as cleavage regions in the polyprotein, untranslated regions or each gene. These tools are available through an internet browser and the user can interact with the data display in real time. CONCLUSION The auditory display in combination with real-time animation of the process of translation and transcription provide a unique insight into the large body of evidence describing the metabolism of the RNA genome. Furthermore, the tool has been used as an algorithmic based audio generator. These audio tracks can be listened to by the general community without reference to the visual display to encourage further inquiry into the science.
Collapse
Affiliation(s)
- Mark D Temple
- School of Science, Western Sydney University, Campbelltown Campus, Locked Bag 1797, Penrith South DC, NSW, 1797, Australia.
| |
Collapse
|
125
|
Trypsteen W, Van Cleemput J, van Snippenberg W, Gerlo S, Vandekerckhove L. On the whereabouts of SARS-CoV-2 in the human body: A systematic review. PLoS Pathog 2020; 16:e1009037. [PMID: 33125439 PMCID: PMC7679000 DOI: 10.1371/journal.ppat.1009037] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/20/2020] [Accepted: 10/05/2020] [Indexed: 01/08/2023] Open
Abstract
Since SARS-CoV-2 appeared in the human population, the scientific community has scrambled to gather as much information as possible to find good strategies for the containment and treatment of this pandemic virus. Here, we performed a systematic review of the current (pre)published SARS-CoV-2 literature with a focus on the evidence concerning SARS-CoV-2 distribution in human tissues and viral shedding in body fluids. In addition, this evidence is aligned with published ACE2 entry-receptor (single cell) expression data across the human body to construct a viral distribution and ACE2 receptor body map. We highlight the broad organotropism of SARS-CoV-2, as many studies identified viral components (RNA, proteins) in multiple organs, including the pharynx, trachea, lungs, blood, heart, vessels, intestines, brain, male genitals and kidneys. This also implicates the presence of viral components in various body fluids such as mucus, saliva, urine, cerebrospinal fluid, semen and breast milk. The main SARS-CoV-2 entry receptor, ACE2, is expressed at different levels in multiple tissues throughout the human body, but its expression levels do not always correspond with SARS-CoV-2 detection, indicating that there is a complex interplay between virus and host. Together, these data shed new light on the current view of SARS-CoV-2 pathogenesis and lay the foundation for better diagnosis and treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Wim Trypsteen
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University & Ghent University Hospital, Ghent, Belgium
| | - Jolien Van Cleemput
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University & Ghent University Hospital, Ghent, Belgium
| | - Willem van Snippenberg
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University & Ghent University Hospital, Ghent, Belgium
| | - Sarah Gerlo
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University & Ghent University Hospital, Ghent, Belgium
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University & Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
126
|
Mayta-Tovalino F, Diaz-Soriano A, Munive-Degregori A, Pérez-Vargas F, Luza S, Bocanegra R, Mauricio F. Proposal for a provisional protocol for the care and identification of dental transmission routes of COVID-19 in Latin America: A Literature review. J Clin Exp Dent 2020; 12:e979-e990. [PMID: 33154801 PMCID: PMC7600211 DOI: 10.4317/jced.57762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 09/07/2020] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The new coronavirus called COVID-19 originated in the city of Wuhan, China and has currently spread to different continents, leading the World Health Organization (WHO) to declare a "pandemic". Therefore, the aim of this review was to present a new proposal for a care protocol in Peruvian Dentistry: Provisional review of the diagnosis, treatment, epidemiological characteristics, routes of transmission and recommendations of COVID-19. MATERIAL AND METHODS A search of digital scientific literature was made in the databases: Science Direct, Pubmed and Google Scholar. The Boolean operators AND, OR and NOT: "Covid-19" "Dental" "Routes of transmission. They were included Scientific articles published in English between December 2019 - March 2020. RESULTS Different studies were found mainly of epidemiological, observational and experimental design. On March 6, 2020, the President of the Republic of Peru confirmed and declared in Peru the beginning of the first case of coronavirus. According to reports from the Ministry of Health (MINSA) as of July 30, there are: PCR (+) 108, 299; Rapid test (+) 292, 384 positive cases and 18, 816 deceased with a lethality of 4.7%. CONCLUSIONS Within the limitations of this literature review, the presence of the virus is inevitable in dental practice. The dentist must understand the evolution of this microorganism like all vulnerable professionals in the health sciences. Key words:COVID-19, dentistry, Peru, protocol, routes of transmission.
Collapse
Affiliation(s)
- Frank Mayta-Tovalino
- Social Responsibility Center, Faculty of Dentistry, Universidad Nacional Mayor de San Marcos, Lima, Peru
- Postgraduate Department, Faculty of Health Sciences, Universidad Científica del Sur, Lima-Peru
| | - Ana Diaz-Soriano
- Social Responsibility Center, Faculty of Dentistry, Universidad Nacional Mayor de San Marcos, Lima, Peru
- Department of Preventive and Social Stomatology, Faculty of Dentistry, Universidad Nacional Mayor de San Marcos, Lima-Peru
| | - Arnaldo Munive-Degregori
- Social Responsibility Center, Faculty of Dentistry, Universidad Nacional Mayor de San Marcos, Lima, Peru
- Department of Rehabilitative Stomatology, Faculty of Dentistry, Universidad Nacional Mayor de San Marcos, Lima-Peru
| | - Fernando Pérez-Vargas
- Department of Pediatric Stomatology, Faculty of Dentistry, Universidad Nacional Mayor de San Marcos, Lima-Peru
| | - Silvia Luza
- Social Responsibility Center, Faculty of Dentistry, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Rocio Bocanegra
- Social Responsibility Center, Faculty of Dentistry, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Franco Mauricio
- Postgraduate Department, Faculty of Dentistry, Universidad Nacional Federico Villarreal, Lima-Peru
| |
Collapse
|
127
|
Fernandes JD, Hinrichs AS, Clawson H, Gonzalez JN, Lee BT, Nassar LR, Raney BJ, Rosenbloom KR, Nerli S, Rao AA, Schmelter D, Fyfe A, Maulding N, Zweig AS, Lowe TM, Ares M, Corbet-Detig R, Kent WJ, Haussler D, Haeussler M. The UCSC SARS-CoV-2 Genome Browser. Nat Genet 2020; 52:991-998. [PMID: 32908258 PMCID: PMC8016453 DOI: 10.1038/s41588-020-0700-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background: Researchers are generating molecular data pertaining to the SARS-CoV-2 RNA genome and its proteins at an unprecedented rate during the COVID-19 pandemic. As a result, there is a critical need for rapid and continuously updated access to the latest molecular data in a format in which all data can be quickly cross-referenced and compared. We adapted our genome browser visualization tool to the viral genome for this purpose. Molecular data, curated from published studies or from database submissions, are mapped to the viral genome and grouped together into “annotation tracks” where they can be visualized along the linear map of the viral genome sequence and programmatically downloaded in standard format for analysis. Results: The UCSC Genome Browser for SARS-CoV-2 (https://genome.ucsc.edu/covid19.html ) provides continuously updated access to the mutations in the many thousands of SARS-CoV-2 genomes deposited in GISAID and the international nucleotide sequencing databases, displayed alongside phylogenetic trees. These data are augmented with alignments of bat, pangolin, and other animal and human coronavirus genomes, including per-base evolutionary rate analysis. All available annotations are cross-referenced on the virus genome, including those from major databases (PDB, RFAM, IEDB, UniProt) as well as up-to-date individual results from preprints. Annotated data include predicted and validated immune epitopes, promising antibodies, RT-PCR and sequencing primers, CRISPR guides (from research, diagnostics, vaccines, and therapies), and points of interaction between human and viral genes. As a community resource, any user can add manual annotations which are quality checked and shared publicly on the browser the next day. Conclusions: We invite all investigators to contribute additional data and annotations to this resource to accelerate research and development activities globally. Contact us at genome-www@soe.ucsc.edu with data suggestions or requests for support for adding data. Rapid sharing of data will accelerate SARS-CoV-2 research, especially when researchers take time to integrate their data with those from other labs on a widely-used community browser platform with standardized machine-readable data formats, such as the SARS-CoV-2 Genome Browser.
Collapse
Affiliation(s)
- Jason D Fernandes
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
- Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Angie S Hinrichs
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Hiram Clawson
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | | | - Brian T Lee
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Luis R Nassar
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Brian J Raney
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Kate R Rosenbloom
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Santrupti Nerli
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Arjun A Rao
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
| | - Daniel Schmelter
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Alastair Fyfe
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Nathan Maulding
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Ann S Zweig
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Todd M Lowe
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Manuel Ares
- Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Russ Corbet-Detig
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - W James Kent
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - David Haussler
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA.
- Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, CA, USA.
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA, USA.
| | | |
Collapse
|
128
|
Petushkova AI, Zamyatnin AA. Papain-Like Proteases as Coronaviral Drug Targets: Current Inhibitors, Opportunities, and Limitations. Pharmaceuticals (Basel) 2020; 13:E277. [PMID: 32998368 PMCID: PMC7601131 DOI: 10.3390/ph13100277] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/26/2020] [Accepted: 09/26/2020] [Indexed: 12/23/2022] Open
Abstract
Papain-like proteases (PLpro) of coronaviruses (CoVs) support viral reproduction and suppress the immune response of the host, which makes CoV PLpro perspective pharmaceutical targets. Their inhibition could both prevent viral replication and boost the immune system of the host, leading to the speedy recovery of the patient. Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the third CoV outbreak in the last 20 years. Frequent mutations of the viral genome likely lead to the emergence of more CoVs. Inhibitors for CoV PLpro can be broad-spectrum and can diminish present and prevent future CoV outbreaks as PLpro from different CoVs have conservative structures. Several inhibitors have been developed to withstand SARS-CoV and Middle East respiratory syndrome CoV (MERS-CoV). This review summarizes the structural features of CoV PLpro, the inhibitors that have been identified over the last 20 years, and the compounds that have the potential to become novel effective therapeutics against CoVs in the near future.
Collapse
Affiliation(s)
- Anastasiia I. Petushkova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
| |
Collapse
|
129
|
Dhama K, Khan S, Tiwari R, Sircar S, Bhat S, Malik YS, Singh KP, Chaicumpa W, Bonilla-Aldana DK, Rodriguez-Morales AJ. Coronavirus Disease 2019-COVID-19. Clin Microbiol Rev 2020. [PMID: 32580969 DOI: 10.1128/cmr.00028-20/asset/32473ce7-130a–42a6-b589-0dd2f00518eb/assets/graphic/cmr.00028-20-f0007.jpeg] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
SUMMARYIn recent decades, several new diseases have emerged in different geographical areas, with pathogens including Ebola virus, Zika virus, Nipah virus, and coronaviruses (CoVs). Recently, a new type of viral infection emerged in Wuhan City, China, and initial genomic sequencing data of this virus do not match with previously sequenced CoVs, suggesting a novel CoV strain (2019-nCoV), which has now been termed severe acute respiratory syndrome CoV-2 (SARS-CoV-2). Although coronavirus disease 2019 (COVID-19) is suspected to originate from an animal host (zoonotic origin) followed by human-to-human transmission, the possibility of other routes should not be ruled out. Compared to diseases caused by previously known human CoVs, COVID-19 shows less severe pathogenesis but higher transmission competence, as is evident from the continuously increasing number of confirmed cases globally. Compared to other emerging viruses, such as Ebola virus, avian H7N9, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV-2 has shown relatively low pathogenicity and moderate transmissibility. Codon usage studies suggest that this novel virus has been transferred from an animal source, such as bats. Early diagnosis by real-time PCR and next-generation sequencing has facilitated the identification of the pathogen at an early stage. Since no antiviral drug or vaccine exists to treat or prevent SARS-CoV-2, potential therapeutic strategies that are currently being evaluated predominantly stem from previous experience with treating SARS-CoV, MERS-CoV, and other emerging viral diseases. In this review, we address epidemiological, diagnostic, clinical, and therapeutic aspects, including perspectives of vaccines and preventive measures that have already been globally recommended to counter this pandemic virus.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Sharun Khan
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, India
| | - Shubhankar Sircar
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Sudipta Bhat
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - D Katterine Bonilla-Aldana
- Semillero de Zoonosis, Grupo de Investigación BIOECOS, Fundación Universitaria Autónoma de las Américas, Sede Pereira, Pereira, Risaralda, Colombia
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnologica de Pereira, Pereira, Colombia
- Latin American Network of Coronavirus Disease 2019-COVID-19 Research (LANCOVID-19), Pereira, Risaralda, Colombia
| | - Alfonso J Rodriguez-Morales
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnologica de Pereira, Pereira, Colombia
- Latin American Network of Coronavirus Disease 2019-COVID-19 Research (LANCOVID-19), Pereira, Risaralda, Colombia
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Americas, Pereira, Risaralda, Colombia
| |
Collapse
|
130
|
Dhama K, Khan S, Tiwari R, Sircar S, Bhat S, Malik YS, Singh KP, Chaicumpa W, Bonilla-Aldana DK, Rodriguez-Morales AJ. Coronavirus Disease 2019-COVID-19. Clin Microbiol Rev 2020; 33:e00028-20. [PMID: 32580969 PMCID: PMC7405836 DOI: 10.1128/cmr.00028-20] [Citation(s) in RCA: 587] [Impact Index Per Article: 117.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
SUMMARYIn recent decades, several new diseases have emerged in different geographical areas, with pathogens including Ebola virus, Zika virus, Nipah virus, and coronaviruses (CoVs). Recently, a new type of viral infection emerged in Wuhan City, China, and initial genomic sequencing data of this virus do not match with previously sequenced CoVs, suggesting a novel CoV strain (2019-nCoV), which has now been termed severe acute respiratory syndrome CoV-2 (SARS-CoV-2). Although coronavirus disease 2019 (COVID-19) is suspected to originate from an animal host (zoonotic origin) followed by human-to-human transmission, the possibility of other routes should not be ruled out. Compared to diseases caused by previously known human CoVs, COVID-19 shows less severe pathogenesis but higher transmission competence, as is evident from the continuously increasing number of confirmed cases globally. Compared to other emerging viruses, such as Ebola virus, avian H7N9, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV-2 has shown relatively low pathogenicity and moderate transmissibility. Codon usage studies suggest that this novel virus has been transferred from an animal source, such as bats. Early diagnosis by real-time PCR and next-generation sequencing has facilitated the identification of the pathogen at an early stage. Since no antiviral drug or vaccine exists to treat or prevent SARS-CoV-2, potential therapeutic strategies that are currently being evaluated predominantly stem from previous experience with treating SARS-CoV, MERS-CoV, and other emerging viral diseases. In this review, we address epidemiological, diagnostic, clinical, and therapeutic aspects, including perspectives of vaccines and preventive measures that have already been globally recommended to counter this pandemic virus.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Sharun Khan
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, India
| | - Shubhankar Sircar
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Sudipta Bhat
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - D Katterine Bonilla-Aldana
- Semillero de Zoonosis, Grupo de Investigación BIOECOS, Fundación Universitaria Autónoma de las Américas, Sede Pereira, Pereira, Risaralda, Colombia
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnologica de Pereira, Pereira, Colombia
- Latin American Network of Coronavirus Disease 2019-COVID-19 Research (LANCOVID-19), Pereira, Risaralda, Colombia
| | - Alfonso J Rodriguez-Morales
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnologica de Pereira, Pereira, Colombia
- Latin American Network of Coronavirus Disease 2019-COVID-19 Research (LANCOVID-19), Pereira, Risaralda, Colombia
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Americas, Pereira, Risaralda, Colombia
| |
Collapse
|
131
|
Dhama K, Khan S, Tiwari R, Sircar S, Bhat S, Malik YS, Singh KP, Chaicumpa W, Bonilla-Aldana DK, Rodriguez-Morales AJ. Coronavirus Disease 2019-COVID-19. Clin Microbiol Rev 2020. [PMID: 32580969 DOI: 10.20944/preprints202003.0001.v1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
SUMMARYIn recent decades, several new diseases have emerged in different geographical areas, with pathogens including Ebola virus, Zika virus, Nipah virus, and coronaviruses (CoVs). Recently, a new type of viral infection emerged in Wuhan City, China, and initial genomic sequencing data of this virus do not match with previously sequenced CoVs, suggesting a novel CoV strain (2019-nCoV), which has now been termed severe acute respiratory syndrome CoV-2 (SARS-CoV-2). Although coronavirus disease 2019 (COVID-19) is suspected to originate from an animal host (zoonotic origin) followed by human-to-human transmission, the possibility of other routes should not be ruled out. Compared to diseases caused by previously known human CoVs, COVID-19 shows less severe pathogenesis but higher transmission competence, as is evident from the continuously increasing number of confirmed cases globally. Compared to other emerging viruses, such as Ebola virus, avian H7N9, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV-2 has shown relatively low pathogenicity and moderate transmissibility. Codon usage studies suggest that this novel virus has been transferred from an animal source, such as bats. Early diagnosis by real-time PCR and next-generation sequencing has facilitated the identification of the pathogen at an early stage. Since no antiviral drug or vaccine exists to treat or prevent SARS-CoV-2, potential therapeutic strategies that are currently being evaluated predominantly stem from previous experience with treating SARS-CoV, MERS-CoV, and other emerging viral diseases. In this review, we address epidemiological, diagnostic, clinical, and therapeutic aspects, including perspectives of vaccines and preventive measures that have already been globally recommended to counter this pandemic virus.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Sharun Khan
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, India
| | - Shubhankar Sircar
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Sudipta Bhat
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - D Katterine Bonilla-Aldana
- Semillero de Zoonosis, Grupo de Investigación BIOECOS, Fundación Universitaria Autónoma de las Américas, Sede Pereira, Pereira, Risaralda, Colombia
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnologica de Pereira, Pereira, Colombia
- Latin American Network of Coronavirus Disease 2019-COVID-19 Research (LANCOVID-19), Pereira, Risaralda, Colombia
| | - Alfonso J Rodriguez-Morales
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnologica de Pereira, Pereira, Colombia
- Latin American Network of Coronavirus Disease 2019-COVID-19 Research (LANCOVID-19), Pereira, Risaralda, Colombia
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Americas, Pereira, Risaralda, Colombia
| |
Collapse
|
132
|
|
133
|
SARS-CoV-2 Nsp1 binds the ribosomal mRNA channel to inhibit translation. Nat Struct Mol Biol 2020; 27:959-966. [DOI: 10.1038/s41594-020-0511-8] [Citation(s) in RCA: 298] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022]
|
134
|
Haque SKM, Ashwaq O, Sarief A, Azad John Mohamed AK. A comprehensive review about SARS-CoV-2. Future Virol 2020; 15:625-648. [PMID: 33224265 PMCID: PMC7664148 DOI: 10.2217/fvl-2020-0124] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022]
Abstract
The coronavirus disease (COVID-19) was first identified in China, December 2019. Since then, it has spread the length and breadth of the world at an unprecedented, alarming rate. Severe acute respiratory syndrome coronavirus (SARS-CoV)-2, which causes COVID-19, has much in common with its closest homologs, SARS-CoV and Middle East respiratory syndrome-CoV. The virus-host interaction of SARS-CoV-2 uses the same receptor, ACE2, which is similar to that of SARS-CoV, which spreads through the respiratory tract. Patients with COVID-19 report symptoms including mild-to-severe fever, cough and fatigue; very few patients report gastrointestinal infections. There are no specific antiviral strategies. A few strong medications are under investigation, so we have to focus on proposals which ought to be taken to forestall this infection in a living host.
Collapse
Affiliation(s)
- SK Manirul Haque
- Department of Chemical & Process Engineering Technology, Jubail Industrial College, P. O. Box 10099, Jubail Industrial City 31961, Saudi Arabia
| | - Omar Ashwaq
- Department of Chemical & Process Engineering Technology, Jubail Industrial College, P. O. Box 10099, Jubail Industrial City 31961, Saudi Arabia
| | - Abdulla Sarief
- Department of Chemical & Process Engineering Technology, Jubail Industrial College, P. O. Box 10099, Jubail Industrial City 31961, Saudi Arabia
| | - Abdul Kalam Azad John Mohamed
- Department of Chemical & Process Engineering Technology, Jubail Industrial College, P. O. Box 10099, Jubail Industrial City 31961, Saudi Arabia
| |
Collapse
|
135
|
Bolourian A, Mojtahedi Z. Obesity and COVID-19: The mTOR pathway as a possible culprit. Obes Rev 2020; 21:e13084. [PMID: 32578354 PMCID: PMC7362054 DOI: 10.1111/obr.13084] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Alireza Bolourian
- College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Zahra Mojtahedi
- Department of Health Care Administration and Policy, School of Public Health, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| |
Collapse
|
136
|
Cuadrado A, Pajares M, Benito C, Jiménez-Villegas J, Escoll M, Fernández-Ginés R, Garcia Yagüe AJ, Lastra D, Manda G, Rojo AI, Dinkova-Kostova AT. Can Activation of NRF2 Be a Strategy against COVID-19? Trends Pharmacol Sci 2020; 41:598-610. [PMID: 32711925 PMCID: PMC7359808 DOI: 10.1016/j.tips.2020.07.003] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 01/08/2023]
Abstract
Acute respiratory distress syndrome (ARDS) caused by SARS-CoV-2 is largely the result of a dysregulated host response, followed by damage to alveolar cells and lung fibrosis. Exacerbated proinflammatory cytokines release (cytokine storm) and loss of T lymphocytes (leukopenia) characterize the most aggressive presentation. We propose that a multifaceted anti-inflammatory strategy based on pharmacological activation of nuclear factor erythroid 2 p45-related factor 2 (NRF2) can be deployed against the virus. The strategy provides robust cytoprotection by restoring redox and protein homeostasis, promoting resolution of inflammation, and facilitating repair. NRF2 activators such as sulforaphane and bardoxolone methyl are already in clinical trials. The safety and efficacy information of these modulators in humans, together with their well-documented cytoprotective and anti-inflammatory effects in preclinical models, highlight the potential of this armamentarium for deployment to the battlefield against COVID-19.
Collapse
Affiliation(s)
- Antonio Cuadrado
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid (UAM), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria la Paz (idiPAZ), Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), UAM, Madrid, Spain; Department of Cellular and Molecular Medicine, Victor Babes National Institute of Pathology, Bucharest, Romania.
| | - Marta Pajares
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid (UAM), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria la Paz (idiPAZ), Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), UAM, Madrid, Spain
| | - Cristina Benito
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid (UAM), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria la Paz (idiPAZ), Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), UAM, Madrid, Spain
| | - José Jiménez-Villegas
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid (UAM), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria la Paz (idiPAZ), Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), UAM, Madrid, Spain
| | - Maribel Escoll
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid (UAM), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria la Paz (idiPAZ), Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), UAM, Madrid, Spain
| | - Raquel Fernández-Ginés
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid (UAM), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria la Paz (idiPAZ), Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), UAM, Madrid, Spain
| | - Angel J Garcia Yagüe
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid (UAM), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria la Paz (idiPAZ), Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), UAM, Madrid, Spain
| | - Diego Lastra
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid (UAM), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria la Paz (idiPAZ), Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), UAM, Madrid, Spain
| | - Gina Manda
- Department of Cellular and Molecular Medicine, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Ana I Rojo
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid (UAM), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria la Paz (idiPAZ), Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), UAM, Madrid, Spain
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
137
|
Chandel V, Sharma PP, Raj S, Choudhari R, Rathi B, Kumar D. Structure-based drug repurposing for targeting Nsp9 replicase and spike proteins of severe acute respiratory syndrome coronavirus 2. J Biomol Struct Dyn 2020; 40:249-262. [PMID: 32838660 PMCID: PMC7484568 DOI: 10.1080/07391102.2020.1811773] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Drug re-purposing might be a fast and efficient way of drug development against the novel coronavirus disease 2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We applied a bioinformatics approach using molecular dynamics and docking to identify FDA-approved drugs that can be re-purposed to potentially inhibit the non-structural protein 9 (Nsp9) replicase and spike proteins in SARS-CoV-2. We performed virtual screening of FDA-approved compounds, including antiviral, anti-malarial, anti-parasitic, anti-fungal, anti-tuberculosis, and active phytochemicals against the Nsp9 replicase and spike proteins. Selected hit compounds were identified based on their highest binding energy and favorable absorption, distribution, metabolism and excretion (ADME) profile. Conivaptan, an arginine vasopressin antagonist drug exhibited the highest binding energy (-8.4 Kcal/mol) and maximum stability with the amino acid residues present at the active site of the Nsp9 replicase. Tegobuvir, a non-nucleoside inhibitor of the hepatitis C virus, also exhibited maximum stability along with the highest binding energy (-8.1 Kcal/mol) at the active site of the spike proteins. Molecular docking scores were further validated by molecular dynamics using Schrodinger, which supported the strong stability of ligands with the proteins at their active sites through water bridges, hydrophobic interactions, and H-bonding. Our findings suggest Conivaptan and Tegobuvir as potential therapeutic agents against SARS-CoV-2. Further in vitro and in vivo validation and evaluation are warranted to establish how these drug compounds target the Nsp9 replicase and spike proteins.
Collapse
Affiliation(s)
- Vaishali Chandel
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida, India
| | - Prem Prakash Sharma
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, Delhi, India
| | - Sibi Raj
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida, India
| | - Ramesh Choudhari
- Center of Emphasis in Cancer, Paul L. Foster School of Medicine, Department of Molecular and Translation Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA.,Shri B. M. Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be University), Vijayapura, India
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, Delhi, India.,Laboratory of Computational Modelling of Drugs, South Ural State University, Chelyabinsk, Russia
| | - Dhruv Kumar
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
138
|
Keshavarzi Arshadi A, Webb J, Salem M, Cruz E, Calad-Thomson S, Ghadirian N, Collins J, Diez-Cecilia E, Kelly B, Goodarzi H, Yuan JS. Artificial Intelligence for COVID-19 Drug Discovery and Vaccine Development. Front Artif Intell 2020; 3:65. [PMID: 33733182 PMCID: PMC7861281 DOI: 10.3389/frai.2020.00065] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/17/2020] [Indexed: 12/31/2022] Open
Abstract
SARS-COV-2 has roused the scientific community with a call to action to combat the growing pandemic. At the time of this writing, there are as yet no novel antiviral agents or approved vaccines available for deployment as a frontline defense. Understanding the pathobiology of COVID-19 could aid scientists in their discovery of potent antivirals by elucidating unexplored viral pathways. One method for accomplishing this is the leveraging of computational methods to discover new candidate drugs and vaccines in silico. In the last decade, machine learning-based models, trained on specific biomolecules, have offered inexpensive and rapid implementation methods for the discovery of effective viral therapies. Given a target biomolecule, these models are capable of predicting inhibitor candidates in a structural-based manner. If enough data are presented to a model, it can aid the search for a drug or vaccine candidate by identifying patterns within the data. In this review, we focus on the recent advances of COVID-19 drug and vaccine development using artificial intelligence and the potential of intelligent training for the discovery of COVID-19 therapeutics. To facilitate applications of deep learning for SARS-COV-2, we highlight multiple molecular targets of COVID-19, inhibition of which may increase patient survival. Moreover, we present CoronaDB-AI, a dataset of compounds, peptides, and epitopes discovered either in silico or in vitro that can be potentially used for training models in order to extract COVID-19 treatment. The information and datasets provided in this review can be used to train deep learning-based models and accelerate the discovery of effective viral therapies.
Collapse
Affiliation(s)
- Arash Keshavarzi Arshadi
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
| | - Julia Webb
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
| | - Milad Salem
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL, United States
| | | | | | - Niloofar Ghadirian
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, United States
| | - Jennifer Collins
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
| | | | | | - Hani Goodarzi
- Department of Biochemistry and Biophysics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| | - Jiann Shiun Yuan
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
139
|
Cannalire R, Stefanelli I, Cerchia C, Beccari AR, Pelliccia S, Summa V. SARS-CoV-2 Entry Inhibitors: Small Molecules and Peptides Targeting Virus or Host Cells. Int J Mol Sci 2020; 21:ijms21165707. [PMID: 32784899 PMCID: PMC7460888 DOI: 10.3390/ijms21165707] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
The pandemic evolution of SARS-CoV-2 infection is forcing the scientific community to unprecedented efforts to explore all possible approaches against COVID-19. In this context, targeting virus entry is a promising antiviral strategy for controlling viral infections. The main strategies pursued to inhibit the viral entry are considering both the virus and the host factors involved in the process. Primarily, direct-acting antivirals rely on inhibition of the interaction between ACE2 and the receptor binding domain (RBD) of the Spike (S) protein or targeting the more conserved heptad repeats (HRs), involved in the membrane fusion process. The inhibition of host TMPRSS2 and cathepsins B/L may represent a complementary strategy to be investigated. In this review, we discuss the development entry inhibitors targeting the S protein, as well as the most promising host targeting strategies involving TMPRSS2 and CatB/L, which have been exploited so far against CoVs and other related viruses.
Collapse
Affiliation(s)
- Rolando Cannalire
- Department of Pharmacy, University of Napoli “Federico II”, via D. Montesano 49, 80131 Napoli, Italy; (R.C.); (I.S.); (C.C.); (S.P.)
| | - Irina Stefanelli
- Department of Pharmacy, University of Napoli “Federico II”, via D. Montesano 49, 80131 Napoli, Italy; (R.C.); (I.S.); (C.C.); (S.P.)
| | - Carmen Cerchia
- Department of Pharmacy, University of Napoli “Federico II”, via D. Montesano 49, 80131 Napoli, Italy; (R.C.); (I.S.); (C.C.); (S.P.)
| | | | - Sveva Pelliccia
- Department of Pharmacy, University of Napoli “Federico II”, via D. Montesano 49, 80131 Napoli, Italy; (R.C.); (I.S.); (C.C.); (S.P.)
| | - Vincenzo Summa
- Department of Pharmacy, University of Napoli “Federico II”, via D. Montesano 49, 80131 Napoli, Italy; (R.C.); (I.S.); (C.C.); (S.P.)
- Correspondence: ; Tel.: +39-081-678656
| |
Collapse
|
140
|
Artika IM, Dewantari AK, Wiyatno A. Molecular biology of coronaviruses: current knowledge. Heliyon 2020; 6:e04743. [PMID: 32835122 PMCID: PMC7430346 DOI: 10.1016/j.heliyon.2020.e04743] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) late December 2019 in Wuhan, China, marked the third introduction of a highly pathogenic coronavirus into the human population in the twenty-first century. The constant spillover of coronaviruses from natural hosts to humans has been linked to human activities and other factors. The seriousness of this infection and the lack of effective, licensed countermeasures clearly underscore the need of more detailed and comprehensive understanding of coronavirus molecular biology. Coronaviruses are large, enveloped viruses with a positive sense single-stranded RNA genome. Currently, coronaviruses are recognized as one of the most rapidly evolving viruses due to their high genomic nucleotide substitution rates and recombination. At the molecular level, the coronaviruses employ complex strategies to successfully accomplish genome expression, virus particle assembly and virion progeny release. As the health threats from coronaviruses are constant and long-term, understanding the molecular biology of coronaviruses and controlling their spread has significant implications for global health and economic stability. This review is intended to provide an overview of our current basic knowledge of the molecular biology of coronaviruses, which is important as basic knowledge for the development of coronavirus countermeasures.
Collapse
Affiliation(s)
- I. Made Artika
- Biosafety Level 3 Unit, Eijkman Institute for Molecular Biology, Jalan Diponegoro 69, Jakarta, 10430, Indonesia
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Darmaga Campus, Bogor, 16680, Indonesia
| | - Aghnianditya Kresno Dewantari
- Emerging Virus Research Unit, Eijkman Institute for Molecular Biology, Jalan Diponegoro 69, Jakarta, 10430, Indonesia
| | - Ageng Wiyatno
- Emerging Virus Research Unit, Eijkman Institute for Molecular Biology, Jalan Diponegoro 69, Jakarta, 10430, Indonesia
| |
Collapse
|
141
|
Fadaka AO, Sibuyi NRS, Adewale OB, Bakare OO, Akanbi MO, Klein A, Madiehe AM, Meyer M. Understanding the epidemiology, pathophysiology, diagnosis and management of SARS-CoV-2. J Int Med Res 2020; 48:300060520949077. [PMID: 32842818 PMCID: PMC7453465 DOI: 10.1177/0300060520949077] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/20/2020] [Indexed: 12/15/2022] Open
Abstract
The emergence of coronavirus disease 2019 (COVID-19) in December 2019 has resulted in over 20 million cases and 741,808 deaths globally, affecting more than 200 countries. COVID-19 was declared a pandemic on 11 March 2020 by the World Health Organization. The disease is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). There is limited information on COVID-19, and treatment has so far focused on supportive care and use of repurposed drugs. COVID-19 can be transmitted via person-to-person contact through droplet spread. Some of the recommended precautionary measures to reduce the rate of disease spread include social distancing, good hygiene practices, and avoidance of crowded areas. These measures are effective because the droplets are heavy and can only travel approximately 1 meter in the air, settling quickly on fixed surfaces. Promising strategies to combat SARS-CoV-2 include discovery of therapeutic targets/drugs and vaccines. In this review, we summarize the epidemiology, pathophysiology, and diagnosis of COVID-19. We also address the mechanisms of action of approved repurposed drugs for therapeutic management of the disease.
Collapse
Affiliation(s)
- Adewale Oluwaseun Fadaka
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Nicole Remaliah Samantha Sibuyi
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Olusola Bolaji Adewale
- Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | | | - Musa Oyebowale Akanbi
- Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Ashwil Klein
- Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Abram Madimabe Madiehe
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
- Nanobiotechnology Research Group, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Mervin Meyer
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
142
|
Hosseini-Zare MS, Thilagavathi R, Selvam C. Targeting severe acute respiratory syndrome-coronavirus (SARS-CoV-1) with structurally diverse inhibitors: a comprehensive review. RSC Adv 2020; 10:28287-28299. [PMID: 35519094 PMCID: PMC9055768 DOI: 10.1039/d0ra04395h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
Coronaviruses, which were discovered in 1968, can lead to some human viral disorders, like severe acute respiratory syndrome (SARS), Middle East respiratory syndrome-related (MERS), and, recently, coronavirus disease 2019 (COVID-19). The coronavirus that leads to COVID-19 is rapidly spreading all over the world and is the reason for the deaths of thousands of people. Recent research has revealed that there is about 80% sequence homology between the coronaviruses that cause SARS and COVID-19. Considering this fact, we decided to collect the maximum available information on targets, structures, and inhibitors reported so far for SARS-CoV-1 that could be useful for researchers who work on closely related COVID-19. There are vital proteases, like papain-like protease 2 (PL2pro) and 3C-like protease (3CLpro), or main protease (Mpro), that are involved in and are essential for the replication of SARS coronavirus and so are valuable targets for the treatment of patients affected by this type of virus. SARS-CoV-1 NTPase/helicase plays an important role in the release of several non-structural proteins (nsps), so it is another essential target relating to the viral life cycle. In this paper, we provide extensive information about diverse molecules with anti-SARS activity. In addition to traditional medicinal chemistry outcomes, HTS, virtual screening efforts, and structural insights for better understanding inhibitors and SARS-CoV-1 target complexes are also discussed. This study covers a wide range of anti-SARS agents, particularly SARS-CoV-1 inhibitors, and provides new insights into drug design for the deadly SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Maryam S Hosseini-Zare
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University Houston TX-77004 USA +1-713-313-7552
| | - Ramasamy Thilagavathi
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education Coimbatore India
| | - Chelliah Selvam
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University Houston TX-77004 USA +1-713-313-7552
| |
Collapse
|
143
|
Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, O'Meara MJ, Rezelj VV, Guo JZ, Swaney DL, Tummino TA, Hüttenhain R, Kaake RM, Richards AL, Tutuncuoglu B, Foussard H, Batra J, Haas K, Modak M, Kim M, Haas P, Polacco BJ, Braberg H, Fabius JM, Eckhardt M, Soucheray M, Bennett MJ, Cakir M, McGregor MJ, Li Q, Meyer B, Roesch F, Vallet T, Mac Kain A, Miorin L, Moreno E, Naing ZZC, Zhou Y, Peng S, Shi Y, Zhang Z, Shen W, Kirby IT, Melnyk JE, Chorba JS, Lou K, Dai SA, Barrio-Hernandez I, Memon D, Hernandez-Armenta C, Lyu J, Mathy CJP, Perica T, Pilla KB, Ganesan SJ, Saltzberg DJ, Rakesh R, Liu X, Rosenthal SB, Calviello L, Venkataramanan S, Liboy-Lugo J, Lin Y, Huang XP, Liu Y, Wankowicz SA, Bohn M, Safari M, Ugur FS, Koh C, Savar NS, Tran QD, Shengjuler D, Fletcher SJ, O'Neal MC, Cai Y, Chang JCJ, Broadhurst DJ, Klippsten S, Sharp PP, Wenzell NA, Kuzuoglu-Ozturk D, Wang HY, Trenker R, Young JM, Cavero DA, Hiatt J, Roth TL, Rathore U, Subramanian A, Noack J, Hubert M, Stroud RM, Frankel AD, Rosenberg OS, Verba KA, Agard DA, Ott M, Emerman M, Jura N, et alGordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, O'Meara MJ, Rezelj VV, Guo JZ, Swaney DL, Tummino TA, Hüttenhain R, Kaake RM, Richards AL, Tutuncuoglu B, Foussard H, Batra J, Haas K, Modak M, Kim M, Haas P, Polacco BJ, Braberg H, Fabius JM, Eckhardt M, Soucheray M, Bennett MJ, Cakir M, McGregor MJ, Li Q, Meyer B, Roesch F, Vallet T, Mac Kain A, Miorin L, Moreno E, Naing ZZC, Zhou Y, Peng S, Shi Y, Zhang Z, Shen W, Kirby IT, Melnyk JE, Chorba JS, Lou K, Dai SA, Barrio-Hernandez I, Memon D, Hernandez-Armenta C, Lyu J, Mathy CJP, Perica T, Pilla KB, Ganesan SJ, Saltzberg DJ, Rakesh R, Liu X, Rosenthal SB, Calviello L, Venkataramanan S, Liboy-Lugo J, Lin Y, Huang XP, Liu Y, Wankowicz SA, Bohn M, Safari M, Ugur FS, Koh C, Savar NS, Tran QD, Shengjuler D, Fletcher SJ, O'Neal MC, Cai Y, Chang JCJ, Broadhurst DJ, Klippsten S, Sharp PP, Wenzell NA, Kuzuoglu-Ozturk D, Wang HY, Trenker R, Young JM, Cavero DA, Hiatt J, Roth TL, Rathore U, Subramanian A, Noack J, Hubert M, Stroud RM, Frankel AD, Rosenberg OS, Verba KA, Agard DA, Ott M, Emerman M, Jura N, von Zastrow M, Verdin E, Ashworth A, Schwartz O, d'Enfert C, Mukherjee S, Jacobson M, Malik HS, Fujimori DG, Ideker T, Craik CS, Floor SN, Fraser JS, Gross JD, Sali A, Roth BL, Ruggero D, Taunton J, Kortemme T, Beltrao P, Vignuzzi M, García-Sastre A, Shokat KM, Shoichet BK, Krogan NJ. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 2020; 583:459-468. [PMID: 32353859 PMCID: PMC7431030 DOI: 10.1038/s41586-020-2286-9] [Show More Authors] [Citation(s) in RCA: 3116] [Impact Index Per Article: 623.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
A newly described coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the causative agent of coronavirus disease 2019 (COVID-19), has infected over 2.3 million people, led to the death of more than 160,000 individuals and caused worldwide social and economic disruption1,2. There are no antiviral drugs with proven clinical efficacy for the treatment of COVID-19, nor are there any vaccines that prevent infection with SARS-CoV-2, and efforts to develop drugs and vaccines are hampered by the limited knowledge of the molecular details of how SARS-CoV-2 infects cells. Here we cloned, tagged and expressed 26 of the 29 SARS-CoV-2 proteins in human cells and identified the human proteins that physically associated with each of the SARS-CoV-2 proteins using affinity-purification mass spectrometry, identifying 332 high-confidence protein-protein interactions between SARS-CoV-2 and human proteins. Among these, we identify 66 druggable human proteins or host factors targeted by 69 compounds (of which, 29 drugs are approved by the US Food and Drug Administration, 12 are in clinical trials and 28 are preclinical compounds). We screened a subset of these in multiple viral assays and found two sets of pharmacological agents that displayed antiviral activity: inhibitors of mRNA translation and predicted regulators of the sigma-1 and sigma-2 receptors. Further studies of these host-factor-targeting agents, including their combination with drugs that directly target viral enzymes, could lead to a therapeutic regimen to treat COVID-19.
Collapse
Affiliation(s)
- David E Gordon
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Gwendolyn M Jang
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Mehdi Bouhaddou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Jiewei Xu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Kirsten Obernier
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew J O'Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Veronica V Rezelj
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Jeffrey Z Guo
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Danielle L Swaney
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Tia A Tummino
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Ruth Hüttenhain
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Robyn M Kaake
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Alicia L Richards
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Beril Tutuncuoglu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Helene Foussard
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Jyoti Batra
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Kelsey Haas
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Maya Modak
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Minkyu Kim
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Paige Haas
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Benjamin J Polacco
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Hannes Braberg
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Jacqueline M Fabius
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Manon Eckhardt
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Margaret Soucheray
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Melanie J Bennett
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Merve Cakir
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Michael J McGregor
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Qiongyu Li
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Bjoern Meyer
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Ferdinand Roesch
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Thomas Vallet
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Alice Mac Kain
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elena Moreno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zun Zar Chi Naing
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Yuan Zhou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Shiming Peng
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Ying Shi
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - Ziyang Zhang
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - Wenqi Shen
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - Ilsa T Kirby
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - James E Melnyk
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - John S Chorba
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - Kevin Lou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - Shizhong A Dai
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - Inigo Barrio-Hernandez
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
| | - Danish Memon
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
| | - Claudia Hernandez-Armenta
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
| | - Jiankun Lyu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Christopher J P Mathy
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA
| | - Tina Perica
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Kala Bharath Pilla
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Sai J Ganesan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Daniel J Saltzberg
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Ramachandran Rakesh
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Xi Liu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Sara B Rosenthal
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Lorenzo Calviello
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - Srivats Venkataramanan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - Jose Liboy-Lugo
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - Yizhu Lin
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - Xi-Ping Huang
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - YongFeng Liu
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Stephanie A Wankowicz
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Biophysics Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Markus Bohn
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Maliheh Safari
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Fatima S Ugur
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Cassandra Koh
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Nastaran Sadat Savar
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Quang Dinh Tran
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Djoshkun Shengjuler
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Sabrina J Fletcher
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | | | | | | | | | | | - Phillip P Sharp
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Nicole A Wenzell
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Duygu Kuzuoglu-Ozturk
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - Hao-Yuan Wang
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Raphael Trenker
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Janet M Young
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Devin A Cavero
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- George William Hooper Foundation, Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Joseph Hiatt
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Medical Scientist Training Program, University of California San Francisco, San Francisco, CA, USA
| | - Theodore L Roth
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- George William Hooper Foundation, Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California San Francisco, San Francisco, CA, USA
| | - Ujjwal Rathore
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- George William Hooper Foundation, Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Advait Subramanian
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- George William Hooper Foundation, Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Julia Noack
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- George William Hooper Foundation, Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Mathieu Hubert
- Virus and Immunity Unit, Institut Pasteur, Paris, France
| | - Robert M Stroud
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Alan D Frankel
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Oren S Rosenberg
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Kliment A Verba
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - David A Agard
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Melanie Ott
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Michael Emerman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Natalia Jura
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Mark von Zastrow
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
| | - Eric Verdin
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Alan Ashworth
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | | | | | - Shaeri Mukherjee
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- George William Hooper Foundation, Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Matt Jacobson
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Danica G Fujimori
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Trey Ideker
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Division of Genetics, Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Charles S Craik
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Stephen N Floor
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - James S Fraser
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - John D Gross
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Andrej Sali
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Davide Ruggero
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - Jack Taunton
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Tanja Kortemme
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA
| | - Pedro Beltrao
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Kevan M Shokat
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA.
| | - Brian K Shoichet
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.
| | - Nevan J Krogan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.
- J. David Gladstone Institutes, San Francisco, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
144
|
Selvaraj C, Dinesh DC, Panwar U, Abhirami R, Boura E, Singh SK. Structure-based virtual screening and molecular dynamics simulation of SARS-CoV-2 Guanine-N7 methyltransferase (nsp14) for identifying antiviral inhibitors against COVID-19. J Biomol Struct Dyn 2020; 39:4582-4593. [PMID: 32567979 PMCID: PMC7332868 DOI: 10.1080/07391102.2020.1778535] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The recent pandemic caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) calls the whole world into a medical emergency. For tackling Coronavirus Disease 2019 (COVID-19), researchers from around the world are swiftly working on designing and identifying inhibitors against all possible viral key protein targets. One of the attractive drug targets is guanine-N7 methyltransferase which plays the main role in capping the 5′-ends of viral genomic RNA and sub genomic RNAs, to escape the host’s innate immunity. We performed homology modeling and molecular dynamic (MD) simulation, in order to understand the molecular architecture of Guanosine-P3-Adenosine-5’,5’-Triphosphate (G3A) binding with C-terminal N7-MTase domain of nsp14 from SARS-CoV-2. The residue Asn388 is highly conserved in present both in N7-MTase from SARS-CoV and SARS-CoV-2 and displays a unique function in G3A binding. For an in-depth understanding of these substrate specificities, we tried to screen and identify inhibitors from the Traditional Chinese Medicine (TCM) database. The combination of several computational approaches, including screening, MM/GBSA, MD simulations, and PCA calculations, provides the screened compounds that readily interact with the G3A binding site of homology modeled N7-MTase domain. Compounds from this screening will have strong potency towards inhibiting the substrate-binding and efficiently hinder the viral 5’-end RNA capping mechanism. We strongly believe the final compounds can become COVID-19 therapeutics, with huge international support. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Chandrabose Selvaraj
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, India
| | - Dhurvas Chandrasekaran Dinesh
- Section of Molecular Biology and Biochemistry, Institute of Organic Chemistry and Biochemistry AS CR, v.v.i, Prague 6, Czech Republic
| | - Umesh Panwar
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, India
| | - Rajaram Abhirami
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, India
| | - Evzen Boura
- Section of Molecular Biology and Biochemistry, Institute of Organic Chemistry and Biochemistry AS CR, v.v.i, Prague 6, Czech Republic
| | - Sanjeev Kumar Singh
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, India
| |
Collapse
|
145
|
Yoshimoto FK. The Proteins of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS CoV-2 or n-COV19), the Cause of COVID-19. Protein J 2020; 39:198-216. [PMID: 32447571 PMCID: PMC7245191 DOI: 10.1007/s10930-020-09901-4] [Citation(s) in RCA: 359] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The devastating effects of the recent global pandemic (termed COVID-19 for "coronavirus disease 2019") caused by the severe acute respiratory syndrome coronavirus-2 (SARS CoV-2) are paramount with new cases and deaths growing at an exponential rate. In order to provide a better understanding of SARS CoV-2, this article will review the proteins found in the SARS CoV-2 that caused this global pandemic.
Collapse
Affiliation(s)
- Francis K Yoshimoto
- Department of Chemistry, The University of Texas at San Antonio (UTSA), San Antonio, TX, 78249-0698, USA.
| |
Collapse
|
146
|
Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, O'Meara MJ, Rezelj VV, Guo JZ, Swaney DL, Tummino TA, Hüttenhain R, Kaake RM, Richards AL, Tutuncuoglu B, Foussard H, Batra J, Haas K, Modak M, Kim M, Haas P, Polacco BJ, Braberg H, Fabius JM, Eckhardt M, Soucheray M, Bennett MJ, Cakir M, McGregor MJ, Li Q, Meyer B, Roesch F, Vallet T, Mac Kain A, Miorin L, Moreno E, Naing ZZC, Zhou Y, Peng S, Shi Y, Zhang Z, Shen W, Kirby IT, Melnyk JE, Chorba JS, Lou K, Dai SA, Barrio-Hernandez I, Memon D, Hernandez-Armenta C, Lyu J, Mathy CJP, Perica T, Pilla KB, Ganesan SJ, Saltzberg DJ, Rakesh R, Liu X, Rosenthal SB, Calviello L, Venkataramanan S, Liboy-Lugo J, Lin Y, Huang XP, Liu Y, Wankowicz SA, Bohn M, Safari M, Ugur FS, Koh C, Savar NS, Tran QD, Shengjuler D, Fletcher SJ, O'Neal MC, Cai Y, Chang JCJ, Broadhurst DJ, Klippsten S, Sharp PP, Wenzell NA, Kuzuoglu-Ozturk D, Wang HY, Trenker R, Young JM, Cavero DA, Hiatt J, Roth TL, Rathore U, Subramanian A, Noack J, Hubert M, Stroud RM, Frankel AD, Rosenberg OS, Verba KA, Agard DA, Ott M, Emerman M, Jura N, et alGordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, O'Meara MJ, Rezelj VV, Guo JZ, Swaney DL, Tummino TA, Hüttenhain R, Kaake RM, Richards AL, Tutuncuoglu B, Foussard H, Batra J, Haas K, Modak M, Kim M, Haas P, Polacco BJ, Braberg H, Fabius JM, Eckhardt M, Soucheray M, Bennett MJ, Cakir M, McGregor MJ, Li Q, Meyer B, Roesch F, Vallet T, Mac Kain A, Miorin L, Moreno E, Naing ZZC, Zhou Y, Peng S, Shi Y, Zhang Z, Shen W, Kirby IT, Melnyk JE, Chorba JS, Lou K, Dai SA, Barrio-Hernandez I, Memon D, Hernandez-Armenta C, Lyu J, Mathy CJP, Perica T, Pilla KB, Ganesan SJ, Saltzberg DJ, Rakesh R, Liu X, Rosenthal SB, Calviello L, Venkataramanan S, Liboy-Lugo J, Lin Y, Huang XP, Liu Y, Wankowicz SA, Bohn M, Safari M, Ugur FS, Koh C, Savar NS, Tran QD, Shengjuler D, Fletcher SJ, O'Neal MC, Cai Y, Chang JCJ, Broadhurst DJ, Klippsten S, Sharp PP, Wenzell NA, Kuzuoglu-Ozturk D, Wang HY, Trenker R, Young JM, Cavero DA, Hiatt J, Roth TL, Rathore U, Subramanian A, Noack J, Hubert M, Stroud RM, Frankel AD, Rosenberg OS, Verba KA, Agard DA, Ott M, Emerman M, Jura N, von Zastrow M, Verdin E, Ashworth A, Schwartz O, d'Enfert C, Mukherjee S, Jacobson M, Malik HS, Fujimori DG, Ideker T, Craik CS, Floor SN, Fraser JS, Gross JD, Sali A, Roth BL, Ruggero D, Taunton J, Kortemme T, Beltrao P, Vignuzzi M, García-Sastre A, Shokat KM, Shoichet BK, Krogan NJ. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 2020. [PMID: 32353859 DOI: 10.1038/s41586‐020‐2286‐9] [Show More Authors] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A newly described coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the causative agent of coronavirus disease 2019 (COVID-19), has infected over 2.3 million people, led to the death of more than 160,000 individuals and caused worldwide social and economic disruption1,2. There are no antiviral drugs with proven clinical efficacy for the treatment of COVID-19, nor are there any vaccines that prevent infection with SARS-CoV-2, and efforts to develop drugs and vaccines are hampered by the limited knowledge of the molecular details of how SARS-CoV-2 infects cells. Here we cloned, tagged and expressed 26 of the 29 SARS-CoV-2 proteins in human cells and identified the human proteins that physically associated with each of the SARS-CoV-2 proteins using affinity-purification mass spectrometry, identifying 332 high-confidence protein-protein interactions between SARS-CoV-2 and human proteins. Among these, we identify 66 druggable human proteins or host factors targeted by 69 compounds (of which, 29 drugs are approved by the US Food and Drug Administration, 12 are in clinical trials and 28 are preclinical compounds). We screened a subset of these in multiple viral assays and found two sets of pharmacological agents that displayed antiviral activity: inhibitors of mRNA translation and predicted regulators of the sigma-1 and sigma-2 receptors. Further studies of these host-factor-targeting agents, including their combination with drugs that directly target viral enzymes, could lead to a therapeutic regimen to treat COVID-19.
Collapse
Affiliation(s)
- David E Gordon
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Gwendolyn M Jang
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Mehdi Bouhaddou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Jiewei Xu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Kirsten Obernier
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew J O'Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Veronica V Rezelj
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Jeffrey Z Guo
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Danielle L Swaney
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Tia A Tummino
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Ruth Hüttenhain
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Robyn M Kaake
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Alicia L Richards
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Beril Tutuncuoglu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Helene Foussard
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Jyoti Batra
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Kelsey Haas
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Maya Modak
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Minkyu Kim
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Paige Haas
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Benjamin J Polacco
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Hannes Braberg
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Jacqueline M Fabius
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Manon Eckhardt
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Margaret Soucheray
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Melanie J Bennett
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Merve Cakir
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Michael J McGregor
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Qiongyu Li
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Bjoern Meyer
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Ferdinand Roesch
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Thomas Vallet
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Alice Mac Kain
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elena Moreno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zun Zar Chi Naing
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Yuan Zhou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Shiming Peng
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Ying Shi
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.,Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - Ziyang Zhang
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.,Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - Wenqi Shen
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.,Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - Ilsa T Kirby
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.,Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - James E Melnyk
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.,Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - John S Chorba
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.,Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - Kevin Lou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.,Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - Shizhong A Dai
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.,Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - Inigo Barrio-Hernandez
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
| | - Danish Memon
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
| | - Claudia Hernandez-Armenta
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
| | - Jiankun Lyu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Christopher J P Mathy
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.,The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA
| | - Tina Perica
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Kala Bharath Pilla
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Sai J Ganesan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Daniel J Saltzberg
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Ramachandran Rakesh
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Xi Liu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Sara B Rosenthal
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Lorenzo Calviello
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - Srivats Venkataramanan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - Jose Liboy-Lugo
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - Yizhu Lin
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - Xi-Ping Huang
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - YongFeng Liu
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Stephanie A Wankowicz
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.,Biophysics Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Markus Bohn
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Maliheh Safari
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Fatima S Ugur
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.,Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Cassandra Koh
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Nastaran Sadat Savar
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Quang Dinh Tran
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Djoshkun Shengjuler
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Sabrina J Fletcher
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | | | | | | | | | | | - Phillip P Sharp
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Nicole A Wenzell
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Duygu Kuzuoglu-Ozturk
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - Hao-Yuan Wang
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Raphael Trenker
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Janet M Young
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Devin A Cavero
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,George William Hooper Foundation, Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Joseph Hiatt
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Medical Scientist Training Program, University of California San Francisco, San Francisco, CA, USA
| | - Theodore L Roth
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,George William Hooper Foundation, Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA.,Medical Scientist Training Program, University of California San Francisco, San Francisco, CA, USA
| | - Ujjwal Rathore
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,George William Hooper Foundation, Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Advait Subramanian
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,George William Hooper Foundation, Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Julia Noack
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,George William Hooper Foundation, Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Mathieu Hubert
- Virus and Immunity Unit, Institut Pasteur, Paris, France
| | - Robert M Stroud
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Alan D Frankel
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Oren S Rosenberg
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.,Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Kliment A Verba
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - David A Agard
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Melanie Ott
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Michael Emerman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Natalia Jura
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.,Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Mark von Zastrow
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.,Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
| | - Eric Verdin
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Department of Medicine, University of California San Francisco, San Francisco, CA, USA.,Buck Institute for Research on Aging, Novato, CA, USA
| | - Alan Ashworth
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | | | | | - Shaeri Mukherjee
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,George William Hooper Foundation, Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Matt Jacobson
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Danica G Fujimori
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.,Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Trey Ideker
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Division of Genetics, Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Charles S Craik
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Stephen N Floor
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - James S Fraser
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - John D Gross
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Andrej Sali
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.,Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Davide Ruggero
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - Jack Taunton
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Tanja Kortemme
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.,The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA
| | - Pedro Beltrao
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.,European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Kevan M Shokat
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA. .,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA. .,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA. .,Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA.
| | - Brian K Shoichet
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA. .,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA. .,Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.
| | - Nevan J Krogan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA. .,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA. .,J. David Gladstone Institutes, San Francisco, CA, USA. .,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA. .,Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
147
|
Sun CB, Wang YY, Liu GH, Liu Z. Role of the Eye in Transmitting Human Coronavirus: What We Know and What We Do Not Know. Front Public Health 2020; 8:155. [PMID: 32391309 PMCID: PMC7193031 DOI: 10.3389/fpubh.2020.00155] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/14/2020] [Indexed: 01/08/2023] Open
Abstract
The outbreak of the current 2019 novel coronavirus (2019-nCoV, now named SARS-CoV-2) infection has become a worldwide health threat. Currently, more information is needed so as to further understand the transmission and clinical characteristics of 2019-nCoV infection and the infection control procedures required. Recently, the role of the eye in transmitting 2019-nCoV has been intensively discussed. Previous investigations of other highly infectious human CoVs, that is, severe acute respiratory syndrome coronavirus (SARS-CoV) and the Middle East respiratory syndrome coronavirus (MERS-CoV), may provide useful information. In this review, we describe the genomics and morphology of human CoVs, the epidemiology, systemic and ophthalmic manifestations, and mechanisms of human CoV infection, and recommendations for infection control procedures. The role of the eye in the transmission of 2019-nCoV is discussed in detail. Although the conjunctiva is directly exposed to extraocular pathogens, and the mucosa of the ocular surface and upper respiratory tract are connected by the nasolacrimal duct and share the same entry receptors for some respiratory viruses, the eye is rarely involved in human CoV infection, conjunctivitis is quite rare in patients with 2019-nCoV infection, and the CoV RNA positive rate by RT-PCR test in tears and conjunctival secretions from patients with 2019-nCoV and SARS-CoV infection is also extremely low. This suggests that the eye is neither a preferred organ of human CoV infection nor a preferred gateway of entry for human CoVs for infecting the respiratory tract. However, pathogens that the ocular surface is exposed to might be transported to nasal and nasopharyngeal mucosa by constant tear rinsing through the lacrimal duct system and then cause respiratory tract infection. Considering that close doctor-patient contact is quite common in ophthalmic practice and is apt to transmit human CoVs by droplets and fomites, strict hand hygiene and proper personal protection are highly recommended for health care workers to avoid hospital-related viral transmission during ophthalmic practice.
Collapse
Affiliation(s)
- Chuan-bin Sun
- Eye Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yue-ye Wang
- Eye Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Geng-hao Liu
- Eye Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhe Liu
- Department of Ophthalmology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
148
|
Peng X, Xu X, Li Y, Cheng L, Zhou X, Ren B. Transmission routes of 2019-nCoV and controls in dental practice. Int J Oral Sci 2020; 12:9. [PMID: 32127517 PMCID: PMC7054527 DOI: 10.1038/s41368-020-0075-9] [Citation(s) in RCA: 1066] [Impact Index Per Article: 213.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 02/05/2023] Open
Abstract
A novel β-coronavirus (2019-nCoV) caused severe and even fetal pneumonia explored in a seafood market of Wuhan city, Hubei province, China, and rapidly spread to other provinces of China and other countries. The 2019-nCoV was different from SARS-CoV, but shared the same host receptor the human angiotensin-converting enzyme 2 (ACE2). The natural host of 2019-nCoV may be the bat Rhinolophus affinis as 2019-nCoV showed 96.2% of whole-genome identity to BatCoV RaTG13. The person-to-person transmission routes of 2019-nCoV included direct transmission, such as cough, sneeze, droplet inhalation transmission, and contact transmission, such as the contact with oral, nasal, and eye mucous membranes. 2019-nCoV can also be transmitted through the saliva, and the fetal-oral routes may also be a potential person-to-person transmission route. The participants in dental practice expose to tremendous risk of 2019-nCoV infection due to the face-to-face communication and the exposure to saliva, blood, and other body fluids, and the handling of sharp instruments. Dental professionals play great roles in preventing the transmission of 2019-nCoV. Here we recommend the infection control measures during dental practice to block the person-to-person transmission routes in dental clinics and hospitals.
Collapse
Affiliation(s)
- Xian Peng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
149
|
Porcine Reproductive and Respiratory Syndrome Virus Infection Induces both eIF2α Phosphorylation-Dependent and -Independent Host Translation Shutoff. J Virol 2018; 92:JVI.00600-18. [PMID: 29899101 DOI: 10.1128/jvi.00600-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/25/2018] [Indexed: 12/14/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an Arterivirus that has caused tremendous economic losses in the global swine industry since it was discovered in the late 1980s. Inducing host translation shutoff is a strategy used by many viruses to optimize their replication and spread. Here, we demonstrate that PRRSV infection causes host translation suppression, which is strongly dependent on viral replication. By screening PRRSV-encoded nonstructural proteins (nsps), we found that nsp2 participates in the induction of host translation shutoff and that its transmembrane (TM) domain is required for this process. nsp2-induced translation suppression is independent of protein degradation pathways and the phosphorylation of eukaryotic initiation factor 2α (eIF2α). However, the overexpression of nsp2 or its TM domain significantly attenuated the mammalian target of rapamycin (mTOR) signaling pathway, an alternative pathway for modulating host gene expression. PRRSV infection also attenuated the mTOR signaling pathway, and PRRSV-induced host translation shutoff could be partly reversed when the attenuated mTOR phosphorylation was reactivated by an activator of the mTOR pathway. PRRSV infection still negatively regulated the host translation when the effects of eIF2α phosphorylation were completely reversed. Taken together, our results demonstrate that PRRSV infection induces host translation shutoff and that nsp2 is associated with this process. Both eIF2α phosphorylation and the attenuation of the mTOR signaling pathway contribute to PRRSV-induced host translation arrest.IMPORTANCE Viruses are obligate parasites, and the production of progeny viruses relies strictly on the host translation machinery. Therefore, the efficient modulation of host mRNA translation benefits viral replication, spread, and evolution. In this study, we provide evidence that porcine reproductive and respiratory syndrome virus (PRRSV) infection induces host translation shutoff and that the viral nonstructural protein nsp2 is associated with this process. Many viruses induce host translation shutoff by phosphorylating eukaryotic initiation factor 2α (eIF2α). However, PRRSV nsp2 does not induce eIF2α phosphorylation but attenuates the mTOR signaling pathway, another pathway regulating the host cell translational machinery. We also found that PRRSV-induced host translation shutoff was partly reversed by eliminating the effects of eIF2α phosphorylation or reactivating the mTOR pathway, indicating that PRRSV infection induces both eIF2α phosphorylation-dependent and -independent host translation shutoff.
Collapse
|
150
|
Li Z, Zeng W, Ye S, Lv J, Nie A, Zhang B, Sun Y, Han H, He Q. Cellular hnRNP A1 Interacts with Nucleocapsid Protein of Porcine Epidemic Diarrhea Virus and Impairs Viral Replication. Viruses 2018. [PMID: 29534017 PMCID: PMC5869520 DOI: 10.3390/v10030127] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The nucleocapsid (N) protein is a major structural component of porcine epidemic diarrhea virus (PEDV), which is predicted to be a multifunctional protein in viral replication. Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is a cellular protein participating in the splicing of pre-mRNA in the nucleus and translation regulation in the cytoplasm. According to our previous proteomic study about PEDV infection in vivo, hnRNP A1 was thought to be a cellular factor influencing PEDV replication. In this report, PEDV N protein was discovered to colocalize with cellular hnRNP A1 in perinuclear region of PEDV infected cells. Co-immunoprecipitation (CO-IP) results clearly demonstrated that PEDV N protein could bind to human hnRNP A1. Replication of PEDV was inhibited by silencing the expression of hnRNP A1 in CCL-81 cells, suggesting the positive effect of hnRNP A1 on PEDV infection.
Collapse
Affiliation(s)
- Zhonghua Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wei Zeng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Shiyi Ye
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jian Lv
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Axiu Nie
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Bingzhou Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yumei Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|