101
|
Mianné J, Ahmed E, Bourguignon C, Fieldes M, Vachier I, Bourdin A, Assou S, De Vos J. Induced Pluripotent Stem Cells for Primary Ciliary Dyskinesia Modeling and Personalized Medicine. Am J Respir Cell Mol Biol 2019; 59:672-683. [PMID: 30230352 DOI: 10.1165/rcmb.2018-0213tr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a rare and heterogeneous genetic disorder that affects the structure and function of motile cilia. In the airway epithelium, impaired ciliary motion results in reduced or absent mucociliary clearance that leads to the appearance of chronic airway infection, sinusitis, and bronchiectasis. Currently, there is no effective treatment for PCD, and research is limited by the lack of convenient models to study this disease and investigate innovative therapies. Furthermore, the high heterogeneity of PCD genotypes is likely to hinder the development of a single therapy for all patients. The generation of patient-derived, induced pluripotent stem cells, and their differentiation into airway epithelium, as well as genome editing technologies, could represent major tools for in vitro PCD modeling and for developing personalized therapies. Here, we review PCD pathogenesis and then discuss how human induced pluripotent stem cells could be used to model this disease for the development of innovative, patient-specific biotherapies.
Collapse
Affiliation(s)
- Joffrey Mianné
- 1 Institute for Regenerative Medicine and Biotherapy, University of Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - Engi Ahmed
- 1 Institute for Regenerative Medicine and Biotherapy, University of Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - Chloé Bourguignon
- 1 Institute for Regenerative Medicine and Biotherapy, University of Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - Mathieu Fieldes
- 1 Institute for Regenerative Medicine and Biotherapy, University of Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - Isabelle Vachier
- 2 PhyMedExp, University of Montpellier, INSERM, Centre Hospitalier Universitaire Montpellier, Montpellier, France; and
| | - Arnaud Bourdin
- 2 PhyMedExp, University of Montpellier, INSERM, Centre Hospitalier Universitaire Montpellier, Montpellier, France; and
| | - Said Assou
- 1 Institute for Regenerative Medicine and Biotherapy, University of Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - John De Vos
- 1 Institute for Regenerative Medicine and Biotherapy, University of Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire Montpellier, Montpellier, France.,3 Centre Hospitalier Universitaire Montpellier, Department of Cell and Tissue Engineering, Hospital Saint-Eloi, Montpellier, France
| |
Collapse
|
102
|
Leigh MW, Horani A, Kinghorn B, O'Connor MG, Zariwala MA, Knowles MR. Primary Ciliary Dyskinesia (PCD): A genetic disorder of motile cilia. ACTA ACUST UNITED AC 2019; 4:51-75. [PMID: 31572664 DOI: 10.3233/trd-190036] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Margaret W Leigh
- Department of Pediatrics and Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Amjad Horani
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - BreAnna Kinghorn
- Seattle Children's Hospital, Department of Pediatrics, University of Washington School of Medicine; Seattle, Washington
| | - Michael G O'Connor
- Department of Pediatrics, Vanderbilt University Medical Center and Monroe Carell Jr Children's Hospital at Vanderbilt, Nashville, Tennessee
| | - Maimoona A Zariwala
- Department of Pathology/Lab Medicine and Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Michael R Knowles
- Department of Medicine and Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
103
|
Benjamin AT, Ganesh R, Gaspar BL, Lucas J, Jackson C, Legendre M, Mani R, Escudier E. A Novel Homozygous Nonsense HYDIN Gene Mutation p.(Arg951*) in Primary Ciliary Dyskinesia. Indian J Pediatr 2019; 86:664-665. [PMID: 31089940 DOI: 10.1007/s12098-019-02970-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 04/22/2019] [Indexed: 11/24/2022]
Affiliation(s)
- Antony Terance Benjamin
- Department of Molecular Pathology, Primary Ciliary Dyskinesia Unit, G Kuppusamy Naidu Memorial Hospital, Coimbatore, 641037, India
| | - Ram Ganesh
- Department of Molecular Pathology, Primary Ciliary Dyskinesia Unit, G Kuppusamy Naidu Memorial Hospital, Coimbatore, 641037, India
| | - Balan Louis Gaspar
- Department of Molecular Pathology, Primary Ciliary Dyskinesia Unit, G Kuppusamy Naidu Memorial Hospital, Coimbatore, 641037, India.
| | - Jane Lucas
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Claire Jackson
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Marie Legendre
- U.F. de Génétique moléculaire, Hôpital Armand Trousseau, Paris, France
| | - Rahma Mani
- U.F. de Génétique moléculaire, Hôpital Armand Trousseau, Paris, France
| | - Estelle Escudier
- U.F. de Génétique moléculaire, Hôpital Armand Trousseau, Paris, France
| |
Collapse
|
104
|
Zhao L, Hou Y, Picariello T, Craige B, Witman GB. Proteome of the central apparatus of a ciliary axoneme. J Cell Biol 2019; 218:2051-2070. [PMID: 31092556 PMCID: PMC6548120 DOI: 10.1083/jcb.201902017] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/13/2019] [Accepted: 04/17/2019] [Indexed: 12/15/2022] Open
Abstract
The central apparatus is an essential component of “9+2” cilia. Zhao et al. identify more than 40 new potential components of the central apparatus of Chlamydomonas. Many are conserved and will facilitate genetic screening of patients with a form of primary ciliary dyskinesia that is difficult to diagnose. Nearly all motile cilia have a “9+2” axoneme containing a central apparatus (CA), consisting of two central microtubules with projections, that is essential for motility. To date, only 22 proteins are known to be CA components. To identify new candidate CA proteins, we used mass spectrometry to compare axonemes of wild-type Chlamydomonas and a CA-less mutant. We identified 44 novel candidate CA proteins, of which 13 are conserved in humans. Five of the latter were studied more closely, and all five localized to the CA; therefore, most of the other candidates are likely to also be CA components. Our results reveal that the CA is far more compositionally complex than previously recognized and provide a greatly expanded knowledge base for studies to understand the architecture of the CA and how it functions. The discovery of the new conserved CA proteins will facilitate genetic screening to identify patients with a form of primary ciliary dyskinesia that has been difficult to diagnose.
Collapse
Affiliation(s)
- Lei Zhao
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| | - Yuqing Hou
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| | - Tyler Picariello
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| | - Branch Craige
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| | - George B Witman
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
105
|
Kobbernagel HE, Green K, Ring AM, Buchvald FF, Rosthøj S, Gustafsson PM, Nielsen KG. One-year evolution and variability in multiple-breath washout indices in children and young adults with primary ciliary dyskinesia. Eur Clin Respir J 2019; 6:1591841. [PMID: 30949311 PMCID: PMC6442098 DOI: 10.1080/20018525.2019.1591841] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 02/27/2019] [Indexed: 11/27/2022] Open
Abstract
Background and objective: Cross-sectional and longer-term studies have demonstrated abnormal yet stable multiple-breath inert gas washout (MBW) indices in patients with primary ciliary dyskinesia (PCD). This study aimed to assess the intermediate term evolution and the between-occasion variability of MBW indices in PCD over 1 year. Methods: Children and young adults with a confirmed diagnosis of PCD were included in this single-centre, prospective, observational, longitudinal study. Over 1 year, nitrogen (N2) MBW and spirometry were performed at three occasions during ordinary scheduled outpatient visits. Trends and variability in lung clearance index (LCI), moment ratios, normalized N2 concentration at six lung volume turnovers, and regional ventilation inhomogeneity indices of the conducting and intra-acinar airways (Scond*VT and Sacin*VT) were analysed using linear mixed models. Results: Forty-two patients, aged 6–29 years (median: 15.4), performed 116 N2 MBW test occasions and 96.6% were technically acceptable. A minimal, although significant, increase in LCI over 1 year (mean: 0.51 units, 95% CI: 0.12–0.91, p = 0.01) was found; while, all other N2 MBW indices and FEV1 remained unchanged. A moderate correlation was observed between LCI and FEV1 (r = −0.47, p = 0.0001). The limits of agreement between tests 1 year apart were for LCI: −1.96 to 2.98; Scond*VT: ± 0.039; Sacin*VT: −0.108 to 0.128. Conclusions: Children and young adults with PCD managed at a specialist centre showed slightly, but significant, increasing LCI and otherwise unchanged ventilation inhomogeneity indices and dynamic volumes over the intermediate term of 1 year. Estimates of the variability of N2 MBW indices may inform sample size calculations of future randomized controlled trials.
Collapse
Affiliation(s)
- Helene Elgaard Kobbernagel
- Danish PCD Centre, Paediatric Pulmonary Service, Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kent Green
- Danish PCD Centre, Paediatric Pulmonary Service, Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Copenhagen, Denmark
| | - Astrid Madsen Ring
- Danish PCD Centre, Paediatric Pulmonary Service, Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Copenhagen, Denmark
| | - Frederik Fouirnaies Buchvald
- Danish PCD Centre, Paediatric Pulmonary Service, Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Copenhagen, Denmark
| | - Susanne Rosthøj
- Department of Biostatistics, Institute of Public Health, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Kim Gjerum Nielsen
- Danish PCD Centre, Paediatric Pulmonary Service, Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
106
|
Recent Developments in mRNA-Based Protein Supplementation Therapy to Target Lung Diseases. Mol Ther 2019; 27:803-823. [PMID: 30905577 DOI: 10.1016/j.ymthe.2019.02.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 12/20/2022] Open
Abstract
Protein supplementation therapy using in vitro-transcribed (IVT) mRNA for genetic diseases contains huge potential as a new class of therapy. From the early ages of synthetic mRNA discovery, a great number of studies showed the versatile use of IVT mRNA as a novel approach to supplement faulty or absent protein and also as a vaccine. Many modifications have been made to produce high expressions of mRNA causing less immunogenicity and more stability. Recent advancements in the in vivo lung delivery of mRNA complexed with various carriers encouraged the whole mRNA community to tackle various genetic lung diseases. This review gives a comprehensive overview of cells associated with various lung diseases and recent advancements in mRNA-based protein replacement therapy. This review also covers a brief summary of developments in mRNA modifications and nanocarriers toward clinical translation.
Collapse
|
107
|
Dean S, Moreira-Leite F, Gull K. Basalin is an evolutionarily unconstrained protein revealed via a conserved role in flagellum basal plate function. eLife 2019; 8:42282. [PMID: 30810527 PMCID: PMC6392502 DOI: 10.7554/elife.42282] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/11/2019] [Indexed: 01/15/2023] Open
Abstract
Most motile flagella have an axoneme that contains nine outer microtubule doublets and a central pair (CP) of microtubules. The CP coordinates the flagellar beat and defects in CP projections are associated with motility defects and human disease. The CP nucleate near a ‘basal plate’ at the distal end of the transition zone (TZ). Here, we show that the trypanosome TZ protein ‘basalin’ is essential for building the basal plate, and its loss is associated with CP nucleation defects, inefficient recruitment of CP assembly factors to the TZ, and flagellum paralysis. Guided by synteny, we identified a highly divergent basalin ortholog in the related Leishmania species. Basalins are predicted to be highly unstructured, suggesting they may act as ‘hubs’ facilitating many protein-protein interactions. This raises the general concept that proteins involved in cytoskeletal functions and appearing organism-specific, may have highly divergent and cryptic orthologs in other species.
Collapse
Affiliation(s)
- Samuel Dean
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Flavia Moreira-Leite
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
108
|
Reilly ML, Benmerah A. Ciliary kinesins beyond IFT: Cilium length, disassembly, cargo transport and signalling. Biol Cell 2019; 111:79-94. [PMID: 30720881 DOI: 10.1111/boc.201800074] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/18/2019] [Indexed: 02/06/2023]
Abstract
Cilia and flagella are microtubule-based antenna which are highly conserved among eukaryotes. In vertebrates, primary and motile cilia have evolved to exert several key functions during development and tissue homoeostasis. Ciliary dysfunction in humans causes a highly heterogeneous group of diseases called ciliopathies, a class of genetic multisystemic disorders primarily affecting kidney, skeleton, retina, lung and the central nervous system. Among key ciliary proteins, kinesin family members (KIF) are microtubule-interacting proteins involved in many diverse cellular functions, including transport of cargo (organelles, proteins and lipids) along microtubules and regulating the dynamics of cytoplasmic and spindle microtubules through their depolymerising activity. Many KIFs are also involved in diverse ciliary functions including assembly/disassembly, motility and signalling. We here review these ciliary kinesins in vertebrates and focus on their involvement in ciliopathy-related disorders.
Collapse
Affiliation(s)
- Madeline Louise Reilly
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Paris Descartes University, Imagine Institute, Paris, 75015, France.,Paris Diderot University, Paris, 75013, France
| | - Alexandre Benmerah
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Paris Descartes University, Imagine Institute, Paris, 75015, France
| |
Collapse
|
109
|
Yang X, Zhu D, Zhang H, Jiang Y, Hu X, Geng D, Wang R, Liu R. Associations between DNAH1 gene polymorphisms and male infertility: A retrospective study. Medicine (Baltimore) 2018; 97:e13493. [PMID: 30544445 PMCID: PMC6310528 DOI: 10.1097/md.0000000000013493] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Genetic abnormalities could account for 10% to 15% of male infertility cases, so increasing attention is being paid to gene mutations in this context. DNAH1 gene polymorphisms are highly correlated with astheno-teratozoospermia, but limited information has been reported on pathogenic variations in DNAH1 in the Chinese population. We explored 4 novel variations of the DNAH1 gene in Chinese infertile patients. Mutation screening of the DNAH1 gene was performed on 87 cases of asthenozoospermia with targeted high-throughput sequencing technology; another 200 nonobstructive azoospermia cases were further analyzed to investigate the prevalence of DNAH1 variations. The effects of the variations on protein function were further assessed by bioinformatic prediction. For carriers of DNAH1 variations, genetic counseling should be considered. Assisted reproductive technologies should be performed for these individuals and microsurgery should be considered for patients with azoospermia. DNAH1 variations were identified in 6 of 287 patients. These included 8 heterozygous variations in exons and a splicing site. Among these, 4 variations (g.52400764G>C, g.52409336C>T, g.52430999_52431000del, g.52412624C>A) had already been registered in the 1000 Genomes and Exome Aggregation Consortium databases. The other 4 novel variations (g.52418050del, g.52404762T>G, g.52430536del, g.52412620del) were all predicted to be pathogenic by in silico analysis. The variations g.52418050del and g.52430999_52431000del were detected in 1 patient who was more severe than another patient with the variation g.52430999_52431000del. Physicians should be aware of genetic variants in male infertility patients and DNAH1 mutations should be considered in patients with asthenospermia or azoospermia.
Collapse
Affiliation(s)
- Xiao Yang
- Center for Reproductive Medicine
- Center for Prenatal Diagnosis, First Hospital, Jilin University, Jilin, China
| | - Dongliang Zhu
- Center for Reproductive Medicine
- Center for Prenatal Diagnosis, First Hospital, Jilin University, Jilin, China
| | - Hongguo Zhang
- Center for Reproductive Medicine
- Center for Prenatal Diagnosis, First Hospital, Jilin University, Jilin, China
| | - Yuting Jiang
- Center for Reproductive Medicine
- Center for Prenatal Diagnosis, First Hospital, Jilin University, Jilin, China
| | - Xiaonan Hu
- Center for Reproductive Medicine
- Center for Prenatal Diagnosis, First Hospital, Jilin University, Jilin, China
| | - Dongfeng Geng
- Center for Reproductive Medicine
- Center for Prenatal Diagnosis, First Hospital, Jilin University, Jilin, China
| | - Ruixue Wang
- Center for Reproductive Medicine
- Center for Prenatal Diagnosis, First Hospital, Jilin University, Jilin, China
| | - Ruizhi Liu
- Center for Reproductive Medicine
- Center for Prenatal Diagnosis, First Hospital, Jilin University, Jilin, China
| |
Collapse
|
110
|
Bush A, Hogg C. The answer is cilia, whatever the question may be! ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:S32. [PMID: 30613607 DOI: 10.21037/atm.2018.09.39] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Andrew Bush
- Head of Section (Paediatrics), Imperial College, London, UK.,National Heart and Lung Institute, London, UK.,Departments of Paediatrics and Paediatric Respiratory Medicine, NHLI at Imperial College, London, UK
| | - Claire Hogg
- Departments of Paediatrics and Paediatric Respiratory Medicine, NHLI at Imperial College, London, UK.,National PCD Diagnostic Service, Royal Brompton Hospital, London, UK
| |
Collapse
|
111
|
Oura S, Miyata H, Noda T, Shimada K, Matsumura T, Morohoshi A, Isotani A, Ikawa M. Chimeric analysis with newly established EGFP/DsRed2-tagged ES cells identify HYDIN as essential for spermiogenesis in mice. Exp Anim 2018; 68:25-34. [PMID: 30089752 PMCID: PMC6389518 DOI: 10.1538/expanim.18-0071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The CRISPR/Cas9 system can efficiently introduce biallelic mutations in ES cells (ESCs),
and its application with fluorescently-tagged ESCs enables phenotype analysis in chimeric
mice. We have utilized ESCs that express EGFP in the cytosol and acrosome [EGR-G101 129S2
× (CAG/Acr-EGFP) B6] in previous studies; however, the EGFP signal in the
sperm cytosol is weak and the signal in the acrosome is lost after the acrosome reaction,
precluding analysis between wild type and ESC derived spermatozoa. In this study, we
established an ESC line from RBGS (Red Body Green Sperm) transgenic mice [B6D2-Tg
(CAG/Su9-DsRed2, Acr3-EGFP) RBGS002Osb] whose spermatozoa exhibit green
fluorescence in the acrosome and red fluorescence in the mitochondria within the flagellar
midpiece that is retained after the acrosome reaction. We utilized these new ESCs to
analyze HYDIN, which is reported to function in sperm motility in humans. Analysis of
Hydin-disrupted spermatozoa in mice is difficult as
Hydin-mutant mice (hy3) die within 3 weeks, before
sexual maturation, due to hydrocephaly. To circumvent the early lethality of the
whole-body knockout, we disrupted Hydin in RBGS-ESCs and generated
chimeric mice, which survived into sexual maturity. Hydin-disrupted
spermatozoa obtained from the chimeric mice possessed short tails and were immotile. When
we injected Hydin-disrupted spermatozoa into oocytes, heterozygous pups
were obtained, which suggests that the genome of Hydin-disrupted
spermatozoa can produce viable pups. Consequently, RBGS-ESCs can be a useful tool for
screening and analysis of male-fertility related genes in chimeric mice.
Collapse
Affiliation(s)
- Seiya Oura
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Haruhiko Miyata
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Taichi Noda
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Keisuke Shimada
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Takafumi Matsumura
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Akane Morohoshi
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan.,Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Ayako Isotani
- Department of Biomedical Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan.,Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan.,The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
112
|
Motile Ciliary Disorders in Chronic Airway Inflammatory Diseases: Critical Target for Interventions. Curr Allergy Asthma Rep 2018; 18:48. [PMID: 30046922 DOI: 10.1007/s11882-018-0802-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
PURPOSE OF REVIEW Impaired mucociliary clearance has been implicated in chronic upper and lower airway inflammatory diseases (i.e., allergic and non-allergic rhinitis, chronic rhinosinusitis with or without nasal polyps and asthma). How motile ciliary disorders (impaired ciliogenesis, ciliary beating and ultrastructural defects) are implicated in chronic airway inflammatory diseases is not fully understood. Elaboration of the role of motile ciliary disorders may serve as therapeutic targets for improving mucociliary clearance, thereby complementing contemporary disease management. RECENT FINDINGS We have summarized the manifestations of motile ciliary disorders and addressed the underlying associations with chronic airway inflammatory diseases. A panel of established and novel diagnostic tests and therapeutic interventions are outlined. Physicians should be vigilant in screening for motile ciliary disorders, particularly in patients with co-existing upper and lower airway inflammatory diseases. Proper assessment and treatment of motile ciliary disorders may have added value to the management and prevention of chronic airway inflammatory diseases.
Collapse
|
113
|
Ji ZY, Sha YW, Ding L, Li P. Genetic factors contributing to human primary ciliary dyskinesia and male infertility. Asian J Androl 2018; 19:515-520. [PMID: 27270341 PMCID: PMC5566842 DOI: 10.4103/1008-682x.181227] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is an autosomal-recessive disorder resulting from the loss of normal ciliary function. Symptoms include neonatal respiratory distress, chronic sinusitis, bronchiectasis, situs inversus, and infertility. However, only 15 PCD-associated genes have been identified to cause male infertility to date. Owing to the genetic heterogeneity of PCD, comprehensive molecular genetic testing is not considered the standard of care. Here, we provide an update of the progress on the identification of genetic factors related to PCD associated with male infertility, summarizing the underlying molecular mechanisms, and discuss the clinical implications of these findings. Further research in this field will impact the diagnostic strategy for male infertility, enabling clinicians to provide patients with informed genetic counseling, and help to adopt the best course of treatment for developing directly targeted personalized medicine.
Collapse
Affiliation(s)
- Zhi-Yong Ji
- The Center for Reproductive Medicine, Xiamen Maternity and Child Care Hospital, No. 10 Zhenhai Road, Xiamen, China
| | - Yan-Wei Sha
- The Center for Reproductive Medicine, Xiamen Maternity and Child Care Hospital, No. 10 Zhenhai Road, Xiamen, China
| | - Lu Ding
- The Center for Reproductive Medicine, Xiamen Maternity and Child Care Hospital, No. 10 Zhenhai Road, Xiamen, China
| | - Ping Li
- The Center for Reproductive Medicine, Xiamen Maternity and Child Care Hospital, No. 10 Zhenhai Road, Xiamen, China
| |
Collapse
|
114
|
Höben IM, Hjeij R, Olbrich H, Dougherty GW, Nöthe-Menchen T, Aprea I, Frank D, Pennekamp P, Dworniczak B, Wallmeier J, Raidt J, Nielsen KG, Philipsen MC, Santamaria F, Venditto L, Amirav I, Mussaffi H, Prenzel F, Wu K, Bakey Z, Schmidts M, Loges NT, Omran H. Mutations in C11orf70 Cause Primary Ciliary Dyskinesia with Randomization of Left/Right Body Asymmetry Due to Defects of Outer and Inner Dynein Arms. Am J Hum Genet 2018; 102:973-984. [PMID: 29727693 DOI: 10.1016/j.ajhg.2018.03.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/23/2018] [Indexed: 12/28/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is characterized by chronic airway disease, male infertility, and randomization of the left/right body axis as a result of defects of motile cilia and sperm flagella. We identified loss-of-function mutations in the open-reading frame C11orf70 in PCD individuals from five distinct families. Transmission electron microscopy analyses and high-resolution immunofluorescence microscopy demonstrate that loss-of-function mutations in C11orf70 cause immotility of respiratory cilia and sperm flagella, respectively, as a result of the loss of axonemal outer (ODAs) and inner dynein arms (IDAs), indicating that C11orf70 is involved in cytoplasmic assembly of dynein arms. Expression analyses of C11orf70 showed that C11orf70 is expressed in ciliated respiratory cells and that the expression of C11orf70 is upregulated during ciliogenesis, similar to other previously described cytoplasmic dynein-arm assembly factors. Furthermore, C11orf70 shows an interaction with cytoplasmic ODA/IDA assembly factor DNAAF2, supporting our hypothesis that C11orf70 is a preassembly factor involved in the pathogenesis of PCD. The identification of additional genetic defects that cause PCD and male infertility is of great importance for the clinic as well as for genetic counselling.
Collapse
Affiliation(s)
- Inga M Höben
- Department of General Pediatrics, University Children's Hospital Muenster, 48149 Muenster, Germany
| | - Rim Hjeij
- Department of General Pediatrics, University Children's Hospital Muenster, 48149 Muenster, Germany
| | - Heike Olbrich
- Department of General Pediatrics, University Children's Hospital Muenster, 48149 Muenster, Germany
| | - Gerard W Dougherty
- Department of General Pediatrics, University Children's Hospital Muenster, 48149 Muenster, Germany
| | - Tabea Nöthe-Menchen
- Department of General Pediatrics, University Children's Hospital Muenster, 48149 Muenster, Germany
| | - Isabella Aprea
- Department of General Pediatrics, University Children's Hospital Muenster, 48149 Muenster, Germany
| | - Diana Frank
- Department of General Pediatrics, University Children's Hospital Muenster, 48149 Muenster, Germany
| | - Petra Pennekamp
- Department of General Pediatrics, University Children's Hospital Muenster, 48149 Muenster, Germany
| | - Bernd Dworniczak
- Department of General Pediatrics, University Children's Hospital Muenster, 48149 Muenster, Germany
| | - Julia Wallmeier
- Department of General Pediatrics, University Children's Hospital Muenster, 48149 Muenster, Germany
| | - Johanna Raidt
- Department of General Pediatrics, University Children's Hospital Muenster, 48149 Muenster, Germany
| | - Kim G Nielsen
- Danish PCD Centre, Pediatrics Pulmonary Service, Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Maria C Philipsen
- Danish PCD Centre, Pediatrics Pulmonary Service, Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Francesca Santamaria
- Department of Translational Medical Sciences, Federico II University, 80131 Naples, Italy
| | - Laura Venditto
- Department of Translational Medical Sciences, Federico II University, 80131 Naples, Italy
| | - Israel Amirav
- Department of Pediatrics, University of Alberta, T6G 1C9 Edmonton, Alberta, Canada
| | - Huda Mussaffi
- Schneider Children's Medical Center, 4920235 Petach-Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | - Freerk Prenzel
- Clinic for Pediatrics and Adolescent Medicine, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Kaman Wu
- Genome Research Division, Human Genetics Department, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 10, 6525KL Nijmegen, The Netherlands
| | - Zeineb Bakey
- Genome Research Division, Human Genetics Department, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 10, 6525KL Nijmegen, The Netherlands
| | - Miriam Schmidts
- Genome Research Division, Human Genetics Department, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 10, 6525KL Nijmegen, The Netherlands; Pediatric Genetics Division, Center for Pediatrics and Adolescent Medicine, Faculty of Medicine, Freiburg University, Mathildenstrasse 1, 79112 Freiburg, Germany
| | - Niki T Loges
- Department of General Pediatrics, University Children's Hospital Muenster, 48149 Muenster, Germany
| | - Heymut Omran
- Department of General Pediatrics, University Children's Hospital Muenster, 48149 Muenster, Germany.
| |
Collapse
|
115
|
Paff T, Kooi IE, Moutaouakil Y, Riesebos E, Sistermans EA, Daniels HJMA, Weiss JMM, Niessen HHWM, Haarman EG, Pals G, Micha D. Diagnostic yield of a targeted gene panel in primary ciliary dyskinesia patients. Hum Mutat 2018; 39:653-665. [PMID: 29363216 DOI: 10.1002/humu.23403] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/21/2017] [Accepted: 12/28/2017] [Indexed: 12/24/2022]
Abstract
We aimed to determine the diagnostic yield of a targeted-exome panel in a cohort of 74 Dutch primary ciliary dyskinesia (PCD) patients. The panel consisted of 26 PCD-related and 284 candidate genes. To prioritize PCD candidate genes, we investigated the transcriptome of human airway cells of 12 healthy volunteers during in vitro ciliogenesis and hypothesized that PCD-related genes show significant upregulation. We compared gene expression in epithelial precursor cells grown as collagen monolayer and ciliated cells grown in suspension by RNA sequencing. All genes reported as PCD causative, except NME8, showed significant upregulation during in vitro ciliogenesis. We observed 67.6% diagnostic yield when testing the targeted-exome panel in our cohort. There was relatively high percentage of DNAI and HYDIN mutations compared to other countries. The latter may be due to our solution for the problem of the confounding HYDIN2 pseudogene. Candidate genes included two recently published PCD-related genes DNAJB13 and PIH1D3; identification of the latter was a direct result of this study. In conclusion, we demonstrate 67.6% diagnostic yield by targeted exome sequencing in a Dutch PCD population and present a highly sensitive and moderately specific approach for identification of PCD-related genes, based on significant upregulation during in vitro ciliogenesis.
Collapse
Affiliation(s)
- Tamara Paff
- Department of Pulmonary Diseases, VU University Medical Center, Amsterdam, The Netherlands.,Department of Pediatric Pulmonology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Clinical Genetics, VU University Medical Center, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Irsan E Kooi
- Department of Clinical Genetics, VU University Medical Center, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Youssef Moutaouakil
- Department of Clinical Genetics, VU University Medical Center, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Elise Riesebos
- Department of Clinical Genetics, VU University Medical Center, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Erik A Sistermans
- Department of Clinical Genetics, VU University Medical Center, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Hans J M A Daniels
- Department of Pulmonary Diseases, VU University Medical Center, Amsterdam, The Netherlands
| | - Janneke M M Weiss
- Department of Clinical Genetics, VU University Medical Center, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Hans H W M Niessen
- Department of Pathology and Cardiac Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Eric G Haarman
- Department of Pediatric Pulmonology, VU University Medical Center, Amsterdam, The Netherlands
| | - Gerard Pals
- Department of Clinical Genetics, VU University Medical Center, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Dimitra Micha
- Department of Clinical Genetics, VU University Medical Center, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| |
Collapse
|
116
|
Halbeisen F, Hogg C, Alanin MC, Bukowy-Bieryllo Z, Dasi F, Duncan J, Friend A, Goutaki M, Jackson C, Keenan V, Harris A, Hirst RA, Latzin P, Marsh G, Nielsen K, Norris D, Pellicer D, Reula A, Rubbo B, Rumman N, Shoemark A, Walker WT, Kuehni CE, Lucas JS. Proceedings of the 2nd BEAT-PCD conference and 3rd PCD training school: part 1. BMC Proc 2018; 12:1. [PMID: 29630684 PMCID: PMC5841193 DOI: 10.1186/s12919-018-0098-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is a rare heterogenous condition that causes progressive suppurative lung disease, chronic rhinosinusitis, chronic otitis media, infertility and abnormal situs. 'Better Experimental Approaches to Treat Primary Ciliary Dyskinesia' (BEAT-PCD) is a network of scientists and clinicians coordinating research from basic science through to clinical care with the intention of developing treatments and diagnostics that lead to improved long-term outcomes for patients. BEAT-PCD activities are supported by EU funded COST Action (BM1407). The second BEAT-PCD conference, and third PCD training school were held jointly in April 2017 in Valencia, Spain. Presentations and workshops focussed on advancing the knowledge and skills relating to PCD in: basic science, epidemiology, diagnostic testing, clinical management and clinical trials. The multidisciplinary conference provided an interactive platform for exchanging ideas through a program of lectures, poster presentations, breakout sessions and workshops. Three working groups met to plan consensus statements. Progress with BEAT-PCD projects was shared and new collaborations were fostered. In this report, we summarize the meeting, highlighting developments made during the meeting.
Collapse
Affiliation(s)
- Florian Halbeisen
- 1Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Claire Hogg
- 2Primary Ciliary Dyskinesia Centre, Departments of Paediatrics and Paediatric Respiratory Medicine, Imperial College and Royal Brompton Hospital, London, UK
| | - Mikkel C Alanin
- 3Department of Otolaryngology - Head and Neck Surgery and Audiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Zuzanna Bukowy-Bieryllo
- 4Department of Molecular and Clinical Genetics, Institute of Human Genetics Polish Academy of Sciences, Poznań, Poland
| | - Francisco Dasi
- 5Department of Physiology, Faculty of Medicine, Universitat de Valencia, Valencia, Spain.,UCIM Department, Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
| | - Julie Duncan
- 7Primary Ciliary Dyskinesia Centre, Departments of Paediatrics and Paediatric Respiratory Medicine, Imperial College and Royal Brompton Hospital, London, UK
| | - Amanda Friend
- 8Primary Ciliary Dyskinesia Centre, NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Myrofora Goutaki
- 1Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Claire Jackson
- 8Primary Ciliary Dyskinesia Centre, NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Victoria Keenan
- 8Primary Ciliary Dyskinesia Centre, NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Amanda Harris
- 8Primary Ciliary Dyskinesia Centre, NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Robert A Hirst
- Centre for PCD Diagnosis and Research, Department of Infection, Immunity and Inflammation, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, UK
| | - Philipp Latzin
- 10Paediatric Respiratory Medicine, University Children's Hospital of Bern, University of Bern, Bern, Switzerland
| | - Gemma Marsh
- 2Primary Ciliary Dyskinesia Centre, Departments of Paediatrics and Paediatric Respiratory Medicine, Imperial College and Royal Brompton Hospital, London, UK
| | - Kim Nielsen
- 11Danish PCD & chILD Centre, CF Centre Copenhagen Paediatric Pulmonary Service, ERN Accredited for PCD and CF Health Care, Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Dominic Norris
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire, UK
| | - Daniel Pellicer
- 5Department of Physiology, Faculty of Medicine, Universitat de Valencia, Valencia, Spain.,UCIM Department, Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
| | - Ana Reula
- 5Department of Physiology, Faculty of Medicine, Universitat de Valencia, Valencia, Spain.,UCIM Department, Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
| | - Bruna Rubbo
- 8Primary Ciliary Dyskinesia Centre, NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Nisreen Rumman
- Pediatric Department, Makassed Hospital, East Jerusalem, Palestine
| | - Amelia Shoemark
- 2Primary Ciliary Dyskinesia Centre, Departments of Paediatrics and Paediatric Respiratory Medicine, Imperial College and Royal Brompton Hospital, London, UK.,14School of Medicine, University of Dundee, Dundee, UK
| | - Woolf T Walker
- 8Primary Ciliary Dyskinesia Centre, NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Claudia E Kuehni
- 1Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.,10Paediatric Respiratory Medicine, University Children's Hospital of Bern, University of Bern, Bern, Switzerland
| | - Jane S Lucas
- 8Primary Ciliary Dyskinesia Centre, NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
117
|
Shoemark A, Burgoyne T, Kwan R, Dixon M, Patel M, Rogers AV, Onoufriadis A, Scully J, Daudvohra F, Cullup T, Loebinger MR, Wilson R, Chung EM, Bush A, Mitchison HM, Hogg C. Primary ciliary dyskinesia with normal ultrastructure: three-dimensional tomography detects absence of DNAH11. Eur Respir J 2018; 51:51/2/1701809. [DOI: 10.1183/13993003.01809-2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/10/2017] [Indexed: 11/05/2022]
Abstract
In primary ciliary dyskinesia (PCD), motile ciliary dysfunction arises from ciliary defects usually confirmed by transmission electron microscopy (TEM). In 30% of patients, such as those with DNAH11 mutations, apparently normal ultrastructure makes diagnosis difficult. Genetic analysis supports diagnosis, but may not identify definitive causal variants. Electron tomography, an extension of TEM, produces three-dimensional ultrastructural ciliary models with superior resolution to TEM. Our hypothesis is that tomography using existing patient samples will enable visualisation of DNAH11-associated ultrastructural defects. Dual axis tomograms from araldite-embedded nasal cilia were collected in 13 PCD patients with normal ultrastructure (DNAH11 n=7, HYDIN n=2, CCDC65 n=3 and DRC1 n=1) and six healthy controls, then analysed using IMOD and Chimera software.DNAH11 protein is localised to the proximal ciliary region. Within this region, electron tomography indicated a deficiency of >25% of proximal outer dynein arm volume in all patients with DNAH11 mutations (n=7) compared to other patients with PCD and normal ultrastructure (n=6) and healthy controls (n=6). DNAH11 mutations cause a shared abnormality in ciliary ultrastructure previously undetectable by TEM. Advantageously, electron tomography can be used on existing diagnostic samples and establishes a structural abnormality where ultrastructural studies were previously normal.
Collapse
|
118
|
Sigg MA, Menchen T, Lee C, Johnson J, Jungnickel MK, Choksi SP, Garcia G, Busengdal H, Dougherty GW, Pennekamp P, Werner C, Rentzsch F, Florman HM, Krogan N, Wallingford JB, Omran H, Reiter JF. Evolutionary Proteomics Uncovers Ancient Associations of Cilia with Signaling Pathways. Dev Cell 2018; 43:744-762.e11. [PMID: 29257953 DOI: 10.1016/j.devcel.2017.11.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 09/18/2017] [Accepted: 11/17/2017] [Indexed: 12/19/2022]
Abstract
Cilia are organelles specialized for movement and signaling. To infer when during evolution signaling pathways became associated with cilia, we characterized the proteomes of cilia from sea urchins, sea anemones, and choanoflagellates. We identified 437 high-confidence ciliary candidate proteins conserved in mammals and discovered that Hedgehog and G-protein-coupled receptor pathways were linked to cilia before the origin of bilateria and transient receptor potential (TRP) channels before the origin of animals. We demonstrated that candidates not previously implicated in ciliary biology localized to cilia and further investigated ENKUR, a TRP channel-interacting protein identified in the cilia of all three organisms. ENKUR localizes to motile cilia and is required for patterning the left-right axis in vertebrates. Moreover, mutation of ENKUR causes situs inversus in humans. Thus, proteomic profiling of cilia from diverse eukaryotes defines a conserved ciliary proteome, reveals ancient connections to signaling, and uncovers a ciliary protein that underlies development and human disease.
Collapse
Affiliation(s)
- Monika Abedin Sigg
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Tabea Menchen
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster 48149, Germany
| | - Chanjae Lee
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Jeffery Johnson
- Gladstone Institute of Cardiovascular Disease and Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA
| | - Melissa K Jungnickel
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Semil P Choksi
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Galo Garcia
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Henriette Busengdal
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen 5008, Norway
| | - Gerard W Dougherty
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster 48149, Germany
| | - Petra Pennekamp
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster 48149, Germany
| | - Claudius Werner
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster 48149, Germany
| | - Fabian Rentzsch
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen 5008, Norway
| | - Harvey M Florman
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Nevan Krogan
- Gladstone Institute of Cardiovascular Disease and Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | - John B Wallingford
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Heymut Omran
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster 48149, Germany
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
119
|
Rubbo B, Lucas JS. Clinical care for primary ciliary dyskinesia: current challenges and future directions. Eur Respir Rev 2017; 26:170023. [PMID: 28877972 PMCID: PMC9489029 DOI: 10.1183/16000617.0023-2017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/13/2017] [Indexed: 12/14/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a rare genetic disease that affects the motility of cilia, leading to impaired mucociliary clearance. It is estimated that the vast majority of patients with PCD have not been diagnosed as such, providing a major obstacle to delivering appropriate care. Challenges in diagnosing PCD include lack of disease-specific symptoms and absence of a single, "gold standard", diagnostic test. Management of patients is currently not based on high-level evidence because research findings are mostly derived from small observational studies with limited follow-up period. In this review, we provide a critical overview of the available literature on clinical care for PCD patients, including recent advances. We identify barriers to PCD research and make suggestions for overcoming challenges.
Collapse
Affiliation(s)
- Bruna Rubbo
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University of Southampton, Southampton, UK
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Jane S Lucas
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University of Southampton, Southampton, UK
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
120
|
Damseh N, Quercia N, Rumman N, Dell SD, Kim RH. Primary ciliary dyskinesia: mechanisms and management. APPLICATION OF CLINICAL GENETICS 2017; 10:67-74. [PMID: 29033599 PMCID: PMC5614735 DOI: 10.2147/tacg.s127129] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Primary ciliary dyskinesia is a genetically heterogeneous disorder of motile cilia that is predominantly inherited in an autosomal-recessive fashion. It is associated with abnormal ciliary structure and/or function leading to chronic upper and lower respiratory tract infections, male infertility, and situs inversus. The estimated prevalence of primary ciliary dyskinesia is approximately one in 10,000-40,000 live births. Diagnosis depends on clinical presentation, nasal nitric oxide, high-speed video-microscopy analysis, transmission electron microscopy, genetic testing, and immunofluorescence. Here, we review its clinical features, diagnostic methods, molecular basis, and available therapies.
Collapse
Affiliation(s)
| | - Nada Quercia
- Division of Clinical and Metabolic Genetics.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Nisreen Rumman
- Pediatric Department, Makassed Hospital, Jerusalem, Palestine
| | - Sharon D Dell
- Division of Respiratory Medicine, Department of Pediatrics, Child Health Evaluative Sciences, Hospital for Sick Children
| | - Raymond H Kim
- Fred A Litwin Family Centre in Genetic Medicine, University Health Network and Mount Sinai Hospital, Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
121
|
Werner C, Kouis P. Should transmission electron microscopy and ultrastructural cilia evaluation remain part of the diagnostic work-up for primary ciliary dyskinesia? Ultrastruct Pathol 2017; 41:386-389. [DOI: 10.1080/01913123.2017.1362089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Claudius Werner
- Department of General Pediatrics, Pediatric Pulmonology Unit, Muenster, University Children’s Hospital Muenster, Muenster, Germany
| | - Panayiotis Kouis
- Cyprus International Institute for Environmental & Public Health, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
122
|
Mitchison HM, Shoemark A. Motile cilia defects in diseases other than primary ciliary dyskinesia: The contemporary diagnostic and research role for transmission electron microscopy. Ultrastruct Pathol 2017; 41:415-427. [PMID: 28925789 DOI: 10.1080/01913123.2017.1370050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ultrastructural studies have underpinned the cell biological and clinical investigations of the varied roles of motile cilia in health and disease, with a long history since the 1950s. Recent developments from transmission electron microscopy (TEM; cryo-electron microscopy, electron tomography) have yielded higher resolution and fresh insights into the structure and function of these complex organelles. Microscopy in ciliated organisms, disease models, and in patients with ciliopathy diseases has dramatically expanded our understanding of the ubiquity, multisystem involvement, and importance of cilia in normal human development. Here, we review the importance of motile cilia ultrastructural studies in understanding the basis of diseases other than primary ciliary dyskinesia.
Collapse
Affiliation(s)
- Hannah M Mitchison
- a Newlife Birth Defects Research Centre, Experimental and Personalised Medicine, Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health , University College London , London , UK
| | - Amelia Shoemark
- b Department of Paediatric Respiratory Medicine , Royal Brompton & Harefield NHS Trust , London , UK.,c Division of Molecular & Clinical Medicine, School of Medicine , Ninewells Hospital and Medical School , Dundee , UK
| |
Collapse
|
123
|
Shoemark A. Applications of emerging transmission electron microscopy technology in PCD research and diagnosis. Ultrastruct Pathol 2017; 41:408-414. [PMID: 28922052 DOI: 10.1080/01913123.2017.1365789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Primary Ciliary Dyskinesia (PCD) is a heterogeneous genetic condition characterized by dysfunction of motile cilia. Patients suffer from chronic infection and inflammation of the upper and lower respiratory tract. Diagnosis of PCD is confirmed by identification of a hallmark defect of ciliary ultrastructure or by identification of biallelic pathogenic mutations in a known PCD gene. Since the first description of PCD in 1976, assessment of ciliary ultrastructure by transmission electron microscopy (TEM) has been central to diagnosis and research. Electron tomography is a technique whereby a series of transmission electron micrographs are collected at different angles and reconstructed into a single 3D model of a specimen. Electron tomography provides improved spatial information and resolution compared to a single micrograph. Research by electron tomography has revealed new insight into ciliary ultrastructure and consequently ciliary function at a molecular and cellular level. Gene discovery studies in PCD have utilized electron tomography to define the structural consequences of variants in cilia genes. Modern transmission electron microscopes capable of electron tomography are increasingly being installed in clinical laboratories. This presents the possibility for the use of tomography technique in a diagnostic setting. This review describes the electron tomography technique, the contribution tomography has made to the understanding of basic cilia structure and function and finally the potential of the technique for use in PCD diagnosis.
Collapse
Affiliation(s)
- Amelia Shoemark
- a Department of Paediatrics , Royal Brompton Hospital , London , United Kingdom.,b School of Medicine , University of Dundee, Ninewells Hospital and Medical School , Dundee , United Kingdom
| |
Collapse
|
124
|
Shapiro AJ, Leigh MW. Value of transmission electron microscopy for primary ciliary dyskinesia diagnosis in the era of molecular medicine: Genetic defects with normal and non-diagnostic ciliary ultrastructure. Ultrastruct Pathol 2017; 41:373-385. [PMID: 28915070 DOI: 10.1080/01913123.2017.1362088] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Primary ciliary dyskinesia (PCD) is a genetic disorder causing chronic oto-sino-pulmonary disease. No single diagnostic test will detect all PCD cases. Transmission electron microscopy (TEM) of respiratory cilia was previously considered the gold standard diagnostic test for PCD, but 30% of all PCD cases have either normal ciliary ultrastructure or subtle changes which are non-diagnostic. These cases are identified through alternate diagnostic tests, including nasal nitric oxide measurement, high-speed videomicroscopy analysis, immunofluorescent staining of axonemal proteins, and/or mutation analysis of various PCD causing genes. Autosomal recessive mutations in DNAH11 and HYDIN produce normal TEM ciliary ultrastructure, while mutations in genes encoding for radial spoke head proteins result in some cross-sections with non-diagnostic alterations in the central apparatus interspersed with normal ciliary cross-sections. Mutations in nexin link and dynein regulatory complex genes lead to a collection of different ciliary ultrastructures; mutations in CCDC65, CCDC164, and GAS8 produce normal ciliary ultrastructure, while mutations in CCDC39 and CCDC40 cause absent inner dynein arms and microtubule disorganization in some ciliary cross-sections. Mutations in CCNO and MCIDAS cause near complete absence of respiratory cilia due to defects in generation of multiple cellular basal bodies; however, the scant cilia generated may have normal ultrastructure. Lastly, a syndromic form of PCD with retinal degeneration results in normal ciliary ultrastructure through mutations in the RPGR gene. Clinicians must be aware of these genetic causes of PCD resulting in non-diagnostic TEM ciliary ultrastructure and refrain from using TEM of respiratory cilia as a test to rule out PCD.
Collapse
Affiliation(s)
- Adam J Shapiro
- a Division of Pediatric Respiratory Medicine, Montreal Children's Hospital , McGill University Health Centre Research Institute , Montréal , Québec , Canada
| | - Margaret W Leigh
- b Department of Pediatrics and Marsico Lung Institute , University of North Carolina School of Medicine , Chapel Hill , North Carolina , USA
| |
Collapse
|
125
|
Schroeder JA. Application of laboratory and digital techniques for visual enhancement during the ultrastructural assessment of cilia. Ultrastruct Pathol 2017; 41:399-407. [DOI: 10.1080/01913123.2017.1363335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Josef A. Schroeder
- Central EM-Lab, Department of Pathology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
126
|
Lehti MS, Sironen A. Formation and function of sperm tail structures in association with sperm motility defects†. Biol Reprod 2017; 97:522-536. [DOI: 10.1093/biolre/iox096] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 08/28/2017] [Indexed: 12/26/2022] Open
|
127
|
Shoemark A, Moya E, Hirst RA, Patel MP, Robson EA, Hayward J, Scully J, Fassad MR, Lamb W, Schmidts M, Dixon M, Patel-King RS, Rogers AV, Rutman A, Jackson CL, Goggin P, Rubbo B, Ollosson S, Carr S, Walker W, Adler B, Loebinger MR, Wilson R, Bush A, Williams H, Boustred C, Jenkins L, Sheridan E, Chung EMK, Watson CM, Cullup T, Lucas JS, Kenia P, O'Callaghan C, King SM, Hogg C, Mitchison HM. High prevalence of CCDC103 p.His154Pro mutation causing primary ciliary dyskinesia disrupts protein oligomerisation and is associated with normal diagnostic investigations. Thorax 2017; 73:157-166. [PMID: 28790179 DOI: 10.1136/thoraxjnl-2017-209999] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 06/07/2017] [Accepted: 07/03/2017] [Indexed: 11/03/2022]
Abstract
RATIONALE Primary ciliary dyskinesia is a genetically heterogeneous inherited condition characterised by progressive lung disease arising from abnormal cilia function. Approximately half of patients have situs inversus. The estimated prevalence of primary ciliary dyskinesia in the UK South Asian population is 1:2265. Early, accurate diagnosis is key to implementing appropriate management but clinical diagnostic tests can be equivocal. OBJECTIVES To determine the importance of genetic screening for primary ciliary dyskinesia in a UK South Asian population with a typical clinical phenotype, where standard testing is inconclusive. METHODS Next-generation sequencing was used to screen 86 South Asian patients who had a clinical history consistent with primary ciliary dyskinesia. The effect of a CCDC103 p.His154Pro missense variant compared with other dynein arm-associated gene mutations on diagnostic/phenotypic variability was tested. CCDC103 p.His154Pro variant pathogenicity was assessed by oligomerisation assay. RESULTS Sixteen of 86 (19%) patients carried a homozygous CCDC103 p.His154Pro mutation which was found to disrupt protein oligomerisation. Variable diagnostic test results were obtained including normal nasal nitric oxide levels, normal ciliary beat pattern and frequency and a spectrum of partial and normal dynein arm retention. Fifteen (94%) patients or their sibling(s) had situs inversus suggesting CCDC103 p.His154Pro patients without situs inversus are missed. CONCLUSIONS The CCDC103 p.His154Pro mutation is more prevalent than previously thought in the South Asian community and causes primary ciliary dyskinesia that can be difficult to diagnose using pathology-based clinical tests. Genetic testing is critical when there is a strong clinical phenotype with inconclusive standard diagnostic tests.
Collapse
Affiliation(s)
- Amelia Shoemark
- Department of Paediatric Respiratory Medicine, Royal Brompton and Harefield NHS Trust, National Heart and Lung Institute, London, UK
| | - Eduardo Moya
- Division of Services for Women and Children, Women's and Newborn Unit Bradford Royal Infirmary, University of Bradford, Bradford, UK
| | - Robert A Hirst
- Department of Infection, Centre for PCD Diagnosis and Research, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Mitali P Patel
- Genetics and Genomic Medicine, University College London, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Evelyn A Robson
- Division of Services for Women and Children, Women's and Newborn Unit Bradford Royal Infirmary, University of Bradford, Bradford, UK
| | - Jane Hayward
- Genetics and Genomic Medicine, University College London, UCL Great Ormond Street Institute of Child Health, London, UK.,North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children, London, UK
| | - Juliet Scully
- Genetics and Genomic Medicine, University College London, UCL Great Ormond Street Institute of Child Health, London, UK.,Neuroscience and Mental Health Research Institute, School of Medicine and School of Bioscience, Cardiff University, London, UK
| | - Mahmoud R Fassad
- Genetics and Genomic Medicine, University College London, UCL Great Ormond Street Institute of Child Health, London, UK.,Human Genetics Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - William Lamb
- Genetics and Genomic Medicine, University College London, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Miriam Schmidts
- Genome Research Division, Human Genetics Department, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.,Pediatric Genetics Division, Center for Pediatrics and Adolescent Medicine, University of Freiburg Medical Center, Freiburg, Germany
| | - Mellisa Dixon
- Department of Paediatric Respiratory Medicine, Royal Brompton and Harefield NHS Trust, National Heart and Lung Institute, London, UK
| | - Ramila S Patel-King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Andrew V Rogers
- Department of Paediatric Respiratory Medicine, Royal Brompton and Harefield NHS Trust, National Heart and Lung Institute, London, UK.,Department of Respiratory Medicine, Royal Brompton and Harefield NHS Trust, London, UK
| | - Andrew Rutman
- Department of Infection, Centre for PCD Diagnosis and Research, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Claire L Jackson
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust and Clinical and Experimental Sciences Academic Unit, University of Southampton Faculty of Medicine, Southampton, UK.,NIHR Southampton Respiratory Biomedical Research Unit, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Patricia Goggin
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust and Clinical and Experimental Sciences Academic Unit, University of Southampton Faculty of Medicine, Southampton, UK.,NIHR Southampton Respiratory Biomedical Research Unit, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Bruna Rubbo
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust and Clinical and Experimental Sciences Academic Unit, University of Southampton Faculty of Medicine, Southampton, UK.,NIHR Southampton Respiratory Biomedical Research Unit, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Sarah Ollosson
- Department of Paediatric Respiratory Medicine, Royal Brompton and Harefield NHS Trust, National Heart and Lung Institute, London, UK
| | - Siobhán Carr
- Department of Paediatric Respiratory Medicine, Royal Brompton and Harefield NHS Trust, National Heart and Lung Institute, London, UK
| | - Woolf Walker
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust and Clinical and Experimental Sciences Academic Unit, University of Southampton Faculty of Medicine, Southampton, UK.,NIHR Southampton Respiratory Biomedical Research Unit, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Beryl Adler
- Department of Paediatrics, Luton and Dunstable Hospital NHS Trust, Luton, UK
| | - Michael R Loebinger
- Department of Respiratory Medicine, Royal Brompton and Harefield NHS Trust, London, UK
| | - Robert Wilson
- Department of Respiratory Medicine, Royal Brompton and Harefield NHS Trust, London, UK
| | - Andrew Bush
- Department of Paediatric Respiratory Medicine, Royal Brompton and Harefield NHS Trust, National Heart and Lung Institute, London, UK.,Department of Paediatric Respiratory Medicine, National Heart and Lung Institute, Imperial College, London, UK
| | - Hywel Williams
- Centre for Translational Omics-GOSgene, Genetics and Genomic Medicine, University College London, Institute of Child Health, London, UK
| | - Christopher Boustred
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children, London, UK
| | - Lucy Jenkins
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children, London, UK
| | - Eamonn Sheridan
- Yorkshire Regional Genetics Service and School of Medicine, University of Leeds, St. James's University Hospital, Leeds, UK
| | - Eddie M K Chung
- Population, Policy and Practice Programme, University College London, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Christopher M Watson
- Yorkshire Regional Genetics Service and School of Medicine, University of Leeds, St. James's University Hospital, Leeds, UK
| | - Thomas Cullup
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children, London, UK
| | - Jane S Lucas
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust and Clinical and Experimental Sciences Academic Unit, University of Southampton Faculty of Medicine, Southampton, UK.,NIHR Southampton Respiratory Biomedical Research Unit, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Priti Kenia
- Department of Respiratory Paediatrics, Birmingham Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Christopher O'Callaghan
- Department of Infection, Centre for PCD Diagnosis and Research, Immunity and Inflammation, University of Leicester, Leicester, UK.,Infection, Immunity, Inflammation and Physiological Medicine, University College London, Institute of Child Health, London, UK
| | - Stephen M King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA.,Institute for Systems Genomics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Claire Hogg
- Department of Paediatric Respiratory Medicine, Royal Brompton and Harefield NHS Trust, National Heart and Lung Institute, London, UK
| | - Hannah M Mitchison
- Genetics and Genomic Medicine, University College London, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
128
|
Shoemark A, Frost E, Dixon M, Ollosson S, Kilpin K, Patel M, Scully J, Rogers AV, Mitchison HM, Bush A, Hogg C. Accuracy of Immunofluorescence in the Diagnosis of Primary Ciliary Dyskinesia. Am J Respir Crit Care Med 2017; 196:94-101. [PMID: 28199173 DOI: 10.1164/rccm.201607-1351oc] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
RATIONALE The standard approach to diagnosis of primary ciliary dyskinesia (PCD) in the United Kingdom consists of assessing ciliary function by high-speed microscopy and ultrastructure by election microscopy, but equipment and expertise is not widely available internationally. The identification of biallelic disease-causing mutations is also diagnostic, but many disease-causing genes are unknown, and testing is not widely available outside the United States. Fluorescent antibodies to ciliary proteins are used to validate research genetic studies, but diagnostic utility in this disease has not been systematically evaluated. OBJECTIVES To determine utility of a panel of six fluorescent labeled antibodies as a diagnostic tool for PCD. METHODS The study used immunofluorescent labeling of nasal brushings from a discovery cohort of 35 patients diagnosed with PCD by ciliary ultrastructure, and a diagnostic accuracy cohort of 386 patients referred with symptoms suggestive of disease. The results were compared with diagnostic outcome. MEASUREMENTS AND MAIN RESULTS Immunofluorescence correctly identified mislocalized or absent staining in 100% of the discovery cohort. In the diagnostic cohort immunofluorescence successfully identified 22 of 25 patients with PCD and normal staining in all 252 in whom PCD was considered highly unlikely. In addition, immunofluorescence provided a result in 55% (39) of cases that were previously inconclusive. Immunofluorescence results were available within 14 days, costing $187 per sample compared with electron microscopy (27 days; cost $1,452). CONCLUSIONS Immunofluorescence is a highly specific diagnostic test for PCD, and it improves the speed and availability of diagnostic testing. However, sensitivity is limited and immunofluorescence is not suitable as a stand-alone test.
Collapse
Affiliation(s)
- Amelia Shoemark
- 1 Department of Paediatrics, Royal Brompton & Harefield NHS Trust, London, United Kingdom
| | - Emily Frost
- 1 Department of Paediatrics, Royal Brompton & Harefield NHS Trust, London, United Kingdom
| | - Mellisa Dixon
- 1 Department of Paediatrics, Royal Brompton & Harefield NHS Trust, London, United Kingdom
| | - Sarah Ollosson
- 1 Department of Paediatrics, Royal Brompton & Harefield NHS Trust, London, United Kingdom
| | - Kate Kilpin
- 1 Department of Paediatrics, Royal Brompton & Harefield NHS Trust, London, United Kingdom
| | - Mitali Patel
- 2 Genetics and Genomic Medicine Programme, Institute of Child Health, University College London, London, United Kingdom; and
| | - Juliet Scully
- 2 Genetics and Genomic Medicine Programme, Institute of Child Health, University College London, London, United Kingdom; and
| | - Andrew V Rogers
- 1 Department of Paediatrics, Royal Brompton & Harefield NHS Trust, London, United Kingdom
| | - Hannah M Mitchison
- 2 Genetics and Genomic Medicine Programme, Institute of Child Health, University College London, London, United Kingdom; and
| | - Andrew Bush
- 1 Department of Paediatrics, Royal Brompton & Harefield NHS Trust, London, United Kingdom.,3 National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Claire Hogg
- 1 Department of Paediatrics, Royal Brompton & Harefield NHS Trust, London, United Kingdom
| |
Collapse
|
129
|
Edelbusch C, Cindrić S, Dougherty GW, Loges NT, Olbrich H, Rivlin J, Wallmeier J, Pennekamp P, Amirav I, Omran H. Mutation of serine/threonine protein kinase 36 (STK36) causes primary ciliary dyskinesia with a central pair defect. Hum Mutat 2017; 38:964-969. [PMID: 28543983 DOI: 10.1002/humu.23261] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/05/2017] [Accepted: 05/10/2017] [Indexed: 12/12/2022]
Abstract
Primary ciliary dyskinesia (PCD) is a genetic condition of impaired ciliary beating, characterized by chronic infections of the upper and lower airways and progressive lung failure. Defects of the outer dynein arms are the most common cause of PCD. In about half of the affected individuals, PCD occurs with situs inversus (Kartagener syndrome). A minor PCD subgroup including defects of the radial spokes (RS) and central pair (CP) is hallmarked by the absence of laterality defects, subtle beating abnormalities, and unequivocally apparent ultrastructural defects of the ciliary axoneme, making their diagnosis challenging. We identified homozygous loss-of-function mutations in STK36 in one PCD-affected individual with situs solitus. Transmission electron microscopy analysis demonstrates that STK36 is required for cilia orientation in human respiratory epithelial cells, with a probable localization of STK36 between the RS and CP. STK36 screening can now be included for this rare and difficult to diagnose PCD subgroup.
Collapse
Affiliation(s)
- Christine Edelbusch
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Sandra Cindrić
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Gerard W Dougherty
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Niki T Loges
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Heike Olbrich
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Joseph Rivlin
- Department of Pediatrics, Carmel Medical Center, Haifa, Israel
| | - Julia Wallmeier
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Petra Pennekamp
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Israel Amirav
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Heymut Omran
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| |
Collapse
|
130
|
Mirra V, Werner C, Santamaria F. Primary Ciliary Dyskinesia: An Update on Clinical Aspects, Genetics, Diagnosis, and Future Treatment Strategies. Front Pediatr 2017; 5:135. [PMID: 28649564 PMCID: PMC5465251 DOI: 10.3389/fped.2017.00135] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/22/2017] [Indexed: 01/26/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is an orphan disease (MIM 244400), autosomal recessive inherited, characterized by motile ciliary dysfunction. The estimated prevalence of PCD is 1:10,000 to 1:20,000 live-born children, but true prevalence could be even higher. PCD is characterized by chronic upper and lower respiratory tract disease, infertility/ectopic pregnancy, and situs anomalies, that occur in ≈50% of PCD patients (Kartagener syndrome), and these may be associated with congenital heart abnormalities. Most patients report a daily year-round wet cough or nose congestion starting in the first year of life. Daily wet cough, associated with recurrent infections exacerbations, results in the development of chronic suppurative lung disease, with localized-to-diffuse bronchiectasis. No diagnostic test is perfect for confirming PCD. Diagnosis can be challenging and relies on a combination of clinical data, nasal nitric oxide levels plus cilia ultrastructure and function analysis. Adjunctive tests include genetic analysis and repeated tests in ciliary culture specimens. There are currently 33 known genes associated with PCD and correlations between genotype and ultrastructural defects have been increasingly demonstrated. Comprehensive genetic testing may hopefully screen young infants before symptoms occur, thus improving survival. Recent surprising advances in PCD genetic designed a novel approach called "gene editing" to restore gene function and normalize ciliary motility, opening up new avenues for treating PCD. Currently, there are no data from randomized clinical trials to support any specific treatment, thus, management strategies are usually extrapolated from cystic fibrosis. The goal of treatment is to prevent exacerbations, slowing the progression of lung disease. The therapeutic mainstay includes airway clearance maneuvers mainly with nebulized hypertonic saline and chest physiotherapy, and prompt and aggressive administration of antibiotics. Standardized care at specialized centers using a multidisciplinary approach that imposes surveillance of lung function and of airway biofilm composition likely improves patients' outcome. Pediatricians, neonatologists, pulmonologists, and ENT surgeons should maintain high awareness of PCD and refer patients to the specialized center before sustained irreversible lung damage develops. The recent creation of a network of PCD clinical centers, focusing on improving diagnosis and treatment, will hopefully help to improve care and knowledge of PCD patients.
Collapse
Affiliation(s)
- Virginia Mirra
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
- Department of Pediatrics, Federico II University, Naples, Italy
| | - Claudius Werner
- Department of General Pediatrics, University Children’s Hospital Muenster, Muenster, Germany
| | - Francesca Santamaria
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
- Department of Pediatrics, Federico II University, Naples, Italy
| |
Collapse
|
131
|
Reula A, Lucas JS, Moreno-Galdó A, Romero T, Milara X, Carda C, Mata-Roig M, Escribano A, Dasi F, Armengot-Carceller M. New insights in primary ciliary dyskinesia. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1324780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Ana Reula
- Universitat de Valencia, Valencia, Spain
- UCIM Department, Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
| | - JS Lucas
- Primary Ciliary Dyskinesia Centre, University of Southampton Faculty of Medicine, Southampton, UK
| | - Antonio Moreno-Galdó
- Pediatrics Pneumology and Cystic Fibrosis Unit, Hospital Vall d’Hebron, Barcelona, Spain
- Department of Pediatrics, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Teresa Romero
- Pediatrics Pneumology and Cystic Fibrosis Unit, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Xavier Milara
- Department of Pharmacy, Universitat Jaume I, Castello de la Plana, Spain
| | | | | | - Amparo Escribano
- Universitat de Valencia, Valencia, Spain
- Pediatrics Pneumology and Cystic Fibrosis Unit, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Francisco Dasi
- Universitat de Valencia, Valencia, Spain
- UCIM Department, Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
| | - Miguel Armengot-Carceller
- Universitat de Valencia, Valencia, Spain
- Oto-Rino- Laryngology Department, University and Polytechnic Hospital La Fe, Valencia, Spain
| |
Collapse
|
132
|
Bustamante-Marin XM, Ostrowski LE. Cilia and Mucociliary Clearance. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028241. [PMID: 27864314 DOI: 10.1101/cshperspect.a028241] [Citation(s) in RCA: 430] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mucociliary clearance (MCC) is the primary innate defense mechanism of the lung. The functional components are the protective mucous layer, the airway surface liquid layer, and the cilia on the surface of ciliated cells. The cilia are specialized organelles that beat in metachronal waves to propel pathogens and inhaled particles trapped in the mucous layer out of the airways. In health this clearance mechanism is effective, but in patients with primary cilia dyskinesia (PCD) the cilia are abnormal, resulting in deficient MCC and chronic lung disease. This demonstrates the critical importance of the cilia for human health. In this review, we summarize the current knowledge of the components of the MCC apparatus, focusing on the role of cilia in MCC.
Collapse
Affiliation(s)
- Ximena M Bustamante-Marin
- Marsico Lung Institute, Cystic Fibrosis and Pulmonary Diseases Research and Treatment Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Lawrence E Ostrowski
- Marsico Lung Institute, Cystic Fibrosis and Pulmonary Diseases Research and Treatment Center, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
133
|
Dougherty ML, Nuttle X, Penn O, Nelson BJ, Huddleston J, Baker C, Harshman L, Duyzend MH, Ventura M, Antonacci F, Sandstrom R, Dennis MY, Eichler EE. The birth of a human-specific neural gene by incomplete duplication and gene fusion. Genome Biol 2017; 18:49. [PMID: 28279197 PMCID: PMC5345166 DOI: 10.1186/s13059-017-1163-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/27/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Gene innovation by duplication is a fundamental evolutionary process but is difficult to study in humans due to the large size, high sequence identity, and mosaic nature of segmental duplication blocks. The human-specific gene hydrocephalus-inducing 2, HYDIN2, was generated by a 364 kbp duplication of 79 internal exons of the large ciliary gene HYDIN from chromosome 16q22.2 to chromosome 1q21.1. Because the HYDIN2 locus lacks the ancestral promoter and seven terminal exons of the progenitor gene, we sought to characterize transcription at this locus by coupling reverse transcription polymerase chain reaction and long-read sequencing. RESULTS 5' RACE indicates a transcription start site for HYDIN2 outside of the duplication and we observe fusion transcripts spanning both the 5' and 3' breakpoints. We observe extensive splicing diversity leading to the formation of altered open reading frames (ORFs) that appear to be under relaxed selection. We show that HYDIN2 adopted a new promoter that drives an altered pattern of expression, with highest levels in neural tissues. We estimate that the HYDIN duplication occurred ~3.2 million years ago and find that it is nearly fixed (99.9%) for diploid copy number in contemporary humans. Examination of 73 chromosome 1q21 rearrangement patients reveals that HYDIN2 is deleted or duplicated in most cases. CONCLUSIONS Together, these data support a model of rapid gene innovation by fusion of incomplete segmental duplications, altered tissue expression, and potential subfunctionalization or neofunctionalization of HYDIN2 early in the evolution of the Homo lineage.
Collapse
Affiliation(s)
- Max L Dougherty
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15 Ave NE, S413C, Box 355065, Seattle, WA, 98195-5065, USA
| | - Xander Nuttle
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15 Ave NE, S413C, Box 355065, Seattle, WA, 98195-5065, USA
| | - Osnat Penn
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15 Ave NE, S413C, Box 355065, Seattle, WA, 98195-5065, USA
| | - Bradley J Nelson
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15 Ave NE, S413C, Box 355065, Seattle, WA, 98195-5065, USA
| | - John Huddleston
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15 Ave NE, S413C, Box 355065, Seattle, WA, 98195-5065, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Carl Baker
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15 Ave NE, S413C, Box 355065, Seattle, WA, 98195-5065, USA
| | - Lana Harshman
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15 Ave NE, S413C, Box 355065, Seattle, WA, 98195-5065, USA
| | - Michael H Duyzend
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15 Ave NE, S413C, Box 355065, Seattle, WA, 98195-5065, USA
| | - Mario Ventura
- Department of Biology, University of Bari, Bari, 70121, Italy
| | | | | | - Megan Y Dennis
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15 Ave NE, S413C, Box 355065, Seattle, WA, 98195-5065, USA
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, 95616, CA, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15 Ave NE, S413C, Box 355065, Seattle, WA, 98195-5065, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
134
|
Exome sequencing covers >98% of mutations identified on targeted next generation sequencing panels. PLoS One 2017; 12:e0170843. [PMID: 28152038 PMCID: PMC5289469 DOI: 10.1371/journal.pone.0170843] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/11/2017] [Indexed: 11/19/2022] Open
Abstract
Background With the expanded availability of next generation sequencing (NGS)-based clinical genetic tests, clinicians seeking to test patients with Mendelian diseases must weigh the superior coverage of targeted gene panels with the greater number of genes included in whole exome sequencing (WES) when considering their first-tier testing approach. Here, we use an in silico analysis to predict the analytic sensitivity of WES using pathogenic variants identified on targeted NGS panels as a reference. Methods Corresponding nucleotide positions for 1533 different alterations classified as pathogenic or likely pathogenic identified on targeted NGS multi-gene panel tests in our laboratory were interrogated in data from 100 randomly-selected clinical WES samples to quantify the sequence coverage at each position. Pathogenic variants represented 91 genes implicated in hereditary cancer, X-linked intellectual disability, primary ciliary dyskinesia, Marfan syndrome/aortic aneurysms, cardiomyopathies and arrhythmias. Results When assessing coverage among 100 individual WES samples for each pathogenic variant (153,300 individual assessments), 99.7% (n = 152,798) would likely have been detected on WES. All pathogenic variants had at least some coverage on exome sequencing, with a total of 97.3% (n = 1491) detectable across all 100 individuals. For the remaining 42 pathogenic variants, the number of WES samples with adequate coverage ranged from 35 to 99. Factors such as location in GC-rich, repetitive, or homologous regions likely explain why some of these alterations were not detected across all samples. To validate study findings, a similar analysis was performed against coverage data from 60,706 exomes available through the Exome Aggregation Consortium (ExAC). Results from this validation confirmed that 98.6% (91,743,296/93,062,298) of pathogenic variants demonstrated adequate depth for detection. Conclusions Results from this in silico analysis suggest that exome sequencing may achieve a diagnostic yield similar to panel-based testing for Mendelian diseases.
Collapse
|
135
|
Loreng TD, Smith EF. The Central Apparatus of Cilia and Eukaryotic Flagella. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028118. [PMID: 27770014 DOI: 10.1101/cshperspect.a028118] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The motile cilium is a complex organelle that is typically comprised of a 9+2 microtubule skeleton; nine doublet microtubules surrounding a pair of central singlet microtubules. Like the doublet microtubules, the central microtubules form a scaffold for the assembly of protein complexes forming an intricate network of interconnected projections. The central microtubules and associated structures are collectively referred to as the central apparatus (CA). Studies using a variety of experimental approaches and model organisms have led to the discovery of a number of highly conserved protein complexes, unprecedented high-resolution views of projection structure, and new insights into regulation of dynein-driven microtubule sliding. Here, we review recent progress in defining mechanisms for the assembly and function of the CA and include possible implications for the importance of the CA in human health.
Collapse
Affiliation(s)
- Thomas D Loreng
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Elizabeth F Smith
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|
136
|
Rumman N, Jackson C, Collins S, Goggin P, Coles J, Lucas JS. Diagnosis of primary ciliary dyskinesia: potential options for resource-limited countries. Eur Respir Rev 2017; 26:26/143/160058. [DOI: 10.1183/16000617.0058-2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/02/2016] [Indexed: 11/05/2022] Open
Abstract
Primary ciliary dyskinesia is a genetic disease of ciliary function leading to chronic upper and lower respiratory tract symptoms. The diagnosis is frequently overlooked because the symptoms are nonspecific and the knowledge about the disease in the primary care setting is poor. Additionally, none of the available tests is accurate enough to be used in isolation. These tests are expensive, and need sophisticated equipment and expertise to analyse and interpret results; diagnosis is therefore only available at highly specialised centres. The diagnosis is particularly challenging in countries with limited resources due to the lack of such costly equipment and expertise.In this review, we discuss the importance of early and accurate diagnosis especially for countries where the disease is clinically prevalent but diagnostic tests are lacking. We review the diagnostic tests available in specialised centres (nasal nitric oxide, high-speed video microscopy, transmission electron microscopy, immunofluorescence and genetics). We then consider modifications that might be considered in less well-resourced countries whilst maintaining acceptable accuracy.
Collapse
|
137
|
Lucas JS, Barbato A, Collins SA, Goutaki M, Behan L, Caudri D, Dell S, Eber E, Escudier E, Hirst RA, Hogg C, Jorissen M, Latzin P, Legendre M, Leigh MW, Midulla F, Nielsen KG, Omran H, Papon JF, Pohunek P, Redfern B, Rigau D, Rindlisbacher B, Santamaria F, Shoemark A, Snijders D, Tonia T, Titieni A, Walker WT, Werner C, Bush A, Kuehni CE. European Respiratory Society guidelines for the diagnosis of primary ciliary dyskinesia. Eur Respir J 2017; 49:13993003.01090-2016. [PMID: 27836958 DOI: 10.1183/13993003.01090-2016] [Citation(s) in RCA: 433] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/25/2016] [Indexed: 01/30/2023]
Abstract
The diagnosis of primary ciliary dyskinesia is often confirmed with standard, albeit complex and expensive, tests. In many cases, however, the diagnosis remains difficult despite the array of sophisticated diagnostic tests. There is no "gold standard" reference test. Hence, a Task Force supported by the European Respiratory Society has developed this guideline to provide evidence-based recommendations on diagnostic testing, especially in light of new developments in such tests, and the need for robust diagnoses of patients who might enter randomised controlled trials of treatments. The guideline is based on pre-defined questions relevant for clinical care, a systematic review of the literature, and assessment of the evidence using the GRADE (Grading of Recommendations, Assessment, Development and Evaluation) approach. It focuses on clinical presentation, nasal nitric oxide, analysis of ciliary beat frequency and pattern by high-speed video-microscopy analysis, transmission electron microscopy, genotyping and immunofluorescence. It then used a modified Delphi survey to develop an algorithm for the use of diagnostic tests to definitively confirm and exclude the diagnosis of primary ciliary dyskinesia; and to provide advice when the diagnosis was not conclusive. Finally, this guideline proposes a set of quality criteria for future research on the validity of diagnostic methods for primary ciliary dyskinesia.
Collapse
Affiliation(s)
- Jane S Lucas
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK .,University of Southampton Faculty of Medicine, Academic Unit of Clinical and Experimental Medicine, Southampton, UK
| | - Angelo Barbato
- Primary Ciliary Dyskinesia Centre, Dept of Woman and Child Health (SDB), University of Padova, Padova, Italy
| | - Samuel A Collins
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,University of Southampton Faculty of Medicine, Academic Unit of Clinical and Experimental Medicine, Southampton, UK
| | - Myrofora Goutaki
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.,Dept of Paediatrics, Inselspital, University Hospital of Bern, University of Bern, Bern, Switzerland
| | - Laura Behan
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,University of Southampton Faculty of Medicine, Academic Unit of Clinical and Experimental Medicine, Southampton, UK
| | - Daan Caudri
- Telethon Kids Institute, The University of Western Australia, Subiaco, Australia.,Dept of Pediatrics/Respiratory Medicine, Erasmus University, Rotterdam, The Netherlands
| | - Sharon Dell
- Division of Respiratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada.,Dept of Pediatrics and Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, ON, Canada
| | - Ernst Eber
- Division of Paediatric Pulmonology and Allergology, Dept of Paediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Estelle Escudier
- Service de Génétique et Embryologie Médicales, Centre de Référence des Maladies Respiratoires Rares, Hôpital Armand Trousseau, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France.,Inserm UMR_S933, Sorbonne Universités (UPMC Univ Paris 06), Paris, France
| | - Robert A Hirst
- Centre for PCD Diagnosis and Research, Dept of Infection, Immunity and Inflammation, University of Leicester, Leicester Royal Infirmary, Leicester, UK
| | - Claire Hogg
- Depts of Paediatrics and Paediatric Respiratory Medicine, Imperial College and Royal Brompton Hospital, London, UK
| | - Mark Jorissen
- ENT Dept, University Hospitals Leuven, Leuven, Belgium
| | - Philipp Latzin
- Dept of Paediatrics, Inselspital, University Hospital of Bern, University of Bern, Bern, Switzerland
| | - Marie Legendre
- Service de Génétique et Embryologie Médicales, Centre de Référence des Maladies Respiratoires Rares, Hôpital Armand Trousseau, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France.,Inserm UMR_S933, Sorbonne Universités (UPMC Univ Paris 06), Paris, France
| | - Margaret W Leigh
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Fabio Midulla
- Paediatric Dept, Sapienza University of Rome, Rome, Italy
| | - Kim G Nielsen
- Danish PCD & chILD Centre, CF Centre Copenhagen, Paediatric Pulmonary Service, Dept of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Heymut Omran
- Dept of Pediatrics, University Hospital Muenster, Münster Germany
| | - Jean-Francois Papon
- AP-HP, Hôpital Kremlin-Bicetre, service d'ORL et de chirurgie cervico-faciale, Le Kremlin-Bicetre, France.,Faculté de Médecine, Université Paris-Sud, Le Kremlin-Bicêtre, France
| | - Petr Pohunek
- Paediatric Dept, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | | | - David Rigau
- Iberoamerican Cochrane Center, Barcelona, Spain
| | | | - Francesca Santamaria
- Pediatric Pulmonology, Dept of Translational Medical Sciences, Federico II University, Azienda Ospedaliera Universitaria Federico II, Naples, Italy
| | - Amelia Shoemark
- Depts of Paediatrics and Paediatric Respiratory Medicine, Imperial College and Royal Brompton Hospital, London, UK
| | - Deborah Snijders
- Primary Ciliary Dyskinesia Centre, Dept of Woman and Child Health (SDB), University of Padova, Padova, Italy
| | - Thomy Tonia
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Andrea Titieni
- Dept of Pediatrics, University Hospital Muenster, Münster Germany
| | - Woolf T Walker
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,University of Southampton Faculty of Medicine, Academic Unit of Clinical and Experimental Medicine, Southampton, UK
| | - Claudius Werner
- Dept of Pediatrics, University Hospital Muenster, Münster Germany
| | - Andrew Bush
- Depts of Paediatrics and Paediatric Respiratory Medicine, Imperial College and Royal Brompton Hospital, London, UK
| | - Claudia E Kuehni
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
138
|
Gamba BF, Zechi-Ceide RM, Kokitsu-Nakata NM, Vendramini-Pittoli S, Rosenberg C, Krepischi Santos ACV, Ribeiro-Bicudo L, Richieri-Costa A. Interstitial 1q21.1 Microdeletion Is Associated with Severe Skeletal Anomalies, Dysmorphic Face and Moderate Intellectual Disability. Mol Syndromol 2016; 7:344-348. [PMID: 27920638 DOI: 10.1159/000450971] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2016] [Indexed: 01/28/2023] Open
Abstract
We report on a Brazilian patient with a 1.7-Mb interstitial microdeletion in chromosome 1q21.1. The phenotypic characteristics include microcephaly, a peculiar facial gestalt, cleft lip/palate, and multiple skeletal anomalies represented by malformed phalanges, scoliosis, abnormal modeling of vertebral bodies, hip dislocation, abnormal acetabula, feet anomalies, and delayed neuropsychological development. Deletions reported in this region are clinically heterogeneous, ranging from subtle phenotypic manifestations to severe congenital heart defects and/or neurodevelopmental findings. A few genes within the deleted region are associated with congenital anomalies, mainly the RBM8A, DUF1220, and HYDIN2 paralogs. Our patient presents with a spectrum of unusual malformations of 1q21.1 deletion syndrome not reported up to date.
Collapse
Affiliation(s)
- Bruno F Gamba
- Department of Clinical Genetics, Hospital for Rehabilitation of Craniofacial Anomalies (HRCA), University of São Paulo, Bauru, Brazil
| | - Roseli M Zechi-Ceide
- Department of Clinical Genetics, Hospital for Rehabilitation of Craniofacial Anomalies (HRCA), University of São Paulo, Bauru, Brazil
| | - Nancy M Kokitsu-Nakata
- Department of Clinical Genetics, Hospital for Rehabilitation of Craniofacial Anomalies (HRCA), University of São Paulo, Bauru, Brazil
| | - Siulan Vendramini-Pittoli
- Department of Clinical Genetics, Hospital for Rehabilitation of Craniofacial Anomalies (HRCA), University of São Paulo, Bauru, Brazil
| | - Carla Rosenberg
- Centro de Estudos do Genoma Humano, University of São Paulo, São Paulo, Goiania, Brazil
| | | | - Lucilene Ribeiro-Bicudo
- Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal De Goias, Goiania, Brazil
| | - Antonio Richieri-Costa
- Department of Clinical Genetics, Hospital for Rehabilitation of Craniofacial Anomalies (HRCA), University of São Paulo, Bauru, Brazil
| |
Collapse
|
139
|
Dehlink E, Hogg C, Carr SB, Bush A. Clinical phenotype and current diagnostic criteria for primary ciliary dyskinesia. Expert Rev Respir Med 2016; 10:1163-1175. [DOI: 10.1080/17476348.2016.1242414] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
140
|
Teves ME, Nagarkatti-Gude DR, Zhang Z, Strauss JF. Mammalian axoneme central pair complex proteins: Broader roles revealed by gene knockout phenotypes. Cytoskeleton (Hoboken) 2016; 73:3-22. [PMID: 26785425 DOI: 10.1002/cm.21271] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 11/22/2015] [Accepted: 12/24/2015] [Indexed: 01/09/2023]
Abstract
The axoneme genes, their encoded proteins, their functions and the structures they form are largely conserved across species. Much of our knowledge of the function and structure of axoneme proteins in cilia and flagella is derived from studies on model organisms like the green algae, Chlamydomonas reinhardtii. The core structure of cilia and flagella is the axoneme, which in most motile cilia and flagella contains a 9 + 2 configuration of microtubules. The two central microtubules are the scaffold of the central pair complex (CPC). Mutations that disrupt CPC genes in Chlamydomonas and other model organisms result in defects in assembly, stability and function of the axoneme, leading to flagellar motility defects. However, targeted mutations generated in mice in the orthologous CPC genes have revealed significant differences in phenotypes of mutants compared to Chlamydomonas. Here we review observations that support the concept of cell-type specific roles for the CPC genes in mice, and an expanded repertoire of functions for the products of these genes in cilia, including non-motile cilia, and other microtubule-associated cellular functions.
Collapse
Affiliation(s)
- Maria E Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - David R Nagarkatti-Gude
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia.,Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Zhibing Zhang
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia.,Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Jerome F Strauss
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia.,Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
141
|
Kempeneers C, Seaton C, Chilvers MA. Variation of Ciliary Beat Pattern in Three Different Beating Planes in Healthy Subjects. Chest 2016; 151:993-1001. [PMID: 27693596 DOI: 10.1016/j.chest.2016.09.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/24/2016] [Accepted: 09/09/2016] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Digital high-speed video microscopy (DHSV) allows analysis of ciliary beat frequency (CBF) and ciliary beat pattern (CBP) of respiratory cilia in three planes. Normal reference data use a sideways edge to evaluate ciliary dyskinesia and calculate CBF using the time needed for a cilium to complete 10 beat cycles. Variability in CBF within the respiratory epithelium has been described, but data concerning variation of CBP is limited in healthy epithelium. This study aimed to document variability of CBP in normal samples, to compare ciliary function in three profiles, and to compare CBF calculated over five or 10 beat cycles. METHODS Nasal brushing samples from 13 healthy subjects were recorded using DHSV in three profiles. CBP and CBF over a 10-beat cycle were evaluated in all profiles, and CBF was reevaluated over five-beat cycles in the sideways edges. RESULTS A uniform CBP was seen in 82.1% of edges. In the sideways profile, uniformity within the edge was lower (uniform normal CBP, 69.1% [sideways profile]; 97.1% [toward the observer], 92.0% [from above]), and dyskinesia was higher. Interobserver agreement for dyskinesia was poor. CBF was not different between profiles (P = .8097) or between 10 and five beat cycles (P = .1126). CONCLUSIONS Our study demonstrates a lack of uniformity and consistency in manual CBP analysis of samples from healthy subjects, emphasizing the risk of automated CBP analysis in limited regions of interest and of single and limited manual CBP analysis. The toward the observer and from above profiles may be used to calculate CBF but may be less sensitive for evaluation of ciliary dyskinesia and CBP. CBF can be measured reliably by evaluation of only five-beat cycles.
Collapse
Affiliation(s)
- Celine Kempeneers
- Division of Respirology, Department of Pediatrics, University of British Columbia and British Columbia Children's Hospital, Vancouver, BC, Canada
| | - Claire Seaton
- Division of Respirology, Department of Pediatrics, University of British Columbia and British Columbia Children's Hospital, Vancouver, BC, Canada
| | - Mark A Chilvers
- Division of Respirology, Department of Pediatrics, University of British Columbia and British Columbia Children's Hospital, Vancouver, BC, Canada.
| |
Collapse
|
142
|
TTC25 Deficiency Results in Defects of the Outer Dynein Arm Docking Machinery and Primary Ciliary Dyskinesia with Left-Right Body Asymmetry Randomization. Am J Hum Genet 2016; 99:460-9. [PMID: 27486780 PMCID: PMC4974089 DOI: 10.1016/j.ajhg.2016.06.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/17/2016] [Indexed: 11/22/2022] Open
Abstract
Multiprotein complexes referred to as outer dynein arms (ODAs) develop the main mechanical force to generate the ciliary and flagellar beat. ODA defects are the most common cause of primary ciliary dyskinesia (PCD), a congenital disorder of ciliary beating, characterized by recurrent infections of the upper and lower airways, as well as by progressive lung failure and randomization of left-right body asymmetry. Using a whole-exome sequencing approach, we identified recessive loss-of-function mutations within TTC25 in three individuals from two unrelated families affected by PCD. Mice generated by CRISPR/Cas9 technology and carrying a deletion of exons 2 and 3 in Ttc25 presented with laterality defects. Consistently, we observed immotile nodal cilia and missing leftward flow via particle image velocimetry. Furthermore, transmission electron microscopy (TEM) analysis in TTC25-deficient mice revealed an absence of ODAs. Consistent with our findings in mice, we were able to show loss of the ciliary ODAs in humans via TEM and immunofluorescence (IF) analyses. Additionally, IF analyses revealed an absence of the ODA docking complex (ODA-DC), along with its known components CCDC114, CCDC151, and ARMC4. Co-immunoprecipitation revealed interaction between the ODA-DC component CCDC114 and TTC25. Thus, here we report TTC25 as a new member of the ODA-DC machinery in humans and mice.
Collapse
|
143
|
Mutations in DNAJB13, Encoding an HSP40 Family Member, Cause Primary Ciliary Dyskinesia and Male Infertility. Am J Hum Genet 2016; 99:489-500. [PMID: 27486783 DOI: 10.1016/j.ajhg.2016.06.022] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 06/22/2016] [Indexed: 10/21/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is an autosomal-recessive disease due to functional or ultra-structural defects of motile cilia. Affected individuals display recurrent respiratory-tract infections; most males are infertile as a result of sperm flagellar dysfunction. The great majority of the PCD-associated genes identified so far encode either components of dynein arms (DAs), which are multiprotein-ATPase complexes essential for ciliary motility, or proteins involved in DA assembly. To identify the molecular basis of a PCD phenotype characterized by central complex (CC) defects but normal DA structure, a phenotype found in ∼15% of cases, we performed whole-exome sequencing in a male individual with PCD and unexplained CC defects. This analysis, combined with whole-genome SNP genotyping, identified a homozygous mutation in DNAJB13 (c.833T>G), a gene encoding a HSP40 co-chaperone whose ortholog in the flagellated alga Chlamydomonas localizes to the radial spokes. In vitro studies showed that this missense substitution (p.Met278Arg), which involves a highly conserved residue of several HSP40 family members, leads to protein instability and triggers proteasomal degradation, a result confirmed by the absence of endogenous DNAJB13 in cilia and sperm from this individual. Subsequent DNAJB13 analyses identified another homozygous mutation in a second family; the study of DNAJB13 transcripts obtained from airway cells showed that this mutation (c.68+1G>C) results in a splicing defect consistent with a loss-of-function mutation. Overall, this study, which establishes mutations in DNAJB13 as a cause of PCD, unveils the key role played by DNAJB13 in the proper formation and function of ciliary and flagellar axonemes in humans.
Collapse
|
144
|
Dougherty GW, Loges NT, Klinkenbusch JA, Olbrich H, Pennekamp P, Menchen T, Raidt J, Wallmeier J, Werner C, Westermann C, Ruckert C, Mirra V, Hjeij R, Memari Y, Durbin R, Kolb-Kokocinski A, Praveen K, Kashef MA, Kashef S, Eghtedari F, Häffner K, Valmari P, Baktai G, Aviram M, Bentur L, Amirav I, Davis EE, Katsanis N, Brueckner M, Shaposhnykov A, Pigino G, Dworniczak B, Omran H. DNAH11 Localization in the Proximal Region of Respiratory Cilia Defines Distinct Outer Dynein Arm Complexes. Am J Respir Cell Mol Biol 2016; 55:213-24. [PMID: 26909801 PMCID: PMC4979367 DOI: 10.1165/rcmb.2015-0353oc] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/02/2016] [Indexed: 11/24/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a recessively inherited disease that leads to chronic respiratory disorders owing to impaired mucociliary clearance. Conventional transmission electron microscopy (TEM) is a diagnostic standard to identify ultrastructural defects in respiratory cilia but is not useful in approximately 30% of PCD cases, which have normal ciliary ultrastructure. DNAH11 mutations are a common cause of PCD with normal ciliary ultrastructure and hyperkinetic ciliary beating, but its pathophysiology remains poorly understood. We therefore characterized DNAH11 in human respiratory cilia by immunofluorescence microscopy (IFM) in the context of PCD. We used whole-exome and targeted next-generation sequence analysis as well as Sanger sequencing to identify and confirm eight novel loss-of-function DNAH11 mutations. We designed and validated a monoclonal antibody specific to DNAH11 and performed high-resolution IFM of both control and PCD-affected human respiratory cells, as well as samples from green fluorescent protein (GFP)-left-right dynein mice, to determine the ciliary localization of DNAH11. IFM analysis demonstrated native DNAH11 localization in only the proximal region of wild-type human respiratory cilia and loss of DNAH11 in individuals with PCD with certain loss-of-function DNAH11 mutations. GFP-left-right dynein mice confirmed proximal DNAH11 localization in tracheal cilia. DNAH11 retained proximal localization in respiratory cilia of individuals with PCD with distinct ultrastructural defects, such as the absence of outer dynein arms (ODAs). TEM tomography detected a partial reduction of ODAs in DNAH11-deficient cilia. DNAH11 mutations result in a subtle ODA defect in only the proximal region of respiratory cilia, which is detectable by IFM and TEM tomography.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Cordula Westermann
- Gerhard-Domagk-Institut for Pathology, University Hospital Muenster, and
| | - Christian Ruckert
- Department of Human Genetics, University of Muenster, Muenster, Germany
| | - Virginia Mirra
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Rim Hjeij
- Department of General Pediatrics and
| | - Yasin Memari
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Richard Durbin
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | | | - Kavita Praveen
- Center for Human Disease Modeling, Duke University, Durham, North Carolina
- Regeneron Genetics Center, Tarrytown, New York; and
| | - Mohammad A. Kashef
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Baystate Medical Center, Springfield, Massachusetts
| | - Sara Kashef
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fardin Eghtedari
- Australian Capital Territory Health, Canberra, Australian Capital Territory, Australia
| | - Karsten Häffner
- Department of General Pediatrics, Adolescent Medicine and Neonatology, University of Freiburg, Freiburg, Germany
| | - Pekka Valmari
- Department of Pediatrics, Lapland Central Hospital, Rovaniemi, Finland
| | - György Baktai
- Department of Bronchology, Pediatric Institute Svábhegy, Budapest, Hungary
| | | | | | - Israel Amirav
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Erica E. Davis
- Center for Human Disease Modeling, Duke University, Durham, North Carolina
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University, Durham, North Carolina
| | - Martina Brueckner
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut
| | - Artem Shaposhnykov
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Gaia Pigino
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Bernd Dworniczak
- Department of Human Genetics, University of Muenster, Muenster, Germany
| | | |
Collapse
|
145
|
Abstract
PURPOSE OF REVIEW Research on the biology of cilia, complex hair-like cellular organelles, has greatly informed our understanding of its crucial role in respiratory health and the pathogenesis of primary ciliary dyskinesia (PCD), including the genetics behind this condition. This review will summarize the current state of the art in the field highlighting its clinical implications. RECENT FINDINGS The genetics of PCD have exploded over the past few years as knowledge acquired from model systems has permitted the identification of genes that are key components of the ciliary apparatus and its function. In addition, clinical criteria and diagnostic tools have emerged that permit more clear identification of affected individuals. SUMMARY The rate of progress in the field continues to accelerate through international collaborative efforts and standardization of methods. Although the genetics behind PCD are complex, given the large number of genes associated with disease, as well as the large number of possible mutations even at the individual gene level, this knowledge is rapidly translating in improved diagnostics and hopefully in the near future in the identification of potential therapeutics.
Collapse
Affiliation(s)
- Carlos E. Milla
- The Stanford Cystic Fibrosis Center, Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, 770 Welch Rd., Ste. 350, Palo Alto, CA 94304, P. +1-650-736-9824, F. +1-650-723-5201,
| |
Collapse
|
146
|
Jeanson L, Thomas L, Copin B, Coste A, Sermet-Gaudelus I, Dastot-Le Moal F, Duquesnoy P, Montantin G, Collot N, Tissier S, Papon JF, Clement A, Louis B, Escudier E, Amselem S, Legendre M. Mutations in GAS8, a Gene Encoding a Nexin-Dynein Regulatory Complex Subunit, Cause Primary Ciliary Dyskinesia with Axonemal Disorganization. Hum Mutat 2016; 37:776-85. [PMID: 27120127 DOI: 10.1002/humu.23005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/10/2016] [Indexed: 12/12/2022]
Abstract
Primary ciliary dyskinesia (PCD) is an autosomal recessive disease characterized by chronic respiratory infections of the upper and lower airways, hypofertility, and, in approximately half of the cases, situs inversus. This complex phenotype results from defects in motile cilia and sperm flagella. Among the numerous genes involved in PCD, very few-including CCDC39 and CCDC40-carry mutations that lead to a disorganization of ciliary axonemes with microtubule misalignment. Focusing on this particular phenotype, we identified bi-allelic loss-of-function mutations in GAS8, a gene that encodes a subunit of the nexin-dynein regulatory complex (N-DRC) orthologous to DRC4 of the flagellated alga Chlamydomonas reinhardtii. Unlike the majority of PCD patients, individuals with GAS8 mutations have motile cilia, which, as documented by high-speed videomicroscopy, display a subtle beating pattern defect characterized by slightly reduced bending amplitude. Immunofluorescence studies performed on patients' respiratory cilia revealed that GAS8 is not required for the proper expression of CCDC39 and CCDC40. Rather, mutations in GAS8 affect the subcellular localization of another N-DRC subunit called DRC3. Overall, this study, which identifies GAS8 as a PCD gene, unveils the key importance of the corresponding protein in N-DRC integrity and in the proper alignment of axonemal microtubules in humans.
Collapse
Affiliation(s)
- Ludovic Jeanson
- Institut National de la Santé Et de la Recherche Médicale (INSERM), UMR_S933, Sorbonne Universités, UPMC Univ Paris 06, Paris, F-75012, France
| | - Lucie Thomas
- Institut National de la Santé Et de la Recherche Médicale (INSERM), UMR_S933, Sorbonne Universités, UPMC Univ Paris 06, Paris, F-75012, France
| | - Bruno Copin
- Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Armand Trousseau, Service de Génétique et Embryologie Médicales, Paris, F-75012, France
| | - André Coste
- Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Intercommunal et Groupe Hospitalier Henri Mondor - Albert Chenevier, Service d'Oto-Rhino-Laryngologie et de Chirurgie Cervico-Faciale, Créteil, F-94000, France
| | - Isabelle Sermet-Gaudelus
- Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Necker, Service de Pneumo-Allergologie Pédiatrique, Paris, F-75015, France
| | - Florence Dastot-Le Moal
- Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Armand Trousseau, Service de Génétique et Embryologie Médicales, Paris, F-75012, France
| | - Philippe Duquesnoy
- Institut National de la Santé Et de la Recherche Médicale (INSERM), UMR_S933, Sorbonne Universités, UPMC Univ Paris 06, Paris, F-75012, France
| | - Guy Montantin
- Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Armand Trousseau, Service de Génétique et Embryologie Médicales, Paris, F-75012, France
| | - Nathalie Collot
- Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Armand Trousseau, Service de Génétique et Embryologie Médicales, Paris, F-75012, France
| | - Sylvie Tissier
- Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Armand Trousseau, Service de Génétique et Embryologie Médicales, Paris, F-75012, France
| | - Jean-François Papon
- Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, Service d'Oto-Rhino-Laryngologie et de Chirurgie Cervico-Maxillo-Faciale, Le Kremlin-Bicêtre, F-94275, France
| | - Annick Clement
- Institut National de la Santé Et de la Recherche Médicale (INSERM), UMR_S933, Sorbonne Universités, UPMC Univ Paris 06, Paris, F-75012, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Armand Trousseau, Service de Pneumologie Pédiatrique, Centre National de Référence des Maladies Respiratoires Rares, Paris, F-75012, France
| | - Bruno Louis
- Institut National de la Santé Et de la Recherche Médicale (INSERM), UMR_S955, Equipe 13, Univ Paris Est, Créteil, F-94000, France
| | - Estelle Escudier
- Institut National de la Santé Et de la Recherche Médicale (INSERM), UMR_S933, Sorbonne Universités, UPMC Univ Paris 06, Paris, F-75012, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Armand Trousseau, Service de Génétique et Embryologie Médicales, Paris, F-75012, France
| | - Serge Amselem
- Institut National de la Santé Et de la Recherche Médicale (INSERM), UMR_S933, Sorbonne Universités, UPMC Univ Paris 06, Paris, F-75012, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Armand Trousseau, Service de Génétique et Embryologie Médicales, Paris, F-75012, France
| | - Marie Legendre
- Institut National de la Santé Et de la Recherche Médicale (INSERM), UMR_S933, Sorbonne Universités, UPMC Univ Paris 06, Paris, F-75012, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Armand Trousseau, Service de Génétique et Embryologie Médicales, Paris, F-75012, France
| |
Collapse
|
147
|
Djakow J, Kramná L, Dušátková L, Uhlík J, Pursiheimo JP, Svobodová T, Pohunek P, Cinek O. An effective combination of sanger and next generation sequencing in diagnostics of primary ciliary dyskinesia. Pediatr Pulmonol 2016; 51:498-509. [PMID: 26228299 DOI: 10.1002/ppul.23261] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 01/07/2023]
Abstract
BACKGROUND Primary ciliary dyskinesia (PCD) is a multigenic autosomal recessive condition affecting respiratory tract and other organs where ciliary motility is required. The extent of its genetic heterogeneity is remarkable. The aim of the study was to develop a cost-effective pipeline for genetic diagnostics using a combination of Sanger and next generation sequencing (NGS). MATERIALS AND METHODS Data and samples of 33 families with 38 affected subjects with PCD diagnosed in childhood were collected over the territory of the Czech Republic. A panel of 18 PCD causative or candidate genes was implemented into an Illumina TruSeq Custom Amplicon NGS assay, and three ancestral mutations in SPAG1 were screened by conventional Sanger sequencing, which was also used for the confirmation of the NGS results and for the analysis of familial segregation. RESULTS The causative gene was DNAH5 in 11/33 (33%) probands, SPAG1 in 8/33 (24%), and DNAI1, CCDC40, LRRC6 in one family each. If the high proportion of subjects with bi-allelic ancestral mutations in SPAG1 is corroborated in other Caucasian populations, a simple Sanger sequencing test for these three mutations may serve as an effective pre-screening step, being followed by an NGS panel for other, much larger, PCD genes. CONCLUSIONS We present a combination of Sanger sequencing with an NGS panel for known and candidate PCD genes, implemented in a moderate-size national collection of patients. This strategy has proven to be cost-effective, rapid and reliable, and was able to detect the causative gene in two thirds of our PCD patients.
Collapse
Affiliation(s)
- Jana Djakow
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Czech Republic
| | - Lenka Kramná
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Czech Republic
| | - Lenka Dušátková
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Czech Republic
| | - Jiří Uhlík
- Department of Histology and Embryology, 2nd Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Juha-Pekka Pursiheimo
- Department of Medical Biochemistry and Genetics, University of Turku, Turku, Finland
| | - Tamara Svobodová
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Czech Republic
| | - Petr Pohunek
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Czech Republic
| | - Ondřej Cinek
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Czech Republic
| |
Collapse
|
148
|
Abstract
The basal body is a highly organized structure essential for the formation of cilia. Basal bodies dock to a cellular membrane through their distal appendages (also known as transition fibers) and provide the foundation on which the microtubules of the ciliary axoneme are built. Consequently, basal body position and orientation dictates the position and orientation of its cilium. The heart of the basal body is the mother centriole, the older of the two centrioles inherited during mitosis and which is comprised of nine triplet microtubules arranged in a cylinder. Like all ciliated organisms, mice possess basal bodies, and studies of mouse basal body structure have made diverse important contributions to the understanding of how basal body structure impacts the function of cilia. The appendages and associated structures of mouse basal bodies can differ in their architecture from those of other organisms, and even between murine cell types. For example, basal bodies of immotile primary cilia are connected to daughter centrioles, whereas those of motile multiciliated cells are not. The last few years have seen the identification of many components of the basal body, and the mouse will continue to be an extremely valuable system for genetically defining their functions.
Collapse
Affiliation(s)
- Galo Garcia
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158 USA
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158 USA
| |
Collapse
|
149
|
Abstract
Primary ciliary dyskinesia (PCD) is a genetic disease of motile cilia, which belongs to a group of disorders resulting from dysfunction of cilia, collectively known as ciliopathies. Insights into the genetics and phenotypes of PCD have grown over the last decade, in part propagated by the discovery of a number of novel cilia-related genes. These genes encode proteins that segregate into structural axonemal, regulatory, as well as cytoplasmic assembly proteins. Our understanding of primary (sensory) cilia has also expanded, and an ever-growing list of diverse conditions has been linked to defective function and signaling of the sensory cilium. Recent multicenter clinical and genetic studies have uncovered the heterogeneity of motile and sensory ciliopathies, and in some cases, the overlap between these conditions. Here, we will describe the genetics and pathophysiology of ciliopathies in children, focusing on PCD, review emerging genotype-phenotype relationships, and diagnostic tools available for the clinician.
Collapse
Affiliation(s)
- Amjad Horani
- a Department of Pediatrics , Washington University School of Medicine , St. Louis , MO , USA
| | - Thomas W Ferkol
- a Department of Pediatrics , Washington University School of Medicine , St. Louis , MO , USA.,b Department of Cell Biology and Physiology , Washington University School of Medicine , St. Louis , MO , USA
| |
Collapse
|
150
|
Abstract
Through the better understanding of the genetics and clinical associations of Primary Ciliary Dyskinesia (PCD), an autosomal recessive disorder of ciliary motility and mucociliary clearance, the association between PCD and heterotaxic congenital heart disease (CHD) has been established. In parallel, research into the cause of CHD has elucidated further the role of ciliary function on the development of normal cardiovascular structure. Increased awareness by clinicians regarding this elevated risk of PCD in patients with CHD will allow for more comprehensive screening and identification of cases in this high-risk group with earlier diagnosis leading to improved health outcomes.
Collapse
|