101
|
Zhang Z, Zhou H, Bai L, Lv Y, Yi H, Zhang L, Li R. Protective effects of probiotics on acute alcohol-induced liver injury in mice through alcohol metabolizing enzymes activation and hepatic TNF-α response reduction. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
102
|
Zhang M, Cai D, Song Q, Wang Y, Sun H, Piao C, Yu H, Liu J, Liu J, Wang Y. Effect on Viability of Microencapsulated Lactobacillus rhamnosus with the Whey Protein-pullulan Gels in Simulated Gastrointestinal Conditions and Properties of Gels. Food Sci Anim Resour 2019; 39:459-473. [PMID: 31304474 PMCID: PMC6612782 DOI: 10.5851/kosfa.2019.e42] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/16/2019] [Accepted: 05/26/2019] [Indexed: 12/13/2022] Open
Abstract
Lactobacillus rhamnosus GG (LGG) has low resistance to low pH and bile salt in the gastrointestinal juice. In this study, the gel made from whey protein concentrate (WPC) and pullulan (PUL) was used as the wall material to prepare the microencapsulation for LGG protection. The gelation process was optimized and the properties of gel were also determined. The results showed the optimal gel was made from 10% WPC and 8.0% PUL at pH 7.5, which could get the best protective effect; the viable counts of LGG were 6.61 Log CFU/g after exposure to simulated gastric juice (SGJ) and 9.40 Log CFU/g to simulated intestinal juice (SIJ) for 4 h. Sodium dodecyl sulphite polyacrylamide gel electrophoresis (SDS-PAGE) confirmed that the WPC-PUL gel had low solubility in SGJ, but dissolved well in SIJ, which suggested that the gel can protect LGG under SGJ condition and release probiotics in the SIJ. Moreover, when the gel has highest hardness and water-holding capacity, the viable counts of LGG were not the best, suggesting the relationship between the protection and the properties of the gel was non-linear.
Collapse
Affiliation(s)
- Minghao Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Dan Cai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China.,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China
| | - Qiumei Song
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Yu Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Haiyue Sun
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Chunhong Piao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China.,National Processing Laboratory for Soybean Industry and Technology, Changchun, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China.,National Processing Laboratory for Soybean Industry and Technology, Changchun, China
| | - Junmei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China.,National Processing Laboratory for Soybean Industry and Technology, Changchun, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China.,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China
| | - Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China.,National Processing Laboratory for Soybean Industry and Technology, Changchun, China.,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China
| |
Collapse
|
103
|
Gut Microbiome: Profound Implications for Diet and Disease. Nutrients 2019; 11:nu11071613. [PMID: 31315227 PMCID: PMC6682904 DOI: 10.3390/nu11071613] [Citation(s) in RCA: 642] [Impact Index Per Article: 107.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/05/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023] Open
Abstract
The gut microbiome plays an important role in human health and influences the development of chronic diseases ranging from metabolic disease to gastrointestinal disorders and colorectal cancer. Of increasing prevalence in Western societies, these conditions carry a high burden of care. Dietary patterns and environmental factors have a profound effect on shaping gut microbiota in real time. Diverse populations of intestinal bacteria mediate their beneficial effects through the fermentation of dietary fiber to produce short-chain fatty acids, endogenous signals with important roles in lipid homeostasis and reducing inflammation. Recent progress shows that an individual’s starting microbial profile is a key determinant in predicting their response to intervention with live probiotics. The gut microbiota is complex and challenging to characterize. Enterotypes have been proposed using metrics such as alpha species diversity, the ratio of Firmicutes to Bacteroidetes phyla, and the relative abundance of beneficial genera (e.g., Bifidobacterium, Akkermansia) versus facultative anaerobes (E. coli), pro-inflammatory Ruminococcus, or nonbacterial microbes. Microbiota composition and relative populations of bacterial species are linked to physiologic health along different axes. We review the role of diet quality, carbohydrate intake, fermentable FODMAPs, and prebiotic fiber in maintaining healthy gut flora. The implications are discussed for various conditions including obesity, diabetes, irritable bowel syndrome, inflammatory bowel disease, depression, and cardiovascular disease.
Collapse
|
104
|
Liu H, Gu R, Li W, Zhou W, Cong Z, Xue J, Liu Y, Wei Q, Zhou Y. Lactobacillus rhamnosus GG attenuates tenofovir disoproxil fumarate-induced bone loss in male mice via gut-microbiota-dependent anti-inflammation. Ther Adv Chronic Dis 2019; 10:2040622319860653. [PMID: 31321013 PMCID: PMC6610433 DOI: 10.1177/2040622319860653] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023] Open
Abstract
Background: Although antiretroviral agents trigger bone loss in human immunodeficiency
virus patients, tenofovir disoproxil fumarate (TDF) induces more severe bone
damage, such as osteoporosis. While, the mechanisms are unclear, probiotic
supplements may be effective against osteoporosis. Methods: C57BL6/J mice were administered with Lactobacillus rhamnosus
GG (LGG)+TDF, TDF, and zoledronic acid+TDF, respectively. Bone morphometry
and biomechanics were evaluated using microcomputed tomography, bone
slicing, and flexural tests. The lymphocyte, proinflammatory cytokines, and
intestinal permeability levels were detected using enzyme-linked
immunosorbent assays, quantitative real-time polymerase chain reaction, and
flow cytometry. The gut microbiota composition and metabolomics were
analyzed using 16S recombinant deoxyribonucleic acid pyrosequencing and
ultra-performance liquid-chromatography–quadrupole time-of-flight mass
spectrometry. Results: LGG administered orally induced marked increases in trabecular bone
microarchitecture, cortical bone volume, and biomechanical properties in the
LGG+TDF group compared with that in the TDF-only group. Moreover, LGG
treatment increased intestinal barrier integrity, expanded regulatory T
cells, decreased Th17 cells, and downregulated osteoclastogenesis-related
cytokines in the bone marrow, spleen, and gut. Furthermore, LGG
reconstructed the gut microbiota and changed the metabolite composition,
especially lysophosphatidylcholine levels. However, the amount of
N-acetyl-leukotriene E4 was the highest in the TDF-only group. Conclusion: LGG reconstructed the community structure of the gut microbiota, promoted the
expression of lysophosphatidylcholines, and improved intestinal integrity to
suppress the TDF-induced inflammatory response, which resulted in
attenuation of TDF-induced bone loss in mice. LGG probiotics may be a safe
and effective strategy to prevent and treat TDF-induced osteoporosis.
Collapse
Affiliation(s)
- Hao Liu
- The Central Laboratory, Peking University School and Hospital of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Ranli Gu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Wei Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Wen Zhou
- The Central Laboratory, Peking University School and Hospital of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Zhe Cong
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Jing Xue
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, People's Republic of China
| | - Qiang Wei
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, No.5, Panjiayuan, Nanli, Chaoyang District, Beijing 100021, People's Republic of China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, People's Republic of China
| |
Collapse
|
105
|
Kosnicki KL, Penprase JC, Cintora P, Torres PJ, Harris GL, Brasser SM, Kelley ST. Effects of moderate, voluntary ethanol consumption on the rat and human gut microbiome. Addict Biol 2019; 24:617-630. [PMID: 29750384 PMCID: PMC6230504 DOI: 10.1111/adb.12626] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/13/2022]
Abstract
Many alcohol-induced health complications are directly attributable to the toxicity of alcohol or its metabolites, but another potential health impact of alcohol may be on the microbial communities of the human gut. Clear distinctions between healthy and diseased-state gut microbiota have been observed in subjects with metabolic diseases, and recent studies suggest that chronic alcoholism is linked to gut microbiome dysbiosis. Here, we investigated the effects of moderate levels of alcohol consumption on the gut microbiome in both rats and humans. The gut microbiota of rats voluntarily consuming a 20 percent ethanol solution, on alternate days, were compared with a non-exposed control group to identify differential taxonomic and functional profiles. Gut microbial diversity profiles were determined using culture-independent amplification, next-generation sequencing and bioinformatic analysis of bacterial 16S ribosomal RNA gene sequence libraries. Our results showed that, compared with controls, ethanol-consuming rats experienced a significant decline in the biodiversity of their gut microbiomes, a state generally associated with dysbiosis. We also observed significant shifts in the overall diversity of the gut microbial communities and a dramatic change in the relative abundance of particular microbes, such as the Lactobacilli. We also compared our results to human fecal microbiome data collected as part of the citizen science American Gut Project. In contrast to the rat data, human drinkers had significantly higher gut microbial biodiversity than non-drinkers. However, we also observed that microbes that differed among the human subjects displayed similar trends in the rat model, including bacteria implicated in metabolic disease.
Collapse
Affiliation(s)
- Kassi L. Kosnicki
- Department of Biology, San Diego State University, San Diego, CA, 92104 USA
| | - Jerrold C. Penprase
- Department of Psychology, San Diego State University, San Diego, CA, 92182 USA
| | - Patricia Cintora
- Department of Psychology, San Diego State University, San Diego, CA, 92182 USA
| | - Pedro J. Torres
- Department of Biology, San Diego State University, San Diego, CA, 92104 USA
| | - Greg L. Harris
- Department of Biology, San Diego State University, San Diego, CA, 92104 USA
| | - Susan M. Brasser
- Department of Psychology, San Diego State University, San Diego, CA, 92182 USA
| | - Scott T. Kelley
- Department of Biology, San Diego State University, San Diego, CA, 92104 USA
| |
Collapse
|
106
|
Hong M, Han DH, Hong J, Kim DJ, Suk KT. Are Probiotics Effective in Targeting Alcoholic Liver Diseases? Probiotics Antimicrob Proteins 2019; 11:335-347. [PMID: 29687200 DOI: 10.1007/s12602-018-9419-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Alcoholic liver disease (ALD) encompasses a broad spectrum of disorders including steatosis, steatohepatitis, fibrosis, and cirrhosis. Despite intensive research in the last two decades, there is currently no Food and Drug Administration-approved therapy for treating ALD. Several studies have demonstrated the importance of the gut-liver axis and gut microbiome on the pathogenesis of ALD. Alcohol may induce intestinal dysbiosis and increased intestinal permeability, which in turn result in increased levels of pathogen-associated molecular patterns such as lipopolysaccharide (LPS) and translocation of microbial products from the gut to the liver (bacterial translocation). LPS is an inflammatory signal that activates toll-like receptor 4 on Kupffer cells, contributing to the inflammation observed in ALD. Recently, probiotics have been shown to be effective in reducing or preventing the progression of ALD. A potential mechanism is that the probiotics transforms the composition of intestinal microbiota, which leads to reductions in alcohol-induced dysbiosis, intestinal permeability, bacterial translocation, endotoxemia, and consequently, the development of ALD. While transformation of intestinal microbiota by probiotics appears to be a promising therapeutic strategy for the treatment of intestinal barrier dysfunction, there is a scarcity of research that studies probiotics in the context of ALD. In this review, we discuss the potential therapeutic applications of probiotics in the treatment of ALD.
Collapse
Affiliation(s)
- Meegun Hong
- Department of Internal Medicine, Hallym University Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Gyo-dong, Chuncheon, 24253, South Korea
| | - Dae Hee Han
- Department of Internal Medicine, Hallym University Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Gyo-dong, Chuncheon, 24253, South Korea
| | - Jitaek Hong
- Department of Internal Medicine, Hallym University Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Gyo-dong, Chuncheon, 24253, South Korea
| | - Dong Joon Kim
- Department of Internal Medicine, Hallym University Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Gyo-dong, Chuncheon, 24253, South Korea
| | - Ki Tae Suk
- Department of Internal Medicine, Hallym University Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Gyo-dong, Chuncheon, 24253, South Korea.
| |
Collapse
|
107
|
Probiotics for Alleviating Alcoholic Liver Injury. Gastroenterol Res Pract 2019; 2019:9097276. [PMID: 31263495 PMCID: PMC6556793 DOI: 10.1155/2019/9097276] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/18/2019] [Accepted: 04/07/2019] [Indexed: 02/07/2023] Open
Abstract
Many animal experiments and clinical trials showed that probiotics are effective for the treatment of alcoholic liver disease. Alcohol disrupts the composition of intestinal flora; probiotics modulate the gut microbiota and reverse alcohol-associated intestinal barrier dysfunction by decreasing intestinal mucosal permeability and preventing intestinal bacteria from translocating. Probiotics enhance immune responses and reduce the levels of alcohol-induced inflammatory cytokines and reactive oxygen species (ROS) production in the liver and intestine. Probiotics also increase fatty acid β-oxidation and reduce lipogenesis, combating alcohol-induced hepatic steatosis. In this review, we summarize the current knowledge regarding the mechanism of action of probiotics for reducing the effects of alcoholic liver disease.
Collapse
|
108
|
Abstract
Alcoholic liver disease, which ranges from mild disease to alcoholic hepatitis and cirrhosis, is a leading cause of morbidity and mortality worldwide. Alcohol intake can lead to changes in gut microbiota composition, even before liver disease development. These alterations worsen with advancing disease and could be complicit in disease progression. Microbial function, especially related to bile acid metabolism, can modulate alcohol-associated injury even in the presence of cirrhosis and alcoholic hepatitis. Microbiota changes might also alter brain function, and the gut-brain axis might be a potential target to reduce alcoholic relapse risk. Gut microbiota manipulation including probiotics, faecal microbial transplant and antibiotics has been studied in alcoholic liver disease with varying success. Further investigation of the modulation of the gut-liver axis is relevant, as most of these patients are not candidates for liver transplantation. This Review focuses on clinical studies involving the gut microbiota in patients with alcoholic liver disease across the spectrum from alcoholic fatty liver to cirrhosis and alcoholic hepatitis. Specific alterations in the gut-liver-brain axis that are complicit in the interactions between the gut microbiota and alcohol addiction are also reviewed.
Collapse
|
109
|
Lee CS, Tan PL, Eor JY, Choi DH, Park M, Seo SK, Yoon S, Yang S, Kim SH. Prophylactic use of probiotic chocolate modulates intestinal physiological functions in constipated rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3045-3056. [PMID: 30488458 DOI: 10.1002/jsfa.9518] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/19/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND This study investigated the in vivo prophylactic effect of probiotic chocolate on constipation. Rats were administered chocolate containing 2.5 × 1010 CFU g-1 of probiotics daily for 4 weeks and treated with loperamide (5 mg kg-1 ) daily at the fourth week of treatment. RESULTS Probiotic chocolate treatment significantly (P < 0.05) increased the intestinal motility, colon length, fecal moisture content and number of excreted fecal pellets in constipated rats. Moreover, quantitative real-time polymerase chain reaction data and histological images also revealed that both probiotic chocolate LYC and BB12 treatments were capable of upregulating the mRNA expression levels of colonic ZO-1, occludin and AQP8, leading to the maintenance of the defensive barrier function in the constipated rats compared with the negative controls. Interestingly, these treatments also modulated gut bacterial populations by increasing the abundance levels of Lactobacillus and Bifidobacterium, as well as reducing the abundance level of Enterobacteriaceae. CONCLUSION The present study demonstrated that probiotic chocolate LYC and BB12 could potentially be used as alternative agents for prophylactic constipation. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chul Sang Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Pei Lei Tan
- College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Ju Young Eor
- College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | | | - Miri Park
- Lotte R&D Center, Seoul, South Korea
| | | | | | | | - Sae Hun Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
110
|
Gao J, Li Y, Wan Y, Hu T, Liu L, Yang S, Gong Z, Zeng Q, Wei Y, Yang W, Zeng Z, He X, Huang SH, Cao H. A Novel Postbiotic From Lactobacillus rhamnosus GG With a Beneficial Effect on Intestinal Barrier Function. Front Microbiol 2019; 10:477. [PMID: 30923519 PMCID: PMC6426789 DOI: 10.3389/fmicb.2019.00477] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/25/2019] [Indexed: 12/12/2022] Open
Abstract
It has long been known that probiotics can be used to maintain intestinal homeostasis and treat a number of gastrointestinal disorders, but the underlying mechanism has remained obscure. Recently, increasing evidence supports the notion that certain probiotic-derived components, such as bacteriocins, lipoteichoic acids, surface layer protein and secreted protein, have a similar protective role on intestinal barrier function as that of live probiotics. These bioactive components have been named 'postbiotics' in the most recent publications. We previously found that the Lactobacillus rhamnosus GG (LGG) culture supernatant is able to accelerate the maturation of neonatal intestinal defense and prevent neonatal rats from oral Escherichia coli K1 infection. However, the identity of the bioactive constituents has not yet been determined. In this study, using liquid chromatography-tandem mass spectrometry analysis, we identified a novel secreted protein (named HM0539 here) involved in the beneficial effect of LGG culture supernatant. HM0539 was recombinated, purified, and applied for exploring its potential bioactivity in vitro and in vivo. Our results showed that HM0539 exhibits a potent protective effect on the intestinal barrier, as reflected by enhancing intestinal mucin expression and preventing against lipopolysaccharide (LPS)- or tumor necrosis factor α (TNF-α)-induced intestinal barrier injury, including downregulation of intestinal mucin (MUC2), zonula occludens-1 (ZO-1) and disruption of the intestinal integrity. Using a neonatal rat model of E. coli K1 infection via the oral route, we verified that HM0539 is sufficient to promote development of neonatal intestinal defense and prevent against E. coli K1 pathogenesis. Moreover, we further extended the role of HM0539 and found it has potential to prevent dextran sulfate sodium (DSS)-induced colitis as well as LPS/D-galactosamine-induced bacterial translocation and liver injury. In conclusion, we identified a novel LGG postbiotic HM0539 which exerts a protective effect on intestinal barrier function. Our findings indicated that HM0539 has potential to become a useful agent for prevention and treatment of intestinal barrier dysfunction- related diseases.
Collapse
Affiliation(s)
- Jie Gao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yubin Li
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yu Wan
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Tongtong Hu
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Liting Liu
- Department of Medical Microbiology and Immunology, Dali University, Dali, China
| | - Shaojie Yang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zelong Gong
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Qing Zeng
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yi Wei
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Weijun Yang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhijie Zeng
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaolong He
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Sheng-He Huang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.,Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, United States
| | - Hong Cao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
111
|
Fang C, Du H, Zheng X, Zhao A, Jia W, Xu Y. Solid-state fermented Chinese alcoholic beverage (baijiu) and ethanol resulted in distinct metabolic and microbiome responses. FASEB J 2019; 33:7274-7288. [PMID: 30857422 DOI: 10.1096/fj.201802306r] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alcoholic beverages, which are consumed widely in most parts of the world, have long been identified as a major risk factor for all liver diseases, particularly alcoholic liver disease (ALD). Recent compositional analyses suggest that Chinese baijiu (CB), a clear alcoholic liquid distilled from fermented grains, contains large amounts of small molecule bioactive compounds in addition to a significant amount of ethanol (EtOH). Here, in an experimental mouse model, we show that CB caused lower degrees of liver injury than pure EtOH by protecting against the decrease of the relative abundance of Akkermansia and increase of the relative abundance of Prevotella in the gut, thereby preventing the destruction of the intestinal barrier. Furthermore, we demonstrated that EtOH-induced alteration of the gut microbiota profoundly affected the host metabolome. Compared with EtOH feeding, CB feeding resulted in higher concentrations of functional saturated long-chain fatty acids and short-chain fatty acids. The additional mouse models of low dosages of EtOH and of blending baijiu validated that volatile compounds in CB can attenuate EtOH-induced liver damages. Our results provide supporting evidence that ALD was profoundly influenced by host-gut microbiota metabolic interactions and that small molecule organic compounds in CB could attenuate ALD.-Fang, C., Du, H., Zheng, X., Zhao, A., Jia, W., Xu, Y. Solid-state fermented Chinese alcoholic beverage (baijiu) and ethanol resulted in distinct metabolic and microbiome responses.
Collapse
Affiliation(s)
- Cheng Fang
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Hai Du
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaojiao Zheng
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; and
| | - Aihua Zhao
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; and
| | - Wei Jia
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; and.,University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Yan Xu
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
112
|
Abstract
Lactobacillus rhamnosus GG (LGG) was the first strain belonging to the genus Lactobacillus to be patented in 1989 thanks to its ability to survive and to proliferate at gastric acid pH and in medium containing bile, and to adhere to enterocytes. Furthermore LGG is able to produces both a biofilm that can mechanically protect the mucosa, and different soluble factors beneficial to the gut by enhancing intestinal crypt survival, diminishing apoptosis of the intestinal epithelium, and preserving cytoskeletal integrity. Moreover LGG thanks to its lectin-like protein 1 and 2 inhibits some pathogens such as Salmonella species. Finally LGG is able to promote type 1 immune-responsiveness by reducing the expression of several activation and inflammation markers on monocytes and by increasing the production of interleukin-10, interleukin-12 and tumor necrosis factor-α in macrophages. A large number of research data on Lactobacillus GG is the basis for the use of this probiotic for human health. In this review we have considered predominantly randomized controlled trials, meta-analysis, Cochrane Review, guide lines of Scientific Societies and anyway studies whose results were evaluated by means of relative risk, odds ratio, weighted mean difference 95% confidence interval. The effectiveness of LGG in gastrointestinal infections and diarrhea, antibiotic and Clostridium difficile associated diarrhea, irritable bowel syndrome, inflammatory bowel disease, respiratory tract infections, allergy, cardiovascular diseases, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, cystic fibrosis, cancer, elderly end sport were analyzed.
Collapse
|
113
|
Elafibranor interrupts adipose dysfunction-mediated gut and liver injury in mice with alcoholic steatohepatitis. Clin Sci (Lond) 2019; 133:531-544. [PMID: 30602573 DOI: 10.1042/cs20180873] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/17/2018] [Accepted: 12/28/2018] [Indexed: 02/07/2023]
Abstract
Background: Reversal of alcohol-induced peroxisome proliferator-activated receptor (PPAR) α (PPARα) and PPARδ dysfunction has been reported to decrease the severity of alcoholic steatohepatitis (ASH). Autophagy is essential for cell survival and tissue energy homeostasis. Emerging evidence indicates that alcohol-induced adipose tissue (AT) autophagy dysfunction contributes to injury in the intestine, liver, and AT of ASH. Methods: The effects and mechanisms of dual PPARα/δ agonist elafibranor on autophagy stimulation were investigated using mice with ASH. Results: C57BL/6 mice on ethanol diet showed AT dysfunction, disrupted intestinal barrier, and ASH, which was accompanied by alcohol-mediated decrease in PPARα, PPARδ, and autophagy levels in intestine, liver, and AT. Chronic treatment with elafibranor attenuated AT apoptosis and inflammation by restoration of tissue PPARα, PPARδ, and autophagy levels. In ASH mice, alcohol-induced AT dysfunction along with increased fatty acid (FA) uptake and decreased free FA (FFA) release from AT was inhibited by elafibranor. The improvement of AT autophagy dysfunction by elafibranor alleviated inflammation and apoptosis-mediated intestinal epithelial disruption in ASH mice. Acute elafibranor incubation inhibited ethanol-induced ASH-mice-sera-enhanced autophagy dysfunction, apoptosis, barrier disruption, and intracellular steatosis in Caco-2 cells and primary hepatocytes (PHs). Conclusion: Altogether, these findings demonstrated that the PPARα/δ agonist, elafibranor, decreased the severity of liver injury by restoration of alcohol-suppressed AT autophagy function and by decreasing the release of apoptotic markers, inflammatory cytokines, and FFA, thereby reducing intestinal epithelium disruption and liver inflammation/apoptosis/steatosis in ASH mice. These data suggest that dual PPAR agonists can serve as potential therapeutic agents for the management of ASH.
Collapse
|
114
|
Yang X, He F, Zhang Y, Xue J, Li K, Zhang X, Zhu L, Wang Z, Wang H, Yang S. Inulin Ameliorates Alcoholic Liver Disease via Suppressing LPS-TLR4-Mψ
Axis and Modulating Gut Microbiota in Mice. Alcohol Clin Exp Res 2019; 43:411-424. [PMID: 30589437 DOI: 10.1111/acer.13950] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaoli Yang
- Clinical Medical College; Ningxia Medical University; Yinchuan Ningxia China
- Department of Gastroenterology; General Hospital of Ningxia Medical University; Yinchuan Ningxia China
| | - Fang He
- Department of Gastroenterology; General Hospital of Ningxia Medical University; Yinchuan Ningxia China
| | - Yanting Zhang
- Department of Gastroenterology; General Hospital of Ningxia Medical University; Yinchuan Ningxia China
| | - Jing Xue
- Department of Pathogenic Biology and Medical Immunology; School of Basic Medical Sciences; Ningxia Medical University; Yinchuan Ningxia China
| | - Ke Li
- Clinical Medical College; Ningxia Medical University; Yinchuan Ningxia China
| | - Xiaoxia Zhang
- College of Traditional Chinese Medicine; Ningxia Medical University; Yinchuan Ningxia China
| | - Lili Zhu
- Department of Pathogenic Biology and Medical Immunology; School of Basic Medical Sciences; Ningxia Medical University; Yinchuan Ningxia China
| | - Zhen Wang
- Clinical Medical College; Ningxia Medical University; Yinchuan Ningxia China
| | - Hao Wang
- Department of Pathogenic Biology and Medical Immunology; School of Basic Medical Sciences; Ningxia Medical University; Yinchuan Ningxia China
| | - Shaoqi Yang
- Department of Gastroenterology; General Hospital of Ningxia Medical University; Yinchuan Ningxia China
| |
Collapse
|
115
|
Arunima A, Das JK, Suar M. Gut Microbes in Liver Diseases. DIETARY INTERVENTIONS IN GASTROINTESTINAL DISEASES 2019:117-131. [DOI: 10.1016/b978-0-12-814468-8.00010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
116
|
Myers SA, Gobejishvili L, Saraswat Ohri S, Garrett Wilson C, Andres KR, Riegler AS, Donde H, Joshi-Barve S, Barve S, Whittemore SR. Following spinal cord injury, PDE4B drives an acute, local inflammatory response and a chronic, systemic response exacerbated by gut dysbiosis and endotoxemia. Neurobiol Dis 2018; 124:353-363. [PMID: 30557659 DOI: 10.1016/j.nbd.2018.12.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/03/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence links changes in the gut microbiome and intestinal barrier function to alterations in CNS function. We examined the role of endotoxin-responsive, cAMP-specific, Pde4 subfamily b (Pde4b) enzyme in gut dysbiosis induced neuro-inflammation and white matter loss following spinal cord injury (SCI). Using a thoracic contusion model in C57Bl/6 wild type female mice, SCI led to significant shifts in the gut bacterial community including an increase in the phylum Proteobacteria, which consists of endotoxin-harboring, gram-negative bacteria. This was accompanied by increased systemic inflammatory marker, soluble CD14, along with markers of the endoplasmic reticulum stress response (ERSR) and inflammation in the SCI epicenter. Deletion of Pde4b reduced epicenter expression of markers for the ERSR and inflammation, at both acute and chronic time points post-SCI. Correspondingly, expression of oligodendrocyte mRNAs increased. Within the injury penumbra, inflammatory protein markers of activated astrocytes (GFAP), macrophage/microglia (CD11b, Iba1), and the proinflammatory mediator Cox2, were decreased in Pde4b-/- mice. The absence of Pde4b improved white matter sparing and recovery of hindlimb locomotion following injury. Importantly, SCI-induced gut dysbiosis, bacterial overgrowth and endotoxemia were also prevented in Pde4b-/- mice. Taken together, these findings indicate that PDE4B plays an important role in the development of acute and chronic inflammatory response and consequent recovery following SCI.
Collapse
Affiliation(s)
- Scott A Myers
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, 511 S. Floyd St., MDR 616, Louisville, KY 40202, USA; Department of Neurological Surgery, University of Louisville, School of Medicine, 511 S. Floyd St., MDR 616, Louisville, KY 40202, USA
| | - Leila Gobejishvili
- Departments of Internal Medicine and Pharmacology and Toxicology, and Alcohol Research Center, University of Louisville, School of Medicine, 505 South Hancock Street, CTR Building, Room 515, Louisville, KY 40202, USA
| | - Sujata Saraswat Ohri
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, 511 S. Floyd St., MDR 616, Louisville, KY 40202, USA; Department of Neurological Surgery, University of Louisville, School of Medicine, 511 S. Floyd St., MDR 616, Louisville, KY 40202, USA
| | - C Garrett Wilson
- UAB School of Medicine, University of Alabama at Birmingham, Bevill Biomedical Research Building, Birmingham, AL 35294, USA
| | - Kariena R Andres
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, 511 S. Floyd St., MDR 616, Louisville, KY 40202, USA; Department of Neurological Surgery, University of Louisville, School of Medicine, 511 S. Floyd St., MDR 616, Louisville, KY 40202, USA
| | - Amberly S Riegler
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, 511 S. Floyd St., MDR 616, Louisville, KY 40202, USA; Department of Neurological Surgery, University of Louisville, School of Medicine, 511 S. Floyd St., MDR 616, Louisville, KY 40202, USA
| | - Hridgandh Donde
- Departments of Internal Medicine and Pharmacology and Toxicology, and Alcohol Research Center, University of Louisville, School of Medicine, 505 South Hancock Street, CTR Building, Room 515, Louisville, KY 40202, USA
| | - Swati Joshi-Barve
- Departments of Internal Medicine and Pharmacology and Toxicology, and Alcohol Research Center, University of Louisville, School of Medicine, 505 South Hancock Street, CTR Building, Room 515, Louisville, KY 40202, USA
| | - Shirish Barve
- Departments of Internal Medicine and Pharmacology and Toxicology, and Alcohol Research Center, University of Louisville, School of Medicine, 505 South Hancock Street, CTR Building, Room 515, Louisville, KY 40202, USA.
| | - Scott R Whittemore
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, 511 S. Floyd St., MDR 616, Louisville, KY 40202, USA; Department of Neurological Surgery, University of Louisville, School of Medicine, 511 S. Floyd St., MDR 616, Louisville, KY 40202, USA; Department of Anatomical Science & Neurobiology, University of Louisville, School of Medicine, 511 S. Floyd St., MDR 616, Louisville, KY 40202, USA.
| |
Collapse
|
117
|
Role of HIF-1α in Alcohol-Mediated Multiple Organ Dysfunction. Biomolecules 2018; 8:biom8040170. [PMID: 30544759 PMCID: PMC6316086 DOI: 10.3390/biom8040170] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/30/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022] Open
Abstract
Excess alcohol consumption is a global crisis contributing to over 3 million alcohol-related deaths per year worldwide and economic costs exceeding $200 billion dollars, which include productivity losses, healthcare, and other effects (e.g., property damages). Both clinical and experimental models have shown that excessive alcohol consumption results in multiple organ injury. Although alcohol metabolism occurs primarily in the liver, alcohol exposure can lead to pathophysiological conditions in multiple organs and tissues, including the brain, lungs, adipose, liver, and intestines. Understanding the mechanisms by which alcohol-mediated organ dysfunction occurs could help to identify new therapeutic approaches to mitigate the detrimental effects of alcohol misuse. Hypoxia-inducible factor (HIF)-1 is a transcription factor comprised of HIF-1α and HIF-1β subunits that play a critical role in alcohol-mediated organ dysfunction. This review provides a comprehensive analysis of recent studies examining the relationship between HIF-1α and alcohol consumption as it relates to multiple organ injury and potential therapies to mitigate alcohol’s effects.
Collapse
|
118
|
Shao T, Zhao C, Li F, Gu Z, Liu L, Zhang L, Wang Y, He L, Liu Y, Liu Q, Chen Y, Donde H, Wang R, Jala VR, Barve S, Chen SY, Zhang X, Chen Y, McClain CJ, Feng W. Intestinal HIF-1α deletion exacerbates alcoholic liver disease by inducing intestinal dysbiosis and barrier dysfunction. J Hepatol 2018; 69:886-895. [PMID: 29803899 PMCID: PMC6615474 DOI: 10.1016/j.jhep.2018.05.021] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Alcoholic liver disease (ALD) is characterized by gut dysbiosis and increased gut permeability. Hypoxia inducible factor 1α (HIF-1α) has been implicated in transcriptional regulation of intestinal barrier integrity and inflammation. We aimed to test the hypothesis that HIF-1α plays a critical role in gut microbiota homeostasis and the maintenance of intestinal barrier integrity in a mouse model of ALD. METHODS Wild-type (WT) and intestinal epithelial-specific Hif1a knockout mice (IEhif1α-/-) were pair-fed modified Lieber-DeCarli liquid diet containing 5% (w/v) alcohol or isocaloric maltose dextrin for 24 days. Serum levels of alanine aminotransferase and endotoxin were determined. Fecal microbiota were assessed. Liver steatosis and injury, and intestinal barrier integrity were evaluated. RESULTS Alcohol feeding increased serum levels of alanine aminotransferase and lipopolysaccharide, hepatic triglyceride concentration, and liver injury in the WT mice. These deleterious effects were exaggerated in IEhif1α-/- mice. Alcohol exposure resulted in greater reduction of the expression of intestinal epithelial tight junction proteins, claudin-1 and occludin, in IEhif1α-/- mice. In addition, cathelicidin-related antimicrobial peptide and intestinal trefoil factor were further decreased by alcohol in IEhif1α-/- mice. Metagenomic analysis showed increased gut dysbiosis and significantly decreased Firmicutes/Bacteroidetes ratio in IEhif1α-/- mice compared to the WT mice exposed to alcohol. An increased abundance of Akkermansia and a decreased level of Lactobacillus in IEhif1α-/- mice were also observed. Non-absorbable antibiotic treatment reversed the liver steatosis in both WT and IEhif1α-/- mice. CONCLUSION Intestinal HIF-1α is essential for the adaptative response to alcohol-induced changes in intestinal microbiota and barrier function associated with elevated endotoxemia and hepatic steatosis and injury. LAY SUMMARY Alcohol consumption alters gut microbiota and multiple intestinal barrier protecting factors that are regulated by intestinal hypoxia-inducible factor 1α (HIF-1α). Absence of intestinal HIF-1α exacerbates gut leakiness leading to an increased translocation of bacteria and bacterial products to the liver, consequently causing alcoholic liver disease. Intestinal specific upregulation of HIF-1α could be developed as a novel approach for the treatment of alcoholic liver disease.
Collapse
Affiliation(s)
- Tuo Shao
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA,Department of Medicine, University of Louisville, Louisville, KY, USA,First Affiliated Hospital, Wenzhou Medical Univesity, Wenzhou, Zhejiang, China
| | - Cuiqing Zhao
- Department of Medicine, University of Louisville, Louisville, KY, USA,Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Fengyuan Li
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA,Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Zelin Gu
- Department of Medicine, University of Louisville, Louisville, KY, USA,College of Food Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Limimg Liu
- Department of Medicine, University of Louisville, Louisville, KY, USA,Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Lihua Zhang
- Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Yuhua Wang
- College of Food Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Liqing He
- Department of Chemistry, University of Louisville, Louisville, KY, USA
| | - Yunhuan Liu
- Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Qi Liu
- Department of Medicine, University of Louisville, Louisville, KY, USA,Second Affiliated Hospital, Wenzhou Medical Univesity, Wenzhou, Zhejiang, China
| | - Yiping Chen
- Second Affiliated Hospital, Wenzhou Medical Univesity, Wenzhou, Zhejiang, China
| | - Hridgandh Donde
- Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Rui Wang
- First Affiliated Hospital, Wenzhou Medical Univesity, Wenzhou, Zhejiang, China
| | - Venkatakrishna R. Jala
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Shirish Barve
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA,Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Shao-Yu Chen
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Xiang Zhang
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA,Department of Chemistry, University of Louisville, Louisville, KY, USA
| | - Yongping Chen
- First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Craig J. McClain
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA,Department of Medicine, University of Louisville, Louisville, KY, USA,Robley Rex Louisville VAMC, Louisville, KY, USA,Corresponding authors: Department of Medicine, University of Louisville, 505 S. Hancock Street CTR517, Louisville, KY, United State, 40202. Tel.: +1 502 852 2912; fax: +1 502 852 8927; , or or
| | - Wenke Feng
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA; Department of Medicine, University of Louisville, Louisville, KY, USA; First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; Alcohol Research Center, University of Louisville, Louisville, KY, USA; Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
119
|
Kim WG, Kim HI, Kwon EK, Han MJ, Kim DH. Lactobacillus plantarum LC27 and Bifidobacterium longum LC67 mitigate alcoholic steatosis in mice by inhibiting LPS-mediated NF-κB activation through restoration of the disturbed gut microbiota. Food Funct 2018; 9:4255-4265. [PMID: 30010169 DOI: 10.1039/c8fo00252e] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Long-term exposure to ethanol simultaneously causes gastrointestinal inflammation, liver injury, and steatosis. In the present study, we investigated the effects of Bifidobacterium longum LC67, Lactobacillus plantarum LC27, and their mixture (LM) against ethanol-induced steatosis in mice. Exposure to ethanol caused liver damage: it increased ALT, AST, TG, TC, and lipopolysaccharide levels in the blood and induced NF-κB activation in the liver. Oral administration of LC27, LC67, or LM in mice reduced ethanol-induced ALT, AST, TG, and TC levels in the blood and liver. These also suppressed ethanol-induced NF-κB activation and α-smooth muscle actin expression in the liver and increased ethanol-suppressed AMPK activation. Treatment with LC27, LC67, or LM increased ethanol-suppressed alcohol dehydrogenase and acetaldehyde dehydrogenase activities in the liver, as well as tight junction protein expression in the liver and colon. Moreover, treatment with LC27, LC67, or LM restored the ethanol-disturbed gut microbiota composition, such as the increased population of Proteobacteria, and inhibited fecal and blood lipopolysaccharide levels. These inhibited NF-κB activation and increased tight junction protein expression in ethanol- or lipopolysaccharide-stimulated Caco-2 cells. These findings suggest that LC27, LC67, and LM can alleviate alcoholic steatosis by inhibiting LPS-mediated NF-κB activation through restoration of the disturbed gut microbiota.
Collapse
Affiliation(s)
- Won-Gyeong Kim
- Department of Life and Nanopharmaceutical Sciences and Department of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | | | | | | | | |
Collapse
|
120
|
Ludwig IS, Broere F, Manurung S, Lambers TT, van der Zee R, van Eden W. Lactobacillus rhamnosus GG-Derived Soluble Mediators Modulate Adaptive Immune Cells. Front Immunol 2018; 9:1546. [PMID: 30042761 PMCID: PMC6048560 DOI: 10.3389/fimmu.2018.01546] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/21/2018] [Indexed: 12/11/2022] Open
Abstract
Probiotics and probiotic-related nutritional interventions have been described to have beneficial effects on immune homeostasis and gut health. In previous studies, Lactobacillus rhamnosus GG (LGG) soluble mediators (LSM) have been demonstrated to exert beneficial effects in preclinical models of allergic sensitization, bacterial infection, and intestinal barrier function. In the context of allergic diseases, differentiation of dendritic cells (DCs) and their interactions with T cell populations are crucial for driving tolerogenic responses. In this study, we set out to evaluate whether these LSM can modulate DC maturation and have an impact on prompting protective and/or tolerogenic T cell responses. Monocytes were isolated from PBMC of healthy blood donors and cultured in the presence of GM-CSF, IL-4, and LSM or unconditioned bacterial culture medium control (UCM) during 6 days to induce DC differentiation. Subsequently, these DCs were matured in the presence of TNF-α for 1 day and analyzed for their phenotype and ability to induce autologous T cell activation and differentiation to model recall antigens. After 7 days of co-culture, T cells were analyzed for activation and differentiation by flow cytometry of intracellular cytokines (IFN-γ, IL-2, IL-10, and IL-17A), activation markers (CD25), and Foxp3+ expression. LSM did not alter DC numbers or maturation status. However, these DCs did show improved capacity to induce a T cell response as shown by increased IL-2 and IFN-γ producing T cell populations upon stimulation with recall antigens. These enhanced recall responses coincided with enhanced Foxp3+ expression that was not observed when T cells were cultured in the presence of UCM-treated DCs. By contrast, the number of activated T cells (determined by CD25 expression) was only slightly increased. In conclusion, this study reveals that LSM can influence adaptive immune responses as shown by the modulation of DC functionality. These mechanisms might contribute to previous observed effects in animal models in vivo. Altogether, these results suggest that LSM may provide an alternative to live probiotics in case life bacteria may not be used because of health conditions, although further clinical testing is needed.
Collapse
Affiliation(s)
- Irene S. Ludwig
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands
| | - Femke Broere
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands
| | | | - Tim T. Lambers
- Mead Johnson Pediatric Nutrition Institute, Nijmegen, Netherlands
| | - Ruurd van der Zee
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands
| | - Willem van Eden
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
121
|
Kanmani P, Kim H. Protective Effects of Lactic Acid Bacteria Against TLR4 Induced Inflammatory Response in Hepatoma HepG2 Cells Through Modulation of Toll-Like Receptor Negative Regulators of Mitogen-Activated Protein Kinase and NF-κB Signaling. Front Immunol 2018; 9:1537. [PMID: 30022981 PMCID: PMC6039550 DOI: 10.3389/fimmu.2018.01537] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022] Open
Abstract
The beneficial effects of probiotics in several liver diseases have been investigated in both animal and clinical models; however, the precise mechanisms responsible for their effects have not yet been elucidated. Gut transmitted endotoxins such as LPS have been shown to play critical roles in hepatic inflammation and injury. Therefore, in this study, we investigated the beneficial role of selected lactic acid bacteria (LABs) on reduction of hepatic steatosis (HS) and attenuation of LPS induced inflammatory response in vitro. Total cellular fluid (TCF) of LABs treatment reduced HS by decreasing the amount of lipid accumulation in vitro. Additionally, HepG2 cells exposed to LPS showed increased expression of exacerbated inflammatory cytokines, such as IL-6, CXCL8, CCL2, and TNF-α, but these effects were counteracted when cells were treated with TCF of LABs prior to LPS challenge. Moreover, TCF of LABs was able to modulate mRNA levels of TLR negative regulators and protein levels of p38 MAPK and p65 NF-κB transcription factors. However, these modulations were differed remarkably between both free fatty acid treated and untreated HepG2 cells. Heat-killed LABs were also indirectly suppressed THP-1 cells to produce higher level of IL-10, TLR4, and lower at genes level of TGF-β, IL-1β, and IL-6, and at protein level of TNF-α in response to LPS. Taken together, our findings indicate that selected LABs exhibit profound immunoregulatory effects on liver cells via modulation of TLR negative regulators of the MAPK and NF-κB pathways.
Collapse
Affiliation(s)
- Paulraj Kanmani
- Department of Korean Medicine, Dongguk University, Goyang, South Korea
| | - Hojun Kim
- Department of Korean Medicine, Dongguk University, Goyang, South Korea
| |
Collapse
|
122
|
Bubnov RV, Babenko LP, Lazarenko LM, Mokrozub VV, Spivak MY. Specific properties of probiotic strains: relevance and benefits for the host. EPMA J 2018; 9:205-223. [PMID: 29896319 PMCID: PMC5972142 DOI: 10.1007/s13167-018-0132-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/12/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Probiotics have tremendous potential to develop healthy diets, treatment, and prevention. Investigation of in vitro cultural properties of health-promoting microorganisms like lactic acid bacteria (LAB) and bifidobacteria is crucial to select probiotic strains for treatments based on gut microbiota modulation to justify individualized and personalized approach for nutrition and prevention of variety of diseases. The aim was to study the biological properties of LAB and bifidobacteria probiotic strains, namely adhesive properties; resistance to antibiotics; and biological fluids (gastric juice, bile, pancreatic enzymes), and to overview the literature in the field. MATERIALS AND METHODS We studied six LAB strains (Lactobacillus acidophilus ІМV В-7279, L. casei ІМV В-7280, L. delbrueckii subsp. bulgaricus ІМV В-7281, L. rhamnosus LB-3 VK6, L. delbrueckii LE VK8, L. plantarum LM VK7), and two bifidobacteria strains (Bifidobacterium animalis VKL, B. animalis VKB). We characterized tinctorial, culturally morphological, physiological, and biochemical properties of probiotic strains of LAB and bifidobacteria by commonly used research methods. Determination of the resistance to antibiotics was carried out using disc-diffusion method. The effects of gastric juice, bile, and pancreatin on the viability of LAB and bifidobacteria were evaluated. Adhesive properties of LAB and bifidobacteria to epithelial cells were assessed calculating three indicators: average adhesion rate (AAR), participation rate of epithelial cells (PRE), and adhesiveness index of microorganisms (AIM). Electron microscopy of LAB and bifidobacteria cells was conducted. RESULTS The studied strains of LAB and bifidobacteria did not form spores, were positively stained by Gram, grow on medium in a wide range of pH (1.0-9.0, optimum pH 5.5-6.5), were sensitive to a wide range of antibiotics; and showed different resistance to gastric juice, bile, and pancreatic enzymes. The most resistant to antibiotics were L. rhamnosus LB-3 VK6 and L. delbrueckii LE VK8 strains. The most susceptible to gastric juice was L. plantarum LM VK7, which stopped its growth at 8% of gastric juice; L. acidophilus IMV B-7279, B. animalis VKL, and B. animalis VKB strains were resistant even in the 100% concentration. Strains L. acidophilus IMV В-7279, L. casei IMV В-7280, B. animalis VKL, B. animalis VKB, L. rhamnosus LB-3 VK6, L. delbrueckii LE VK8, and L. delbrueckii subsp. bulgaricus IMV В-7281 were resistant to pancreatic enzymes. Adhesive properties of the strains according to AIM index were high in L. casei IMV В-7280, B. animalis VKL, and B. animalis VKB; were moderate in L. delbrueckii subsp. bulgaricus IMV В-7281; and were low in L. acidophilus IMV В-7279, L. rhamnosus LB-3 VK6, L. delbrueckii LE VK8, and L. plantarum LM VK7. CONCLUSION We recognized strain-dependent properties of studied LAB and bifidobacteria probiotic strains (adhesive ability, resistance to antibiotics, and gut biological fluids) and discussed potential for most effective individualized treatment for gut and distant sites microbiome modulation.
Collapse
Affiliation(s)
- Rostyslav V. Bubnov
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny str., 154, Kyiv, 03143 Ukraine
- Clinical Hospital ‘Pheophania’ of State Affairs Department, Zabolotny str., 21, Kyiv, 03143 Ukraine
| | - Lidiia P. Babenko
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny str., 154, Kyiv, 03143 Ukraine
| | - Liudmyla M. Lazarenko
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny str., 154, Kyiv, 03143 Ukraine
| | - Victoria V. Mokrozub
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny str., 154, Kyiv, 03143 Ukraine
| | - Mykola Ya. Spivak
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny str., 154, Kyiv, 03143 Ukraine
- PJSC «SPC Diaproph-Med», Svitlycky Str., 35, Kyiv, 04123 Ukraine
| |
Collapse
|
123
|
Cassard AM, Ciocan D. Microbiota, a key player in alcoholic liver disease. Clin Mol Hepatol 2018; 24:100-107. [PMID: 29268595 PMCID: PMC6038939 DOI: 10.3350/cmh.2017.0067] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 11/22/2017] [Indexed: 02/07/2023] Open
Abstract
Alcoholic liver disease (ALD) is a major cause of morbidity and mortality worldwide. Only 20% of heavy alcohol consumers develop alcoholic liver cirrhosis. The intestinal microbiota (IM) has been recently identified as a key player in the severity of liver injury in ALD. Common features of ALD include a decrease of gut epithelial tight junction protein expression, mucin production, and antimicrobial peptide levels. This disruption of the gut barrier, which is a prerequisite for ALD, leads to the passage of bacterial products into the blood stream (endotoxemia). Moreover, metabolites produced by bacteria, such as short chain fatty acids, volatile organic compounds (VOS), and bile acids (BA), are involved in ALD pathology. Probiotic treatment, IM transplantation, or the consumption of dietary fiber, such as pectin, which all alter the ratio of bacterial species, have been shown to improve liver injury in animal models of ALD and to be associated with an improvement in gut barrier function. Although the connections between the microbiota and the host in ALD are well established, the underlying mechanisms are still an active area of research. Targeting the microbiome through the use of prebiotic, probiotic, and postbiotic modalities could be an attractive new approach to manage ALD.
Collapse
Affiliation(s)
- Anne-Marie Cassard
- INSERM UMR996, Inflammation, Chemokines, and Immunopathology, Clamart, France
- Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, CHU Bicêtre, Kremlin-Bicêtre, France
| | - Dragos Ciocan
- INSERM UMR996, Inflammation, Chemokines, and Immunopathology, Clamart, France
- Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, CHU Bicêtre, Kremlin-Bicêtre, France
| |
Collapse
|
124
|
Duan C, Zhao Y, Huang C, Zhao Z, Gao L, Niu C, Wang C, Liu X, Zhang C, Li S. Hepatoprotective effects of Lactobacillus plantarum C88 on LPS/D-GalN–induced acute liver injury in mice. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
125
|
Wu J, Yang K, Wu W, Tang Q, Zhong Y, Gross G, Lambers TT, van Tol EAF, Cai W. Soluble Mediators From Lactobacillus rhamnosus Gorbach-Goldin Support Intestinal Barrier Function in Rats After Massive Small-Bowel Resection. JPEN J Parenter Enteral Nutr 2018; 42:1026-1034. [PMID: 30133842 DOI: 10.1002/jpen.1044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/18/2017] [Accepted: 10/31/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Intestinal barrier plays an essential role in maintaining gastrointestinal health. This study aimed to explore the effects of a soluble mediator preparation derived from Lactobacillus rhamnosus Gorbach-Goldin (LGG) on intestinal barrier function in a rat model of short bowel syndrome (SBS). METHODS Six-week-old male Sprague-Dawley rats underwent 80% small-bowel resection (SBR) and then were supplemented with water (SBS), 5 × 108 colony-forming unit viable LGG (SBS+LGG), or the LGG soluble mediators (SBS+LSM) in an equivalent dose to LGG by intragastric gavage daily from day 2 throughout day 14 after operation. Rats that underwent bowel transection and reanastomosis were used as the sham group. Body weight, ileum histology, intestinal permeability and bacterial translocation, inflammatory cytokines, and tight junction protein expressions of ileum were evaluated. RESULTS Animals undergoing SBR showed higher intestinal permeability and decreased expression of tight junction proteins in the ileum than sham group. Both SBS+LGG and SBS+LSM groups had reduced bacterial translocation and intestinal permeability as compared with the SBS group, with lower levels of serum endotoxin and tumor necrotizing factor alpha in ileum tissues. Moreover, the SBS+LSM group showed better body weight gain, lower endotoxin and FD-40 levels, and higher expressions of claudin-1 and claudin-4 in ileum than the SBS+LGG group. CONCLUSION Enteral supplementation of LSMs or viable LGG can ameliorate intestinal barrier disruption in a rat model of SBS. The LSM preparation not only mimicked biological effects of viable LGG but also was revealed to be more effective in reducing inflammation and supporting intestinal barrier function.
Collapse
Affiliation(s)
- Jiang Wu
- Department of Clinical Nutrition, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Kefeng Yang
- Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjie Wu
- Department of Pediatric Surgery, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingya Tang
- Department of Clinical Nutrition, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Yan Zhong
- Mead Johnson Pediatric Nutrition Institute, Shanghai, China
| | - Gabriele Gross
- Mead Johnson Pediatric Nutrition Institute, Nijmegen, the Netherlands
| | - Tim T Lambers
- Mead Johnson Pediatric Nutrition Institute, Nijmegen, the Netherlands
| | - Eric A F van Tol
- Mead Johnson Pediatric Nutrition Institute, Nijmegen, the Netherlands
| | - Wei Cai
- Department of Clinical Nutrition, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China.,Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Pediatric Surgery, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
126
|
Cassard AM, Gérard P, Perlemuter G. Microbiota, Liver Diseases, and Alcohol. BUGS AS DRUGS 2018:187-212. [DOI: 10.1128/9781555819705.ch8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Affiliation(s)
- Anne-Marie Cassard
- INSERM U996 Inflammation, Chemokines and Immunopathology, DHU Hepatinov, Univ Paris-Sud; Université Paris-Saclay; 92140 Clamart France
| | - Philippe Gérard
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay; 78350 Jouyen-Josas France
| | - Gabriel Perlemuter
- INSERM U996 Inflammation, Chemokines and Immunopathology, DHU Hepatinov, Univ Paris-Sud; Université Paris-Saclay; 92140 Clamart France
- AP-HP, Hepatogastroenterology and Nutrition, Hôpital Antoine-Béclère; Clamart France
| |
Collapse
|
127
|
Putta S, Yarla NS, Lakkappa DB, Imandi SB, Malla RR, Chaitanya AK, Chari BP, Saka S, Vechalapu RR, Kamal MA, Tarasov VV, Chubarev VN, Siva Kumar K, Aliev G. Probiotics: Supplements, Food, Pharmaceutical Industry. THERAPEUTIC, PROBIOTIC, AND UNCONVENTIONAL FOODS 2018:15-25. [DOI: 10.1016/b978-0-12-814625-5.00002-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
128
|
Choi Y, Abdelmegeed MA, Song BJ. Preventive effects of indole-3-carbinol against alcohol-induced liver injury in mice via antioxidant, anti-inflammatory, and anti-apoptotic mechanisms: Role of gut-liver-adipose tissue axis. J Nutr Biochem 2017; 55:12-25. [PMID: 29331880 DOI: 10.1016/j.jnutbio.2017.11.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/01/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022]
Abstract
Indole-3-carbinol (I3C), found in Brassica family vegetables, exhibits antioxidant, anti-inflammatory, and anti-cancerous properties. Here, we aimed to evaluate the preventive effects of I3C against ethanol (EtOH)-induced liver injury and study the protective mechanism(s) by using the well-established chronic-plus-binge alcohol exposure model. The preventive effects of I3C were evaluated by conducting various histological, biochemical, and real-time PCR analyses in mouse liver, adipose tissue, and colon, since functional alterations of adipose tissue and intestine can also participate in promoting EtOH-induced liver damage. Daily treatment with I3C alleviated EtOH-induced liver injury and hepatocyte apoptosis, but not steatosis, by attenuating elevated oxidative stress, as evidenced by the decreased levels of hepatic lipid peroxidation, hydrogen peroxide, CYP2E1, NADPH-oxidase, and protein acetylation with maintenance of mitochondrial complex I, II, and III protein levels and activities. I3C also restored the hepatic antioxidant capacity by preventing EtOH-induced suppression of glutathione contents and mitochondrial aldehyde dehydrogenase-2 activity. I3C preventive effects were also achieved by attenuating the increased levels of hepatic proinflammatory cytokines, including IL1β, and neutrophil infiltration. I3C also attenuated EtOH-induced gut leakiness with decreased serum endotoxin levels through preventing EtOH-induced oxidative stress, apoptosis of enterocytes, and alteration of tight junction protein claudin-1. Furthermore, I3C alleviated adipose tissue inflammation and decreased free fatty acid release. Collectively, I3C prevented EtOH-induced liver injury via attenuating the damaging effect of ethanol on the gut-liver-adipose tissue axis. Therefore, I3C may also have a high potential for translational research in treating or preventing other types of hepatic injury associated with oxidative stress and inflammation.
Collapse
Affiliation(s)
- Youngshim Choi
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA.
| | - Mohamed A Abdelmegeed
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA.
| |
Collapse
|
129
|
Zhou Z, Zhong W. Targeting the gut barrier for the treatment of alcoholic liver disease. LIVER RESEARCH 2017; 1:197-207. [PMID: 30034913 PMCID: PMC6051712 DOI: 10.1016/j.livres.2017.12.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alcohol consumption remains one of the predominant causes of liver disease and liver-related death worldwide. Intriguingly, dysregulation of the gut barrier is a key factor promoting the pathogenesis of alcoholic liver disease (ALD). A functional gut barrier, which consists of a mucus layer, an intact epithelial monolayer and mucosal immune cells, supports nutrient absorption and prevents bacterial penetration. Compromised gut barrier function is associated with the progression of ALD. Indeed, alcohol consumption disrupts the gut barrier, increases gut permeability, and induces bacterial translocation both in ALD patients and in experimental models with ALD. Moreover, alcohol consumption also causes enteric dysbiosis with both numerical and proportional perturbations. Here, we review and discuss mechanisms of alcohol-induced gut barrier dysfunction to better understand the contribution of the gut-liver axis to the pathogenesis of ALD. Unfortunately, there is no effectual Food and Drug Administration-approved treatment for any stage of ALD. Therefore, we conclude with a discussion of potential strategies aimed at restoring the gut barrier in ALD. The principle behind antibiotics, prebiotics, probiotics and fecal microbiota transplants is to restore microbial symbiosis and subsequently gut barrier function. Nutrient-based treatments, such as dietary supplementation with zinc, niacin or fatty acids, have been shown to regulate tight junction expression, reduce intestinal inflammation, and prevent endotoxemia as well as liver injury caused by alcohol in experimental settings. Interestingly, saturated fatty acids may also directly control the gut microbiome. In summary, clinical and experimental studies highlight the significance and efficacy of the gut barrier in treating ALD.
Collapse
Affiliation(s)
- Zhanxiang Zhou
- Center for Translational Biomedical Research, School of Health and Human Sciences, University of North Carolina at Greensboro, Kannapolis, NC, USA
- Department of Nutrition, School of Health and Human Sciences, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Wei Zhong
- Center for Translational Biomedical Research, School of Health and Human Sciences, University of North Carolina at Greensboro, Kannapolis, NC, USA
| |
Collapse
|
130
|
Lukic J, Chen V, Strahinic I, Begovic J, Lev-Tov H, Davis SC, Tomic-Canic M, Pastar I. Probiotics or pro-healers: the role of beneficial bacteria in tissue repair. Wound Repair Regen 2017; 25:912-922. [PMID: 29315980 PMCID: PMC5854537 DOI: 10.1111/wrr.12607] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/15/2017] [Indexed: 12/20/2022]
Abstract
Probiotics are beneficial microorganisms, known to exert numerous positive effects on human health, primarily in the battle against pathogens. Probiotics have been associated with improved healing of intestinal ulcers, and healing of infected cutaneous wounds. This article reviews the latest findings on probiotics related to their pro-healing properties on gut epithelium and skin. Proven mechanisms by which probiotic bacteria exert their beneficial effects include direct killing of pathogens, competitive displacement of pathogenic bacteria, reinforcement of epithelial barrier, induction of fibroblasts, and epithelial cells' migration and function. Beneficial immunomodulatory effects of probiotics relate to modulation and activation of intraepithelial lymphocytes, natural killer cells, and macrophages through induced production of cytokines. Systemic effects of beneficial bacteria and link between gut microbiota, immune system, and cutaneous health through gut-brain-skin axes are discussed as well. In light of growing antibiotic resistance of pathogens, antibiotic use is becoming less effective in treating cutaneous and systemic infections. This review points to a new perspective and therapeutic potential of beneficial probiotic species as a safe alternative approach for treatment of patients affected by wound healing disorders and cutaneous infections.
Collapse
Affiliation(s)
- Jovanka Lukic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Microbiology, Belgrade, Serbia
| | - Vivien Chen
- University of Miami Miller School Of Medicine, Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miami, FL, USA
| | - Ivana Strahinic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Microbiology, Belgrade, Serbia
| | - Jelena Begovic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Microbiology, Belgrade, Serbia
| | - Hadar Lev-Tov
- University of Miami Miller School Of Medicine, Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miami, FL, USA
| | - Stephen C Davis
- University of Miami Miller School Of Medicine, Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miami, FL, USA
| | - Marjana Tomic-Canic
- University of Miami Miller School Of Medicine, Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miami, FL, USA
| | - Irena Pastar
- University of Miami Miller School Of Medicine, Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miami, FL, USA
| |
Collapse
|
131
|
Cui Y, Liu L, Dou X, Wang C, Zhang W, Gao K, Liu J, Wang H. Lactobacillus reuteri ZJ617 maintains intestinal integrity via regulating tight junction, autophagy and apoptosis in mice challenged with lipopolysaccharide. Oncotarget 2017; 8:77489-77499. [PMID: 29100403 PMCID: PMC5652795 DOI: 10.18632/oncotarget.20536] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 07/30/2017] [Indexed: 12/12/2022] Open
Abstract
Live probiotics are effective in reducing gut permeability and inflammation. We have previously reported that Lactobacillus reuteri ZJ617 (ZJ617) with high adhesive and Lactobacillus rhamnosus GG (LGG) can ameliorate intestine inflammation induced by lipopolysaccharide (LPS). The present study was aimed at elucidating the roles of ZJ617 and LGG in alleviating the LPS-induced barrier dysfunction of ileum in mice. Six C57BL/6 mice per group were orally inoculated with ZJ617 or LGG for one week (1× 108 CFU/mouse) and intraperitoneally injected with LPS (10 mg/kg body weight) for 24 h. The results demonstrated that pretreatment with ZJ617 and LGG attenuated LPS-induced increase in intestinal permeability. The probiotics supplementation suppressed LPS-induced oxidative stress. Both ZJ617 and LGG strongly reversed the decline of occludin and claudin-3 expression induced by LPS challenge. ZJ617 relieved LPS-induced apoptosis by decreasing caspase-3 activity. Noticeably, ratio of microtubule-associated light chain 3 (LC3)-II/LC3-I and LC3 activity were elevated by LPS stimulation, whereas such increases were obviously attenuated by both of the probiotics treatment. Moreover, phosphorylated mammalian target of rapamycin (p-mTOR) was significantly inhibited by LPS, whereas complementation of ZJ617 and LGG markedly increased the expression of p-mTOR. Collectively, our results indicated that ZJ617 could protect LPS-induced intestinal barrier dysfunction via enhancing antioxidant activities and tight junction and attenuating apoptosis and autophagy via mTOR signaling pathway. These findings could serve as systematic mechanisms through which probiotics promote and maintain gut homeostasis.
Collapse
Affiliation(s)
- Yanjun Cui
- Institute of Animal Nutrition, College of Animal Science and Technology, Zhejiang A & F University, Lin'an 311300, P.R. China.,College of Animal Science, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310029, P.R. China
| | - Li Liu
- Institute of Animal Nutrition, College of Animal Science and Technology, Zhejiang A & F University, Lin'an 311300, P.R. China
| | - Xiaoxiao Dou
- Institute of Animal Nutrition, College of Animal Science and Technology, Zhejiang A & F University, Lin'an 311300, P.R. China
| | - Chong Wang
- Institute of Animal Nutrition, College of Animal Science and Technology, Zhejiang A & F University, Lin'an 311300, P.R. China
| | - Wenming Zhang
- Institute of Animal Nutrition, College of Animal Science and Technology, Zhejiang A & F University, Lin'an 311300, P.R. China
| | - Kan Gao
- Institute of Animal Nutrition, College of Animal Science and Technology, Zhejiang A & F University, Lin'an 311300, P.R. China
| | - Jianxin Liu
- College of Animal Science, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310029, P.R. China
| | - Haifeng Wang
- Institute of Animal Nutrition, College of Animal Science and Technology, Zhejiang A & F University, Lin'an 311300, P.R. China.,College of Animal Science, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310029, P.R. China
| |
Collapse
|
132
|
Activation of autophagy attenuates EtOH-LPS-induced hepatic steatosis and injury through MD2 associated TLR4 signaling. Sci Rep 2017; 7:9292. [PMID: 28839246 PMCID: PMC5571015 DOI: 10.1038/s41598-017-09045-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/17/2017] [Indexed: 12/13/2022] Open
Abstract
Autophagy serves as a protective mechanism to degrade damaged organelles and proteins. Acute alcohol exposure is known to activate the hepatic autophagy response, whereas chronic alcohol exposure slows autophagosome formation along with an elevation of gut-derived endotoxin. In the current study, we examined whether lipopolysaccharide (LPS) administration decreased autophagic response in the liver of mice treated by short-term alcohol and whether activation of autophagy by rapamycin attenuates EtOH-LPS-induced liver steatosis and injury. We demonstrated that ten-day alcohol feeding primed the liver to LPS-induced lipid accumulation and liver injury with significantly increased hepatic steatosis and serum AST level as well as hepatic cellular NF-κB activation. LPS increased alcohol-mediated reactive oxygen species (ROS) formation while reducing autophagy activation. These deleterious effects were attenuated by rapamycin administration in mice. The protective effects of rapamycin are associated with decreased cellular MD2/TLR4 expression and interaction in Raw264.7 cells. Taken together, our results demonstrated that enhanced gut-derived LPS decreases the hepatic autophagosome numbers in response to alcohol exposure, and activation of autophagy by rapamycin protects from EtOH-LPS-induced liver injury, probably through reduced macrophage expression and interaction of TLR4/MD2 signaling complex.
Collapse
|
133
|
Zhao L, Jiang Y, Ni Y, Zhang T, Duan C, Huang C, Zhao Y, Gao L, Li S. Protective effects of Lactobacillus plantarum C88 on chronic ethanol-induced liver injury in mice. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.05.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
134
|
Cassard AM, Gérard P, Perlemuter G. Microbiota, Liver Diseases, and Alcohol. Microbiol Spectr 2017; 5:10.1128/microbiolspec.bad-0007-2016. [PMID: 28840806 PMCID: PMC11687517 DOI: 10.1128/microbiolspec.bad-0007-2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Indexed: 02/08/2023] Open
Abstract
Being overweight and obesity are the leading causes of liver disease in Western countries. Liver damage induced by being overweight can range from steatosis, harmless in its simple form, to steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Alcohol consumption is an additional major cause of liver disease. Not all individuals who are overweight or excessively consume alcohol develop nonalcoholic fatty liver diseases (NAFLD) or alcoholic liver disease (ALD) and advanced liver disease. The role of the intestinal microbiota (IM) in the susceptibility to liver disease in this context has been the subject of recent studies. ALD and NAFLD appear to be influenced by the composition of the IM, and dysbiosis is associated with ALD and NAFLD in rodent models and human patient cohorts. Several microbial metabolites, such as short-chain fatty acids and bile acids, are specifically associated with dysbiosis. Recent studies have highlighted the causal role of the IM in the development of liver diseases, and the use of probiotics or prebiotics improves some parameters associated with liver disease. Several studies have made progress in deciphering the mechanisms associated with the modulation of the IM. These data have demonstrated the intimate relationship between the IM and metabolic liver disease, suggesting that targeting the gut microbiota could be a new preventive or therapeutic strategy for these diseases.
Collapse
Affiliation(s)
- Anne-Marie Cassard
- INSERM U996 Inflammation, Chemokines and Immunopathology, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France
| | - Philippe Gérard
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Gabriel Perlemuter
- INSERM U996 Inflammation, Chemokines and Immunopathology, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France
- AP-HP, Hepatogastroenterology and Nutrition, Hôpital Antoine-Béclère, Clamart, France
| |
Collapse
|
135
|
Manko A, Motta JP, Cotton JA, Feener T, Oyeyemi A, Vallance BA, Wallace JL, Buret AG. Giardia co-infection promotes the secretion of antimicrobial peptides beta-defensin 2 and trefoil factor 3 and attenuates attaching and effacing bacteria-induced intestinal disease. PLoS One 2017. [PMID: 28622393 PMCID: PMC5473565 DOI: 10.1371/journal.pone.0178647] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Our understanding of polymicrobial gastrointestinal infections and their effects on host biology remains incompletely understood. Giardia duodenalis is an ubiquitous intestinal protozoan parasite infecting animals and humans. Concomitant infections with Giardia and other gastrointestinal pathogens commonly occur. In countries with poor sanitation, Giardia infection has been associated with decreased incidence of diarrheal disease and fever, and reduced serum inflammatory markers release, via mechanisms that remain obscure. This study analyzed Giardia spp. co-infections with attaching and effacing (A/E) pathogens, and assessed whether and how the presence of Giardia modulates host responses to A/E enteropathogens, and alters intestinal disease outcome. In mice infected with the A/E pathogen Citrobacter rodentium, co-infection with Giardia muris significantly attenuated weight loss, macro- and microscopic signs of colitis, bacterial colonization and translocation, while concurrently enhancing the production and secretion of antimicrobial peptides (AMPs) mouse β-defensin 3 and trefoil factor 3 (TFF3). Co-infection of human intestinal epithelial cells (Caco-2) monolayers with G. duodenalis trophozoites and enteropathogenic Escherichia coli (EPEC) enhanced the production of the AMPs human β-defensin 2 (HBD-2) and TFF3; this effect was inhibited with treatment of G. duodenalis with cysteine protease inhibitors. Collectively, these results suggest that Giardia infections are capable of reducing enteropathogen-induced colitis while increasing production of host AMPs. Additional studies also demonstrated that Giardia was able to directly inhibit the growth of pathogenic bacteria. These results reveal novel mechanisms whereby Giardia may protect against gastrointestinal disease induced by a co-infecting A/E enteropathogen. Our findings shed new light on how microbial-microbial interactions in the gut may protect a host during concomitant infections.
Collapse
Affiliation(s)
- Anna Manko
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, Alberta, Canada
| | - Jean-Paul Motta
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, Alberta, Canada
| | - James A. Cotton
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, Alberta, Canada
| | - Troy Feener
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
| | - Ayodele Oyeyemi
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, Alberta, Canada
| | - Bruce A. Vallance
- Department of Pediatrics, Division of Gastroenterology, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - John L. Wallace
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology & Pharmacology, University of Calgary, Alberta, Canada
| | - Andre G. Buret
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
136
|
Mu Q, Kirby J, Reilly CM, Luo XM. Leaky Gut As a Danger Signal for Autoimmune Diseases. Front Immunol 2017; 8:598. [PMID: 28588585 PMCID: PMC5440529 DOI: 10.3389/fimmu.2017.00598] [Citation(s) in RCA: 372] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/05/2017] [Indexed: 12/12/2022] Open
Abstract
The intestinal epithelial lining, together with factors secreted from it, forms a barrier that separates the host from the environment. In pathologic conditions, the permeability of the epithelial lining may be compromised allowing the passage of toxins, antigens, and bacteria in the lumen to enter the blood stream creating a “leaky gut.” In individuals with a genetic predisposition, a leaky gut may allow environmental factors to enter the body and trigger the initiation and development of autoimmune disease. Growing evidence shows that the gut microbiota is important in supporting the epithelial barrier and therefore plays a key role in the regulation of environmental factors that enter the body. Several recent reports have shown that probiotics can reverse the leaky gut by enhancing the production of tight junction proteins; however, additional and longer term studies are still required. Conversely, pathogenic bacteria that can facilitate a leaky gut and induce autoimmune symptoms can be ameliorated with the use of antibiotic treatment. Therefore, it is hypothesized that modulating the gut microbiota can serve as a potential method for regulating intestinal permeability and may help to alter the course of autoimmune diseases in susceptible individuals.
Collapse
Affiliation(s)
- Qinghui Mu
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Jay Kirby
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | | | - Xin M Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
137
|
Yang AM, Inamine T, Hochrath K, Chen P, Wang L, Llorente C, Bluemel S, Hartmann P, Xu J, Koyama Y, Kisseleva T, Torralba MG, Moncera K, Beeri K, Chen CS, Freese K, Hellerbrand C, Lee SM, Hoffman HM, Mehal WZ, Garcia-Tsao G, Mutlu EA, Keshavarzian A, Brown GD, Ho SB, Bataller R, Stärkel P, Fouts DE, Schnabl B. Intestinal fungi contribute to development of alcoholic liver disease. J Clin Invest 2017; 127:2829-2841. [PMID: 28530644 DOI: 10.1172/jci90562] [Citation(s) in RCA: 348] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 03/30/2017] [Indexed: 12/14/2022] Open
Abstract
Chronic liver disease with cirrhosis is the 12th leading cause of death in the United States, and alcoholic liver disease accounts for approximately half of all cirrhosis deaths. Chronic alcohol consumption is associated with intestinal bacterial dysbiosis, yet we understand little about the contribution of intestinal fungi, or mycobiota, to alcoholic liver disease. Here we have demonstrated that chronic alcohol administration increases mycobiota populations and translocation of fungal β-glucan into systemic circulation in mice. Treating mice with antifungal agents reduced intestinal fungal overgrowth, decreased β-glucan translocation, and ameliorated ethanol-induced liver disease. Using bone marrow chimeric mice, we found that β-glucan induces liver inflammation via the C-type lectin-like receptor CLEC7A on Kupffer cells and possibly other bone marrow-derived cells. Subsequent increases in IL-1β expression and secretion contributed to hepatocyte damage and promoted development of ethanol-induced liver disease. We observed that alcohol-dependent patients displayed reduced intestinal fungal diversity and Candida overgrowth. Compared with healthy individuals and patients with non-alcohol-related cirrhosis, alcoholic cirrhosis patients had increased systemic exposure and immune response to mycobiota. Moreover, the levels of extraintestinal exposure and immune response correlated with mortality. Thus, chronic alcohol consumption is associated with an altered mycobiota and translocation of fungal products. Manipulating the intestinal mycobiome might be an effective strategy for attenuating alcohol-related liver disease.
Collapse
Affiliation(s)
- An-Ming Yang
- Department of Medicine, UCSD, La Jolla, California, USA.,Department of Internal Medicine, En Chu Kong Hospital, New Taipei City, Taiwan
| | - Tatsuo Inamine
- Department of Medicine, UCSD, La Jolla, California, USA.,Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | - Peng Chen
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Lirui Wang
- Department of Medicine, UCSD, La Jolla, California, USA.,Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| | - Cristina Llorente
- Department of Medicine, UCSD, La Jolla, California, USA.,Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| | - Sena Bluemel
- Department of Medicine, UCSD, La Jolla, California, USA
| | | | - Jun Xu
- Department of Surgery, UCSD, La Jolla, California, USA
| | | | | | | | | | - Karen Beeri
- J. Craig Venter Institute, La Jolla, California, USA
| | - Chien-Sheng Chen
- Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan City, Taiwan
| | - Kim Freese
- Institute of Biochemistry (Emil-Fischer Zentrum), Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry (Emil-Fischer Zentrum), Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Serene Ml Lee
- Department of General, Visceral and Transplantation Surgery, Hospital of the LMU Munich, Munich, Germany
| | - Hal M Hoffman
- Department of Medicine, UCSD, La Jolla, California, USA.,Department of Pediatrics, UCSD, La Jolla, California, USA
| | - Wajahat Z Mehal
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA.,Section of Digestive Diseases, VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Guadalupe Garcia-Tsao
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA.,Section of Digestive Diseases, VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Ece A Mutlu
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Ali Keshavarzian
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Gordon D Brown
- Aberdeen Fungal Group, Medical Research Council Centre for Medical Mycology, University of Aberdeen, Aberdeen, United Kingdom
| | - Samuel B Ho
- Department of Medicine, UCSD, La Jolla, California, USA.,Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| | - Ramon Bataller
- Liver Center, Departments of Medicine and Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Peter Stärkel
- Saint Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium
| | | | - Bernd Schnabl
- Department of Medicine, UCSD, La Jolla, California, USA.,Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
138
|
|
139
|
Protective Effects of Lemon Juice on Alcohol-Induced Liver Injury in Mice. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7463571. [PMID: 28567423 PMCID: PMC5439254 DOI: 10.1155/2017/7463571] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/16/2017] [Accepted: 04/04/2017] [Indexed: 12/20/2022]
Abstract
Chronic excessive alcohol consumption (more than 40–80 g/day for males and more than 20–40 g/day for females) could induce serious liver injury. In this study, effects of lemon juice on chronic alcohol-induced liver injury in mice were evaluated. The serum biochemical profiles and hepatic lipid peroxidation levels, triacylglycerol (TG) contents, antioxidant enzyme activities, and histopathological changes were examined for evaluating the hepatoprotective effects of lemon juice in mice. In addition, the in vitro antioxidant capacities of lemon juice were determined. The results showed that lemon juice significantly inhibited alcohol-induced increase of alanine transaminase (ALT), aspartate transaminase (AST), hepatic TG, and lipid peroxidation levels in a dose-dependent manner. Histopathological changes induced by alcohol were also remarkably improved by lemon juice treatment. These findings suggest that lemon juice has protective effects on alcohol-induced liver injury in mice. The protective effects might be related to the antioxidant capacity of lemon juice because lemon juice showed in vitro antioxidant capacity.
Collapse
|
140
|
Poutsiaka DD, Mahoney IJ, McDermott LA, Stern LL, Thorpe CM, Kane AV, Baez-Giangreco C, McKinney J, Davidson LE, Leyva R, Goldin B, Snydman DR. Selective method for identification and quantification of Bifidobacterium animalis subspecies lactis BB-12 (BB-12) from the gastrointestinal tract of healthy volunteers ingesting a combination probiotic of BB-12 and Lactobacillus rhamnosus GG. J Appl Microbiol 2017; 122:1321-1332. [PMID: 28256070 DOI: 10.1111/jam.13436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/27/2017] [Accepted: 02/25/2017] [Indexed: 12/20/2022]
Abstract
AIM To develop a novel validated method for the isolation of Bifidobacterium animalis ssp. lactis BB-12 (BB-12) from faecal specimens and apply it to studies of BB-12 and Lactobacillus rhamnosus GG (LGG) recovered from the healthy human gastrointestinal (GI) tract. METHODS AND RESULTS A novel method for isolating and enumerating BB-12 was developed based on its morphologic features of growth on tetracycline-containing agar. The method identified BB-12 correctly from spiked stool close to 100% of the time as validated by PCR confirmation of identity, and resulted in 97-104% recovery of BB-12. The method was then applied in a study of the recovery of BB-12 and LGG from the GI tract of healthy humans consuming ProNutrients® Probiotic powder sachet containing BB-12 and LGG. Viable BB-12 and LGG were recovered from stool after 21 days of probiotic ingestion compared to baseline. In contrast, no organisms were recovered 21 days after baseline in the nonsupplemented control group. CONCLUSIONS We demonstrated recovery of viable BB-12, using a validated novel method specific for the isolation of BB-12, and LGG from the GI tract of healthy humans who consumed the probiotic supplement. SIGNIFICANCE AND IMPACT OF THE STUDY This method will enable more detailed and specific studies of BB-12 in probiotic supplements, including when in combination with LGG.
Collapse
Affiliation(s)
| | | | | | - L L Stern
- Pfizer Consumer Healthcare, Madison, NJ, USA
| | | | - A V Kane
- Tufts Medical Center, Boston, MA, USA
| | | | - J McKinney
- Pfizer Consumer Healthcare, Madison, NJ, USA
| | | | - R Leyva
- Pfizer Consumer Healthcare, Madison, NJ, USA
| | - B Goldin
- Tufts University School of Medicine, Boston, MA, USA
| | | |
Collapse
|
141
|
The protective effects of probiotic-fermented soymilk on high-fat diet-induced hyperlipidemia and liver injury. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.01.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
142
|
Rodriguez-Castaño GP, Caro-Quintero A, Reyes A, Lizcano F. Advances in Gut Microbiome Research, Opening New Strategies to Cope with a Western Lifestyle. Front Genet 2017; 7:224. [PMID: 28119734 PMCID: PMC5222858 DOI: 10.3389/fgene.2016.00224] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 12/14/2016] [Indexed: 12/12/2022] Open
Abstract
The "westernization" of global eating and lifestyle habits is associated with the growing rate of chronic diseases, mainly cardiovascular diseases, cancer, type 2 diabetes mellitus, and respiratory diseases. The primary prevention approach is to make nutritional and behavioral changes, however, there is another important determinant of our health that only recently has been considered and is the presence of beneficial microorganisms and their products in our gastrointestinal tract. Microorganisms living in our body can alter the fate of food, drugs, hormones, and xenobiotics, and recent studies point to the use of microorganisms that can counteract the harmful effects of certain compounds introduced or produced endogenously in our body. This review considers the effects of the western lifestyle on adiposity, glucose metabolism, oxidative markers and inflammation profile, emphasizes on the studies that have investigated bacterial strains and products of their metabolism that are beneficial under this lifestyle, and examines the screening strategies that recent studies are using to select the most promising probiotic isolates. In addition, we consider the relevance of studying the microbiota of metabolically healthy people under a western lifestyle for the understanding of the key components that delay the development of chronic diseases.
Collapse
Affiliation(s)
| | - Alejandro Caro-Quintero
- Corporación de Investigación Agropecuaria CORPOICA, Centro de Investigación Tibaitatá Mosquera, Colombia
| | - Alejandro Reyes
- Department of Biological Sciences, Universidad de los AndesBogotá, Colombia; Center for Genome Sciences and Systems Biology, Washington University School of MedicineSt. Louis, MO, USA; Department of Pathology and Immunology, Washington University School of MedicineSt. Louis, MO, USA
| | - Fernando Lizcano
- Center of Biomedical Research, CIBUS, Universidad de La Sabana Chía, Colombia
| |
Collapse
|
143
|
Sharma M, Shukla G. Metabiotics: One Step ahead of Probiotics; an Insight into Mechanisms Involved in Anticancerous Effect in Colorectal Cancer. Front Microbiol 2016; 7:1940. [PMID: 27994577 PMCID: PMC5133260 DOI: 10.3389/fmicb.2016.01940] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 11/18/2016] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer is closely associated with environment, diet and lifestyle. Normally it is treated with surgery, radiotherapy or chemotherapy but increasing systemic toxicity, resistance and recurrence is prompting scientists to devise new potent and safer alternate prophylactic or therapeutic strategies. Among these, probiotics, prebiotics, synbiotics, and metabiotics are being considered as the promising candidates. Metabiotics or probiotic derived factors can optimize various physiological functions of the host and offer an additional advantage to be utilized even in immunosuppressed individuals. Interestingly, anti colon cancer potential of probiotic strains has been attributable to metabiotics that have epigenetic, antimutagenic, immunomodulatory, apoptotic, and antimetastatic effects. Thus, it's time to move one step further to utilize metabiotics more smartly by avoiding the risks associated with probiotics even in certain normal/or immuno compromised host. Here, an attempt is made to provide insight into the adverse effects associated with probiotics and beneficial aspects of metabiotics with main emphasis on the modulatory mechanisms involved in colon cancer.
Collapse
Affiliation(s)
- Mridul Sharma
- Department of Microbiology, Panjab University Chandigarh, India
| | - Geeta Shukla
- Department of Microbiology, Panjab University Chandigarh, India
| |
Collapse
|
144
|
Bluemel S, Williams B, Knight R, Schnabl B. Precision medicine in alcoholic and nonalcoholic fatty liver disease via modulating the gut microbiota. Am J Physiol Gastrointest Liver Physiol 2016; 311:G1018-G1036. [PMID: 27686615 PMCID: PMC5206291 DOI: 10.1152/ajpgi.00245.2016] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/25/2016] [Indexed: 02/08/2023]
Abstract
Alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD) represent a major health burden in industrialized countries. Although alcohol abuse and nutrition play a central role in disease pathogenesis, preclinical models support a contribution of the gut microbiota to ALD and NAFLD. This review describes changes in the intestinal microbiota compositions related to ALD and NAFLD. Findings from in vitro, animal, and human studies are used to explain how intestinal pathology contributes to disease progression. This review summarizes the effects of untargeted microbiome modifications using antibiotics and probiotics on liver disease in animals and humans. While both affect humoral inflammation, regression of advanced liver disease or mortality has not been demonstrated. This review further describes products secreted by Lactobacillus- and microbiota-derived metabolites, such as fatty acids and antioxidants, that could be used for precision medicine in the treatment of liver disease. A better understanding of host-microbial interactions is allowing discovery of novel therapeutic targets in the gut microbiota, enabling new treatment options that restore the intestinal ecosystem precisely and influence liver disease. The modulation options of the gut microbiota and precision medicine employing the gut microbiota presented in this review have excellent prospects to improve treatment of liver disease.
Collapse
Affiliation(s)
- Sena Bluemel
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Brandon Williams
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Rob Knight
- Departments of Pediatrics and Computer Science and Engineering, University of California San Diego, La Jolla, California; and
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California;
- Veterans Affairs San Diego Healthcare System, San Diego, California
| |
Collapse
|
145
|
Saturated and Unsaturated Dietary Fats Differentially Modulate Ethanol-Induced Changes in Gut Microbiome and Metabolome in a Mouse Model of Alcoholic Liver Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:765-76. [PMID: 27012191 DOI: 10.1016/j.ajpath.2015.11.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 10/21/2015] [Accepted: 11/17/2015] [Indexed: 02/07/2023]
Abstract
Alcoholic liver disease (ALD) ranks among major causes of morbidity and mortality. Diet and crosstalk between the gut and liver are important determinants of ALD. We evaluated the effects of different types of dietary fat and ethanol on the gut microbiota composition and metabolic activity and the effect of these changes on liver injury in ALD. Compared with ethanol and a saturated fat diet (medium chain triglycerides enriched), an unsaturated fat diet (corn oil enriched) exacerbated ethanol-induced endotoxemia, liver steatosis, and injury. Major alterations in gut microbiota, including a reduction in Bacteroidetes and an increase in Proteobacteria and Actinobacteria, were seen in animals fed an unsaturated fat diet and ethanol but not a saturated fat diet and ethanol. Compared with a saturated fat diet and ethanol, an unsaturated fat diet and ethanol caused major fecal metabolomic changes. Moreover, a decrease in certain fecal amino acids was noted in both alcohol-fed groups. These data support an important role of dietary lipids in ALD pathogenesis and provide insight into mechanisms of ALD development. A diet enriched in unsaturated fats enhanced alcohol-induced liver injury and caused major fecal metagenomic and metabolomic changes that may play an etiologic role in observed liver injury. Dietary lipids can potentially serve as inexpensive interventions for the prevention and treatment of ALD.
Collapse
|
146
|
Liu Y, Zhao C, Xiao J, Liu L, Zhang M, Wang C, Wu G, Zheng MH, Xu LM, Chen YP, Mohammadi M, Chen SY, Cave M, McClain C, Li X, Feng W. Fibroblast growth factor 21 deficiency exacerbates chronic alcohol-induced hepatic steatosis and injury. Sci Rep 2016; 6:31026. [PMID: 27498701 PMCID: PMC4976373 DOI: 10.1038/srep31026] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 07/13/2016] [Indexed: 12/19/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) is a hepatokine that regulates glucose and lipid metabolism in the liver. We sought to determine the role of FGF21 in hepatic steatosis in mice exposed to chronic alcohol treatment and to discern underlying mechanisms. Male FGF21 knockout (FGF21 KO) and control (WT) mice were divided into groups that were fed either the Lieber DeCarli diet containing 5% alcohol or an isocaloric (control) diet for 4 weeks. One group of WT mice exposed to alcohol received recombinant human FGF21 (rhFGF21) in the last 5 days. Liver steatosis and inflammation were assessed. Primary mouse hepatocytes and AML-12 cells were incubated with metformin or rhFGF21. Hepatic genes and the products involved in in situ lipogenesis and fatty acid β-oxidation were analyzed. Alcohol exposure increased circulating levels and hepatic expression of FGF21. FGF21 depletion exacerbated alcohol-induced hepatic steatosis and liver injury, which was associated with increased activation of genes involved in lipogenesis mediated by SREBP1c and decreased expression of genes involved in fatty acid β-oxidation mediated by PGC1α. rhFGF21 administration reduced alcohol-induced hepatic steatosis and inflammation in WT mice. These results reveal that alcohol-induced FGF21 expression is a hepatic adaptive response to lipid dysregulation. Targeting FGF21 signaling could be a novel treatment approach for alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Yanlong Liu
- School of Pharmacy and First Affiliate Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Cuiqing Zhao
- School of Pharmacy and First Affiliate Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Jian Xiao
- School of Pharmacy and First Affiliate Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Liming Liu
- Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Min Zhang
- Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Cuiling Wang
- School of Life Sciences, Northwest University, Xi’an, Shaanxi, 710069, China
| | - Guicheng Wu
- Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Three George Central Hospital, Chongqing, 404000, China
| | - Ming-Hua Zheng
- School of Pharmacy and First Affiliate Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Lan-Man Xu
- School of Pharmacy and First Affiliate Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yong-Ping Chen
- School of Pharmacy and First Affiliate Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Moosa Mohammadi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Shao-Yu Chen
- Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Matthew Cave
- Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Craig McClain
- Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Robley Rex VA Medical Center, Louisville, KY, 40206, USA
| | - Xiaokun Li
- School of Pharmacy and First Affiliate Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Wenke Feng
- School of Pharmacy and First Affiliate Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| |
Collapse
|
147
|
Pritchard MT, McCracken JM. Identifying Novel Targets for Treatment of Liver Fibrosis: What Can We Learn from Injured Tissues which Heal Without a Scar? Curr Drug Targets 2016; 16:1332-46. [PMID: 26302807 DOI: 10.2174/1389450116666150825111439] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 08/08/2015] [Indexed: 02/07/2023]
Abstract
The liver is unique in that it is able to regenerate. This regeneration occurs without formation of a scar in the case of non-iterative hepatic injury. However, when the liver is exposed to chronic liver injury, the purely regenerative process fails and excessive extracellular matrix proteins are deposited in place of normal liver parenchyma. While much has been discovered in the past three decades, insights into fibrotic mechanisms have not yet lead to effective therapies; liver transplant remains the only cure for advanced liver disease. In an effort to broaden the collection of possible therapeutic targets, this review will compare and contrast the liver wound healing response to that found in two types of wound healing: scarless wound healing of fetal skin and oral mucosa and scar-forming wound healing found in adult skin. This review will examine wound healing in the liver and the skin in relation to the role of humoral and cellular factors, as well as the extracellular matrix, in this process. While several therapeutic targets are similar between fibrotic liver and adult skin wound healing, others are unique and represent novel areas for hepatic anti-fibrotic research. In particular, investigations into the role of hyaluronan in liver fibrosis and fibrosis resolution are warranted.
Collapse
Affiliation(s)
- Michele T Pritchard
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66161, USA.
| | | |
Collapse
|
148
|
Fukui H. Increased Intestinal Permeability and Decreased Barrier Function: Does It Really Influence the Risk of Inflammation? Inflamm Intest Dis 2016. [PMID: 29922669 DOI: 10.1159/000447252.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/28/2022] Open
Abstract
Background Increased intestinal permeability due to barrier dysfunction is supposed to cause microbial translocation which may induce low-grade inflammation in various diseases. However, this series of events has not been comprehensively evaluated yet. Summary Intestinal epithelial barrier dysfunction and increased permeability have been described in patients with inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), alcoholic liver disease, nonalcoholic steatohepatitis (NASH), liver cirrhosis, acute pancreatitis, primary biliary cholangitis (PBC), type 1 and type 2 diabetes, chronic kidney disease, chronic heart failure (CHF), depression, and other diseases. Most clinical reports used either permeability assays of challenge tests or measurement of circulating bacterial markers like endotoxin for assessment of 'the leaky gut'. The intestinal permeability assessed by the challenge tests has often been related to the changes of tight junction proteins in the epithelium or circulating endotoxin levels. In patients with IBD, alcoholic liver disease, NASH, liver cirrhosis, PBC, obstructive jaundice, severe acute pancreatitis, and CHF, endotoxemia and proinflammatory cytokinemia have been found in addition to increased permeability. In the serum of patients with IBS and depression, antiflagellin antibodies and antilipid A antibodies were detected, respectively, together with increased permeability and proinflammatory cytokinemia. The site of infection, which is localized to the intestine in IBD and IBS, includes various extraintestinal organs in other diseases. The relation of gut dysbiosis to intestinal barrier dysfunction has gradually been clarified. Key Messages Although no direct cause-and-effect relationship has been confirmed, all clinical and experimental data suggest the importance of intestinal hyperpermeability in the inflammatory changes of various diseases. Increased intestinal permeability is a new target for disease prevention and therapy. Considering the close relationship of 'the leaky gut' and gut dysbiosis to the major diseases, we can conclude that meticulous dietetic and probiotic approaches to recover healthy microbiota have the potential to make a breakthrough in the management of these diseases tomorrow.
Collapse
Affiliation(s)
- Hiroshi Fukui
- Department of Gastroenterology, Endocrinology and Metabolism, Nara Medical University, Kashihara, Japan
| |
Collapse
|
149
|
Fukui H. Increased Intestinal Permeability and Decreased Barrier Function: Does It Really Influence the Risk of Inflammation? Inflamm Intest Dis 2016; 1:135-145. [PMID: 29922669 DOI: 10.1159/000447252] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/30/2016] [Indexed: 12/13/2022] Open
Abstract
Background Increased intestinal permeability due to barrier dysfunction is supposed to cause microbial translocation which may induce low-grade inflammation in various diseases. However, this series of events has not been comprehensively evaluated yet. Summary Intestinal epithelial barrier dysfunction and increased permeability have been described in patients with inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), alcoholic liver disease, nonalcoholic steatohepatitis (NASH), liver cirrhosis, acute pancreatitis, primary biliary cholangitis (PBC), type 1 and type 2 diabetes, chronic kidney disease, chronic heart failure (CHF), depression, and other diseases. Most clinical reports used either permeability assays of challenge tests or measurement of circulating bacterial markers like endotoxin for assessment of 'the leaky gut'. The intestinal permeability assessed by the challenge tests has often been related to the changes of tight junction proteins in the epithelium or circulating endotoxin levels. In patients with IBD, alcoholic liver disease, NASH, liver cirrhosis, PBC, obstructive jaundice, severe acute pancreatitis, and CHF, endotoxemia and proinflammatory cytokinemia have been found in addition to increased permeability. In the serum of patients with IBS and depression, antiflagellin antibodies and antilipid A antibodies were detected, respectively, together with increased permeability and proinflammatory cytokinemia. The site of infection, which is localized to the intestine in IBD and IBS, includes various extraintestinal organs in other diseases. The relation of gut dysbiosis to intestinal barrier dysfunction has gradually been clarified. Key Messages Although no direct cause-and-effect relationship has been confirmed, all clinical and experimental data suggest the importance of intestinal hyperpermeability in the inflammatory changes of various diseases. Increased intestinal permeability is a new target for disease prevention and therapy. Considering the close relationship of 'the leaky gut' and gut dysbiosis to the major diseases, we can conclude that meticulous dietetic and probiotic approaches to recover healthy microbiota have the potential to make a breakthrough in the management of these diseases tomorrow.
Collapse
Affiliation(s)
- Hiroshi Fukui
- Department of Gastroenterology, Endocrinology and Metabolism, Nara Medical University, Kashihara, Japan
| |
Collapse
|
150
|
Cai X, Bao L, Wang N, Ren J, Chen Q, Xu M, Li D, Mao R, Li Y. Dietary nucleotides protect against alcoholic liver injury by attenuating inflammation and regulating gut microbiota in rats. Food Funct 2016; 7:2898-908. [PMID: 27247978 DOI: 10.1039/c5fo01580d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nucleotides have been reported to be effective in attenuating liver damage and regulating gut microbiota. However, the protective effect of nucleotides against alcoholic liver injury remains unknown. The present study aims to investigate whether nucleotides ameliorate alcoholic liver injury and explores the possible mechanism. Male Wistar rats were given alcohol, equivalent distilled water or an isocaloric amount of dextrose intragastrically twice daily for up to 6 weeks respectively. Two subgroups of alcohol-treated rats were fed with a nucleotide-supplemented AIN-93G rodent diet. Serum enzymes, inflammatory cytokines and microbiota composition of the caecum content were evaluated. We found that nucleotides could significantly decrease serum alanine aminotransferase and aspartate aminotransferase, plasma lipopolysaccharide and inflammatory cytokine levels. Sequencing of 16S rRNA genes revealed that nucleotide-treated rats showed a higher abundance of Firmicutes and a lower abundance of Bacteroidetes than alcohol-treated rats. Moreover, nucleotide treatment inhibited the protein expression of toll-like receptor 4, CD14 and repressed the phosphorylation of inhibitor kappa Bα and nuclear factor-κB p65 in the liver. These results suggested that nucleotides suppressed the inflammatory response and regulated gut microbiota in alcoholic liver injury. The partial inhibition of lipopolysaccharide - toll-like receptor 4-nuclear factor-κB p65 signaling in the liver may be attributed to this mechanism.
Collapse
Affiliation(s)
- Xiaxia Cai
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|