101
|
Pitale PM, Gorbatyuk O, Gorbatyuk M. Neurodegeneration: Keeping ATF4 on a Tight Leash. Front Cell Neurosci 2017; 11:410. [PMID: 29326555 PMCID: PMC5736573 DOI: 10.3389/fncel.2017.00410] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/05/2017] [Indexed: 12/15/2022] Open
Abstract
Activation of the endoplasmic reticulum (ER) stress and ER stress response, also known as the unfolded protein response (UPR), is common to various degenerative disorders. Therefore, signaling components of the UPR are currently emerging as potential targets for intervention and treatment of human diseases. One UPR signaling member, activating transcription factor 4 (ATF4), has been found up-regulated in many pathological conditions, pointing to therapeutic potential in targeting its expression. In cells, ATF4 governs multiple signaling pathways, including autophagy, oxidative stress, inflammation, and translation, suggesting a multifaceted role of ATF4 in the progression of various pathologies. However, ATF4 has been shown to trigger both pro-survival and pro-death pathways, and this, perhaps, can explain the contradictory opinions in current literature regarding targeting ATF4 for clinical application. In this review, we summarized recent published studies from our labs and others that focus on the therapeutic potential of the strategy controlling ATF4 expression in different retinal and neurodegenerative disorders.
Collapse
Affiliation(s)
- Priyamvada M Pitale
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Oleg Gorbatyuk
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Marina Gorbatyuk
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
102
|
Chemical chaperon 4-phenylbutyrate protects against the endoplasmic reticulum stress-mediated renal fibrosis in vivo and in vitro. Oncotarget 2017; 7:22116-27. [PMID: 26959118 PMCID: PMC5008348 DOI: 10.18632/oncotarget.7904] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/21/2016] [Indexed: 12/16/2022] Open
Abstract
Renal tubulointerstitial fibrosis is the common and final pathologic change of kidney in end-stage renal disease. Interesting, endoplasmic reticulum (ER) stress is known to contribute to the pathophysiological mechanisms during the development of renal fibrosis. Here, we investigated the effects of chemical chaperon sodium 4-phenylbutyrate (4-PBA) on renal fibrosis in vivo and in vitro. In a rat unilateral ureteral obstruction (UUO) model, 4-PBA mimicked endogenous ER chaperon in the kidneys and significantly reduced glucose regulated protein 78 (GRP78), CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP), activating transcription factor 4 (ATF4), and phosphorylated JNK protein expressions as well as restored spliced X-box-binding protein 1 (XBP1) expressions in the kidneys of UUO rats. 4-PBA also attenuated the increases of α-smooth muscle actin (α-SMA), connective tissue growth factor (CTGF) protein expressions, tubulointerstitial fibrosis, and apoptosis in the kidneys of UUO rats. Moreover, transforming growth factor (TGF)-β markedly increased ER stress-associated molecules, profibrotic factors, and apoptotic markers in the renal tubular cells (NRK-52E), all of which could be significantly counteracted by 4-PBA treatment. 4-PBA also diminished TGF-β-increased CTGF promoter activity and CTGF mRNA expression in NRK-52E cells. Taken together, our results indicated that 4-PBA acts as an ER chaperone to ameliorate ER stress-induced renal tubular cell apoptosis and renal fibrosis.
Collapse
|
103
|
Pu Y, Gingrich JD, Steibel JP, Veiga-Lopez A. Sex-Specific Modulation of Fetal Adipogenesis by Gestational Bisphenol A and Bisphenol S Exposure. Endocrinology 2017; 158:3844-3858. [PMID: 28938450 PMCID: PMC5695840 DOI: 10.1210/en.2017-00615] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/11/2017] [Indexed: 12/13/2022]
Abstract
The endocrine-disrupting chemical bisphenol A (BPA) increases adipose tissue mass in vivo and promotes adipogenesis in vitro; however, mechanisms explaining BPA's obesogenic effect remain unknown. We investigated the effects of gestational BPA and its analog, bisphenol S (BPS), exposure on the adipogenic differentiation ability of fetal preadipocytes and the role of endoplasmic reticulum stress in regulating this process. Pregnant sheep (n = 7 to 8 per group) mated to the same male were exposed to BPA or BPS from days 30 to 100 of gestation; pregnancies were terminated 20 days later. Adipose tissue was harvested and fetal preadipocytes isolated. Adipose tissue gene expression, adipocyte size, preadipocyte gene expression, adipogenic differentiation, and dynamic expression of genes involved in adipogenesis and endoplasmic reticulum stress were assessed. Gestational BPA enhanced adipogenic differentiation in female, but not male, preadipocytes. The unfolded protein response (UPR) pathway was upregulated in BPA-exposed female preadipocytes supportive of a higher endoplasmic reticulum stress. Increased expression of estradiol receptor 1 and glucocorticoid receptor in female preadipocytes suggests that this may be a potential cause behind the sex-specific effects observed upon BPA exposure. Gestational BPS affected adipogenic terminal differentiation gene expression in male preadipocytes, but not adipogenic differentiation potential. We demonstrate that gestational BPA exposure can modulate the differentiation ability of fetal preadipocytes. UPR upregulation in gestationally BPA-exposed female preadipocytes may contribute to the increased preadipocyte's adipogenic ability. The marked sex-specific effect of BPA highlights higher susceptibility of females to bisphenol A and potentially, a higher risk to develop obesity in adulthood.
Collapse
Affiliation(s)
- Yong Pu
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824
| | - Jeremy D. Gingrich
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824
| | - Juan P. Steibel
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824
| | - Almudena Veiga-Lopez
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
104
|
Yang FW, Fu Y, Li Y, He YH, Mu MY, Liu QC, Long J, Lin SD. Prostaglandin E1 protects hepatocytes against endoplasmic reticulum stress-induced apoptosis via protein kinase A-dependent induction of glucose-regulated protein 78 expression. World J Gastroenterol 2017; 23:7253-7264. [PMID: 29142472 PMCID: PMC5677201 DOI: 10.3748/wjg.v23.i40.7253] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/24/2017] [Accepted: 08/25/2017] [Indexed: 02/07/2023] Open
Abstract
AIM To investigate the protective effect of prostaglandin E1 (PGE1) against endoplasmic reticulum (ER) stress-induced hepatocyte apoptosis, and to explore its underlying mechanisms. METHODS Thapsigargin (TG) was used to induce ER stress in the human hepatic cell line L02 and hepatocarcinoma-derived cell line HepG2. To evaluate the effects of PGE1 on TG-induced apoptosis, PGE1 was used an hour prior to TG treatment. Activation of unfolded protein response signaling pathways were detected by western blotting and quantitative real-time RT-PCR. Apoptotic index and cell viability of L02 cells and HepG2 cells were determined with flow cytometry and MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay. RESULTS Pretreatment with 1 μmol/L PGE1 protected against TG-induced apoptosis in both L02 cells and HepG2 cells. PGE1 enhanced the TG-induced expression of C/EBP homologous protein (CHOP), glucose-regulated protein (GRP) 78 and spliced X box-binding protein 1 at 6 h. However, it attenuated their expressions after 24 h. PGE1 alone induced protein and mRNA expressions of GRP78; PGE1 also induced protein expression of DNA damage-inducible gene 34 and inhibited the expressions of phospho-PKR-like ER kinase, phospho-eukaryotic initiation factor 2α and CHOP. Treatment with protein kinase A (PKA)-inhibitor H89 or KT5720 blocked PGE1-induced up-regulation of GRP78. Further, the cytoprotective effect of PGE1 on hepatocytes was not observed after blockade of GRP78 expression by H89 or small interfering RNA specifically targeted against human GRP78. CONCLUSION Our study demonstrates that PGE1 protects against ER stress-induced hepatocyte apoptosis via PKA pathway-dependent induction of GRP78 expression.
Collapse
Affiliation(s)
- Fang-Wan Yang
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical College, Zunyi 563003, Guizhou Province, China
| | - Yu Fu
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical College, Zunyi 563003, Guizhou Province, China
- Department of Infectious Diseases, Heze Municipal Hospital, Heze 274000, Shandong Province, China
| | - Ying Li
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical College, Zunyi 563003, Guizhou Province, China
| | - Yi-Huai He
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical College, Zunyi 563003, Guizhou Province, China
| | - Mao-Yuan Mu
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical College, Zunyi 563003, Guizhou Province, China
| | - Qi-Chuan Liu
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical College, Zunyi 563003, Guizhou Province, China
| | - Jun Long
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical College, Zunyi 563003, Guizhou Province, China
| | - Shi-De Lin
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical College, Zunyi 563003, Guizhou Province, China
| |
Collapse
|
105
|
Oxidised protein metabolism: recent insights. Biol Chem 2017; 398:1165-1175. [DOI: 10.1515/hsz-2017-0124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/17/2017] [Indexed: 12/14/2022]
Abstract
Abstract
The ‘oxygen paradox’ arises from the fact that oxygen, the molecule that aerobic life depends on, threatens its very existence. An oxygen-rich environment provided life on Earth with more efficient bioenergetics and, with it, the challenge of having to deal with a host of oxygen-derived reactive species capable of damaging proteins and other crucial cellular components. In this minireview, we explore recent insights into the metabolism of proteins that have been reversibly or irreversibly damaged by oxygen-derived species. We discuss recent data on the important roles played by the proteasomal and lysosomal systems in the proteolytic degradation of oxidatively damaged proteins and the effects of oxidative damage on the function of the proteolytic pathways themselves. Mitochondria are central to oxygen utilisation in the cell, and their ability to handle oxygen-derived radicals is an important and still emerging area of research. Current knowledge of the proteolytic machinery in the mitochondria, including the ATP-dependent AAA+ proteases and mitochondrial-derived vesicles, is also highlighted in the review. Significant progress is still being made in regard to understanding the mechanisms underlying the detection and degradation of oxidised proteins and how proteolytic pathways interact with each other. Finally, we highlight a few unanswered questions such as the possibility of oxidised amino acids released from oxidised proteins by proteolysis being re-utilised in protein synthesis thus establishing a vicious cycle of oxidation in cells.
Collapse
|
106
|
Eukaryotic translation initiation factor 2 subunit α (eIF2α) inhibitor salubrinal attenuates paraquat-induced human lung epithelial-like A549 cell apoptosis by regulating the PERK-eIF2α signaling pathway. Toxicol In Vitro 2017; 46:58-65. [PMID: 28986289 DOI: 10.1016/j.tiv.2017.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 08/16/2017] [Accepted: 10/02/2017] [Indexed: 11/21/2022]
Abstract
Paraquat (PQ), as one of the most widely used herbicides in the world, can cause severe lung damage in humans and animals. This study investigated the underlying molecular mechanism of PQ-induced lung cell damage and the protective role of salubrinal. Human lung epithelial-like A549 cells were treated with PQ for 24h and were pre-incubated with salubrinal for 2h, followed by 500μM of PQ treatment. Silencing eIF2α gene of the A549 cells with siRNA interference method was conducted. Cell morphology, cell viability, apoptosis and caspase-3 activity were assessed by different assays accordingly thereafter. The expression of PERK, p-PERK, ATF6, c-ATF6, IRE1α, p-IRE1α, CHOP, GRP78, p-eIF2α and β-actin was assayed by western blot. The data showed that PQ significantly reduced A549 cell viability, changed cell morphology, induced cell apoptosis and significantly upregulated the levels of GRP78, CHOP, p-PERK, c-ATF6 and p-IRE1α. However, 30μM salubrinal could attenuate the effects of PQ on damages to A549 cells through upregulating p-eIF2α. In contrast, knocking down eIF2α gene inhabited the effects of salubrinal. These results suggest that PQ-induced A549 cell apoptosis involved endoplasmic reticulum (ER) stress, specially the PERK-eIF2α pathway. Salubrinal attenuated A549 cells from PQ-induced damages through regulation of the PERK-eIF2α signaling.
Collapse
|
107
|
Anania MC, Cetti E, Lecis D, Todoerti K, Gulino A, Mauro G, Di Marco T, Cleris L, Pagliardini S, Manenti G, Belmonte B, Tripodo C, Neri A, Greco A. Targeting COPZ1 non-oncogene addiction counteracts the viability of thyroid tumor cells. Cancer Lett 2017; 410:201-211. [PMID: 28951131 DOI: 10.1016/j.canlet.2017.09.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 01/19/2023]
Abstract
Thyroid carcinoma is generally associated with good prognosis, but no effective treatments are currently available for aggressive forms not cured by standard therapy. To find novel therapeutic targets for this tumor type, we had previously performed a siRNA-based functional screening to identify genes essential for sustaining the oncogenic phenotype of thyroid tumor cells, but not required to the same extent for the viability of normal cells (non-oncogene addiction paradigm). Among those, we found the coatomer protein complex ζ1 (COPZ1) gene, which is involved in intracellular traffic, autophagy and lipid homeostasis. In this paper, we investigated the mechanisms through which COPZ1 depletion leads to thyroid tumor cell death. We showed that siRNA-mediated COPZ1 depletion causes abortive autophagy, endoplasmic reticulum stress, unfolded protein response and apoptosis. Interestingly, we observed that mouse tumor xenografts, locally treated with siRNA targeting COPZ1, showed a significant reduction of tumor growth. On the whole, we demonstrated for the first time the crucial role of COPZ1 in the viability of thyroid tumor cells, suggesting that it may be considered an attractive target for novel therapeutic approaches for thyroid cancer.
Collapse
Affiliation(s)
- Maria Chiara Anania
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Elena Cetti
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Daniele Lecis
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Katia Todoerti
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Alessandro Gulino
- Department of Health Science, Human Pathology Section, University of Palermo School of Medicine, Palermo, Italy
| | - Giuseppe Mauro
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Tiziana Di Marco
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Loredana Cleris
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Sonia Pagliardini
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Giacomo Manenti
- Department of Predictive and Preventive Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Beatrice Belmonte
- Department of Health Science, Human Pathology Section, University of Palermo School of Medicine, Palermo, Italy
| | - Claudio Tripodo
- Department of Health Science, Human Pathology Section, University of Palermo School of Medicine, Palermo, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy; Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Angela Greco
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy.
| |
Collapse
|
108
|
Darling NJ, Balmanno K, Cook SJ. ERK1/2 signalling protects against apoptosis following endoplasmic reticulum stress but cannot provide long-term protection against BAX/BAK-independent cell death. PLoS One 2017; 12:e0184907. [PMID: 28931068 PMCID: PMC5607168 DOI: 10.1371/journal.pone.0184907] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/01/2017] [Indexed: 11/19/2022] Open
Abstract
Disruption of protein folding in the endoplasmic reticulum (ER) causes ER stress. Activation of the unfolded protein response (UPR) acts to restore protein homeostasis or, if ER stress is severe or persistent, drive apoptosis, which is thought to proceed through the cell intrinsic, mitochondrial pathway. Indeed, cells that lack the key executioner proteins BAX and BAK are protected from ER stress-induced apoptosis. Here we show that chronic ER stress causes the progressive inhibition of the extracellular signal-regulated kinase (ERK1/2) signalling pathway. This is causally related to ER stress since reactivation of ERK1/2 can protect cells from ER stress-induced apoptosis whilst ERK1/2 pathway inhibition sensitises cells to ER stress. Furthermore, cancer cell lines harbouring constitutively active BRAFV600E are addicted to ERK1/2 signalling for protection against ER stress-induced cell death. ERK1/2 signalling normally represses the pro-death proteins BIM, BMF and PUMA and it has been proposed that ER stress induces BIM-dependent cell death. We found no evidence that ER stress increased the expression of these proteins; furthermore, BIM was not required for ER stress-induced death. Rather, ER stress caused the PERK-dependent inhibition of cap-dependent mRNA translation and the progressive loss of pro-survival proteins including BCL2, BCLXL and MCL1. Despite these observations, neither ERK1/2 activation nor loss of BAX/BAK could confer long-term clonogenic survival to cells exposed to ER stress. Thus, ER stress induces cell death by at least two biochemically and genetically distinct pathways: a classical BAX/BAK-dependent apoptotic response that can be inhibited by ERK1/2 signalling and an alternative ERK1/2- and BAX/BAK-independent cell death pathway.
Collapse
Affiliation(s)
- Nicola J. Darling
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| | - Kathryn Balmanno
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| | - Simon J. Cook
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| |
Collapse
|
109
|
Endoplasmic reticulum stress participates in the progress of senescence and apoptosis of osteoarthritis chondrocytes. Biochem Biophys Res Commun 2017; 491:368-373. [DOI: 10.1016/j.bbrc.2017.07.094] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 07/15/2017] [Indexed: 12/17/2022]
|
110
|
Knockout of MARCH2 inhibits the growth of HCT116 colon cancer cells by inducing endoplasmic reticulum stress. Cell Death Dis 2017; 8:e2957. [PMID: 28749466 PMCID: PMC5584615 DOI: 10.1038/cddis.2017.347] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 02/06/2023]
Abstract
Membrane-associated RING-CH protein 2 (MARCH2), a member of the MARCH family, functions in vesicle trafficking and autophagy regulation. In this study, we established MARCH2 knockout HCT116 cell lines using CRISPR/Cas9-mediated genome editing to evaluate the role of MARCH2 in colon cancer in vitro and in vivo. Knockout of MARCH2 suppressed cell proliferation, and promoted autophagy, apoptosis and G2/M phase cell cycle arrest. These effects were associated with activation of endoplasmic reticulum (ER) stress. In addition, loss of MARCH2 sensitized HCT116 cells to the chemotherapy drugs etoposide and cisplatin. Moreover, we analyzed the clinical significance of MARCH2 in human colon carcinoma (n=100). High MARCH2 expression was significantly associated with advanced clinicopathological features and poorer overall survival in colon carcinoma. MARCH2 expression correlated negatively with expression of the unfolded protein response molecule p-PERK in colon cancer. Collectively, these data reveal a relationship between MARCH2, ER stress and colon cancer, and indicates MARCH2 may have an important role in the development and progression of colon cancer.
Collapse
|
111
|
Wang G, Zhou P, Chen X, Zhao L, Tan J, Yang Y, Fang Y, Zhou J. The novel autophagy inhibitor elaiophylin exerts antitumor activity against multiple myeloma with mutant TP53 in part through endoplasmic reticulum stress-induced apoptosis. Cancer Biol Ther 2017; 18:584-595. [PMID: 28718729 DOI: 10.1080/15384047.2017.1345386] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Elaiophylin is a natural compound and a novel and potent inhibitor of late stage autophagy with outstanding antitumor activity in human ovarian cancer cells. However, the possible biologic effects and functional linkage between elaiophylin and multiple myeloma (MM) have not been explored. This study aimed to assess the effect of elaiophylin on MM cells with mutant TP53 and the possible molecular mechanism. The results suggested that elaiophylin exerted anti-myeloma activity by inducing apoptosis and proliferation arrest. As expected, elaiophylin blocked autophagy flux in MM cells. Subsequently, persistent activation of endoplasmic reticulum (ER) stress was induced. Moreover, the apoptotic effect was to some extent attenuated by the ER stress inhibitor tauroursodeoxycholic acid (TUDCA). Further studies indicated that elaiophylin effectively suppressed MM cell growth without obvious side effects in zebrafish embryo and mouse xenograft models. Taken together, our data are the first to demonstrate that exposure of human MM cells with mutant TP53 to elaiophylin blocked autophagy flux and thus induced cell death, which partially involved ER stress-associated apoptosis. Targeted disruption of the cellular protein handling system by elaiophylin is therefore a promising therapeutic strategy for overcoming incurable MM, even when TP53 mutations are present.
Collapse
Affiliation(s)
- Gaoxiang Wang
- a Department of Hematology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Pan Zhou
- a Department of Hematology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Xing Chen
- a Department of Hematology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Lei Zhao
- a Department of Hematology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Jiaqi Tan
- a Department of Hematology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Yang Yang
- a Department of Hematology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Yong Fang
- b Cancer Biology Center , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Jianfeng Zhou
- a Department of Hematology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| |
Collapse
|
112
|
Ignashkova TI, Gendarme M, Peschk K, Eggenweiler HM, Lindemann RK, Reiling JH. Cell survival and protein secretion associated with Golgi integrity in response to Golgi stress-inducing agents. Traffic 2017; 18:530-544. [PMID: 28485883 DOI: 10.1111/tra.12493] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 12/29/2022]
Abstract
The Golgi apparatus is part of the secretory pathway and of central importance for modification, transport and sorting of proteins and lipids. ADP-ribosylation factors, whose activation can be blocked by brefeldin A (BFA), play a major role in functioning of the Golgi network and regulation of membrane traffic and are also involved in proliferation and migration of cancer cells. Due to high cytotoxicity and poor bioavailability, BFA has not passed the preclinical stage of drug development. Recently, AMF-26 and golgicide A have been described as novel inhibitors of the Golgi system with antitumor or bactericidal properties. We provide here further evidence that AMF-26 closely mirrors the mode of action of BFA but is less potent. Using several human cancer cell lines, we studied the effects of AMF-26, BFA and golgicide A on cell homeostasis including Golgi structure, endoplasmic reticulum (ER) stress markers, secretion and viability, and found overall a significant correlation between these parameters. Furthermore, modulation of ADP-ribosylation factor expression has a profound impact on Golgi organization and survival in response to Golgi stress inducers.
Collapse
Affiliation(s)
- Tatiana I Ignashkova
- Metabolism and Signaling in Cancer, BioMed X Innovation Center, Heidelberg, Germany
| | - Mathieu Gendarme
- Metabolism and Signaling in Cancer, BioMed X Innovation Center, Heidelberg, Germany
| | - Katrin Peschk
- Medicinal Chemistry, Merck Biopharma, Merck KGaA, Darmstadt, Germany
| | | | - Ralph K Lindemann
- Translational Innovation Platform Oncology, Merck Biopharma, Merck KGaA, Darmstadt, Germany
| | - Jan H Reiling
- Metabolism and Signaling in Cancer, BioMed X Innovation Center, Heidelberg, Germany
| |
Collapse
|
113
|
Plate L, Wiseman RL. Regulating Secretory Proteostasis through the Unfolded Protein Response: From Function to Therapy. Trends Cell Biol 2017. [PMID: 28647092 DOI: 10.1016/j.tcb.2017.05.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Imbalances in secretory proteostasis induced by genetic, environmental, or aging-related insults are pathologically associated with etiologically diverse protein misfolding diseases. To protect the secretory proteome from these insults, organisms evolved stress-responsive signaling pathways that regulate the composition and activity of biologic pathways involved in secretory proteostasis maintenance. The most prominent of these is the endoplasmic reticulum (ER) unfolded protein response (UPR), which functions to regulate ER proteostasis in response to ER stress. While the signaling mechanisms involved in UPR activation are well defined, the impact of UPR activation on secretory proteostasis is only now becoming clear. Here, we highlight recent reports defining how activation of select UPR signaling pathways influences proteostasis within the ER and downstream secretory environments. Furthermore, we describe recent evidence that highlights the therapeutic potential for targeting UPR signaling pathways to correct pathologic disruption in secretory proteostasis associated with diverse types of protein misfolding diseases.
Collapse
Affiliation(s)
- Lars Plate
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - R Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
114
|
Osada H, Okamoto T, Kawashima H, Toda E, Miyake S, Nagai N, Kobayashi S, Tsubota K, Ozawa Y. Neuroprotective effect of bilberry extract in a murine model of photo-stressed retina. PLoS One 2017; 12:e0178627. [PMID: 28570634 PMCID: PMC5453571 DOI: 10.1371/journal.pone.0178627] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 05/16/2017] [Indexed: 12/03/2022] Open
Abstract
Excessive exposure to light promotes degenerative and blinding retinal diseases such as age-related macular degeneration and retinitis pigmentosa. However, the underlying mechanisms of photo-induced retinal degeneration are not fully understood, and a generalizable preventive intervention has not been proposed. Bilberry extract is an antioxidant-rich supplement that ameliorates ocular symptoms. However, its effects on photo-stressed retinas have not been clarified. In this study, we examined the neuroprotective effects of bilberry extract against photo-stress in murine retinas. Light-induced visual function impairment recorded by scotopic and phototopic electroretinograms showing respective rod and cone photoreceptor function was attenuated by oral administration of bilberry extract through a stomach tube in Balb/c mice (750 mg/kg body weight). Bilberry extract also suppressed photo-induced apoptosis in the photoreceptor cell layer and shortening of the outer segments of rod and cone photoreceptors. Levels of photo-induced reactive oxygen species (ROS), oxidative and endoplasmic reticulum (ER) stress markers, as measured by real-time reverse transcriptase polymerase chain reaction, were reduced by bilberry extract treatment. Reduction of ROS by N-acetyl-L-cysteine, a well-known antioxidant also suppressed ER stress. Immunohistochemical analysis of activating transcription factor 4 expression showed the presence of ER stress in the retina, and at least in part, in Müller glial cells. The photo-induced disruption of tight junctions in the retinal pigment epithelium was also attenuated by bilberry extract, repressing an oxidative stress marker, although ER stress markers were not repressed. Our results suggest that bilberry extract attenuates photo-induced apoptosis and visual dysfunction most likely, and at least in part, through ROS reduction, and subsequent ER stress attenuation in the retina. This study can help understand the mechanisms of photo-stress and contribute to developing a new, potentially useful therapeutic approach using bilberry extract for preventing retinal photo-damage.
Collapse
Affiliation(s)
- Hideto Osada
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Tomohiro Okamoto
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Hirohiko Kawashima
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Eriko Toda
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Seiji Miyake
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Wakasa Seikatsu Co., Ltd., Kyoto, Japan
| | - Norihiro Nagai
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | | | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Yoko Ozawa
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- * E-mail:
| |
Collapse
|
115
|
Sun J, Ren D. IER3IP1 deficiency leads to increased β-cell death and decreased β-cell proliferation. Oncotarget 2017; 8:56768-56779. [PMID: 28915629 PMCID: PMC5593600 DOI: 10.18632/oncotarget.18179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/27/2017] [Indexed: 12/19/2022] Open
Abstract
Mutations in the gene for Immediate Early Response 3 Interacting Protein 1 (IER3IP1) cause permanent neonatal diabetes mellitus in human. The mechanisms involved have not been determined and the role of IER3IP1 in β-cell survival has not been characterized. In order to determine if there is a molecular link between IER3IP1 deficiency and β-cell survival and proliferation, we knocked down Ier3ip1 gene expression in mouse MIN6 insulinoma cells. IER3IP1 suppression induced apoptotic cell death which was associated with an increase in Bim and a decrease in Bcl-xL. Knockdown of Bim reduced apoptotic cell death in MIN6 cells induced by IER3IP1 suppression. Overexpression of the anti-apoptotic molecule Bcl-xL prevents cell death induced by IER3IP1 suppression. Moreover, IER3IP1 also regulates activation of the unfolded protein response (UPR). IER3IP1 suppression impairs the Inositol Requiring 1 (IRE1) and PKR-like ER kinase (PERK) arms of UPR. The cell proliferation of MIN6 cells was also decreased in IER3IP1 deficient cells. These results suggest that IER3IP1 suppression induces an increase in cell death and a decrease in cell proliferation in MIN6 cells, which may be the mechanism that mutations in IER3IP1 lead to diabetes.
Collapse
Affiliation(s)
- Juan Sun
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Decheng Ren
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
116
|
Valderrama C, Clark A, Urano F, Unanue ER, Carrero JA. Listeria monocytogenes induces an interferon-enhanced activation of the integrated stress response that is detrimental for resolution of infection in mice. Eur J Immunol 2017; 47:830-840. [PMID: 28267207 PMCID: PMC5450196 DOI: 10.1002/eji.201646856] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/31/2017] [Accepted: 02/28/2017] [Indexed: 01/26/2023]
Abstract
Type I interferons (IFNs) induce a detrimental response during Listeria monocytogenes (L. monocytogenes) infection. We were interested in identifying mechanisms linking IFN signaling to negative host responses against L. monocytogenes infection. Herein, we found that infection of myeloid cells with L. monocytogenes led to a coordinated induction of type I IFNs and activation of the integrated stress response (ISR). Infected cells did not induce Xbp1 splicing or BiP upregulation, indicating that the unfolded protein response was not triggered. CHOP (Ddit3) gene expression was upregulated during the ISR activation induced by L. monocytogenes. Myeloid cells deficient in either type I IFN signaling or PKR activation had less upregulation of CHOP following infection. CHOP‐deficient mice showed lower expression of innate immune cytokines and were more resistant than wild‐type counterparts following L. monocytogenes infection. These findings indicate that L. monocytogenes infection induces type I IFNs, which activate the ISR through PKR, which contributes to a detrimental outcome in the infected host.
Collapse
Affiliation(s)
- Carolina Valderrama
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Microbiology, PhD Biomedical Sciences Program, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Amy Clark
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Fumihiko Urano
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Emil R Unanue
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Javier A Carrero
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
117
|
Jiang X, Wei Y, Zhang T, Zhang Z, Qiu S, Zhou X, Zhang S. Effects of GSK2606414 on cell proliferation and endoplasmic reticulum stress-associated gene expression in retinal pigment epithelial cells. Mol Med Rep 2017; 15:3105-3110. [DOI: 10.3892/mmr.2017.6418] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 01/17/2017] [Indexed: 11/06/2022] Open
|
118
|
Li J, Wang D, Liu J, Qin Y, Huang L, Zeng Q, Xiao M, Hu J, Yang Q, He J, Mai L, Li Y, Liu W. Rce1 expression in renal cell carcinoma and its regulatory effect on 786-O cell apoptosis through endoplasmic reticulum stress. Acta Biochim Biophys Sin (Shanghai) 2017; 49:254-261. [PMID: 28159979 DOI: 10.1093/abbs/gmx002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Indexed: 11/14/2022] Open
Abstract
Ras and a-factor-converting enzyme 1 (Rce1) is located in the endoplasmic reticulum (ER) and is thought to be responsible for endoproteolytic processing of the vast majority of CAAX proteins. Endoplasmic reticulum stress (ERS) plays an important role in renal cell carcinoma (RCC); however, the expression and role of Rce1 in RCC have not been extensively studied. We aimed to investigate the expression of Rce1 in RCC tissues and its molecular mechanism in ERS-induced apoptosis in RCC 786-O cells. We first used western blotting, quantitative reverse transcriptase-polymerase chain reaction, and immunohistochemistry to detect the Rce1 expression in renal carcinoma tissues and paracancerous tissues. It was found that Rce1 expression was upregulated in RCC tissues, and its positive expression level was strongly associated with clinicopathologic features. Next, we detected the expression of Rce1 in human embryonic kidney cell line HEK293 and human renal carcinoma cell lines 786-O, ACHN, and A498. Higher expression of Rce1 was found in human renal carcinoma cell lines, especially in 786-O cells. Knockdown of Rce1 in 786-O cells increased apoptosis and inhibited proliferation (P < 0.05). Moreover, downregulation of Rce1 upregulated the expression of the pro-apoptotic protein Bax, but downregulated the expression of the anti-apoptotic protein Bcl-2. Further studies showed that downregulation of Rce1 also affected the expression of ERS factors. In conclusion, our results indicated that Rce1 plays a key role in RCC. Low expression of Rce1 might indirectly increase apoptosis and inhibit proliferation of renal carcinoma cells through ERS.
Collapse
Affiliation(s)
- Jianjun Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Delin Wang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Junnan Liu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yunlang Qin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Liangliang Huang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qiangfeng Zeng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Maolin Xiao
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jie Hu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qixin Yang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jiang He
- Gastroenterology and Neurology Center, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Li Mai
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Ying Li
- College of Life Science, Chongqing Medical University, Chongqing 400016, China
| | - Wujiang Liu
- Institute of Urology, The First Affiliated Hospital of Peking University, Beijing 100000, China
| |
Collapse
|
119
|
Bu LJ, Yu HQ, Fan LL, Li XQ, Wang F, Liu JT, Zhong F, Zhang CJ, Wei W, Wang H, Sun GP. Melatonin, a novel selective ATF-6 inhibitor, induces human hepatoma cell apoptosis through COX-2 downregulation. World J Gastroenterol 2017; 23:986-998. [PMID: 28246472 PMCID: PMC5311108 DOI: 10.3748/wjg.v23.i6.986] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/11/2016] [Accepted: 10/27/2016] [Indexed: 02/06/2023] Open
Abstract
AIM
To clarify the mechanisms involved in the critical endoplasmic reticulum (ER) stress initiating unfolded protein response pathway modified by melatonin.
METHODS
Hepatoma cells, HepG2, were cultured in vitro. Flow cytometry and TUNEL assay were used to measure HepG2 cell apoptosis. Western blotting and quantitative reverse transcription-polymerase chain reaction methods were used to determine the protein and messenger RNA levels of ER stress and apoptosis related genes’ expression, respectively. Tissue microarray construction from patients was verified by immunohistochemical analysis.
RESULTS
In the present study, we first identified that melatonin selectively blocked activating transcription factor 6 (ATF-6) and then inhibited cyclooxygenase-2 (COX-2) expression, leading to enhanced liver cancer cell apoptosis under ER stress condition. Dramatically increased CCAAT-enhancer-binding protein homologous protein level, suppressed COX-2 and decreased Bcl-2/Bax ratio by melatonin or ATF-6 siRNA contributed the enhanced HepG2 cell apoptosis under tunicamycin (an ER stress inducer) stimulation. In clinical hepatocellular carcinoma patients, the close relationship between ATF-6 and COX-2 was further confirmed.
CONCLUSION
These findings indicate that melatonin as a novel selective ATF-6 inhibitor can sensitize human hepatoma cells to ER stress inducing apoptosis.
Collapse
|
120
|
Kumar A, Balbach J. Targeting the molecular chaperone SlyD to inhibit bacterial growth with a small molecule. Sci Rep 2017; 7:42141. [PMID: 28176839 PMCID: PMC5296862 DOI: 10.1038/srep42141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/03/2017] [Indexed: 12/23/2022] Open
Abstract
Molecular chaperones are essential molecules for cell growth, whereby they maintain protein homeostasis. Because of their central cellular function, bacterial chaperones might be potential candidates for drug targets. Antimicrobial resistance is currently one of the greatest threats to human health, with gram-negative bacteria being of major concern. We found that a Cu2+ complex readily crosses the bacterial cell wall and inhibits SlyD, which is a molecular chaperone, cis/trans peptidyl prolyl isomerise (PPIase) and involved in various other metabolic pathways. The Cu2+ complex binds to the active sites of SlyD, which suppresses its PPIase and chaperone activities. Significant cell growth retardation could be observed for pathogenic bacteria (e.g., Staphylococcus aureus and Pseudomonas aeruginosa). We anticipate that rational development of drugs targeting molecular chaperones might help in future control of pathogenic bacterial growth, in an era of rapidly increasing antibiotic resistance.
Collapse
Affiliation(s)
- Amit Kumar
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
- Institute of Physics, Biophysics, Martin Luther University, Halle, Wittenberg, Germany
| | - Jochen Balbach
- Institute of Physics, Biophysics, Martin Luther University, Halle, Wittenberg, Germany
- Centre for Structure und Dynamics of Proteins (MZP), Martin Luther University Halle, Wittenberg, Germany
| |
Collapse
|
121
|
Golebiowski D, van der Bom IMJ, Kwon CS, Miller AD, Petrosky K, Bradbury AM, Maitland S, Kühn AL, Bishop N, Curran E, Silva N, GuhaSarkar D, Westmoreland SV, Martin DR, Gounis MJ, Asaad WF, Sena-Esteves M. Direct Intracranial Injection of AAVrh8 Encoding Monkey β-N-Acetylhexosaminidase Causes Neurotoxicity in the Primate Brain. Hum Gene Ther 2017; 28:510-522. [PMID: 28132521 DOI: 10.1089/hum.2016.109] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
GM2 gangliosidoses, including Tay-Sachs disease and Sandhoff disease, are lysosomal storage disorders caused by deficiencies in β-N-acetylhexosaminidase (Hex). Patients are afflicted primarily with progressive central nervous system (CNS) dysfunction. Studies in mice, cats, and sheep have indicated safety and widespread distribution of Hex in the CNS after intracranial vector infusion of AAVrh8 vectors encoding species-specific Hex α- or β-subunits at a 1:1 ratio. Here, a safety study was conducted in cynomolgus macaques (cm), modeling previous animal studies, with bilateral infusion in the thalamus as well as in left lateral ventricle of AAVrh8 vectors encoding cm Hex α- and β-subunits. Three doses (3.2 × 1012 vg [n = 3]; 3.2 × 1011 vg [n = 2]; or 1.1 × 1011 vg [n = 2]) were tested, with controls infused with vehicle (n = 1) or transgene empty AAVrh8 vector at the highest dose (n = 2). Most monkeys receiving AAVrh8-cmHexα/β developed dyskinesias, ataxia, and loss of dexterity, with higher dose animals eventually becoming apathetic. Time to onset of symptoms was dose dependent, with the highest-dose cohort producing symptoms within a month of infusion. One monkey in the lowest-dose cohort was behaviorally asymptomatic but had magnetic resonance imaging abnormalities in the thalami. Histopathology was similar in all monkeys injected with AAVrh8-cmHexα/β, showing severe white and gray matter necrosis along the injection track, reactive vasculature, and the presence of neurons with granular eosinophilic material. Lesions were minimal to absent in both control cohorts. Despite cellular loss, a dramatic increase in Hex activity was measured in the thalamus, and none of the animals presented with antibody titers against Hex. The high overexpression of Hex protein is likely to blame for this negative outcome, and this study demonstrates the variations in safety profiles of AAVrh8-Hexα/β intracranial injection among different species, despite encoding for self-proteins.
Collapse
Affiliation(s)
- Diane Golebiowski
- 1 Department of Neurology, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Horae Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Imramsjah M J van der Bom
- 3 Department of Radiology, University of Massachusetts Medical School , Worcester, Massachusetts.,4 New England Center for Stroke Research, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Churl-Su Kwon
- 5 Department of Neurosurgery, Massachusetts General Hospital , Boston, Massachusetts
| | - Andrew D Miller
- 6 New England Primate Research Center, Harvard Medical School , Southborough, Massachusetts
| | - Keiko Petrosky
- 6 New England Primate Research Center, Harvard Medical School , Southborough, Massachusetts
| | - Allison M Bradbury
- 7 Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University , Alabama.,8 Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University , Alabama
| | - Stacy Maitland
- 1 Department of Neurology, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Horae Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Anna Luisa Kühn
- 3 Department of Radiology, University of Massachusetts Medical School , Worcester, Massachusetts.,4 New England Center for Stroke Research, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Nina Bishop
- 9 Department of Animal Medicine, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Elizabeth Curran
- 6 New England Primate Research Center, Harvard Medical School , Southborough, Massachusetts
| | - Nilsa Silva
- 6 New England Primate Research Center, Harvard Medical School , Southborough, Massachusetts
| | - Dwijit GuhaSarkar
- 1 Department of Neurology, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Horae Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Susan V Westmoreland
- 6 New England Primate Research Center, Harvard Medical School , Southborough, Massachusetts
| | - Douglas R Martin
- 7 Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University , Alabama.,8 Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University , Alabama
| | - Matthew J Gounis
- 3 Department of Radiology, University of Massachusetts Medical School , Worcester, Massachusetts.,4 New England Center for Stroke Research, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Wael F Asaad
- 10 Department of Neurosurgery, Alpert Medical School, Brown University , Providence, Rhode Island.,11 Brown Institute for Brain Science, Brown University , Providence, Rhode Island.,12 Rhode Island Hospital , Providence, Rhode Island
| | - Miguel Sena-Esteves
- 1 Department of Neurology, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Horae Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts
| |
Collapse
|
122
|
Neuroprotective Strategy in Retinal Degeneration: Suppressing ER Stress-Induced Cell Death via Inhibition of the mTOR Signal. Int J Mol Sci 2017; 18:ijms18010201. [PMID: 28106827 PMCID: PMC5297831 DOI: 10.3390/ijms18010201] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 12/11/2022] Open
Abstract
The retina is a specialized sensory organ, which is essential for light detection and visual formation in the human eye. Inherited retinal degenerations are a heterogeneous group of eye diseases that can eventually cause permanent vision loss. UPR (unfolded protein response) and ER (endoplasmic reticulum) stress plays an important role in the pathological mechanism of retinal degenerative diseases. mTOR (the mammalian target of rapamycin) kinase, as a signaling hub, controls many cellular processes, covering protein synthesis, RNA translation, ER stress, and apoptosis. Here, the hypothesis that inhibition of mTOR signaling suppresses ER stress-induced cell death in retinal degenerative disorders is discussed. This review surveys knowledge of the influence of mTOR signaling on ER stress arising from misfolded proteins and genetic mutations in retinal degenerative diseases and highlights potential neuroprotective strategies for treatment and therapeutic implications.
Collapse
|
123
|
Lumley EC, Osborn AR, Scott JE, Scholl AG, Mercado V, McMahan YT, Coffman ZG, Brewster JL. Moderate endoplasmic reticulum stress activates a PERK and p38-dependent apoptosis. Cell Stress Chaperones 2017; 22:43-54. [PMID: 27761878 PMCID: PMC5225058 DOI: 10.1007/s12192-016-0740-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 02/07/2023] Open
Abstract
The endoplasmic reticulum (ER) has the ability to signal organelle dysfunction via a complex signaling network known as the unfolded protein response (UPR). In this work, hamster fibroblast cells exhibiting moderate levels of ER stress were compared to those exhibiting severe ER stress. Inhibition of N-linked glycosylation was accomplished via a temperature-sensitive mutation in the Dad1 subunit of the oligosaccharyltransferase (OST) complex or by direct inhibition with tunicamycin (Tm). Temperature shift (TS) treatment generated weak activation of ER stress signaling when compared to doses of Tm that are typically used in ER stress studies (500-1000 nM). A dose-response analysis of key ER stress signaling mediators, inositol-requiring enzyme 1 (IRE1) and protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), revealed 20-40 nM of Tm to generate activation intensity similar to TS treatment. In parental BHK21 cells, moderate (20-40 nM) and high doses (200-1000 nM) of Tm were compared to identify physiological and signaling-based differences in stress response. Inhibition of ER Ca2+ release via ITPR activity with 2-aminoethoxydiphenyl borate (2-APB) or Xestospongin C (XeC) was sufficient to protect against apoptosis induced by moderate but not higher doses of Tm. Analysis of kinase activation over a range of Tm exposures revealed the p38 stress-activated protein kinase (SAPK) to display increasing activation with Tm dosage. Interestingly, Tm induced the extracellular regulated kinases (Erk1/2) only at moderate doses of Tm. Inhibition of ER transmembrane stress sensors (IRE1, PERK) or cytosolic signaling mediators (p38, Jnk1, Erk1/2) was used to evaluate pathways involved in apoptosis activation during ER stress. Inhibition of either PERK or p38 was sufficient to reduce cell death and apoptosis induced by moderate, but not high, doses of Tm. During ER stress, cells exhibited a rapid decline in anti-apoptotic Mcl-1 and survivin proteins. Inhibition of PERK was sufficient to block this affect. This work reveals moderate doses of ER stress to generate patterns of stress signaling that are distinct from higher doses and that apoptosis activation at moderate levels of stress are dependent upon PERK and p38 signaling. Studies exploring ER stress signaling should recognize that this signaling acts as a rheostat rather than a simple switch, behaving distinctively in a dose-dependent manner.
Collapse
Affiliation(s)
- Emily C Lumley
- Natural Science Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu,, CA, 90263, USA
| | - Acadia R Osborn
- Natural Science Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu,, CA, 90263, USA
| | - Jessica E Scott
- Natural Science Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu,, CA, 90263, USA
| | - Amanda G Scholl
- Natural Science Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu,, CA, 90263, USA
| | - Vicki Mercado
- Natural Science Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu,, CA, 90263, USA
| | - Young T McMahan
- Natural Science Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu,, CA, 90263, USA
| | - Zachary G Coffman
- Natural Science Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu,, CA, 90263, USA
| | - Jay L Brewster
- Natural Science Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu,, CA, 90263, USA.
| |
Collapse
|
124
|
Land WG, Agostinis P, Gasser S, Garg AD, Linkermann A. DAMP-Induced Allograft and Tumor Rejection: The Circle Is Closing. Am J Transplant 2016; 16:3322-3337. [PMID: 27529775 DOI: 10.1111/ajt.14012] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/28/2016] [Accepted: 07/31/2016] [Indexed: 01/25/2023]
Abstract
The pathophysiological importance of the immunogenicity of damage-associated molecular patterns (DAMPs) has been pinpointed by their identification as triggers of allograft rejection following release from dying cells, such as after ischemia-reperfusion injury. In cancers, however, this strong trigger of a specific immune response gives rise to the success of cancer immunotherapy. Here, we review the recently literature on the pathophysiological importance of DAMP release and discuss the implications of these processes for allograft rejection and cancer immunotherapy, revealing a striking mechanistic overlap. We conclude that these two fields share a common mechanistic basis of regulated necrosis and inflammation, the molecular characterization of which may be helpful for both oncologists and the transplant community.
Collapse
Affiliation(s)
- W G Land
- German Academy of Transplantation Medicine, Munich, Germany.,Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,LabexTRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - P Agostinis
- Cell Death Research and Therapy (CDRT) Lab, Department of Cellular and Molecular Medicine, KU Leuven, University of Leuven, Leuven, Belgium
| | - S Gasser
- Immunology Programme and Department of Microbiology and Immunology, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
| | - A D Garg
- Cell Death Research and Therapy (CDRT) Lab, Department of Cellular and Molecular Medicine, KU Leuven, University of Leuven, Leuven, Belgium
| | - A Linkermann
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany.,Cluster of Excellence EXC306, Inflammation at Interfaces, Schleswig-Holstein, Germany.,Clinic for Nephrology and Hypertension, Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
125
|
To M, Peterson CWH, Roberts MA, Counihan JL, Wu TT, Forster MS, Nomura DK, Olzmann JA. Lipid disequilibrium disrupts ER proteostasis by impairing ERAD substrate glycan trimming and dislocation. Mol Biol Cell 2016; 28:270-284. [PMID: 27881664 PMCID: PMC5231896 DOI: 10.1091/mbc.e16-07-0483] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/09/2016] [Accepted: 11/15/2016] [Indexed: 12/12/2022] Open
Abstract
The endoplasmic reticulum (ER) mediates the folding, maturation, and deployment of the secretory proteome. Proteins that fail to achieve their native conformation are retained in the ER and targeted for clearance by ER-associated degradation (ERAD), a sophisticated process that mediates the ubiquitin-dependent delivery of substrates to the 26S proteasome for proteolysis. Recent findings indicate that inhibition of long-chain acyl-CoA synthetases with triacsin C, a fatty acid analogue, impairs lipid droplet (LD) biogenesis and ERAD, suggesting a role for LDs in ERAD. However, whether LDs are involved in the ERAD process remains an outstanding question. Using chemical and genetic approaches to disrupt diacylglycerol acyltransferase (DGAT)-dependent LD biogenesis, we provide evidence that LDs are dispensable for ERAD in mammalian cells. Instead, our results suggest that triacsin C causes global alterations in the cellular lipid landscape that disrupt ER proteostasis by interfering with the glycan trimming and dislocation steps of ERAD. Prolonged triacsin C treatment activates both the IRE1 and PERK branches of the unfolded protein response and ultimately leads to IRE1-dependent cell death. These findings identify an intimate relationship between fatty acid metabolism and ER proteostasis that influences cell viability.
Collapse
Affiliation(s)
- Milton To
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720
| | - Clark W H Peterson
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720
| | - Melissa A Roberts
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720
| | - Jessica L Counihan
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720.,Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Tiffany T Wu
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720
| | - Mercedes S Forster
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720
| | - Daniel K Nomura
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720.,Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - James A Olzmann
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
126
|
Fu P, Wu Q, Hu J, Li T, Gao F. Baclofen Protects Primary Rat Retinal Ganglion Cells from Chemical Hypoxia-Induced Apoptosis Through the Akt and PERK Pathways. Front Cell Neurosci 2016; 10:255. [PMID: 27867349 PMCID: PMC5095369 DOI: 10.3389/fncel.2016.00255] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 10/18/2016] [Indexed: 12/26/2022] Open
Abstract
Retinal ganglion cells (RGCs) consume large quantities of energy to convert light information into a neuronal signal, which makes them highly susceptible to hypoxic injury. This study aimed to investigate the potential protection by baclofen, a GABAB receptor agonist of RGCs against hypoxia-induced apoptosis. Cobalt chloride (CoCl2) was applied to mimic hypoxia. Primary rat RGCs were subjected to CoCl2 with or without baclofen treatment, and RNA interference techniques were used to knock down the GABAB2 gene in the primary RGCs. The viability and apoptosis of RGCs were assessed using cell viability and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assays, Hoechst staining, and flow cytometry. The expression of cleaved caspase-3, bcl-2, bax, Akt, phospho-Akt, protein kinase RNA (PKR)-like ER kinase (PERK), phospho-PERK, eIF2α, phospho-eIF2α, ATF-4 and CCAAT/enhancer-binding protein homologous protein (CHOP) were measured using western blotting. GABAB2 mRNA expression was determined using quantitative real-time polymerase chain reaction (qRT-PCR) analysis. Our study revealed that CoCl2 significantly induced RGC apoptosis and that baclofen reversed these effects. CoCl2-induced reduction of Akt activity was also reversed by baclofen. Baclofen prevented the activation of the PERK pathway and the increase in CHOP expression induced by CoCl2. Knockdown of GABAB2 and the inactivation of the Akt pathway by inhibitors reduced the protective effect of baclofen on CoCl2-treated RGCs. Taken together, these results demonstrate that baclofen protects RGCs from CoCl2-induced apoptosis by increasing Akt activity and by suppressing the PERK pathway and CHOP activation.
Collapse
Affiliation(s)
- Pingping Fu
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai, China
| | - Qiang Wu
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai, China
| | - Jianyan Hu
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai, China
| | - Tingting Li
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai, China
| | - Fengjuan Gao
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai, China
| |
Collapse
|
127
|
Targeting the angio-proteostasis network: Combining the forces against cancer. Pharmacol Ther 2016; 167:1-12. [DOI: 10.1016/j.pharmthera.2016.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/14/2016] [Indexed: 01/24/2023]
|
128
|
TM7SF3, a novel p53-regulated homeostatic factor, attenuates cellular stress and the subsequent induction of the unfolded protein response. Cell Death Differ 2016; 24:132-143. [PMID: 27740623 DOI: 10.1038/cdd.2016.108] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/31/2016] [Accepted: 09/05/2016] [Indexed: 12/20/2022] Open
Abstract
Earlier reported small interfering RNA (siRNA) high-throughput screens, identified seven-transmembrane superfamily member 3 (TM7SF3) as a novel inhibitor of pancreatic β-cell death. Here we show that TM7SF3 maintains protein homeostasis and promotes cell survival through attenuation of ER stress. Overexpression of TM7SF3 inhibits caspase 3/7 activation. In contrast, siRNA-mediated silencing of TM7SF3 accelerates ER stress and activation of the unfolded protein response (UPR). This involves inhibitory phosphorylation of eukaryotic translation initiation factor 2α activity and increased expression of activating transcription factor-3 (ATF3), ATF4 and C/EBP homologous protein, followed by induction of apoptosis. This process is observed both in human pancreatic islets and in a number of cell lines. Some of the effects of TM7SF3 silencing are evident both under basal conditions, in otherwise untreated cells, as well as under different stress conditions induced by thapsigargin, tunicamycin or a mixture of pro-inflammatory cytokines (tumor necrosis factor alpha, interleukin-1 beta and interferon gamma). Notably, TM7SF3 is a downstream target of p53: activation of p53 by Nutlin increases TM7SF3 expression in a time-dependent manner, although silencing of p53 abrogates this effect. Furthermore, p53 is found in physical association with the TM7SF3 promoter. Interestingly, silencing of TM7SF3 promotes p53 activity, suggesting the existence of a negative-feedback loop, whereby p53 promotes expression of TM7SF3 that acts to restrict p53 activity. Our findings implicate TM7SF3 as a novel p53-regulated pro-survival homeostatic factor that attenuates the development of cellular stress and the subsequent induction of the UPR.
Collapse
|
129
|
Chen JJ, Genereux JC, Suh EH, Vartabedian VF, Rius B, Qu S, Dendle MTA, Kelly JW, Wiseman RL. Endoplasmic Reticulum Proteostasis Influences the Oligomeric State of an Amyloidogenic Protein Secreted from Mammalian Cells. Cell Chem Biol 2016; 23:1282-1293. [PMID: 27720586 DOI: 10.1016/j.chembiol.2016.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/12/2016] [Accepted: 09/02/2016] [Indexed: 01/19/2023]
Abstract
Transthyretin (TTR) is a tetrameric serum protein associated with multiple systemic amyloid diseases. In these disorders, TTR aggregates in extracellular environments through a mechanism involving rate-limiting dissociation of the tetramer to monomers, which then misfold and aggregate into soluble oligomers and amyloid fibrils that induce toxicity in distal tissues. Using an assay established herein, we show that highly destabilized, aggregation-prone TTR variants are secreted as both native tetramers and non-native conformations that accumulate as high-molecular-weight oligomers. Pharmacologic chaperones that promote endoplasmic reticulum (ER) proteostasis of destabilized TTR variants increase their fraction secreted as a tetramer and reduce extracellular aggregate populations. In contrast, disrupting ER proteostasis reduces the fraction of destabilized TTR secreted as a tetramer and increases extracellular aggregates. These results identify ER proteostasis as a factor that can affect conformational integrity and thus toxic aggregation of secreted amyloidogenic proteins associated with the pathology of protein aggregation diseases.
Collapse
Affiliation(s)
- John J Chen
- Department of Molecular & Experimental Medicine, The Scripps Research Institute, 10550 North, Torrey Pines Road, MEM 220, La Jolla, CA 92037, USA
| | - Joseph C Genereux
- Department of Molecular & Experimental Medicine, The Scripps Research Institute, 10550 North, Torrey Pines Road, MEM 220, La Jolla, CA 92037, USA; Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Eul Hyun Suh
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Vincent F Vartabedian
- Department of Molecular & Experimental Medicine, The Scripps Research Institute, 10550 North, Torrey Pines Road, MEM 220, La Jolla, CA 92037, USA
| | - Bibiana Rius
- Department of Molecular & Experimental Medicine, The Scripps Research Institute, 10550 North, Torrey Pines Road, MEM 220, La Jolla, CA 92037, USA
| | - Song Qu
- Department of Molecular & Experimental Medicine, The Scripps Research Institute, 10550 North, Torrey Pines Road, MEM 220, La Jolla, CA 92037, USA
| | - Maria T A Dendle
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeffery W Kelly
- Department of Molecular & Experimental Medicine, The Scripps Research Institute, 10550 North, Torrey Pines Road, MEM 220, La Jolla, CA 92037, USA; Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - R Luke Wiseman
- Department of Molecular & Experimental Medicine, The Scripps Research Institute, 10550 North, Torrey Pines Road, MEM 220, La Jolla, CA 92037, USA; Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
130
|
Axten JM. Protein kinase R(PKR)–like endoplasmic reticulum kinase (PERK) inhibitors: a patent review (2010-2015). Expert Opin Ther Pat 2016; 27:37-48. [DOI: 10.1080/13543776.2017.1238072] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
131
|
Abstract
In multicellular organisms, the epithelia is a contact surface with the surrounding environment and is exposed to a variety of adverse biotic (pathogenic) and abiotic (chemical) factors. Multi-layered pathways that operate on different time scales have evolved to preserve cellular integrity and elicit stress-specific response. Several stress-response programs are activated until a complete elimination of the stress is achieved. The innate immune response, which is triggered by pathogenic invasion, is rather harmful when active over a prolonged time, thus the response follows characteristic oscillatory trajectories. Here, we review different translation programs that function to precisely fine-tune the time at which various components of the innate immune response dwell between active and inactive. We discuss how different pro-inflammatory pathways are co-ordinated to temporally offset single reactions and to achieve an optimal balance between fighting pathogens and being less harmful for healthy cells.
Collapse
|
132
|
Akiyama T, Oishi K, Wullaert A. Bifidobacteria Prevent Tunicamycin-Induced Endoplasmic Reticulum Stress and Subsequent Barrier Disruption in Human Intestinal Epithelial Caco-2 Monolayers. PLoS One 2016; 11:e0162448. [PMID: 27611782 PMCID: PMC5017626 DOI: 10.1371/journal.pone.0162448] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/23/2016] [Indexed: 01/05/2023] Open
Abstract
Endoplasmic reticulum (ER) stress is caused by accumulation of unfolded and misfolded proteins in the ER, thereby compromising its vital cellular functions in protein production and secretion. Genome wide association studies in humans as well as experimental animal models linked ER stress in intestinal epithelial cells (IECs) with intestinal disorders including inflammatory bowel diseases. However, the mechanisms linking the outcomes of ER stress in IECs to intestinal disease have not been clarified. In this study, we investigated the impact of ER stress on intestinal epithelial barrier function using human colon carcinoma-derived Caco-2 monolayers. Tunicamycin-induced ER stress decreased the trans-epithelial electrical resistance of Caco-2 monolayers, concomitant with loss of cellular plasma membrane integrity. Epithelial barrier disruption in Caco-2 cells after ER stress was not caused by caspase- or RIPK1-dependent cell death but was accompanied by lysosomal rupture and up-regulation of the ER stress markers Grp78, sXBP1 and Chop. Interestingly, several bifidobacteria species inhibited tunicamycin-induced ER stress and thereby diminished barrier disruption in Caco-2 monolayers. Together, these results showed that ER stress compromises the epithelial barrier function of Caco-2 monolayers and demonstrate beneficial impacts of bifidobacteria on ER stress in IECs. Our results identify epithelial barrier loss as a potential link between ER stress and intestinal disease development, and suggest that bifidobacteria could exert beneficial effects on this phenomenon.
Collapse
Affiliation(s)
- Takuya Akiyama
- Yakult Honsha European Research Center for Microbiology ESV, Ghent, Belgium
- * E-mail: (TA); (AW)
| | - Kenji Oishi
- Yakult Honsha European Research Center for Microbiology ESV, Ghent, Belgium
- Yakult Central Institute, Tokyo, Japan
| | - Andy Wullaert
- Yakult Honsha European Research Center for Microbiology ESV, Ghent, Belgium
- Inflammation Research Center, VIB, Ghent, Belgium
- Internal Medicine Department, Ghent University, Ghent, Belgium
- * E-mail: (TA); (AW)
| |
Collapse
|
133
|
Choi SK, Lim M, Byeon SH, Lee YH. Inhibition of endoplasmic reticulum stress improves coronary artery function in the spontaneously hypertensive rats. Sci Rep 2016; 6:31925. [PMID: 27550383 PMCID: PMC4994042 DOI: 10.1038/srep31925] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/28/2016] [Indexed: 12/13/2022] Open
Abstract
Endoplasmic reticulum (ER) stress has been shown to play a critical role in the pathogenesis of cardiovascular complications. However, the role and mechanisms of ER stress in hypertension remain unclear. Thus, we hypothesized that enhanced ER stress contributes to the maintenance of hypertension in spontaneously hypertensive rats (SHRs). Sixteen-week old male SHRs and Wistar Kyoto Rats (WKYs) were used in this study. The SHRs were treated with ER stress inhibitor (Tauroursodeoxycholic acid; TUDCA, 100 mg/kg/day) for two weeks. There was a decrease in systolic blood pressure in SHR treated with TUDCA. The pressure-induced myogenic tone was significantly increased, whereas endothelium-dependent relaxation was significantly attenuated in SHR compared with WHY. Interestingly, treatment of ER stress inhibitor normalized myogenic responses and endothelium-dependent relaxation in SHR. These data were associated with an increase in expression or phosphorylation of ER stress markers (Bip, ATF6, CHOP, IRE1, XBP1, PERK, and eIF2α) in SHRs, which were reduced by TUDCA treatment. Furthermore, phosphorylation of MLC20 was increased in SHRs, which was reduced by the treatment of TUDCA. Therefore, our results suggest that ER stress could be a potential target for hypertension.
Collapse
Affiliation(s)
- Soo-Kyoung Choi
- Department of Physiology, College of Medicine, Brain Korea 21 Plus Project for Medical Sciences, Yonsei University, Seoul, Korea
| | - Mihwa Lim
- Department of Physiology, College of Medicine, Brain Korea 21 Plus Project for Medical Sciences, Yonsei University, Seoul, Korea
| | - Seon-Hee Byeon
- Department of Physiology, College of Medicine, Brain Korea 21 Plus Project for Medical Sciences, Yonsei University, Seoul, Korea
| | - Young-Ho Lee
- Department of Physiology, College of Medicine, Brain Korea 21 Plus Project for Medical Sciences, Yonsei University, Seoul, Korea
| |
Collapse
|
134
|
Li J, Zheng X, Lou N, Zhong W, Yan D. Oxysterol binding protein-related protein 8 mediates the cytotoxicity of 25-hydroxycholesterol. J Lipid Res 2016; 57:1845-1853. [PMID: 27530118 PMCID: PMC5036365 DOI: 10.1194/jlr.m069906] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Indexed: 12/14/2022] Open
Abstract
Oxysterols are 27-carbon oxidized derivatives of cholesterol or by-products of cholesterol biosynthesis that can induce cell apoptosis in addition to a number of other bioactions. However, the mechanisms underlying this cytotoxicity are not completely understood. ORP8 is a member of the oxysterol binding protein-related protein (ORP) family, implicated in cellular lipid homeostasis, migration, and organization of the microtubule cytoskeleton. Here, we report that 25-hydroxycholesterol (OHC) induced apoptosis of the hepatoma cell lines, HepG2 and Huh7, via the endoplasmic reticulum (ER) stress response pathway, and ORP8 overexpression resulted in a similar cell response as 25-OHC, indicating a putative functional relationship between oxysterol cytotoxicity and ORP8. Further experiments demonstrated that ORP8 overexpression significantly enhanced the 25-OHC effect on ER stress and apoptosis in HepG2 cells. A truncated ORP8 construct lacking the ligand-binding domain or a closely related protein, ORP5, was devoid of this activity, evidencing for specificity of the observed effects. Importantly, ORP8 knockdown markedly dampened such responses to 25-OHC. Taken together, the present study suggests that ORP8 may mediate the cytotoxicity of 25-OHC.
Collapse
Affiliation(s)
- Jiwei Li
- Department of Biotechnology Jinan University, Guangzhou 510632, China; Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
| | - Xiuting Zheng
- Department of Biotechnology Jinan University, Guangzhou 510632, China; Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
| | - Ning Lou
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, China
| | - Wenbin Zhong
- Department of Biotechnology Jinan University, Guangzhou 510632, China; Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
| | - Daoguang Yan
- Department of Biotechnology Jinan University, Guangzhou 510632, China; Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
135
|
Liu X, Lv Z, Zou J, Liu X, Ma J, Wang J, Sa N, Jing P, Xu W. Afatinib down-regulates MCL-1 expression through the PERK-eIF2α-ATF4 axis and leads to apoptosis in head and neck squamous cell carcinoma. Am J Cancer Res 2016; 6:1708-1719. [PMID: 27648360 PMCID: PMC5004074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 07/10/2016] [Indexed: 06/06/2023] Open
Abstract
Afatinib is the second generation of irreversible inhibitor of EGFR, HER2 and HER4, which has shown encouraging phase II and III clinical outcomes in the treatment of head and neck squamous cell carcinoma (HNSCC). However, the molecular mechanism of afatinib-induced apoptosis in HNSCC is poorly understood. In the present investigation, we discovered that down-regulation of MCL-1, an anti-apoptotic member of BCL-2 family, was responsible for afatinib-triggered apoptosis. And the inactivation of AKT-mTOR signaling caused by afatinib lead to translational inhibition of MCL-1 expression. As a crucial branch of ER stress, PERK-eIF2α-ATF4 axis was also stimulated in HNSCC cells after afatinib incubation. Silencing either eIF2α or ATF4 by siRNA transfection relieved afatinib-caused suppression of AKT-mTOR activity, attenuating MCL-1 down-regulation as well as subsequent apoptosis. Collectively, the results show that afatinib hampers AKT-mTOR activation by stimulating PERK-eIF2α-ATF4 signaling pathway, giving rise to MCL-1 down-regulation mediated apoptosis in HNSCC cells. Therefore, our findings reveal the elaborate molecular network of afatinib-induced apoptosis in HNSCC, which would provide substantial theoretical underpinnings for afatinib clinical application and highlight its promising prospect in HNSCC treatment.
Collapse
Affiliation(s)
- Xianfang Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan, P. R. China
- Shandong Provincial Key Laboratory of OtologyJinan, P. R. China
| | - Zhenghua Lv
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan, P. R. China
| | - Jidong Zou
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan, P. R. China
| | - Xiuxiu Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan, P. R. China
- Shandong Provincial Key Laboratory of OtologyJinan, P. R. China
| | - Juke Ma
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan, P. R. China
| | - Jinhua Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan, P. R. China
| | - Na Sa
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan, P. R. China
| | - Peihang Jing
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan, P. R. China
| | - Wei Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan, P. R. China
- Shandong Provincial Key Laboratory of OtologyJinan, P. R. China
| |
Collapse
|
136
|
Feng J, Li S, Chen H. Tanshinone IIA ameliorates apoptosis of cardiomyocytes induced by endoplasmic reticulum stress. Exp Biol Med (Maywood) 2016; 241:2042-2048. [PMID: 27465140 DOI: 10.1177/1535370216660634] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The fat-soluble diterpenoids tanshinone IIA (TSA) is the major active element of Danshen, which has widespread cardioprotective effect. However, the mechanism of its beneficial effect on cardiomyocytes has not been fully investigated. Here, we aim to demonstrate that TSA ameliorates apoptosis of cardiomyocytes activated by endoplasmic reticulum stress (ERS). Primary cultures of neonatal rat cardiomyocytes are used, in which ERS-mediated apoptosis is induced by tunicamycin (Tm). Apoptosis of cardiomyocytes are detected by Hoechst staining and caspase 3 activity analysis. Protein expression of ERS markers are detected by Western blot, and level of miroRNA-133 (miR-133) is detected by real-time polymerase chain reaction. Tm treatment significantly triggers the apoptosis and ERS of cardiomyocytes. TSA dramatically ameliorates apoptosis and ERS of cardiomyocytes induced by Tm. Interestingly, level of miR-133 is reduced by Tm treatment, which is reversed by TSA. The cardioprotective effect of TSA on apoptosis and ERS of cardiomyocytes is blocked by anti-miR-133. These results suggest that TSA protects cardiomyocytes through ameliorated ERS-mediated apoptosis, which may be resulted from upregulation of miR-133.
Collapse
Affiliation(s)
- Jun Feng
- Department of Emergency Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shusheng Li
- Department of Emergency Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huawen Chen
- Department of Emergency Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
137
|
Montagnani Marelli M, Marzagalli M, Moretti RM, Beretta G, Casati L, Comitato R, Gravina GL, Festuccia C, Limonta P. Vitamin E δ-tocotrienol triggers endoplasmic reticulum stress-mediated apoptosis in human melanoma cells. Sci Rep 2016; 6:30502. [PMID: 27461002 PMCID: PMC4996065 DOI: 10.1038/srep30502] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/06/2016] [Indexed: 12/13/2022] Open
Abstract
Malignant melanoma is the leading cause of death from skin cancer. Drug toxicity and resistance represent a serious challange for melanoma treatments. Evidence demonstrates that natural compounds may play a crucial role in cancer prevention, growth and progression. Vitamin E tocotrienols (TT) were shown to possess antitumor activity. Here, we analyzed the effects of δ-TT on melanoma cell growth and the involvement of the endoplasmic reticulum (ER) stress in this activity. The experiments were performed on human melanoma cell lines, BLM and A375. δ-TT exerted a significant proapoptotic effect on both cell lines, involving the intrinsic apoptosis pathway; importantly, this compound did not affect the viability of normal human melanocytes. In melanoma cells, δ-TT exerted its antitumor effect through activation of the PERK/p-eIF2α/ATF4/CHOP, IRE1α and caspase-4 ER stress-related branches. Salubrinal, an inhibitor of the ER stress, counteracted the cytotoxic activity of δ-TT. In vivo experiments performed in nude mice bearing A375 xenografts evidenced that δ-TT reduces tumor volume and tumor mass; importantly, tumor progression was significantly delayed by δ-TT treatment. In conclusion, δ-TT exerts a proapoptotic activity on melanoma cells, through activation of the ER stress-related pathways. δ-TT might represent an effective option for novel chemopreventive/therapeutic strategies for melanoma.
Collapse
Affiliation(s)
- Marina Montagnani Marelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, 20133, Italy
| | - Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, 20133, Italy
| | - Roberta M. Moretti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, 20133, Italy
| | - Giangiacomo Beretta
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milano, 20133, Italy
| | - Lavinia Casati
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Milano, 20129, Italy
| | - Raffaella Comitato
- Council for Agricultural Research and Economics, Food and Nutrition Research Centre, Roma, 00178, Italy
| | - Giovanni L. Gravina
- Department of Applied and Biotechnological Clinical Sciences, Università degli Studi dell’Aquila, L’Aquila, 67100, Italy
| | - Claudio Festuccia
- Department of Applied and Biotechnological Clinical Sciences, Università degli Studi dell’Aquila, L’Aquila, 67100, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, 20133, Italy
| |
Collapse
|
138
|
Pensado A, Diaz-Corrales FJ, De la Cerda B, Valdés-Sánchez L, Del Boz AA, Rodriguez-Martinez D, García-Delgado AB, Seijo B, Bhattacharya SS, Sanchez A. Span poly-L-arginine nanoparticles are efficient non-viral vectors for PRPF31 gene delivery: An approach of gene therapy to treat retinitis pigmentosa. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:2251-2260. [PMID: 27381066 DOI: 10.1016/j.nano.2016.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/31/2016] [Accepted: 06/16/2016] [Indexed: 12/21/2022]
Abstract
Retinitis pigmentosa (RP) is the most common cause of inherited blindness in adults. Mutations in the PRPF31 gene produce autosomal dominant RP (adRP). To date there are no effective treatments for this disease. The purpose of this study was to design an efficient non-viral vector for human PRPF31 gene delivery as an approach to treat this form of adRP. Span based nanoparticles were developed to mediate gene transfer in the subretinal space of a mouse model of adRP carrying a point mutation (A216P) in the Prpf31 gene. Funduscopic examination, electroretinogram, optomotor test and optical coherence tomography were conducted to further in vivo evaluate the safety and efficacy of the nanosystems developed. Span-polyarginine (SP-PA) nanoparticles were able to efficiently transfect the GFP and PRPF31 plasmid in mice retinas. Statistically significant improvement in visual acuity and retinal thickness were found in Prpf31A216P/+ mice treated with the SP-PA-PRPF31 nanomedicine.
Collapse
Affiliation(s)
- Andrea Pensado
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela, Spain
| | - Francisco J Diaz-Corrales
- Department of Cell Therapy and Regenerative Medicine, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Seville, Spain
| | - Berta De la Cerda
- Department of Cell Therapy and Regenerative Medicine, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Seville, Spain
| | - Lourdes Valdés-Sánchez
- Department of Cell Therapy and Regenerative Medicine, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Seville, Spain
| | - Ana Aramburu Del Boz
- Department of Cell Therapy and Regenerative Medicine, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Seville, Spain
| | - Daniel Rodriguez-Martinez
- Department of Cell Therapy and Regenerative Medicine, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Seville, Spain
| | - Ana B García-Delgado
- Department of Cell Therapy and Regenerative Medicine, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Seville, Spain
| | - Begoña Seijo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela, Spain; Molecular Image Group, Health Research Institute-University Clinical Hospital of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Shomi S Bhattacharya
- Department of Cell Therapy and Regenerative Medicine, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Seville, Spain
| | - Alejandro Sanchez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela, Spain; Molecular Image Group, Health Research Institute-University Clinical Hospital of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.
| |
Collapse
|
139
|
Gavin J, Quilty F, Majer F, Gilsenan G, Byrne AM, Long A, Radics G, Gilmer JF. A fluorescent analogue of tauroursodeoxycholic acid reduces ER stress and is cytoprotective. Bioorg Med Chem Lett 2016; 26:5369-5372. [PMID: 27729186 DOI: 10.1016/j.bmcl.2016.06.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 01/18/2023]
Abstract
Tauroursodeoxycholic acid (TUDCA) is a cytoprotective ER stress inhibitor and chemical chaperone. It has therapeutic potential in a wide array of diseases but a specific macromolecular target or molecular mechanism of action remains obscure. This Letter describes an effective new synthetic approach to taurine conjugation of bile acids which we used to prepare 3α-dansyl TUDCA (4) as a probe for TUDCA actions. As a model of ER stress we used the hepatocarcinoma cell line HUH7 and stimulation with either deoxycholic acid (DCA, 200μM) or tunicamycin (5μg/ml) and measured levels of Bip/GRP78, ATF4, CHOP and XBP1s/XBP1u. Compound 4 was more effective than UDCA at inhibiting ER stress markers and had similar effects to TUDCA. In a model of cholestasis using the cytotoxic DCA to induce apoptosis, pretreatment with 4 prevented cell death similarly to TUDCA whereas the unconjugated clinically used UDCA had no effect. 3α-Dansyl TUDCA (4) appears to be a suitable reporter for TUDCA effects on ER stress and related cytoprotective activity.
Collapse
Affiliation(s)
- Jason Gavin
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Fran Quilty
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Ferenc Majer
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Georgina Gilsenan
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Anne Marie Byrne
- Institute for Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital, Dublin 8, Ireland
| | - Aideen Long
- Institute for Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital, Dublin 8, Ireland
| | - Gabor Radics
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - John F Gilmer
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
140
|
Bi X, Niu J, Ding W, Zhang M, Yang M, Gu Y. Angiopoietin-1 attenuates angiotensin II-induced ER stress in glomerular endothelial cells via a Tie2 receptor/ERK1/2-p38 MAPK-dependent mechanism. Mol Cell Endocrinol 2016; 428:118-32. [PMID: 27033326 DOI: 10.1016/j.mce.2016.03.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/13/2016] [Accepted: 03/21/2016] [Indexed: 12/11/2022]
Abstract
Research has indicated that endoplasmic reticulum (ER) stress in endothelial cells affects vascular pathologies and induces cellular dysfunction and apoptosis. Angiopoietin1 (Angpt1) has been shown to have therapeutic potential in some vascular diseases, including chronic kidney disease. This study showed that Angpt1 is a powerful factor that attenuated ER stress-induced cellular dysfunction and apoptosis in glomerular endothelial cells (GEnCs). Furthermore, Angpt1 significantly decreased the angiotensin II (Ang II)-induced expression of the ER stress response proteins GRP78, GRP94, p-PERK and CHOP. These results suggest that the Angpt1-mediated cellular protection may occur downstream of the ER stress response. In addition, both specific inhibitors and siRNAs for Tie2 reversed these changes, implying the importance of Tie2 receptor activation in the signalling pathways that prevent ER stress. The protective effects of Angpt1 are related to the activation of two downstream signalling pathways, ERK1/2 and p38 MAPK. The inhibition of these pathways with specific inhibitors, PD98059 and SB203580, respectively, partially increased the expression of chaperones that assist in folding proteins in the ER and reduce the protective effects of Angpt1. In conclusion, Angpt1 attenuated ER stress-induced cellular dysfunction and apoptosis via the Tie2 receptor/ERK1/2-p38 MAPK pathways in GEnCs. This study may provide insights into a novel underlying mechanism and a strategy for alleviating ER stress-induced injury.
Collapse
Affiliation(s)
- Xiao Bi
- Division of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jianying Niu
- Division of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Wei Ding
- Division of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Minmin Zhang
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Min Yang
- Division of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| | - Yong Gu
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
141
|
Chan P, Stolz J, Kohl S, Chiang WC, Lin JH. Endoplasmic reticulum stress in human photoreceptor diseases. Brain Res 2016; 1648:538-541. [PMID: 27117871 DOI: 10.1016/j.brainres.2016.04.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 04/08/2016] [Accepted: 04/09/2016] [Indexed: 11/18/2022]
Abstract
Photoreceptors are specialized sensory neurons essential for light detection in the human eye. Photoreceptor cell dysfunction and death cause vision loss in many eye diseases such as retinitis pigmentosa and achromatopsia. Endoplasmic reticulum (ER) stress and Unfolded Protein Response (UPR) signaling have been implicated in the development and pathology of heritable forms of retinitis pigmentosa and achromatopsia. We review the role of ER stress and UPR in retinitis pigmentosa arising from misfolded rhodopsins (RHO) and in achromatopsia arising from genetic mutations in Activating Transcription Factor 6 (ATF6). This article is part of a Special Issue entitled SI:ER stress.
Collapse
Affiliation(s)
- Priscilla Chan
- Pathology, University of California, San Diego, La Jolla, CA, United States
| | - Julia Stolz
- Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Susanne Kohl
- Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Wei-Chieh Chiang
- Pathology, University of California, San Diego, La Jolla, CA, United States
| | - Jonathan H Lin
- Pathology, University of California, San Diego, La Jolla, CA, United States.
| |
Collapse
|
142
|
Park SH, Kang MK, Choi YJ, Kim YH, Antika LD, Lim SS, Kang YH. Dietary compound α-asarone alleviates ER stress-mediated apoptosis in 7β-hydroxycholesterol-challenged macrophages. Mol Nutr Food Res 2016; 60:1033-47. [DOI: 10.1002/mnfr.201500750] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/26/2015] [Accepted: 02/03/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Sin-Hye Park
- Department of Food Science and Nutrition; Hallym University; Chuncheon Korea
| | - Min-Kyung Kang
- Department of Food Science and Nutrition; Hallym University; Chuncheon Korea
| | - Yean-Jung Choi
- Department of Food Science and Nutrition; Hallym University; Chuncheon Korea
| | - Yun-Ho Kim
- Department of Food Science and Nutrition; Hallym University; Chuncheon Korea
| | - Lucia Dwi Antika
- Department of Food Science and Nutrition; Hallym University; Chuncheon Korea
| | - Soon Sung Lim
- Department of Food Science and Nutrition; Hallym University; Chuncheon Korea
| | - Young-Hee Kang
- Department of Food Science and Nutrition; Hallym University; Chuncheon Korea
| |
Collapse
|
143
|
Lobo GP, Au A, Kiser PD, Hagstrom SA. Involvement of Endoplasmic Reticulum Stress in TULP1 Induced Retinal Degeneration. PLoS One 2016; 11:e0151806. [PMID: 26987071 PMCID: PMC4795779 DOI: 10.1371/journal.pone.0151806] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/04/2016] [Indexed: 11/18/2022] Open
Abstract
Inherited retinal disorders (IRDs) result in severe visual impairments in children and adults. A challenge in the field of retinal degenerations is identifying mechanisms of photoreceptor cell death related to specific genetic mutations. Mutations in the gene TULP1 have been associated with two forms of IRDs, early-onset retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA). TULP1 is a cytoplasmic, membrane-associated protein shown to be involved in transportation of newly synthesized proteins destined for the outer segment compartment of photoreceptor cells; however, how mutant TULP1 causes cell death is not understood. In this study, we provide evidence that common missense mutations in TULP1 express as misfolded protein products that accumulate within the endoplasmic reticulum (ER) causing prolonged ER stress. In an effort to maintain protein homeostasis, photoreceptor cells then activate the unfolded protein response (UPR) complex. Our results indicate that the two major apoptotic arms of the UPR pathway, PERK and IRE1, are activated. Additionally, we show that retinas expressing mutant TULP1 significantly upregulate the expression of CHOP, a UPR signaling protein promoting apoptosis, and undergo photoreceptor cell death. Our study demonstrates that the ER-UPR, a known mechanism of apoptosis secondary to an overwhelming accumulation of misfolded protein, is involved in photoreceptor degeneration caused by missense mutations in TULP1. These observations suggest that modulating the UPR pathways might be a strategy for therapeutic intervention.
Collapse
Affiliation(s)
- Glenn P. Lobo
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, 44195, United States of America
| | - Adrian Au
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, 44195, United States of America
| | - Philip D. Kiser
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, 44106, United States of America
- Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, 44106, United States of America
| | - Stephanie A. Hagstrom
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, 44195, United States of America
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, 44195, United States of America
- * E-mail:
| |
Collapse
|
144
|
Frecska E, Bokor P, Winkelman M. The Therapeutic Potentials of Ayahuasca: Possible Effects against Various Diseases of Civilization. Front Pharmacol 2016; 7:35. [PMID: 26973523 PMCID: PMC4773875 DOI: 10.3389/fphar.2016.00035] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/08/2016] [Indexed: 11/23/2022] Open
Abstract
Ayahuasca is an Amazonian psychoactive brew of two main components. Its active agents are β-carboline and tryptamine derivatives. As a sacrament, ayahuasca is still a central element of many healing ceremonies in the Amazon Basin and its ritual consumption has become common among the mestizo populations of South America. Ayahuasca use amongst the indigenous people of the Amazon is a form of traditional medicine and cultural psychiatry. During the last two decades, the substance has become increasingly known among both scientists and laymen, and currently its use is spreading all over in the Western world. In the present paper we describe the chief characteristics of ayahuasca, discuss important questions raised about its use, and provide an overview of the scientific research supporting its potential therapeutic benefits. A growing number of studies indicate that the psychotherapeutic potential of ayahuasca is based mostly on the strong serotonergic effects, whereas the sigma-1 receptor (Sig-1R) agonist effect of its active ingredient dimethyltryptamine raises the possibility that the ethnomedical observations on the diversity of treated conditions can be scientifically verified. Moreover, in the right therapeutic or ritual setting with proper preparation and mindset of the user, followed by subsequent integration of the experience, ayahuasca has proven effective in the treatment of substance dependence. This article has two important take-home messages: (1) the therapeutic effects of ayahuasca are best understood from a bio-psycho-socio-spiritual model, and (2) on the biological level ayahuasca may act against chronic low grade inflammation and oxidative stress via the Sig-1R which can explain its widespread therapeutic indications.
Collapse
Affiliation(s)
- Ede Frecska
- Department of Psychiatry, Faculty of Medicine, University of Debrecen Debrecen, Hungary
| | - Petra Bokor
- Doctoral School of Psychology, University of Pécs Pécs, Hungary
| | - Michael Winkelman
- School of Human Evolution and Social Change, Arizona State University, Tempe AZ, USA
| |
Collapse
|
145
|
Wu SY, Lan SH, Liu HS. Autophagy and microRNA in hepatitis B virus-related hepatocellular carcinoma. World J Gastroenterol 2016; 22:176-187. [PMID: 26755869 PMCID: PMC4698484 DOI: 10.3748/wjg.v22.i1.176] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/15/2015] [Accepted: 10/26/2015] [Indexed: 02/06/2023] Open
Abstract
Approximately 350 million people worldwide are chronically infected by hepatitis B virus (HBV). HBV causes severe liver diseases including cirrhosis and hepatocellular carcinoma (HCC). In about 25% of affected patients, HBV infection proceeds to HCC. Therefore, the mechanisms by which HBV affects the host cell to promote viral replication and its pathogenesis have been the subject of intensive research efforts. Emerging evidence indicates that both autophagy and microRNAs (miRNAs) are involved in HBV replication and HBV-related hepatocarcinogenesis. In this review, we summarize how HBV induces autophagy, the role of autophagy in HBV infection, and HBV-related tumorigenesis. We further discuss the emerging roles of miRNAs in HBV infection and how HBV affects miRNAs biogenesis. The accumulating knowledge pertaining to autophagy and miRNAs in HBV replication and its pathogenesis may lead to the development of novel strategies against HBV infection and HBV-related HCC tumorigenesis.
Collapse
|
146
|
|
147
|
Xie WY, Zhou XD, Li Q, Chen LX, Ran DH. Acid-induced autophagy protects human lung cancer cells from apoptosis by activating ER stress. Exp Cell Res 2015; 339:270-9. [DOI: 10.1016/j.yexcr.2015.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 10/22/2015] [Accepted: 11/06/2015] [Indexed: 02/04/2023]
|
148
|
Kikuchi D, Tanimoto K, Nakayama K. CREB is activated by ER stress and modulates the unfolded protein response by regulating the expression of IRE1α and PERK. Biochem Biophys Res Commun 2015; 469:243-50. [PMID: 26642955 DOI: 10.1016/j.bbrc.2015.11.113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
Abstract
Living cells are frequently exposed to various stresses. Hypoxic conditions induce endoplasmic reticulum (ER) stress, and activate the unfolded protein response (UPR) to maintain homeostasis. We previously reported that CREB has an important role in the proper response to prolonged hypoxia. To further understand the role of CREB in the hypoxic response, CREB stable knock-down (CREB-KD) cells were established from breast cancer MDA-MB231 cells and analyzed. CREB was activated by ER stress, and activation of CREB and the UPR pathway occurred in a coordinated manner in response to different stimuli, including ER stress-inducing chemicals, prolonged hypoxia, and oxygen-glucose deprivation (OGD). Depletion of CREB decreased the expression of IRE1α and PERK, two critical UPR signaling molecules. Promoter analysis and a chromatin immunoprecipitation assay indicated that CREB binds to the promoter region of these genes and regulates their expression. ER stress induced by hypoxia was reduced in CREB-KD cells, leading to reduced tumor metastasis to the lung. Finally, OGD strongly activated the UPR and induced cell death in control cells, whereas the UPR was moderately activated in CREB-KD cells, which were more resistant to cell death. This study demonstrates a new role for CREB as a regulator of ER stress, which is required to properly respond to stressful conditions, such as hypoxia.
Collapse
Affiliation(s)
- Daisuke Kikuchi
- Oxygen Biology Laboratory, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kousuke Tanimoto
- Genome Laboratory, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Koh Nakayama
- Oxygen Biology Laboratory, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan.
| |
Collapse
|
149
|
Chondrocyte Apoptosis in the Pathogenesis of Osteoarthritis. Int J Mol Sci 2015; 16:26035-54. [PMID: 26528972 PMCID: PMC4661802 DOI: 10.3390/ijms161125943] [Citation(s) in RCA: 643] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 10/03/2015] [Accepted: 10/21/2015] [Indexed: 11/16/2022] Open
Abstract
Apoptosis is a highly-regulated, active process of cell death involved in development, homeostasis and aging. Dysregulation of apoptosis leads to pathological states, such as cancer, developmental anomalies and degenerative diseases. Osteoarthritis (OA), the most common chronic joint disease in the elderly population, is characterized by progressive destruction of articular cartilage, resulting in significant disability. Because articular cartilage depends solely on its resident cells, the chondrocytes, for the maintenance of extracellular matrix, the compromising of chondrocyte function and survival would lead to the failure of the articular cartilage. The role of subchondral bone in the maintenance of proper cartilage matrix has been suggested as well, and it has been proposed that both articular cartilage and subchondral bone interact with each other in the maintenance of articular integrity and physiology. Some investigators include both articular cartilage and subchondral bone as targets for repairing joint degeneration. In late-stage OA, the cartilage becomes hypocellular, often accompanied by lacunar emptying, which has been considered as evidence that chondrocyte death is a central feature in OA progression. Apoptosis clearly occurs in osteoarthritic cartilage; however, the relative contribution of chondrocyte apoptosis in the pathogenesis of OA is difficult to evaluate, and contradictory reports exist on the rate of apoptotic chondrocytes in osteoarthritic cartilage. It is not clear whether chondrocyte apoptosis is the inducer of cartilage degeneration or a byproduct of cartilage destruction. Chondrocyte death and matrix loss may form a vicious cycle, with the progression of one aggravating the other, and the literature reveals that there is a definite correlation between the degree of cartilage damage and chondrocyte apoptosis. Because current treatments for OA act only on symptoms and do not prevent or cure OA, chondrocyte apoptosis would be a valid target to modulate cartilage degeneration.
Collapse
|
150
|
Xiong Z, Jiang R, Li X, Liu Y, Guo F. Different Roles of GRP78 on Cell Proliferation and Apoptosis in Cartilage Development. Int J Mol Sci 2015; 16:21153-76. [PMID: 26370957 PMCID: PMC4613247 DOI: 10.3390/ijms160921153] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 11/16/2022] Open
Abstract
Eukaryotic cells possess several mechanisms to adapt to endoplasmic reticulum (ER) stress and thereby survive. ER stress activates a set of signaling pathways collectively termed as the unfolded protein response (UPR). We previously reported that Bone morphogenetic protein 2 (BMP2) mediates mild ER stress and activates UPR signal molecules in chondrogenesis. The mammalian UPR protects the cell against the stress of misfolded proteins in the endoplasmic reticulum. Failure to adapt to ER stress causes the UPR to trigger apoptosis. Glucose regulated protein 78 (GRP78), as an important molecular chaperone in UPR signaling pathways, is responsible for binding to misfolded or unfolded protein during ER stress. However the influence on GRP78 in BMP2-induced chondrocyte differentiation has not yet been elucidated and the molecular mechanism underlyng these processes remain unexplored. Herein we demonstrate that overexpression of GRP78 enhanced cell proliferation in chondrocyte development with G1 phase advance, S phase increasing and G2-M phase transition. Furthermore, overexpression of GRP78 inhibited ER stress-mediated apoptosis and then reduced apoptosis in chondrogenesis induced by BMP2, as assayed by cleaved caspase3, caspase12, C/EBP homologous protein (CHOP/DDIT3/GADD153), p-JNK (phosphorylated c-Jun N-terminal kinase) expression during the course of chondrocyte differentiation by Western blot. In addition, flow cytometry (FCM) assay, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end-labeling (TUNEL) assay and immune-histochemistry analysis also proved this result in vitro and in vivo. It was demonstrated that GRP78 knockdown via siRNA activated the ER stress-specific caspase cascade in developing chondrocyte tissue. Collectively, these findings reveal a novel critical role of GRP78 in regulating ER stress-mediated apoptosis in cartilage development and the molecular mechanisms involved.
Collapse
Affiliation(s)
- Zhangyuan Xiong
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China.
| | - Rong Jiang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China.
| | - Xiangzhu Li
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China.
| | - Yanna Liu
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China.
| | - Fengjin Guo
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|