101
|
Liu J, Sun L, Zhao X, Lu X. Development and validation of a combined nomogram for predicting perineural invasion status in rectal cancer via computed tomography-based radiomics. J Cancer Res Ther 2023; 19:1552-1559. [PMID: 38156921 DOI: 10.4103/jcrt.jcrt_2633_22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/05/2023] [Indexed: 01/03/2024]
Abstract
AIM This study aimed to create and validate a clinic-radiomics nomogram based on computed tomography (CT) imaging for predicting preoperative perineural invasion (PNI) of rectal cancer (RC). MATERIAL AND METHODS This study enrolled 303 patients with RC who were divided into training (n = 242) and test datasets (n = 61) in an 8:2 ratio with all their clinical outcomes. A total of 3,296 radiomic features were extracted from CT images. Five machine learning (ML) models (logistic regression (LR)/K-nearest neighbor (KNN)/multilayer perceptron (MLP)/support vector machine (SVM)/light gradient boosting machine (LightGBM)) were developed using radiomic features derived from the arterial and venous phase images, and the model with the best diagnostic performance was selected. By combining the radiomics and clinical signatures, a fused nomogram model was constructed. RESULTS After using the Mann-Whitney U-test and least absolute shrinkage and selection operator (LASSO) to remove redundant features, the MLP model proved to be the most efficient among the five ML models. The fusion nomogram based on MLP prediction probability further improves the ability to predict the PNI status. The area under the curve (AUC) of the training and test sets was 0.883 and 0.889, respectively, which were higher than those of the clinical (training set, AUC = 0.710; test set, AUC = 0.762) and radiomic models (training set, AUC = 0.840; test set, AUC = 0.834). CONCLUSIONS The clinical-radiomics combined nomogram model based on enhanced CT images efficiently predicted the PNI status of patients with RC.
Collapse
Affiliation(s)
- Jiaxuan Liu
- Department of Radiology, The Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Lingling Sun
- Department of Radiology, The Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Xiang Zhao
- Institute of Innovative Science and Technology, Shenyang University, Liaoning, China
| | - Xi Lu
- Department of Radiology, The Fourth Affiliated Hospital of China Medical University, Liaoning, China
| |
Collapse
|
102
|
Ma S, Lu H, Jing G, Li Z, Zhang Q, Ma X, Chen F, Shao C, Lu Y, Wang H, Shen F. Deep learning-based clinical-radiomics nomogram for preoperative prediction of lymph node metastasis in patients with rectal cancer: a two-center study. Front Med (Lausanne) 2023; 10:1276672. [PMID: 38105891 PMCID: PMC10722265 DOI: 10.3389/fmed.2023.1276672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Background Precise preoperative evaluation of lymph node metastasis (LNM) is crucial for ensuring effective treatment for rectal cancer (RC). This research aims to develop a clinical-radiomics nomogram based on deep learning techniques, preoperative magnetic resonance imaging (MRI) and clinical characteristics, enabling the accurate prediction of LNM in RC. Materials and methods Between January 2017 and May 2023, a total of 519 rectal cancer cases confirmed by pathological examination were retrospectively recruited from two tertiary hospitals. A total of 253 consecutive individuals were selected from Center I to create an automated MRI segmentation technique utilizing deep learning algorithms. The performance of the model was evaluated using the dice similarity coefficient (DSC), the 95th percentile Hausdorff distance (HD95), and the average surface distance (ASD). Subsequently, two external validation cohorts were established: one comprising 178 patients from center I (EVC1) and another consisting of 88 patients from center II (EVC2). The automatic segmentation provided radiomics features, which were then used to create a Radscore. A predictive nomogram integrating the Radscore and clinical parameters was constructed using multivariate logistic regression. Receiver operating characteristic (ROC) curve analysis and decision curve analysis (DCA) were employed to evaluate the discrimination capabilities of the Radscore, nomogram, and subjective evaluation model, respectively. Results The mean DSC, HD95 and ASD were 0.857 ± 0.041, 2.186 ± 0.956, and 0.562 ± 0.194 mm, respectively. The nomogram, which incorporates MR T-stage, CEA, CA19-9, and Radscore, exhibited a higher area under the ROC curve (AUC) compared to the Radscore and subjective evaluation in the training set (0.921 vs. 0.903 vs. 0.662). Similarly, in both external validation sets, the nomogram demonstrated a higher AUC than the Radscore and subjective evaluation (0.908 vs. 0.735 vs. 0.640, and 0.884 vs. 0.802 vs. 0.734). Conclusion The application of the deep learning method enables efficient automatic segmentation. The clinical-radiomics nomogram, utilizing preoperative MRI and automatic segmentation, proves to be an accurate method for assessing LNM in RC. This approach has the potential to enhance clinical decision-making and improve patient care. Research registration unique identifying number UIN Research registry, identifier 9158, https://www.researchregistry.com/browse-the-registry#home/registrationdetails/648e813efffa4e0028022796/.
Collapse
Affiliation(s)
- Shiyu Ma
- Department of Radiology, Changhai Hospital, The Navy Medical University, Shanghai, China
| | - Haidi Lu
- Department of Radiology, Changhai Hospital, The Navy Medical University, Shanghai, China
| | - Guodong Jing
- Department of Radiology, Changhai Hospital, The Navy Medical University, Shanghai, China
| | - Zhihui Li
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qianwen Zhang
- Department of Radiology, Changhai Hospital, The Navy Medical University, Shanghai, China
| | - Xiaolu Ma
- Department of Radiology, Changhai Hospital, The Navy Medical University, Shanghai, China
| | - Fangying Chen
- Department of Radiology, Changhai Hospital, The Navy Medical University, Shanghai, China
| | - Chengwei Shao
- Department of Radiology, Changhai Hospital, The Navy Medical University, Shanghai, China
| | - Yong Lu
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hao Wang
- Department of Colorectal Surgery, Changhai Hospital, The Navy Medical University, Shanghai, China
| | - Fu Shen
- Department of Radiology, Changhai Hospital, The Navy Medical University, Shanghai, China
| |
Collapse
|
103
|
Wang J, Hu Y, Xiong H, Song T, Wang S, Xu H, Xiong B. CT-based deep learning model: a novel approach to the preoperative staging in patients with peritoneal metastasis. Clin Exp Metastasis 2023; 40:493-504. [PMID: 37798391 PMCID: PMC10618318 DOI: 10.1007/s10585-023-10235-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023]
Abstract
Peritoneal metastasis (PM) is a frequent manifestation of advanced abdominal malignancies. Accurately assessing the extent of PM before surgery is essential for patients to receive optimal treatment. Therefore, we propose to construct a deep learning (DL) model based on enhanced computed tomography (CT) images to stage PM preoperatively in patients. All 168 patients with PM underwent contrast-enhanced abdominal CT before either open surgery or laparoscopic exploration, and peritoneal cancer index (PCI) was used to evaluate patients during the surgical procedure. DL features were extracted from portal venous-phase abdominal CT scans and subjected to feature selection using the Spearman correlation coefficient and LASSO. The performance of models for preoperative staging was assessed in the validation cohort and compared against models based on clinical and radiomics (Rad) signature. The DenseNet121-SVM model demonstrated strong patient discrimination in both the training and validation cohorts, achieving AUC was 0.996 in training and 0.951 validation cohort, which were both higher than those of the Clinic model and Rad model. Decision curve analysis (DCA) showed that patients could potentially benefit more from treatment using the DL-SVM model, and calibration curves demonstrated good agreement with actual outcomes. The DL model based on portal venous-phase abdominal CT accurately predicts the extent of PM in patients before surgery, which can help maximize the benefits of treatment and optimize the patient's treatment plan.
Collapse
Affiliation(s)
- Jipeng Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuhan, 430071, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Yuannan Hu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hao Xiong
- Department of information Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Tiantian Song
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuhan, 430071, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Shuyi Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuhan, 430071, Hubei, China.
- Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Bin Xiong
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuhan, 430071, Hubei, China.
- Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.
| |
Collapse
|
104
|
Xu Z, An C, Shi F, Ren H, Li Y, Chen S, Dou J, Wang Y, Yan S, Lu J, Chen H. Automatic prediction of hepatic arterial infusion chemotherapy response in advanced hepatocellular carcinoma with deep learning radiomic nomogram. Eur Radiol 2023; 33:9038-9051. [PMID: 37498380 DOI: 10.1007/s00330-023-09953-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 07/28/2023]
Abstract
OBJECTIVES Hepatic arterial infusion chemotherapy (HAIC) using the FOLFOX regimen (oxaliplatin plus fluorouracil and leucovorin) is a promising option for advanced hepatocellular carcinoma (Ad-HCC). As identifying patients with Ad-HCC who would obtain objective response (OR) to HAIC preoperatively remains a challenge, we aimed to develop an automatic and non-invasive model for predicting HAIC response. METHODS A total of 458 patients with Ad-HCC who underwent HAIC were retrospectively included from three hospitals (310 for training, 77 for internal validation, and 71 for external validation). The deep learning and radiomic features were extracted from the automatically segmented liver region on contrast-enhanced computed tomography images. Then, a deep learning radiomic nomogram (DLRN) was constructed by integrating deep learning scores, radiomic scores, and significant clinical variables with multivariate logistic regression. Model performance was assessed by AUC and Kaplan-Meier estimator. RESULTS After automatic segmentation, only a few modifications were needed (less than 30 min for 458 patients). The DLRN achieved an AUC of 0.988 in the training cohort, 0.915 in the internal validation cohort, and 0.896 in the external validation cohort, respectively, outperforming other models in HAIC response prediction. Moreover, survival risk stratification was also successfully performed by the DLRN. The overall survival (OS) of the predictive OR group was significantly longer than that of the predictive non-OR group (median OS: 26.0 vs. 12.3 months, p < 0.001). CONCLUSIONS The DLRN provided a satisfactory performance for predicting HAIC response, which is essential to identify Ad-HCC patients for HAIC and may potentially benefit personalized pre-treatment decision-making. CLINICAL RELEVANCE STATEMENT This study presents an accurate and automatic method for predicting response to hepatic arterial infusion chemotherapy in patients with advanced hepatocellular carcinoma, and therefore help in defining the best candidates for this treatment. KEY POINTS • Deep learning radiomic nomogram (DLRN) based on automatic segmentation of CECT can accurately predict hepatic arterial infusion chemotherapy (HAIC) response of advanced HCC patients. • The proposed prediction model can perform survival risk stratification and is an easy-to-use tool for personalized pre-treatment decision-making for advanced HCC patients.
Collapse
Affiliation(s)
- Ziming Xu
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, No. 30 Shuangqing Road, Haidian District, Beijing, 100084, China
| | - Chao An
- Department of Minimal Invasive Intervention, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Feng Shi
- Department of Minimal Invasive Intervention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - He Ren
- Department of Ultrasound, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yuze Li
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, No. 30 Shuangqing Road, Haidian District, Beijing, 100084, China
| | - Song Chen
- Department of Minimal Invasive Intervention, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiaqi Dou
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, No. 30 Shuangqing Road, Haidian District, Beijing, 100084, China
| | - Yajie Wang
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, No. 30 Shuangqing Road, Haidian District, Beijing, 100084, China
| | - Shaozhen Yan
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing, 100053, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing, 100053, China.
| | - Huijun Chen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, No. 30 Shuangqing Road, Haidian District, Beijing, 100084, China.
| |
Collapse
|
105
|
Tian C, Ma X, Lu H, Wang Q, Shao C, Yuan Y, Shen F. Deep learning models for preoperative T-stage assessment in rectal cancer using MRI: exploring the impact of rectal filling. Front Med (Lausanne) 2023; 10:1326324. [PMID: 38105894 PMCID: PMC10722089 DOI: 10.3389/fmed.2023.1326324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023] Open
Abstract
Background The objective of this study was twofold: firstly, to develop a convolutional neural network (CNN) for automatic segmentation of rectal cancer (RC) lesions, and secondly, to construct classification models to differentiate between different T-stages of RC. Additionally, it was attempted to investigate the potential benefits of rectal filling in improving the performance of deep learning (DL) models. Methods A retrospective study was conducted, including 317 consecutive patients with RC who underwent MRI scans. The datasets were randomly divided into a training set (n = 265) and a test set (n = 52). Initially, an automatic segmentation model based on T2-weighted imaging (T2WI) was constructed using nn-UNet. The performance of the model was evaluated using the dice similarity coefficient (DSC), the 95th percentile Hausdorff distance (HD95), and the average surface distance (ASD). Subsequently, three types of DL-models were constructed: Model 1 trained on the total training dataset, Model 2 trained on the rectal-filling dataset, and Model 3 trained on the non-filling dataset. The diagnostic values were evaluated and compared using receiver operating characteristic (ROC) curve analysis, confusion matrix, net reclassification index (NRI), and decision curve analysis (DCA). Results The automatic segmentation showed excellent performance. The rectal-filling dataset exhibited superior results in terms of DSC and ASD (p = 0.006 and 0.017). The DL-models demonstrated significantly superior classification performance to the subjective evaluation in predicting T-stages for all test datasets (all p < 0.05). Among the models, Model 1 showcased the highest overall performance, with an area under the curve (AUC) of 0.958 and an accuracy of 0.962 in the filling test dataset. Conclusion This study highlighted the utility of DL-based automatic segmentation and classification models for preoperative T-stage assessment of RC on T2WI, particularly in the rectal-filling dataset. Compared with subjective evaluation, the models exhibited superior performance, suggesting their noticeable potential for enhancing clinical diagnosis and treatment practices.
Collapse
Affiliation(s)
- Chang Tian
- School of Information Science and Technology and School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Xiaolu Ma
- Department of Radiology, Changhai Hospital, The Navy Medical University, Shanghai, China
| | - Haidi Lu
- Department of Radiology, Changhai Hospital, The Navy Medical University, Shanghai, China
| | - Qian Wang
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Chengwei Shao
- Department of Radiology, Changhai Hospital, The Navy Medical University, Shanghai, China
| | - Yuan Yuan
- Department of Radiology, Changhai Hospital, The Navy Medical University, Shanghai, China
| | - Fu Shen
- Department of Radiology, Changhai Hospital, The Navy Medical University, Shanghai, China
| |
Collapse
|
106
|
Liu T, Dong D, Zhao X, Ou XM, Yi JL, Guan J, Zhang Y, Xiao-Fei L, Xie CM, Luo DH, Sun R, Chen QY, Xing L, Guo SS, Liu LT, Lin DF, Chen YZ, Lin JY, Luo MJ, Yan WB, He ML, Mao MY, Zhu MY, Chen WH, Shen BW, Wang SQ, Li HL, Zhong LZ, Hu CS, Wu DH, Mai HQ, Tian J, Tang LQ. Radiomic signatures reveal multiscale intratumor heterogeneity associated with tissue tolerance and survival in re-irradiated nasopharyngeal carcinoma: a multicenter study. BMC Med 2023; 21:464. [PMID: 38012705 PMCID: PMC10683300 DOI: 10.1186/s12916-023-03164-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 11/08/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Post-radiation nasopharyngeal necrosis (PRNN) is a severe adverse event following re-radiotherapy for patients with locally recurrent nasopharyngeal carcinoma (LRNPC) and associated with decreased survival. Biological heterogeneity in recurrent tumors contributes to the different risks of PRNN. Radiomics can be used to mine high-throughput non-invasive image features to predict clinical outcomes and capture underlying biological functions. We aimed to develop a radiogenomic signature for the pre-treatment prediction of PRNN to guide re-radiotherapy in patients with LRNPC. METHODS This multicenter study included 761 re-irradiated patients with LRNPC at four centers in NPC endemic area and divided them into training, internal validation, and external validation cohorts. We built a machine learning (random forest) radiomic signature based on the pre-treatment multiparametric magnetic resonance images for predicting PRNN following re-radiotherapy. We comprehensively assessed the performance of the radiomic signature. Transcriptomic sequencing and gene set enrichment analyses were conducted to identify the associated biological processes. RESULTS The radiomic signature showed discrimination of 1-year PRNN in the training, internal validation, and external validation cohorts (area under the curve (AUC) 0.713-0.756). Stratified by a cutoff score of 0.735, patients with high-risk signature had higher incidences of PRNN than patients with low-risk signature (1-year PRNN rates 42.2-62.5% vs. 16.3-18.8%, P < 0.001). The signature significantly outperformed the clinical model (P < 0.05) and was generalizable across different centers, imaging parameters, and patient subgroups. The radiomic signature had prognostic value concerning its correlation with PRNN-related deaths (hazard ratio (HR) 3.07-6.75, P < 0.001) and all causes of deaths (HR 1.53-2.30, P < 0.01). Radiogenomics analyses revealed associations between the radiomic signature and signaling pathways involved in tissue fibrosis and vascularity. CONCLUSIONS We present a radiomic signature for the individualized risk assessment of PRNN following re-radiotherapy, which may serve as a noninvasive radio-biomarker of radiation injury-associated processes and a useful clinical tool to personalize treatment recommendations for patients with LANPC.
Collapse
Affiliation(s)
- Ting Liu
- Sun Yat-Sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Di Dong
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Xun Zhao
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Min Ou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun-Lin Yi
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian Guan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ye Zhang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lv Xiao-Fei
- Sun Yat-Sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Chuan-Miao Xie
- Sun Yat-Sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Dong-Hua Luo
- Sun Yat-Sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Rui Sun
- Sun Yat-Sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Qiu-Yan Chen
- Sun Yat-Sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Lv Xing
- Sun Yat-Sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Shan-Shan Guo
- Sun Yat-Sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Li-Ting Liu
- Sun Yat-Sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Da-Feng Lin
- Sun Yat-Sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Yan-Zhou Chen
- Sun Yat-Sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Jie-Yi Lin
- Sun Yat-Sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Mei-Juan Luo
- Sun Yat-Sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Wen-Bin Yan
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mei-Lin He
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng-Yuan Mao
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Man-Yi Zhu
- Sun Yat-Sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Wen-Hui Chen
- Department of Oncology, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Bo-Wen Shen
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Shi-Qian Wang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Hai-Lin Li
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Lian-Zhen Zhong
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Chao-Su Hu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - De-Hua Wu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hai-Qiang Mai
- Sun Yat-Sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China.
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China.
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China.
| | - Lin-Quan Tang
- Sun Yat-Sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China.
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China.
| |
Collapse
|
107
|
Yao Y, Ren J, Lu J, Sui Y, Gong J, Chen X. Prognostic significance of high NPC2 expression in gastric cancer. Sci Rep 2023; 13:20710. [PMID: 38001127 PMCID: PMC10673825 DOI: 10.1038/s41598-023-47882-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023] Open
Abstract
Gastric cancer is one of the most common malignancies worldwide, and the third leading cause of cancer-related death. The identification of novel biomarkers and therapeutic targets is critical to improve the prognosis. A total of 380 patients with primary gastric cancer from the TCGA database were analyzed. The receiver operating characteristic curves were plotted. We further evaluated the independent prognostic ability of NPC2 expression for overall survival (OS) and relapse-free survival (RFS) through the Kaplan-Meier curve and Cox analysis. The NPC2 expression was significantly higher (P < 0.001) in gastric cancer. High NPC2 expression was significantly (P < 0.0001) associated with poor OS and poor RFS. The age, stage, radiation therapy, residual tumor, and NPC2 expression showed independent prognostic value for OS. The gender and NPC2 expression showed independent prognostic value for RFS. The higher NPC2 expression was observed in gastric cancer, compared with adjacent normal tissue (P < 0.001), confirmed by the IHC staining. The CCK-8 assay showed that NPC2 knockdown inhibits cell proliferation while NPC2 overexpression promotes cell proliferation (P < 0.05). NPC2 expression may serve as a promising prognostic biomarker for patients with gastric cancer.
Collapse
Affiliation(s)
- Yunzhuang Yao
- Faculty of Graduate Studies, Shanxi Medical University, Taiyuan, 030000, China
- Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Jinnan Ren
- Faculty of Graduate Studies, Shanxi Medical University, Taiyuan, 030000, China
| | - Junhui Lu
- Faculty of Graduate Studies, Shanxi Medical University, Taiyuan, 030000, China
| | - Yue Sui
- Faculty of Graduate Studies, Shanxi Medical University, Taiyuan, 030000, China
| | - Jingwen Gong
- Faculty of Graduate Studies, Shanxi Medical University, Taiyuan, 030000, China
| | - Xing Chen
- Department of Gastroenterology, First Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| |
Collapse
|
108
|
Zhao Y, Li L, Han K, Li T, Duan J, Sun Q, Zhu C, Liang D, Chai N, Li ZC. A radio-pathologic integrated model for prediction of lymph node metastasis stage in patients with gastric cancer. Abdom Radiol (NY) 2023; 48:3332-3342. [PMID: 37716926 DOI: 10.1007/s00261-023-04037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND Accurate prediction of lymph node metastasis stage (LNMs) facilitates precision therapy for gastric cancer. We aimed to develop and validate a deep learning-based radio-pathologic model to predict the LNM stage in patients with gastric cancer by integrating CT images and histopathological whole-slide images (WSIs). METHODS A total of 252 patients were enrolled and randomly divided into a training set (n = 202) and a testing set (n = 50). Both pretreatment contrast-enhanced abdominal CT and WSI of biopsy specimens were collected for each patient. The deep radiologic and pathologic features were extracted from CT and WSI using ResNet-50 and Vision Transformer (ViT) network, respectively. By fusing both radiologic and pathologic features, a radio-pathologic integrated model was constructed to predict the five LNM stages. For comparison, four single-modality models using CT images or WSIs were also constructed, respectively. All models were trained on the training set and validated on the testing set. RESULTS The radio-pathologic integrated mode achieved an overall accuracy of 84.0% and a kappa coefficient of 0.795 on the testing set. The areas under the curves (AUCs) of the integrated model in predicting the five LNM stages were 0.978 (95% Confidence Interval (CI 0.917-1.000), 0.946 (95% CI 0.867-1.000), 0.890 (95% CI 0.718-1.000), 0.971 (95% CI 0.920-1.000), and 0.982 (95% CI 0.911-1.000), respectively. Moreover, the integrated model achieved an AUC of 0.978 (95% CI 0.912-1.000) in predicting the binary status of nodal metastasis. CONCLUSION Our study suggests that radio-pathologic integrated model that combined both macroscale radiologic image and microscale pathologic image can better predict lymph node metastasis stage in patients with gastric cancer.
Collapse
Affiliation(s)
- Yuanshen Zhao
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Longsong Li
- Department of Gastroenterology, The First Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China
| | - Ke Han
- Department of Gastroenterology, The First Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China
| | - Tao Li
- Department of Radiology, The First Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Jingxian Duan
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qiuchang Sun
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Chaofan Zhu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Dong Liang
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
- Shenzhen United Imaging Research Institute of Innovative Medical Equipment, Shenzhen, China
| | - Ningli Chai
- Department of Gastroenterology, The First Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China.
| | - Zhi-Cheng Li
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- National Innovation Center for Advanced Medical Devices, Shenzhen, China.
- Shenzhen United Imaging Research Institute of Innovative Medical Equipment, Shenzhen, China.
| |
Collapse
|
109
|
Yang C, Chen Y, Zhu L, Wang L, Lin Q. A deep learning MRI-based signature may provide risk-stratification strategies for nasopharyngeal carcinoma. Eur Arch Otorhinolaryngol 2023; 280:5039-5047. [PMID: 37358652 DOI: 10.1007/s00405-023-08084-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/16/2023] [Indexed: 06/27/2023]
Abstract
OBJECTIVE As the prognosis of nasopharyngeal carcinoma (NPC) is influenced by various factors, making it difficult for clinical physicians to predict the outcome, the objective of this study was to develop a deep learning-based signature for risk stratification in NPC patients. METHODS A total of 293 patients were enrolled in the study and divided into training, validation, and testing groups with a ratio of 7:1:2. MRI scans and corresponding clinical information were collected, and the 3-year disease-free survival (DFS) was chosen as the endpoint. The Res-Net18 algorithm was used to develop two deep learning (DL) models and another solely based on clinical characteristics developed by multivariate cox analysis. The performance of both models was evaluated using the area under the curve (AUC) and the concordance index (C-index). Discriminative performance was assessed using Kaplan-Meier survival analysis. RESULTS The deep learning approach identified DL prognostic models. The MRI-based DL model showed significantly better performance compared to the traditional model solely based on clinical characteristics (AUC: 0.8861 vs 0.745, p = 0.04 and C-index: 0.865 vs 0.727, p = 0.03). The survival analysis showed significant survival differences between the risk groups identified by the MRI-based model. CONCLUSION Our study highlights the potential of MRI in predicting the prognosis of NPC through DL algorithm. This approach has the potential to become a novel tool for prognosis prediction and can help physicians to develop more valid treatment strategies in the future.
Collapse
Affiliation(s)
- Chen Yang
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China
| | - Yuan Chen
- Department of Computer Science, Xiamen University, Xiamen, Fujian, China
| | - Luchao Zhu
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China
| | - Liansheng Wang
- Department of Computer Science, Xiamen University, Xiamen, Fujian, China.
| | - Qin Lin
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China.
| |
Collapse
|
110
|
Gu W, Chen Y, Zhu H, Chen H, Yang Z, Mo S, Zhao H, Chen L, Nakajima T, Yu X, Ji S, Gu Y, Chen J, Tang W. Development and validation of CT-based radiomics deep learning signatures to predict lymph node metastasis in non-functional pancreatic neuroendocrine tumors: a multicohort study. EClinicalMedicine 2023; 65:102269. [PMID: 38106556 PMCID: PMC10725026 DOI: 10.1016/j.eclinm.2023.102269] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Lymph node status is an important factor for the patients with non-functional pancreatic neuroendocrine tumors (NF-PanNETs) with respect to the surgical methods, prognosis, recurrence. Our aim is to develop and validate a combination model based on contrast-enhanced CT images to predict the lymph node metastasis (LNM) in NF-PanNETs. METHODS Retrospective data were gathered for 320 patients with NF-PanNETs who underwent curative pancreatic resection and CT imaging at two institutions (Center 1, n = 236 and Center 2, n = 84) between January 2010 and March 2022. RDPs (Radiomics deep learning signature) were developed based on ten machine-learning techniques. These signatures were integrated with the clinicopathological factors into a nomogram for clinical applications. The evaluation of the model's performance was conducted through the metrics of the area under the curve (AUC). FINDINGS The RDPs showed excellent performance in both centers with a high AUC for predicting LNM and disease-free survival (DFS) in Center 1 (AUC, 0.88; 95% CI: 0.84-0.92; DFS, p < 0.05) and Center 2 (AUC, 0.91; 95% CI: 0.85-0.97; DFS, p < 0.05). The clinical factors of vascular invasion, perineural invasion, and tumor grade were associated with LNM (p < 0.05). The combination nomogram showed better prediction capability for LNM (AUC, 0.93; 95% CI: 0.89-0.96). Notably, our model maintained a satisfactory predictive ability for tumors at the 2-cm threshold, demonstrating its effectiveness across different tumor sizes in Center 1 (≤2 cm: AUC, 0.90 and >2 cm: AUC, 0.86) and Center 2 (≤2 cm: AUC, 0.93 and >2 cm: AUC, 0.91). INTERPRETATION Our RDPs may have the potential to preoperatively predict LNM in NF-PanNETs, address the insufficiency of clinical guidelines concerning the 2-cm threshold for tumor lymph node dissection, and provide precise therapeutic strategies. FUNDING This work was supported by JSPS KAKENHI Grant Number JP22K20814; the Rare Tumor Research Special Project of the National Natural Science Foundation of China (82141104) and Clinical Research Special Project of Shanghai Municipal Health Commission (202340123).
Collapse
Affiliation(s)
- Wenchao Gu
- Department of Diagnostic and Interventional Radiology, University of Tsukuba, Faculty of Medicine, Ibaraki, Tsukuba, Japan
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yingli Chen
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haibin Zhu
- Key Laboratory of Carcinogenesis and Translational Research, Department of Radiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Haidi Chen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Zongcheng Yang
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Shaocong Mo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongyue Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, China
| | - Lei Chen
- Department of Radiology, Minhang Branch, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Takahito Nakajima
- Department of Diagnostic and Interventional Radiology, University of Tsukuba, Faculty of Medicine, Ibaraki, Tsukuba, Japan
| | - XianJun Yu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Shunrong Ji
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - YaJia Gu
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jie Chen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Head & Neck Tumors and Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Wei Tang
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
111
|
Zhou H, Bai HX, Jiao Z, Cui B, Wu J, Zheng H, Yang H, Liao W. Deep learning-based radiomic nomogram to predict risk categorization of thymic epithelial tumors: A multicenter study. Eur J Radiol 2023; 168:111136. [PMID: 37832194 DOI: 10.1016/j.ejrad.2023.111136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
PURPOSE The study was aimed to develop and evaluate a deep learning-based radiomics to predict the histological risk categorization of thymic epithelial tumors (TETs), which can be highly informative for patient treatment planning and prognostic assessment. METHOD A total of 681 patients with TETs from three independent hospitals were included and separated into derivation cohort and external test cohort. Handcrafted and deep learning features were extracted from preoperative contrast-enhanced CT images and selected to build three radiomics signatures (radiomics signature [Rad_Sig], deep learning signature [DL_Sig] and deep learning radiomics signature [DLR_Sig]) to predict risk categorization of TETs. A deep learning-based radiomic nomogram (DLRN) was then depicted to visualize the classification evaluation. The performance of predictive models was compared using the receiver operating characteristic and decision curve analysis (DCA). RESULTS Among three radiomics signatures, DLR_Sig demonstrated optimum performance with an AUC of 0.883 for the derivation cohort and 0.749 for the external test cohort. Combining DLR_Sig with age and gender, DLRN was depict and exhibited optimum performance among all radiomics models with an AUC of 0.965, accuracy of 0.911, sensitivity of 0.921 and specificity of 0.902 in the derivation cohort, and an AUC of 0.786, accuracy of 0.774, sensitivity of 0.778 and specificity of 0.771 in the external test cohort. The DCA showed that DLRN had greater clinical benefit than other radiomics signatures. CONCLUSIONS Our study developed and validated a DLRN to accurately predict the risk categorization of TETs, which has potential to facilitate individualized treatment and improve patient prognosis evaluation.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Harrison X Bai
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Zhicheng Jiao
- Department of Diagnostic Imaging, Rhode Island Hospital, Providence, RI 02903, USA
| | - Biqi Cui
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jing Wu
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Haijun Zheng
- Department of Radiology, First People's Hospital of Chenzhou, University of South China, Chenzhou 423000, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
112
|
Yao X, Ao W, Zhu X, Tian S, Han X, Hu J, Xu W, Mao G, Deng S. A novel radiomics based on multi-parametric magnetic resonance imaging for predicting Ki-67 expression in rectal cancer: a multicenter study. BMC Med Imaging 2023; 23:168. [PMID: 37891502 PMCID: PMC10612175 DOI: 10.1186/s12880-023-01123-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND To explore the value of multiparametric MRI markers for preoperative prediction of Ki-67 expression among patients with rectal cancer. METHODS Data from 259 patients with postoperative pathological confirmation of rectal adenocarcinoma who had received enhanced MRI and Ki-67 detection was divided into 4 cohorts: training (139 cases), internal validation (in-valid, 60 cases), and external validation (ex-valid, 60 cases) cohorts. The patients were divided into low and high Ki-67 expression groups. In the training cohort, DWI, T2WI, and contrast enhancement T1WI (CE-T1) sequence radiomics features were extracted from MRI images. Radiomics marker scores and regression coefficient were then calculated for data fitting to construct a radscore model. Subsequently, clinical features with statistical significance were selected to construct a combined model for preoperative individualized prediction of rectal cancer Ki-67 expression. The models were internally and externally validated, and the AUC of each model was calculated. Calibration and decision curves were used to evaluate the clinical practicality of nomograms. RESULTS Three models for predicting rectal cancer Ki-67 expression were constructed. The AUC and Delong test results revealed that the combined model had better prediction performance than other models in three chohrts. A decision curve analysis revealed that the nomogram based on the combined model had relatively good clinical performance, which can be an intuitive prediction tool for clinicians. CONCLUSION The multiparametric MRI radiomics model can provide a noninvasive and accurate auxiliary tool for preoperative evaluation of Ki-67 expression in patients with rectal cancer and can support clinical decision-making.
Collapse
Affiliation(s)
- Xiuzhen Yao
- Department of Ultrasound, Putuo People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weiqun Ao
- Department of Radiology, Tongde Hospital of Zhejiang Province, No. 234 Gucui Road, Hangzhou, Zhejiang Province, 310012, China
| | - Xiandi Zhu
- Department of Radiology, Tongde Hospital of Zhejiang Province, No. 234 Gucui Road, Hangzhou, Zhejiang Province, 310012, China
| | - Shuyuan Tian
- Department of Ultrasound, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Xiaoyu Han
- Department of Pathology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Jinwen Hu
- Department of Radiology, Putuo People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenjie Xu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Guoqun Mao
- Department of Radiology, Tongde Hospital of Zhejiang Province, No. 234 Gucui Road, Hangzhou, Zhejiang Province, 310012, China.
| | - Shuitang Deng
- Department of Radiology, Tongde Hospital of Zhejiang Province, No. 234 Gucui Road, Hangzhou, Zhejiang Province, 310012, China.
| |
Collapse
|
113
|
Xue Y, Zhang H, Zheng Z, Liu X, Yin J, Zhang J. Predictive performance of radiomics for peritoneal metastasis in patients with gastric cancer: a meta-analysis and radiomics quality assessment. J Cancer Res Clin Oncol 2023; 149:12103-12113. [PMID: 37422882 DOI: 10.1007/s00432-023-05096-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/30/2023] [Indexed: 07/11/2023]
Abstract
PURPOSE The purpose of this meta-analysis is to systematically review the diagnostic performance of radiomic techniques in predicting peritoneal metastasis in patients with gastric cancer, and to evaluate the quality of current research. METHODS We searched PubMed, Web of Science, EBSCO, Embase, and Cochrane databases for relevant studies up to April 3, 2023. Data extraction and quality evaluation were performed by two independent reviewers. Then we performed statistical analysis, including plotting the forest plot and summary receiver operating characteristic (SROC) curve, and source of heterogeneity analysis, through the MIDAS module in Stata 15. We performed meta-regression and subgroup analyses to analyze the sources of heterogeneity. Using the QUADAS-2 scale and the RQS scale to assess the quality of retrieved studies. RESULTS Ten studies with 6199 patients were finally included in our meta-analysis. Pooled sensitivity and specificity were 0.77 (95% confidence interval [CI]: 0.66, 0.86), and 0.88 (95% CI 0.80, 0.93), respectively. The overall AUC was 0.89 (95% CI 0.86, 0.92). The heterogeneity of this meta-analysis was high, with I2 = 88% (95% CI 75,100). The result of meta-regression showed that QUADAS-2 results, RQS results and machine learning method led to heterogeneity in sensitivity and specificity (P < 0.05). Furthermore, the image segmentation area and the presence or absence of combined clinical factors were associated with sensitivity heterogeneity and specificity heterogeneity, respectively. CONCLUSION Undoubtedly, radiomics has potential value in diagnosing peritoneal metastasis of gastric cancer, but the quality of current research is inconsistent, and more standardized and high-quality research is still needed in the future to achieve the transformation of radiomics results into clinical applications.
Collapse
Affiliation(s)
- Yasheng Xue
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Haiqiao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Zhi Zheng
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Xiaoye Liu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Jie Yin
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Jun Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China.
| |
Collapse
|
114
|
Wang C, Yu P, Zhang H, Han X, Song Z, Zheng G, Wang G, Zheng H, Mao N, Song X. Artificial intelligence-based prediction of cervical lymph node metastasis in papillary thyroid cancer with CT. Eur Radiol 2023; 33:6828-6840. [PMID: 37178202 DOI: 10.1007/s00330-023-09700-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/06/2023] [Accepted: 03/12/2023] [Indexed: 05/15/2023]
Abstract
OBJECTIVES To develop an artificial intelligence (AI) system for predicting cervical lymph node metastasis (CLNM) preoperatively in patients with papillary thyroid cancer (PTC) based on CT images. METHODS This multicenter retrospective study included the preoperative CT of PTC patients who were divided into the development, internal, and external test sets. The region of interest of the primary tumor was outlined manually on the CT images by a radiologist who has eight years of experience. With the use of the CT images and lesions masks, the deep learning (DL) signature was developed by the DenseNet combined with convolutional block attention module. One-way analysis of variance and least absolute shrinkage and selection operator were used to select features, and a support vector machine was used to construct the radiomics signature. Random forest was used to combine the DL, radiomics, and clinical signature to perform the final prediction. The receiver operating characteristic curve, sensitivity, specificity, and accuracy were used by two radiologists (R1 and R2) to evaluate and compare the AI system. RESULTS For the internal and external test set, the AI system achieved excellent performance with AUCs of 0.84 and 0.81, higher than the DL (p = .03, .82), radiomics (p < .001, .04), and clinical model (p < .001, .006). With the aid of the AI system, the specificities of radiologists were improved by 9% and 15% for R1 and 13% and 9% for R2, respectively. CONCLUSIONS The AI system can help predict CLNM in patients with PTC, and the radiologists' performance improved with AI assistance. CLINICAL RELEVANCE STATEMENT This study developed an AI system for preoperative prediction of CLNM in PTC patients based on CT images, and the radiologists' performance improved with AI assistance, which could improve the effectiveness of individual clinical decision-making. KEY POINTS • This multicenter retrospective study showed that the preoperative CT image-based AI system has the potential for predicting the CLNM of PTC. • The AI system was superior to the radiomics and clinical model in predicting the CLNM of PTC. • The radiologists' diagnostic performance improved when they received the AI system assistance.
Collapse
Affiliation(s)
- Cai Wang
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, 261042, People's Republic of China
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, People's Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, 264000, People's Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, Shandong, 264000, People's Republic of China
| | - Pengyi Yu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, People's Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, 264000, People's Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, Shandong, 264000, People's Republic of China
| | - Haicheng Zhang
- Big Data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, People's Republic of China
| | - Xiao Han
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, People's Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, 264000, People's Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, Shandong, 264000, People's Republic of China
| | - Zheying Song
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, 261042, People's Republic of China
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, People's Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, 264000, People's Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, Shandong, 264000, People's Republic of China
| | - Guibin Zheng
- Department of Thyroid Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, People's Republic of China
| | - Guangkuo Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, People's Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, 264000, People's Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, Shandong, 264000, People's Republic of China
| | - Haitao Zheng
- Department of Thyroid Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, People's Republic of China
| | - Ning Mao
- Big Data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, People's Republic of China.
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, People's Republic of China.
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, People's Republic of China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, 264000, People's Republic of China.
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, Shandong, 264000, People's Republic of China.
| |
Collapse
|
115
|
Liu W, Wang W, Zhang H, Guo M, Xu Y, Liu X. Development and Validation of Multi-Omics Thymoma Risk Classification Model Based on Transfer Learning. J Digit Imaging 2023; 36:2015-2024. [PMID: 37268842 PMCID: PMC10501978 DOI: 10.1007/s10278-023-00855-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/04/2023] Open
Abstract
The paper aims to develop prediction model that integrates clinical, radiomics, and deep features using transfer learning to stratifying between high and low risk of thymoma. Our study enrolled 150 patients with thymoma (76 low-risk and 74 high-risk) who underwent surgical resection and pathologically confirmed in Shengjing Hospital of China Medical University from January 2018 to December 2020. The training cohort consisted of 120 patients (80%) and the test cohort consisted of 30 patients (20%). The 2590 radiomics and 192 deep features from non-enhanced, arterial, and venous phase CT images were extracted and ANOVA, Pearson correlation coefficient, PCA, and LASSO were used to select the most significant features. A fusion model that integrated clinical, radiomics, and deep features was developed with SVM classifiers to predict the risk level of thymoma, and accuracy, sensitivity, specificity, ROC curves, and AUC were applied to evaluate the classification model. In both the training and test cohorts, the fusion model demonstrated better performance in stratifying high and low risk of thymoma. It had AUCs of 0.99 and 0.95, and an accuracy of 0.93 and 0.83, respectively. This was compared to the clinical model (AUCs of 0.70 and 0.51, accuracy of 0.68 and 0.47), the radiomics model (AUCs of 0.97 and 0.82, accuracy of 0.93 and 0.80), and the deep model (AUCs of 0.94 and 0.85, accuracy of 0.88 and 0.80). The fusion model integrating clinical, radiomics and deep features based on transfer learning was efficient for noninvasively stratifying high risk and low risk of thymoma. The models could help to determine surgery strategy for thymoma cancer.
Collapse
Affiliation(s)
- Wei Liu
- School of Health Management, China Medical University, Shenyang, China
| | - Wei Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hanyi Zhang
- Department of Radiology, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Miaoran Guo
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yingxin Xu
- School of Health Management, China Medical University, Shenyang, China
| | - Xiaoqi Liu
- School of Health Management, China Medical University, Shenyang, China
| |
Collapse
|
116
|
Lu N, Guan X, Zhu J, Li Y, Zhang J. A Contrast-Enhanced CT-Based Deep Learning System for Preoperative Prediction of Colorectal Cancer Staging and RAS Mutation. Cancers (Basel) 2023; 15:4497. [PMID: 37760468 PMCID: PMC10526233 DOI: 10.3390/cancers15184497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
PURPOSE This study aimed to build a deep learning system using enhanced computed tomography (CT) portal-phase images for predicting colorectal cancer patients' preoperative staging and RAS gene mutation status. METHODS The contrast-enhanced CT image dataset comprises the CT portal-phase images from a retrospective cohort of 231 colorectal cancer patients. The deep learning system was developed via migration learning for colorectal cancer detection, staging, and RAS gene mutation status prediction. This study used pre-trained Yolov7, vision transformer (VIT), swin transformer (SWT), EfficientNetV2, and ConvNeXt. 4620, and contrast-enhanced CT images and annotated tumor bounding boxes were included in the tumor identification and staging dataset. A total of 19,700 contrast-enhanced CT images comprise the RAS gene mutation status prediction dataset. RESULTS In the validation cohort, the Yolov7-based detection model detected and staged tumors with a mean accuracy precision (IoU = 0.5) (mAP_0.5) of 0.98. The area under the receiver operating characteristic curve (AUC) in the test set and validation set for the VIT-based prediction model in predicting the mutation status of the RAS genes was 0.9591 and 0.9554, respectively. The detection network and prediction network of the deep learning system demonstrated great performance in explaining contrast-enhanced CT images. CONCLUSION In this study, a deep learning system was created based on the foundation of contrast-enhanced CT portal-phase imaging to preoperatively predict the stage and RAS mutation status of colorectal cancer patients. This system will help clinicians choose the best treatment option to increase colorectal cancer patients' chances of survival and quality of life.
Collapse
Affiliation(s)
- Na Lu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, No. 121, Jiangjiayuan Road, Nanjing 210011, China (X.G.)
| | - Xiao Guan
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, No. 121, Jiangjiayuan Road, Nanjing 210011, China (X.G.)
| | - Jianguo Zhu
- Department of Radiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China;
| | - Yuan Li
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China;
| | - Jianping Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, No. 121, Jiangjiayuan Road, Nanjing 210011, China (X.G.)
| |
Collapse
|
117
|
Zhu Y, Li H, Huang Y, Fu W, Wang S, Sun N, Dong D, Tian J, Peng Y. CT-based identification of pediatric non-Wilms tumors using convolutional neural networks at a single center. Pediatr Res 2023; 94:1104-1110. [PMID: 36959318 DOI: 10.1038/s41390-023-02553-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 03/25/2023]
Abstract
BACKGROUND Deep learning (DL) is more and more widely used in children's medical treatment. In this study, we have developed a computed tomography (CT)-based DL model for identifying undiagnosed non-Wilms tumors (nWTs) from pediatric renal tumors. METHODS This study collected and analyzed the preoperative clinical data and CT images of pediatric renal tumor patients diagnosed by our center from 2008 to 2020, and established a DL model to identify nWTs noninvasively. RESULTS A total of 364 children who had been confirmed by histopathology with renal tumors from our center were enrolled, including 269 Wilms tumors (WTs) and 95 nWTs. For DL model development, all cases were randomly allocated to training set (218 cases), validation set (73 cases), and test set (73 cases). In the test set, the DL model achieved area under the curve of 0.831 (95% CI: 0.712-0.951) in discriminating WTs from nWTs, with the accuracy, sensitivity, and specificity of 0.781, 0.563, and 0.842, respectively. The sensitivity of our model was higher than a radiologist with 15 years of experience. CONCLUSIONS We presented a DL model for identifying undiagnosed nWTs from pediatric renal tumors, with the potential to improve the image-based diagnosis. IMPACT Deep learning model was used for the first time to identify pediatric renal tumors in this study. Deep learning model can identify non-Wilms tumors from pediatric renal tumors. Deep learning model based on computed tomography images can improve tumor diagnosis rate.
Collapse
Affiliation(s)
- Yupeng Zhu
- Department of Radiology, MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China
| | - Hailin Li
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, 100191, China
- CAS Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yangyue Huang
- Department of Pediatric Urology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Wangxing Fu
- Department of Radiology, MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Siwen Wang
- CAS Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning Sun
- Department of Pediatric Urology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| | - Di Dong
- CAS Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jie Tian
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, 100191, China.
- CAS Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China.
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (affiliated with Jinan University), Zhuhai, 519000, China.
| | - Yun Peng
- Department of Radiology, MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| |
Collapse
|
118
|
Wu P, Jiang Y, Xing H, Song W, Cui X, Wu XL, Xu G. Multimodality deep learning radiomics nomogram for preoperative prediction of malignancy of breast cancer: a multicenter study. Phys Med Biol 2023; 68:175023. [PMID: 37524093 DOI: 10.1088/1361-6560/acec2d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Background. Breast cancer is the most prevalent cancer diagnosed in women worldwide. Accurately and efficiently stratifying the risk is an essential step in achieving precision medicine prior to treatment. This study aimed to construct and validate a nomogram based on radiomics and deep learning for preoperative prediction of the malignancy of breast cancer (MBC).Methods. The clinical and ultrasound imaging data, including brightness mode (B-mode) and color Doppler flow imaging, of 611 breast cancer patients from multiple hospitals in China were retrospectively analyzed. Patients were divided into one primary cohort (PC), one validation cohort (VC) and two test cohorts (TC1 and TC2). A multimodality deep learning radiomics nomogram (DLRN) was constructed for predicting the MBC. The performance of the proposed DLRN was comprehensively assessed and compared with three unimodal models via the calibration curve, the area under the curve (AUC) of receiver operating characteristics and the decision curve analysis.Results. The DLRN discriminated well between the MBC in all cohorts [overall AUC (95% confidence interval): 0.983 (0.973-0.993), 0.972 (0.952-0.993), 0.897 (0.823-0.971), and 0.993 (0.977-1.000) on the PC, VC, test cohorts1 (TC1) and test cohorts2 TC2 respectively]. In addition, the DLRN performed significantly better than three unimodal models and had good clinical utility.Conclusion. The DLRN demonstrates good discriminatory ability in the preoperative prediction of MBC, can better reveal the potential associations between clinical characteristics, ultrasound imaging features and disease pathology, and can facilitate the development of computer-aided diagnosis systems for breast cancer patients. Our code is available publicly in the repository athttps://github.com/wupeiyan/MDLRN.
Collapse
Affiliation(s)
- Peiyan Wu
- School of Computer Science and Engineering, Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, People's Republic of China
| | - Yan Jiang
- School of Computer Science and Engineering, Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, People's Republic of China
| | - Hanshuo Xing
- School of Computer Science and Engineering, Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, People's Republic of China
| | - Wenbo Song
- School of Computer Science and Engineering, Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, People's Republic of China
| | - Xinwu Cui
- Department of Medical Ultrasound, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xing Long Wu
- School of Computer Science and Engineering, Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, People's Republic of China
| | - Guoping Xu
- School of Computer Science and Engineering, Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, People's Republic of China
| |
Collapse
|
119
|
Miccichè F, Rizzo G, Casà C, Leone M, Quero G, Boldrini L, Bulajic M, Corsi DC, Tondolo V. Role of radiomics in predicting lymph node metastasis in gastric cancer: a systematic review. Front Med (Lausanne) 2023; 10:1189740. [PMID: 37663653 PMCID: PMC10469447 DOI: 10.3389/fmed.2023.1189740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
INTRODUCTION Gastric cancer (GC) is an aggressive and clinically heterogeneous tumor, and better risk stratification of lymph node metastasis (LNM) could lead to personalized treatments. The role of radiomics in the prediction of nodal involvement in GC has not yet been systematically assessed. This study aims to assess the role of radiomics in the prediction of LNM in GC. METHODS A PubMed/MEDLINE systematic review was conducted to assess the role of radiomics in LNM. The inclusion criteria were as follows: i. original articles, ii. articles on radiomics, and iii. articles on LNM prediction in GC. All articles were selected and analyzed by a multidisciplinary board of two radiation oncologists and one surgeon, under the supervision of one radiation oncologist, one surgeon, and one medical oncologist. RESULTS A total of 171 studies were obtained using the search strategy mentioned on PubMed. After the complete selection process, a total of 20 papers were considered eligible for the analysis of the results. Radiomics methods were applied in GC to assess the LNM risk. The number of patients, imaging modalities, type of predictive models, number of radiomics features, TRIPOD classification, and performances of the models were reported. CONCLUSIONS Radiomics seems to be a promising approach for evaluating the risk of LNM in GC. Further and larger studies are required to evaluate the clinical impact of the inclusion of radiomics in a comprehensive decision support system (DSS) for GC.
Collapse
Affiliation(s)
- Francesco Miccichè
- U.O.C. di Radioterapia Oncologica, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy
| | - Gianluca Rizzo
- U.O.C. di Chirurgia Digestiva e del Colon-Retto, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy
| | - Calogero Casà
- U.O.C. di Radioterapia Oncologica, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy
| | - Mariavittoria Leone
- U.O.C. di Radioterapia Oncologica, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy
| | - Giuseppe Quero
- U.O.C. di Chirurgia Digestiva, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca Boldrini
- U.O.C. di Radioterapia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Milutin Bulajic
- U.O.C. di Endoscopia Digestiva, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy
| | | | - Vincenzo Tondolo
- U.O.C. di Chirurgia Digestiva e del Colon-Retto, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy
| |
Collapse
|
120
|
Liu CT, Peng YH, Hong CQ, Huang XY, Chu LY, Lin YW, Guo HP, Wu FC, Xu YW. A Nomogram Based on Nutrition-Related Indicators and Computed Tomography Imaging Features for Predicting Preoperative Lymph Node Metastasis in Curatively Resected Esophagogastric Junction Adenocarcinoma. Ann Surg Oncol 2023; 30:5185-5194. [PMID: 37010663 DOI: 10.1245/s10434-023-13378-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/07/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUNDS Preoperative noninvasive tools to predict pretreatment lymph node metastasis (PLNM) status accurately for esophagogastric junction adenocarcinoma (EJA) are few. Thus, the authors aimed to construct a nomogram for predicting PLNM in curatively resected EJA. METHODS This study enrolled 638 EJA patients who received curative surgery resection and divided them randomly (7:3) into training and validation groups. For nomogram construction, 26 candidate parameters involving 21 preoperative clinical laboratory blood nutrition-related indicators, computed tomography (CT)-reported tumor size, CT-reported PLNM, gender, age, and body mass index were screened. RESULTS In the training group, Lasso regression included nine nutrition-related blood indicators in the PLNM-prediction nomogram. The PLNM prediction nomogram yielded an area under the receiver operating characteristic (ROC) curve of 0.741 (95 % confidence interval [CI], 0.697-0.781), which was better than that of the CT-reported PLNM (0.635; 95% CI 0.588-0.680; p < 0.0001). Application of the nomogram in the validation cohort still gave good discrimination (0.725 [95% CI 0.658-0.785] vs 0.634 [95% CI 0.563-0.700]; p = 0.0042). Good calibration and a net benefit were observed in both groups. CONCLUSIONS This study presented a nomogram incorporating preoperative nutrition-related blood indicators and CT imaging features that might be used as a convenient tool to facilitate the preoperative individualized prediction of PLNM for patients with curatively resected EJA.
Collapse
Affiliation(s)
- Can-Tong Liu
- Department of Clinical Laboratory Medicine, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
- Esophageal Cancer Prevention and Control Research Center, The Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
- Guangdong Esophageal Cancer Research Institute, Guangzhou, Guangdong Province, China
| | - Yu-Hui Peng
- Department of Clinical Laboratory Medicine, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
- Esophageal Cancer Prevention and Control Research Center, The Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
- Guangdong Esophageal Cancer Research Institute, Guangzhou, Guangdong Province, China
| | - Chao-Qun Hong
- Department of Oncological Laboratory Research, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Xin-Yi Huang
- Department of Gastrointestinal Endoscopy, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Ling-Yu Chu
- Department of Clinical Laboratory Medicine, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
- Esophageal Cancer Prevention and Control Research Center, The Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
- Guangdong Esophageal Cancer Research Institute, Guangzhou, Guangdong Province, China
| | - Yi-Wei Lin
- Department of Clinical Laboratory Medicine, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
- Esophageal Cancer Prevention and Control Research Center, The Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
- Guangdong Esophageal Cancer Research Institute, Guangzhou, Guangdong Province, China
| | - Hai-Peng Guo
- Esophageal Cancer Prevention and Control Research Center, The Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, China.
- Department of Head and Neck Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, China.
| | - Fang-Cai Wu
- Esophageal Cancer Prevention and Control Research Center, The Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, China.
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, China.
| | - Yi-Wei Xu
- Department of Clinical Laboratory Medicine, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, China.
- Esophageal Cancer Prevention and Control Research Center, The Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, China.
- Guangdong Esophageal Cancer Research Institute, Guangzhou, Guangdong Province, China.
| |
Collapse
|
121
|
Wang Z, Liu Y, Niu X. Application of artificial intelligence for improving early detection and prediction of therapeutic outcomes for gastric cancer in the era of precision oncology. Semin Cancer Biol 2023; 93:83-96. [PMID: 37116818 DOI: 10.1016/j.semcancer.2023.04.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 04/30/2023]
Abstract
Gastric cancer is a leading contributor to cancer incidence and mortality globally. Recently, artificial intelligence approaches, particularly machine learning and deep learning, are rapidly reshaping the full spectrum of clinical management for gastric cancer. Machine learning is formed from computers running repeated iterative models for progressively improving performance on a particular task. Deep learning is a subtype of machine learning on the basis of multilayered neural networks inspired by the human brain. This review summarizes the application of artificial intelligence algorithms to multi-dimensional data including clinical and follow-up information, conventional images (endoscope, histopathology, and computed tomography (CT)), molecular biomarkers, etc. to improve the risk surveillance of gastric cancer with established risk factors; the accuracy of diagnosis, and survival prediction among established gastric cancer patients; and the prediction of treatment outcomes for assisting clinical decision making. Therefore, artificial intelligence makes a profound impact on almost all aspects of gastric cancer from improving diagnosis to precision medicine. Despite this, most established artificial intelligence-based models are in a research-based format and often have limited value in real-world clinical practice. With the increasing adoption of artificial intelligence in clinical use, we anticipate the arrival of artificial intelligence-powered gastric cancer care.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, Liaoning, China
| | - Yang Liu
- Department of Gastric Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, Liaoning, China.
| | - Xing Niu
- China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|
122
|
Lv K, Chen H, Cao X, Du P, Chen J, Liu X, Zhu L, Geng D, Zhang J. Development and validation of a machine learning algorithm for predicting diffuse midline glioma, H3 K27-altered, H3 K27 wild-type high-grade glioma, and primary CNS lymphoma of the brain midline in adults. J Neurosurg 2023; 139:393-401. [PMID: 36681946 DOI: 10.3171/2022.11.jns221544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Preoperative diagnosis of diffuse midline glioma, H3 K27-altered (DMG-A) and midline high-grade glioma without H3 K27 alteration (DMG-W), as well as midline primary CNS lymphoma (PCNSL) in adults, is challenging but crucial. The aim of this study was to develop a model for predicting these three entities using machine learning (ML) algorithms. METHODS Thirty-three patients with DMG-A, 35 with DMG-W, and 35 with midline PCNSL were retrospectively enrolled in the study. Radiomics features were extracted from contrast-enhanced T1-weighted MR images. Two radiologists evaluated the conventional MRI features of the tumors, such as shape. Patient age, tumor volume, and conventional MRI features were considered clinical features. The data set was randomly stratified into 70% training and 30% testing cohorts. Predictive models based on the clinical features, radiomics features, and integration of clinical and radiomics features were established through ML. The performances of the models were evaluated by calculating the area under the receiver operating characteristic curve, accuracy, sensitivity, and specificity. Subsequently, 10 patients with DMG-A, 10 with DMG-W, and 12 with PCNSL were enrolled from another institution to validate the established models. RESULTS The predictive models based on clinical features, radiomics features, and the integration of clinical and radiomics features through the support vector machine algorithm had the optimal accuracies in the training, testing, and validation cohorts, and the accuracies in the testing cohort were 0.871, 0.892, and 0.903, respectively. Age, 2 radiomics features, and 3 conventional MRI features were the 6 most significant features in the established integrated model. CONCLUSIONS The integrated prediction model established by ML provides high discriminatory accuracy for predicting DMG-A, DMG-W, and midline PCNSL in adults.
Collapse
Affiliation(s)
- Kun Lv
- Departments of1Radiology and
| | - Hongyi Chen
- 2Academy for Engineering and Technology, Fudan University, Shanghai
| | - Xin Cao
- Departments of1Radiology and
| | - Peng Du
- Departments of1Radiology and
| | - Jiawei Chen
- 3Neurosurgery, Huashan Hospital, Fudan University, Shanghai
| | - Xiao Liu
- 4School of Computer and Information Technology, Beijing Jiaotong University, Beijing; and
| | - Li Zhu
- 5Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Daoying Geng
- Departments of1Radiology and
- 2Academy for Engineering and Technology, Fudan University, Shanghai
| | - Jun Zhang
- Departments of1Radiology and
- 2Academy for Engineering and Technology, Fudan University, Shanghai
| |
Collapse
|
123
|
Zhang QW, Yang PP, Gao YJY, Li ZH, Yuan Y, Li SJ, Duan SF, Shao CW, Hao Q, Lu Y, Chen Q, Shen F. Assessing synchronous ovarian metastasis in gastric cancer patients using a clinical-radiomics nomogram based on baseline abdominal contrast-enhanced CT: a two-center study. Cancer Imaging 2023; 23:71. [PMID: 37488597 PMCID: PMC10367237 DOI: 10.1186/s40644-023-00584-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/09/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND To build and validate a radiomics nomogram based on preoperative CT scans and clinical data for detecting synchronous ovarian metastasis (SOM) in female gastric cancer (GC) cases. METHODS Pathologically confirmed GC cases in 2 cohorts were retrospectively enrolled. All cases had presurgical abdominal contrast-enhanced CT and pelvis contrast-enhanced MRI and pathological examinations for any suspicious ovarian lesions detected by MRI. Cohort 1 cases (n = 101) were included as the training set. Radiomics features were obtained to develop a radscore. A nomogram combining the radscore and clinical factors was built to detect SOM. The bootstrap method was carried out in cohort 1 as internal validation. External validation was carried out in cohort 2 (n = 46). Receiver operating characteristic (ROC) curve analysis, decision curve analysis (DCA) and the confusion matrix were utilized to assess the performances of the radscore, nomogram and subjective evaluation model. RESULTS The nomogram, which combined age and the radscore, displayed a higher AUC than the radscore and subjective evaluation (0.910 vs 0.827 vs 0.773) in the training cohort. In the external validation cohort, the nomogram also had a higher AUC than the radscore and subjective evaluation (0.850 vs 0.790 vs 0.675). DCA and the confusion matrix confirmed the nomogram was superior to the radscore in both cohorts. CONCLUSIONS This pilot study showed that a nomogram model combining the radscore and clinical characteristics is useful in detecting SOM in female GC cases. It may be applied to improve clinical treatment and is superior to subjective evaluation or the radscore alone.
Collapse
Affiliation(s)
- Qian-Wen Zhang
- Department of Radiology, Changhai Hospital, The Navy Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Pan-Pan Yang
- Department of Radiology, Changhai Hospital, The Navy Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yong-Jun-Yi Gao
- Department of Emergency, the Eighth Medical Center of Chinese, PLA General Hospital, 17 Heishanhu Rd, Haidian District, Beijing, 100091, China
| | - Zhi-Hui Li
- Department of Radiology, Ruijin Hospital Luwan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuan Yuan
- Department of Radiology, Changhai Hospital, The Navy Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Si-Jie Li
- Department of Radiology, Changhai Hospital, The Navy Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Shao-Feng Duan
- GE Healthcare China, Pudong New Town, No.1 Huatuo Road, Shanghai, 210000, China
| | - Cheng-Wei Shao
- Department of Radiology, Changhai Hospital, The Navy Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Qiang Hao
- Department of Radiology, Changhai Hospital, The Navy Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yong Lu
- Department of Radiology, Ruijin Hospital Luwan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qi Chen
- Department of Health Statistics, The Navy Medical University, Shanghai, 200433, China.
| | - Fu Shen
- Department of Radiology, Changhai Hospital, The Navy Medical University, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
124
|
Li W, Zhang M, Cai S, Wu L, Li C, He Y, Yang G, Wang J, Pan Y. Neural network-based prognostic predictive tool for gastric cardiac cancer: the worldwide retrospective study. BioData Min 2023; 16:21. [PMID: 37464415 DOI: 10.1186/s13040-023-00335-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUNDS The incidence of gastric cardiac cancer (GCC) has obviously increased recently with poor prognosis. It's necessary to compare GCC prognosis with other gastric sites carcinoma and set up an effective prognostic model based on a neural network to predict the survival of GCC patients. METHODS In the population-based cohort study, we first enrolled the clinical features from the Surveillance, Epidemiology and End Results (SEER) data (n = 31,397) as well as the public Chinese data from different hospitals (n = 1049). Then according to the diagnostic time, the SEER data were then divided into two cohorts, the train cohort (patients were diagnosed as GCC in 2010-2014, n = 4414) and the test cohort (diagnosed in 2015, n = 957). Age, sex, pathology, tumor, node, and metastasis (TNM) stage, tumor size, surgery or not, radiotherapy or not, chemotherapy or not and history of malignancy were chosen as the predictive clinical features. The train cohort was utilized to conduct the neural network-based prognostic predictive model which validated by itself and the test cohort. Area under the receiver operating characteristics curve (AUC) was used to evaluate model performance. RESULTS The prognosis of GCC patients in SEER database was worse than that of non GCC (NGCC) patients, while it was not worse in the Chinese data. The total of 5371 patients were used to conduct the model, following inclusion and exclusion criteria. Neural network-based prognostic predictive model had a satisfactory performance for GCC overall survival (OS) prediction, which owned 0.7431 AUC in the train cohort (95% confidence intervals, CI, 0.7423-0.7439) and 0.7419 in the test cohort (95% CI, 0.7411-0.7428). CONCLUSIONS GCC patients indeed have different survival time compared with non GCC patients. And the neural network-based prognostic predictive tool developed in this study is a novel and promising software for the clinical outcome analysis of GCC patients.
Collapse
Affiliation(s)
- Wei Li
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, No.9 Beiguan Street, Tongzhou District, Beijing, 101149, China
| | - Minghang Zhang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, No.9 Beiguan Street, Tongzhou District, Beijing, 101149, China
| | - Siyu Cai
- Dermatology Department, General Hospital of Western Theater Command, No.270 Tianhui Road, Chengdu, 610083, Sichuan Province, China
| | - Liangliang Wu
- Institute of Oncology, Senior Department of Oncology, the First Medical Center of Chinese CLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Chao Li
- Department of Gastroenterology, Peking University Aerospace School of Clinical Medicine, No.15 Yuquan Road, Haidian District, Beijing, 100049, China
| | - Yuqi He
- Department of Gastroenterology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, No.9 Beiguan Street, Tongzhou District, Beijing, 101149, China
| | - Guibin Yang
- Department of Gastroenterology, Peking University Aerospace School of Clinical Medicine, No.15 Yuquan Road, Haidian District, Beijing, 100049, China
| | - Jinghui Wang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, No.9 Beiguan Street, Tongzhou District, Beijing, 101149, China.
| | - Yuanming Pan
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, No.9 Beiguan Street, Tongzhou District, Beijing, 101149, China.
| |
Collapse
|
125
|
Yang C, Liu Z, Fang Y, Cao X, Xu G, Wang Z, Hu Z, Wang S, Wu X. Development and validation of a clinic machine-learning nomogram for the prediction of risk stratifications of prostate cancer based on functional subsets of peripheral lymphocyte. J Transl Med 2023; 21:465. [PMID: 37438820 DOI: 10.1186/s12967-023-04318-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/01/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Non-invasive risk stratification contributes to the precise treatment of prostate cancer (PCa). In previous studies, lymphocyte subsets were used to differentiate between low-/intermediate-risk and high-risk PCa, with limited clinical value and poor interpretability. Based on functional subsets of peripheral lymphocyte with the largest sample size to date, this study aims to construct an easy-to-use and robust nomogram to guide the tripartite risk stratifications for PCa. METHODS We retrospectively collected data from 2039 PCa and benign prostate disease (BPD) patients with 42 clinical characteristics on functional subsets of peripheral lymphocyte. After quality control and feature selection, clinical data with the optimal feature subset were utilized for the 10-fold cross-validation of five Machine Learning (ML) models for the task of predicting low-, intermediate- and high-risk stratification of PCa. Then, a novel clinic-ML nomogram was constructed using probabilistic predictions of the trained ML models via the combination of a multivariable Ordinal Logistic Regression analysis and the proposed feature mapping algorithm. RESULTS 197 PCa patients, including 56 BPD, were enrolled in the study. An optimal subset with nine clinical features was selected. Compared with the best ML model and the clinic nomogram, the clinic-ML nomogram achieved the superior performance with a sensitivity of 0.713 (95% CI 0.573-0.853), specificity of 0.869 (95% CI 0.764-0.974), F1 of 0.699 (95% CI 0.557-0.841), and AUC of 0.864 (95% CI 0.794-0.935). The calibration curve and Decision Curve Analysis (DCA) indicated the predictive capacity and net benefits of the clinic-ML nomogram were improved. CONCLUSION Combining the interpretability and simplicity of a nomogram with the efficacy and robustness of ML models, the proposed clinic-ML nomogram can serve as an insight tool for preoperative assessment of PCa risk stratifications, and could provide essential information for the individual diagnosis and treatment in PCa patients.
Collapse
Affiliation(s)
- Chunguang Yang
- Department of Urology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, People's Republic of China
| | - Zhenghao Liu
- Department of Urology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, People's Republic of China
| | - Yin Fang
- School of Computer Science and Engineering, Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, People's Republic of China
| | - Xinyu Cao
- School of Computer Science and Engineering, Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, People's Republic of China
| | - Guoping Xu
- School of Computer Science and Engineering, Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, People's Republic of China
| | - Zhihua Wang
- Department of Urology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, People's Republic of China
| | - Zhiquan Hu
- Department of Urology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, People's Republic of China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, People's Republic of China
| | - Xinglong Wu
- School of Computer Science and Engineering, Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, People's Republic of China.
| |
Collapse
|
126
|
Zhou J, Hu B, Feng W, Zhang Z, Fu X, Shao H, Wang H, Jin L, Ai S, Ji Y. An ensemble deep learning model for risk stratification of invasive lung adenocarcinoma using thin-slice CT. NPJ Digit Med 2023; 6:119. [PMID: 37407729 DOI: 10.1038/s41746-023-00866-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 06/26/2023] [Indexed: 07/07/2023] Open
Abstract
Lung cancer screening using computed tomography (CT) has increased the detection rate of small pulmonary nodules and early-stage lung adenocarcinoma. It would be clinically meaningful to accurate assessment of the nodule histology by CT scans with advanced deep learning algorithms. However, recent studies mainly focus on predicting benign and malignant nodules, lacking of model for the risk stratification of invasive adenocarcinoma. We propose an ensemble multi-view 3D convolutional neural network (EMV-3D-CNN) model to study the risk stratification of lung adenocarcinoma. We include 1075 lung nodules (≤30 mm and ≥4 mm) with preoperative thin-section CT scans and definite pathology confirmed by surgery. Our model achieves a state-of-art performance of 91.3% and 92.9% AUC for diagnosis of benign/malignant and pre-invasive/invasive nodules, respectively. Importantly, our model outperforms senior doctors in risk stratification of invasive adenocarcinoma with 77.6% accuracy [i.e., Grades 1, 2, 3]). It provides detailed predictive histological information for the surgical management of pulmonary nodules. Finally, for user-friendly access, the proposed model is implemented as a web-based system ( https://seeyourlung.com.cn ).
Collapse
Affiliation(s)
- Jing Zhou
- Center for Applied Statistics, School of Statistics, Renmin University of China, Beijing, China
| | - Bin Hu
- Department of Thoracic Surgery, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Wei Feng
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhang Zhang
- Department of Thoracic Surgery, Changsha Central Hospital, Changsha, China
| | - Xiaotong Fu
- Center for Applied Statistics, School of Statistics, Renmin University of China, Beijing, China
| | - Handie Shao
- Center for Applied Statistics, School of Statistics, Renmin University of China, Beijing, China
| | - Hansheng Wang
- Guanghua School of Management, Peking University, Beijing, China
| | - Longyu Jin
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Siyuan Ai
- Department of Thoracic Surgery, Beijing LIANGXIANG Hospital, Beijing, China
| | - Ying Ji
- Department of Thoracic Surgery, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
127
|
Yao J, Cao K, Hou Y, Zhou J, Xia Y, Nogues I, Song Q, Jiang H, Ye X, Lu J, Jin G, Lu H, Xie C, Zhang R, Xiao J, Liu Z, Gao F, Qi Y, Li X, Zheng Y, Lu L, Shi Y, Zhang L. Deep Learning for Fully Automated Prediction of Overall Survival in Patients Undergoing Resection for Pancreatic Cancer: A Retrospective Multicenter Study. Ann Surg 2023; 278:e68-e79. [PMID: 35781511 DOI: 10.1097/sla.0000000000005465] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To develop an imaging-derived biomarker for prediction of overall survival (OS) of pancreatic cancer by analyzing preoperative multiphase contrast-enhanced computed topography (CECT) using deep learning. BACKGROUND Exploiting prognostic biomarkers for guiding neoadjuvant and adjuvant treatment decisions may potentially improve outcomes in patients with resectable pancreatic cancer. METHODS This multicenter, retrospective study included 1516 patients with resected pancreatic ductal adenocarcinoma (PDAC) from 5 centers located in China. The discovery cohort (n=763), which included preoperative multiphase CECT scans and OS data from 2 centers, was used to construct a fully automated imaging-derived prognostic biomarker-DeepCT-PDAC-by training scalable deep segmentation and prognostic models (via self-learning) to comprehensively model the tumor-anatomy spatial relations and their appearance dynamics in multiphase CECT for OS prediction. The marker was independently tested using internal (n=574) and external validation cohorts (n=179, 3 centers) to evaluate its performance, robustness, and clinical usefulness. RESULTS Preoperatively, DeepCT-PDAC was the strongest predictor of OS in both internal and external validation cohorts [hazard ratio (HR) for high versus low risk 2.03, 95% confidence interval (CI): 1.50-2.75; HR: 2.47, CI: 1.35-4.53] in a multivariable analysis. Postoperatively, DeepCT-PDAC remained significant in both cohorts (HR: 2.49, CI: 1.89-3.28; HR: 2.15, CI: 1.14-4.05) after adjustment for potential confounders. For margin-negative patients, adjuvant chemoradiotherapy was associated with improved OS in the subgroup with DeepCT-PDAC low risk (HR: 0.35, CI: 0.19-0.64), but did not affect OS in the subgroup with high risk. CONCLUSIONS Deep learning-based CT imaging-derived biomarker enabled the objective and unbiased OS prediction for patients with resectable PDAC. This marker is applicable across hospitals, imaging protocols, and treatments, and has the potential to tailor neoadjuvant and adjuvant treatments at the individual level.
Collapse
Affiliation(s)
| | - Kai Cao
- Department of Radiology, Changhai Hospital, Shanghai, China
| | - Yang Hou
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Medical Imaging Technology and Artificial Intelligence, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jian Zhou
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Yingda Xia
- DAMO Academy, Alibaba Group, New York, NY
| | - Isabella Nogues
- Departments of Biostatistics, Harvard University T.H. Chan School of Public Health, Boston, MA
| | - Qike Song
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hui Jiang
- Department of Pathology, Changhai Hospital, Shanghai, China
| | - Xianghua Ye
- Department of Radiotherapy, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianping Lu
- Department of Radiology, Changhai Hospital, Shanghai, China
| | - Gang Jin
- Department of Surgery, Changhai Hospital, Shanghai, China
| | - Hong Lu
- Key Laboratory of Cancer Prevention and Therapy, Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
| | - Chuanmiao Xie
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Rong Zhang
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Jing Xiao
- Ping An Technology Co. Ltd., Shenzhen, Guangdong, China
| | - Zaiyi Liu
- Department of Radiology, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Feng Gao
- Department of Hepato-pancreato-biliary Tumor Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yafei Qi
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xuezhou Li
- Department of Radiology, Changhai Hospital, Shanghai, China
| | - Yang Zheng
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Le Lu
- DAMO Academy, Alibaba Group, New York, NY
| | - Yu Shi
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Medical Imaging Technology and Artificial Intelligence, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ling Zhang
- DAMO Academy, Alibaba Group, New York, NY
| |
Collapse
|
128
|
Fu Y, Zhang H, Xue P, Ren M, Xiao T, Zhang Z, Huang Y, Dong E. Qualitative analysis of PD-L1 expression in non-small-cell lung cancer based on chest CT radiomics. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
129
|
Kim KW, Huh J, Urooj B, Lee J, Lee J, Lee IS, Park H, Na S, Ko Y. Artificial Intelligence in Gastric Cancer Imaging With Emphasis on Diagnostic Imaging and Body Morphometry. J Gastric Cancer 2023; 23:388-399. [PMID: 37553127 PMCID: PMC10412978 DOI: 10.5230/jgc.2023.23.e30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/10/2023] Open
Abstract
Gastric cancer remains a significant global health concern, coercing the need for advancements in imaging techniques for ensuring accurate diagnosis and effective treatment planning. Artificial intelligence (AI) has emerged as a potent tool for gastric-cancer imaging, particularly for diagnostic imaging and body morphometry. This review article offers a comprehensive overview of the recent developments and applications of AI in gastric cancer imaging. We investigated the role of AI imaging in gastric cancer diagnosis and staging, showcasing its potential to enhance the accuracy and efficiency of these crucial aspects of patient management. Additionally, we explored the application of AI body morphometry specifically for assessing the clinical impact of gastrectomy. This aspect of AI utilization holds significant promise for understanding postoperative changes and optimizing patient outcomes. Furthermore, we examine the current state of AI techniques for the prognosis of patients with gastric cancer. These prognostic models leverage AI algorithms to predict long-term survival outcomes and assist clinicians in making informed treatment decisions. However, the implementation of AI techniques for gastric cancer imaging has several limitations. As AI continues to evolve, we hope to witness the translation of cutting-edge technologies into routine clinical practice, ultimately improving patient care and outcomes in the fight against gastric cancer.
Collapse
Affiliation(s)
- Kyung Won Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jimi Huh
- Department of Radiology, Ajou University School of Medicine, Suwon, Korea
| | - Bushra Urooj
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Jeongjin Lee
- School of Computer Science and Engineering, Soongsil University, Seoul, Korea
| | - Jinseok Lee
- Department of Biomedical Engineering, College of Electronics and Information, Kyung Hee University, Yongin, Korea
| | - In-Seob Lee
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyesun Park
- Body Imaging Department of Radiology, Lahey Hospital and Medical Center, Burlington, MA, USA
| | - Seongwon Na
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Yousun Ko
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea.
| |
Collapse
|
130
|
Lee J, Lee H, Chung JW. The Role of Artificial Intelligence in Gastric Cancer: Surgical and Therapeutic Perspectives: A Comprehensive Review. J Gastric Cancer 2023; 23:375-387. [PMID: 37553126 PMCID: PMC10412973 DOI: 10.5230/jgc.2023.23.e31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/10/2023] Open
Abstract
Stomach cancer has a high annual mortality rate worldwide necessitating early detection and accurate treatment. Even experienced specialists can make erroneous judgments based on several factors. Artificial intelligence (AI) technologies are being developed rapidly to assist in this field. Here, we aimed to determine how AI technology is used in gastric cancer diagnosis and analyze how it helps patients and surgeons. Early detection and correct treatment of early gastric cancer (EGC) can greatly increase survival rates. To determine this, it is important to accurately determine the diagnosis and depth of the lesion and the presence or absence of metastasis to the lymph nodes, and suggest an appropriate treatment method. The deep learning algorithm, which has learned gastric lesion endoscopyimages, morphological characteristics, and patient clinical information, detects gastric lesions with high accuracy, sensitivity, and specificity, and predicts morphological characteristics. Through this, AI assists the judgment of specialists to help select the correct treatment method among endoscopic procedures and radical resections and helps to predict the resection margins of lesions. Additionally, AI technology has increased the diagnostic rate of both relatively inexperienced and skilled endoscopic diagnosticians. However, there were limitations in the data used for learning, such as the amount of quantitatively insufficient data, retrospective study design, single-center design, and cases of non-various lesions. Nevertheless, this assisted endoscopic diagnosis technology that incorporates deep learning technology is sufficiently practical and future-oriented and can play an important role in suggesting accurate treatment plans to surgeons for resection of lesions in the treatment of EGC.
Collapse
Affiliation(s)
- JunHo Lee
- Division of Gastroenterology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
- Corp. CAIMI, Incheon, Korea
| | - Hanna Lee
- Division of Gastroenterology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
| | - Jun-Won Chung
- Division of Gastroenterology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
- Corp. CAIMI, Incheon, Korea.
| |
Collapse
|
131
|
Schena CA, Laterza V, De Sio D, Quero G, Fiorillo C, Gunawardena G, Strippoli A, Tondolo V, de'Angelis N, Alfieri S, Rosa F. The Role of Staging Laparoscopy for Gastric Cancer Patients: Current Evidence and Future Perspectives. Cancers (Basel) 2023; 15:3425. [PMID: 37444535 DOI: 10.3390/cancers15133425] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
A significant proportion of patients diagnosed with gastric cancer is discovered with peritoneal metastases at laparotomy. Despite the continuous improvement in the performance of radiological imaging, the preoperative recognition of such an advanced disease is still challenging during the diagnostic work-up, since the sensitivity of CT scans to peritoneal carcinomatosis is not always adequate. Staging laparoscopy offers the chance to significantly increase the rate of promptly diagnosed peritoneal metastases, thus reducing the number of unnecessary laparotomies and modifying the initial treatment strategy of gastric cancer. The aim of this review was to provide a comprehensive summary of the current literature regarding the role of staging laparoscopy in the management of gastric cancer. Indications, techniques, accuracy, advantages, and limitations of staging laparoscopy and peritoneal cytology were discussed. Furthermore, a focus on current evidence regarding the application of artificial intelligence and image-guided surgery in staging laparoscopy was included in order to provide a picture of the future perspectives of this technique and its integration with modern tools in the preoperative management of gastric cancer.
Collapse
Affiliation(s)
- Carlo Alberto Schena
- Digestive Surgery Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Unit of Colorectal and Digestive Surgery, DIGEST Department, Beaujon University Hospital, AP-HP, University of Paris Cité, Clichy, 92110 Paris, France
| | - Vito Laterza
- Digestive Surgery Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Davide De Sio
- Digestive Surgery Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Giuseppe Quero
- Digestive Surgery Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Digestive Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Claudio Fiorillo
- Digestive Surgery Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Gayani Gunawardena
- Department of Digestive Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonia Strippoli
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Vincenzo Tondolo
- Digestive Surgery Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Nicola de'Angelis
- Unit of Colorectal and Digestive Surgery, DIGEST Department, Beaujon University Hospital, AP-HP, University of Paris Cité, Clichy, 92110 Paris, France
| | - Sergio Alfieri
- Digestive Surgery Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Digestive Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Fausto Rosa
- Department of Digestive Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Emergency and Trauma Surgery Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
132
|
Hu YJ, Zhang L, Xiao YP, Lu TZ, Guo QJ, Lin SJ, Liu L, Chen YB, Huang ZL, Liu Y, Su Y, Liu LZ, Gong XC, Pan JJ, Li JG, Xia YF. MRI-based deep learning model predicts distant metastasis and chemotherapy benefit in stage II nasopharyngeal carcinoma. iScience 2023; 26:106932. [PMID: 37378335 PMCID: PMC10291473 DOI: 10.1016/j.isci.2023.106932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 04/11/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Chemotherapy remains controversial for stage II nasopharyngeal carcinoma because of its considerable prognostic heterogeneity. We aimed to develop an MRI-based deep learning model for predicting distant metastasis and assessing chemotherapy efficacy in stage II nasopharyngeal carcinoma. This multicenter retrospective study enrolled 1072 patients from three Chinese centers for training (Center 1, n = 575) and external validation (Centers 2 and 3, n = 497). The deep learning model significantly predicted the risk of distant metastases for stage II nasopharyngeal carcinoma and was validated in the external validation cohort. In addition, the deep learning model outperformed the clinical and radiomics models in terms of predictive performance. Furthermore, the deep learning model facilitates the identification of high-risk patients who could benefit from chemotherapy, providing useful additional information for individualized treatment decisions.
Collapse
Affiliation(s)
- Yu-Jun Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Lin Zhang
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, Jiangxi, China
- NHC Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), Jiangxi, China
| | - You-Ping Xiao
- Department of Radiology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, China
| | - Tian-Zhu Lu
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, Jiangxi, China
- NHC Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), Jiangxi, China
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital of Nanchang University, Jiangxi, China
| | - Qiao-Juan Guo
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, China
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, China
| | - Shao-Jun Lin
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, China
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, China
| | - Lan Liu
- Department of Radiology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| | - Yun-Bin Chen
- Department of Radiology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, China
| | - Zi-Lu Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ya Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yong Su
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, Jiangxi, China
- NHC Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), Jiangxi, China
| | - Li-Zhi Liu
- Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xiao-Chang Gong
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, Jiangxi, China
- NHC Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), Jiangxi, China
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital of Nanchang University, Jiangxi, China
| | - Jian-Ji Pan
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, China
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, China
| | - Jin-Gao Li
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, Jiangxi, China
- NHC Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), Jiangxi, China
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital of Nanchang University, Jiangxi, China
| | - Yun-Fei Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
133
|
Jiang Z, Xie W, Zhou X, Pan W, Jiang S, Zhang X, Zhang M, Zhang Z, Lu Y, Wang D. A virtual biopsy study of microsatellite instability in gastric cancer based on deep learning radiomics. Insights Imaging 2023; 14:104. [PMID: 37286810 DOI: 10.1186/s13244-023-01438-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/15/2023] [Indexed: 06/09/2023] Open
Abstract
OBJECTIVES This study aims to develop and validate a virtual biopsy model to predict microsatellite instability (MSI) status in preoperative gastric cancer (GC) patients based on clinical information and the radiomics of deep learning algorithms. METHODS A total of 223 GC patients with MSI status detected by postoperative immunohistochemical staining (IHC) were retrospectively recruited and randomly assigned to the training (n = 167) and testing (n = 56) sets in a 3:1 ratio. In the training set, 982 high-throughput radiomic features were extracted from preoperative abdominal dynamic contrast-enhanced CT (CECT) and screened. According to the deep learning multilayer perceptron (MLP), 15 optimal features were optimized to establish the radiomic feature score (Rad-score), and LASSO regression was used to screen out clinically independent predictors. Based on logistic regression, the Rad-score and clinically independent predictors were integrated to build the clinical radiomics model and visualized as a nomogram and independently verified in the testing set. The performance and clinical applicability of hybrid model in identifying MSI status were evaluated by the area under the receiver operating characteristic (AUC) curve, calibration curve, and decision curve (DCA). RESULTS The AUCs of the clinical image model in training set and testing set were 0.883 [95% CI: 0.822-0.945] and 0.802 [95% CI: 0.666-0.937], respectively. This hybrid model showed good consistency in the calibration curve and clinical applicability in the DCA curve, respectively. CONCLUSIONS Using preoperative imaging and clinical information, we developed a deep-learning-based radiomics model for the non-invasive evaluation of MSI in GC patients. This model maybe can potentially support clinical treatment decision making for GC patients.
Collapse
Affiliation(s)
- Zinian Jiang
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Wentao Xie
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No. 1677, Wutaishan Road, Qingdao, 266000, Shandong, China
| | - Xiaoming Zhou
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wenjun Pan
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Sheng Jiang
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Xianxiang Zhang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No. 1677, Wutaishan Road, Qingdao, 266000, Shandong, China
| | - Maoshen Zhang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No. 1677, Wutaishan Road, Qingdao, 266000, Shandong, China
| | - Zhenqi Zhang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yun Lu
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, China.
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No. 1677, Wutaishan Road, Qingdao, 266000, Shandong, China.
- Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, Qingdao, Shandong, China.
| | - Dongsheng Wang
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, China.
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No. 1677, Wutaishan Road, Qingdao, 266000, Shandong, China.
| |
Collapse
|
134
|
Yin M, Liang X, Wang Z, Zhou Y, He Y, Xue Y, Gao J, Lin J, Yu C, Liu L, Liu X, Xu C, Zhu J. Identification of Asymptomatic COVID-19 Patients on Chest CT Images Using Transformer-Based or Convolutional Neural Network-Based Deep Learning Models. J Digit Imaging 2023; 36:827-836. [PMID: 36596937 PMCID: PMC9810383 DOI: 10.1007/s10278-022-00754-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 01/04/2023] Open
Abstract
Novel coronavirus disease 2019 (COVID-19) has rapidly spread throughout the world; however, it is difficult for clinicians to make early diagnoses. This study is to evaluate the feasibility of using deep learning (DL) models to identify asymptomatic COVID-19 patients based on chest CT images. In this retrospective study, six DL models (Xception, NASNet, ResNet, EfficientNet, ViT, and Swin), based on convolutional neural networks (CNNs) or transformer architectures, were trained to identify asymptomatic patients with COVID-19 on chest CT images. Data from Yangzhou were randomly split into a training set (n = 2140) and an internal-validation set (n = 360). Data from Suzhou was the external-test set (n = 200). Model performance was assessed by the metrics accuracy, recall, and specificity and was compared with the assessments of two radiologists. A total of 2700 chest CT images were collected in this study. In the validation dataset, the Swin model achieved the highest accuracy of 0.994, followed by the EfficientNet model (0.954). The recall and the precision of the Swin model were 0.989 and 1.000, respectively. In the test dataset, the Swin model was still the best and achieved the highest accuracy (0.980). All the DL models performed remarkably better than the two experts. Last, the time on the test set diagnosis spent by two experts-42 min, 17 s (junior); and 29 min, 43 s (senior)-was significantly higher than those of the DL models (all below 2 min). This study evaluated the feasibility of multiple DL models in distinguishing asymptomatic patients with COVID-19 from healthy subjects on chest CT images. It found that a transformer-based model, the Swin model, performed best.
Collapse
Affiliation(s)
- Minyue Yin
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
- Suzhou Clinical Center of Digestive Diseases, Suzhou, 215006, Jiangsu, China
| | - Xiaolong Liang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Zilan Wang
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Yijia Zhou
- Medical School, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Yu He
- Medical School, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Yuhan Xue
- Medical School, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Jingwen Gao
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
- Suzhou Clinical Center of Digestive Diseases, Suzhou, 215006, Jiangsu, China
| | - Jiaxi Lin
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
- Suzhou Clinical Center of Digestive Diseases, Suzhou, 215006, Jiangsu, China
| | - Chenyan Yu
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
- Suzhou Clinical Center of Digestive Diseases, Suzhou, 215006, Jiangsu, China
| | - Lu Liu
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
- Suzhou Clinical Center of Digestive Diseases, Suzhou, 215006, Jiangsu, China
| | - Xiaolin Liu
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
- Suzhou Clinical Center of Digestive Diseases, Suzhou, 215006, Jiangsu, China
| | - Chao Xu
- Department of Radiotherapy, the First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Jinzhou Zhu
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
- Suzhou Clinical Center of Digestive Diseases, Suzhou, 215006, Jiangsu, China.
- The 23Rd Ward, Yangzhou Third People's Hospital, Yangzhou, 225000, Jiangsu, China.
| |
Collapse
|
135
|
Wu A, Wu C, Zeng Q, Cao Y, Shu X, Luo L, Feng Z, Tu Y, Jie Z, Zhu Y, Zhou F, Huang Y, Li Z. Development and validation of a CT radiomics and clinical feature model to predict omental metastases for locally advanced gastric cancer. Sci Rep 2023; 13:8442. [PMID: 37231100 DOI: 10.1038/s41598-023-35155-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/13/2023] [Indexed: 05/27/2023] Open
Abstract
""We employed radiomics and clinical features to develop and validate a preoperative prediction model to estimate the omental metastases status of locally advanced gastric cancer (LAGC). A total of 460 patients (training cohort, n = 250; test cohort, n = 106; validation cohort, n = 104) with LAGC who were confirmed T3/T4 stage by postoperative pathology were continuously collected retrospectively, including clinical data and preoperative arterial phase computed tomography images (APCT). Dedicated radiomics prototype software was used to segment the lesions and extract features from the preoperative APCT images. The least absolute shrinkage and selection operator (LASSO) regression was used to select the extracted radiomics features, and a radiomics score model was constructed. Finally, a prediction model of omental metastases status and a nomogram were constructed combining the radiomics scores and selected clinical features. An area under the curve (AUC) of the receiver operating characteristic curve (ROC) was used to validate the capability of the prediction model and nomogram in the training cohort. Calibration curves and decision curve analysis (DCA) were used to evaluate the prediction model and nomogram. The prediction model was internally validated by the test cohort. In addition, 104 patients from another hospital's clinical and imaging data were gathered for external validation. In the training cohort, the combined prediction (CP) model (AUC 0.871, 95% CI 0.798-0.945) of the radiomics scores combined with the clinical features, compared with clinical features prediction (CFP) model (AUC 0.795, 95% CI 0.710-0.879) and radiomics scores prediction (RSP) model (AUC 0.805, 95% CI 0.730-0.879), had the better predictive ability. The Hosmer-Lemeshow test of the CP model showed that the prediction model did not deviate from the perfect fitting (p = 0.893). In the DCA, the clinical net benefit of the CP model was higher than that of the CFP model and RSP model. In the test and validation cohorts, the AUC values of the CP model were 0.836 (95% CI 0.726-0.945) and 0.779 (95% CI 0.634-0.923), respectively. The preoperative APCT-based clinical-radiomics nomogram showed good performance in predicting omental metastases status in LAGC, which may contribute to clinical decision-making.
Collapse
Affiliation(s)
- Ahao Wu
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Changlei Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Qingwen Zeng
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Yi Cao
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Xufeng Shu
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Lianghua Luo
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Zongfeng Feng
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Yi Tu
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Zhigang Jie
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Yanyan Zhu
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Ya Huang
- Department of Radiology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Zhengrong Li
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
136
|
Pullen LCE, Noortman WA, Triemstra L, de Jongh C, Rademaker FJ, Spijkerman R, Kalisvaart GM, Gertsen EC, de Geus-Oei LF, Tolboom N, de Steur WO, Dantuma M, Slart RHJA, van Hillegersberg R, Siersema PD, Ruurda JP, van Velden FHP, Vegt E. Prognostic Value of [ 18F]FDG PET Radiomics to Detect Peritoneal and Distant Metastases in Locally Advanced Gastric Cancer-A Side Study of the Prospective Multicentre PLASTIC Study. Cancers (Basel) 2023; 15:cancers15112874. [PMID: 37296837 DOI: 10.3390/cancers15112874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/13/2023] [Accepted: 05/14/2023] [Indexed: 06/12/2023] Open
Abstract
AIM To improve identification of peritoneal and distant metastases in locally advanced gastric cancer using [18F]FDG-PET radiomics. METHODS [18F]FDG-PET scans of 206 patients acquired in 16 different Dutch hospitals in the prospective multicentre PLASTIC-study were analysed. Tumours were delineated and 105 radiomic features were extracted. Three classification models were developed to identify peritoneal and distant metastases (incidence: 21%): a model with clinical variables, a model with radiomic features, and a clinicoradiomic model, combining clinical variables and radiomic features. A least absolute shrinkage and selection operator (LASSO) regression classifier was trained and evaluated in a 100-times repeated random split, stratified for the presence of peritoneal and distant metastases. To exclude features with high mutual correlations, redundancy filtering of the Pearson correlation matrix was performed (r = 0.9). Model performances were expressed by the area under the receiver operating characteristic curve (AUC). In addition, subgroup analyses based on Lauren classification were performed. RESULTS None of the models could identify metastases with low AUCs of 0.59, 0.51, and 0.56, for the clinical, radiomic, and clinicoradiomic model, respectively. Subgroup analysis of intestinal and mixed-type tumours resulted in low AUCs of 0.67 and 0.60 for the clinical and radiomic models, and a moderate AUC of 0.71 in the clinicoradiomic model. Subgroup analysis of diffuse-type tumours did not improve the classification performance. CONCLUSION Overall, [18F]FDG-PET-based radiomics did not contribute to the preoperative identification of peritoneal and distant metastases in patients with locally advanced gastric carcinoma. In intestinal and mixed-type tumours, the classification performance of the clinical model slightly improved with the addition of radiomic features, but this slight improvement does not outweigh the laborious radiomic analysis.
Collapse
Affiliation(s)
- Lieke C E Pullen
- Biomedical Photonic Imaging Group, University of Twente, 7522 NB Enschede, The Netherlands
| | - Wyanne A Noortman
- Biomedical Photonic Imaging Group, University of Twente, 7522 NB Enschede, The Netherlands
- Department of Radiology, Leiden University Medical Center, 2333 ZD Leiden, The Netherlands
| | - Lianne Triemstra
- Department of Surgery, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Cas de Jongh
- Department of Surgery, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Fenna J Rademaker
- TechMed Centre, University of Twente, 7522 NB Enschede, The Netherlands
| | - Romy Spijkerman
- TechMed Centre, University of Twente, 7522 NB Enschede, The Netherlands
| | - Gijsbert M Kalisvaart
- Department of Radiology, Leiden University Medical Center, 2333 ZD Leiden, The Netherlands
| | - Emma C Gertsen
- Department of Surgery, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Lioe-Fee de Geus-Oei
- Biomedical Photonic Imaging Group, University of Twente, 7522 NB Enschede, The Netherlands
- Department of Radiology, Leiden University Medical Center, 2333 ZD Leiden, The Netherlands
| | - Nelleke Tolboom
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Wobbe O de Steur
- Department of Surgery, Leiden University Medical Center, 2333 ZD Leiden, The Netherlands
| | - Maura Dantuma
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, 7522 NB Enschede, The Netherlands
| | - Riemer H J A Slart
- Biomedical Photonic Imaging Group, University of Twente, 7522 NB Enschede, The Netherlands
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | | | - Peter D Siersema
- Department of Gastroenterology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Jelle P Ruurda
- Department of Surgery, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Floris H P van Velden
- Department of Radiology, Leiden University Medical Center, 2333 ZD Leiden, The Netherlands
| | - Erik Vegt
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
137
|
Li H, Wang S, Liu B, Fang M, Cao R, He B, Liu S, Hu C, Dong D, Wang X, Wang H, Tian J. A multi-view co-training network for semi-supervised medical image-based prognostic prediction. Neural Netw 2023; 164:455-463. [PMID: 37182347 DOI: 10.1016/j.neunet.2023.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/07/2023] [Accepted: 04/18/2023] [Indexed: 05/16/2023]
Abstract
Prognostic prediction has long been a hotspot in disease analysis and management, and the development of image-based prognostic prediction models has significant clinical implications for current personalized treatment strategies. The main challenge in prognostic prediction is to model a regression problem based on censored observations, and semi-supervised learning has the potential to play an important role in improving the utilization efficiency of censored data. However, there are yet few effective semi-supervised paradigms to be applied. In this paper, we propose a semi-supervised co-training deep neural network incorporating a support vector regression layer for survival time estimation (Co-DeepSVS) that improves the efficiency in utilizing censored data for prognostic prediction. First, we introduce a support vector regression layer in deep neural networks to deal with censored data and directly predict survival time, and more importantly to calculate the labeling confidence of each case. Then, we apply a semi-supervised multi-view co-training framework to achieve accurate prognostic prediction, where labeling confidence estimation with prior knowledge of pseudo time is conducted for each view. Experimental results demonstrate that the proposed Co-DeepSVS has a promising prognostic ability and surpasses most widely used methods on a multi-phase CT dataset. Besides, the introduction of SVR layer makes the model more robust in the presence of follow-up bias.
Collapse
Affiliation(s)
- Hailin Li
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, 100191, China; CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Siwen Wang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Liu
- Lanzhou University Second Hospital, Lanzhou, 730050, Gansu, China; Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong University, Jinan, 250021, Shandong, China
| | - Mengjie Fang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, 100191, China; CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Runnan Cao
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bingxi He
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, 100191, China; CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shengyuan Liu
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaoen Hu
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Di Dong
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong University, Jinan, 250021, Shandong, China.
| | - Hexiang Wang
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| | - Jie Tian
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, 100191, China; CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
138
|
Jiang XC, Yao XB, Xia HB, Su YZ, Luo PQ, Sun JR, Song ED, Wei ZJ, Xu AM, Zhang LX, Lan YH. Nomogram established using risk factors of early gastric cancer for predicting the lymph node metastasis. World J Gastrointest Oncol 2023; 15:665-676. [PMID: 37123061 PMCID: PMC10134212 DOI: 10.4251/wjgo.v15.i4.665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/12/2023] [Accepted: 03/21/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND For the prognosis of patients with early gastric cancer (EGC), lymph node metastasis (LNM) plays a crucial role. A thorough and precise evaluation of the patient for LNM is now required.
AIM To determine the factors influencing LNM and to construct a prediction model of LNM for EGC patients.
METHODS Clinical information and pathology data of 2217 EGC patients downloaded from the Surveillance, Epidemiology, and End Results database were collected and analyzed. Based on a 7:3 ratio, 1550 people were categorized into training sets and 667 people were assigned to testing sets, randomly. Based on the factors influencing LNM determined by the training sets, the nomogram was drawn and verified.
RESULTS Based on multivariate analysis, age at diagnosis, histology type, grade, T-stage, and size were risk factors of LNM for EGC. Besides, nomogram was drawn to predict the risk of LNM for EGC patients. Among the categorical variables, the effect of grade (well, moderate, and poor) was the most significant prognosis factor. For training sets and testing sets, respectively, area under the receiver-operating characteristic curve of nomograms were 0.751 [95% confidence interval (CI): 0.721-0.782] and 0.786 (95%CI: 0.742-0.830). In addition, the calibration curves showed that the prediction model of LNM had good consistency.
CONCLUSION Age at diagnosis, histology type, grade, T-stage, and tumor size were independent variables for LNM in EGC. Based on the above risk factors, prediction model may offer some guiding implications for the choice of subsequent therapeutic approaches for EGC.
Collapse
Affiliation(s)
- Xiao-Cong Jiang
- Department of Radiotherapy Oncology, Huizhou Municipal Central Hospital, Huizhou 516001, Guangdong Province, China
| | - Xiao-Bing Yao
- Emergency Surgery, Shanghai Seventh People’s Hospital, Shanghai 200137, China
| | - Heng-Bo Xia
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230031, Anhui Province, China
| | - Ye-Zhou Su
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei 230031, Anhui Province, China
| | - Pan-Quan Luo
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230031, Anhui Province, China
| | - Jian-Ran Sun
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, Hefei 230031, Anhui Province, China
| | - En-Dong Song
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230031, Anhui Province, China
| | - Zhi-Jian Wei
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230031, Anhui Province, China
| | - A-Man Xu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230031, Anhui Province, China
| | - Li-Xiang Zhang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230031, Anhui Province, China
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei 230031, Anhui Province, China
| | - Yu-Hong Lan
- Department of Radiotherapy Oncology, Huizhou Municipal Central Hospital, Huizhou 516001, Guangdong Province, China
| |
Collapse
|
139
|
Shen LL, Zheng HL, Ding FH, Lu J, Chen QY, Xu BB, Xue Z, Lin J, Huang CM, Zheng CH. Delta computed tomography radiomics features-based nomogram predicts long-term efficacy after neoadjuvant chemotherapy in advanced gastric cancer. LA RADIOLOGIA MEDICA 2023; 128:402-414. [PMID: 36940007 DOI: 10.1007/s11547-023-01617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/07/2023] [Indexed: 03/21/2023]
Abstract
BACKGROUND AND OBJECTIVE No effective preoperative tool is available for predicting the prognosis of advanced gastric cancer (AGC) treated by neoadjuvant chemotherapy (NAC). We aimed to explore the association between change values ("delta") in the radiomic signatures of computed tomography (CT) (delCT-RS) before and after NAC for AGC and overall survival(OS). METHODS AND DESIGN A total of 132 AGC patients with AGC were studied as a training cohort in our center, and 45 patients from another center were used as an external validation set. A radiomic signatures-clinical-nomogram(RS-CN) was established using delCT-RS and preoperative clinical variables. The prediction performance of RS-CN was evaluated using the area under the receiver operating characteristic (ROC)curve (AUC values), time-dependent ROC, decision curve analysis(DCA) and C-index. RESULTS Multivariable Cox regression analyses showed that delCT-RS, cT-stage, cN-stage, Lauren-type and the value of variation of carcinoma embryonic antigen (CEA) between NAC were independent risk factors for 3-year OS of AGC. In the training cohort, RS-CN had a good prediction performance for OS (C-Index 0.73) and AUC values were significantly better than those of delCT-RS, ypTNM-stage and tumor regression grade(TRG) (0.827 vs 0.704 vs 0.749 vs 0.571, p < 0.001). DCA and time-dependent ROC of RS-CN were better than those of ypTNM stage, TRG grade and delCT-RS. The prediction performance of the validation set was equivalent to that of the training set. The cut-off (177.2) of RS-CN score was obtained from X-Tile software, a score of > 177.2 was defined as high-risk group(HRG), and scores of ≤ 177.2 were defined as the low-risk group(LRG). The 3-year OS and disease free survival(DFS) of patients in the LRG were significantly better than those in the HRG. Adjuvant chemotherapy(AC) can only significantly improve the 3-year OS and DFS of the LRG. (p < 0.05). CONCLUSIONS Our nomogram based on delCT-RS has good prediction of prognosis before surgery and helps identify patients that are most likely to benefit from AC. It works well in precise and individualised NAC in AGC.
Collapse
Affiliation(s)
- Li-Li Shen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Hua-Long Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Fang-Hui Ding
- Department of General Surgery, The First Hospital of Lanzhou University, Donggang, China
| | - Jun Lu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Qi-Yue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Bin-Bin Xu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Zheng Xue
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Jia Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Chang-Ming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Chao-Hui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian, China.
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
140
|
Petinrin OO, Saeed F, Toseef M, Liu Z, Basurra S, Muyide IO, Li X, Lin Q, Wong KC. Machine learning in metastatic cancer research: Potentials, possibilities, and prospects. Comput Struct Biotechnol J 2023; 21:2454-2470. [PMID: 37077177 PMCID: PMC10106342 DOI: 10.1016/j.csbj.2023.03.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Cancer has received extensive recognition for its high mortality rate, with metastatic cancer being the top cause of cancer-related deaths. Metastatic cancer involves the spread of the primary tumor to other body organs. As much as the early detection of cancer is essential, the timely detection of metastasis, the identification of biomarkers, and treatment choice are valuable for improving the quality of life for metastatic cancer patients. This study reviews the existing studies on classical machine learning (ML) and deep learning (DL) in metastatic cancer research. Since the majority of metastatic cancer research data are collected in the formats of PET/CT and MRI image data, deep learning techniques are heavily involved. However, its black-box nature and expensive computational cost are notable concerns. Furthermore, existing models could be overestimated for their generality due to the non-diverse population in clinical trial datasets. Therefore, research gaps are itemized; follow-up studies should be carried out on metastatic cancer using machine learning and deep learning tools with data in a symmetric manner.
Collapse
Affiliation(s)
| | - Faisal Saeed
- DAAI Research Group, Department of Computing and Data Science, School of Computing and Digital Technology, Birmingham City University, Birmingham B4 7XG, UK
| | - Muhammad Toseef
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong SAR
| | - Zhe Liu
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong SAR
| | - Shadi Basurra
- DAAI Research Group, Department of Computing and Data Science, School of Computing and Digital Technology, Birmingham City University, Birmingham B4 7XG, UK
| | | | - Xiangtao Li
- School of Artificial Intelligence, Jilin University, Jilin, China
| | - Qiuzhen Lin
- School of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Ka-Chun Wong
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong SAR
- Hong Kong Institute for Data Science, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong SAR
| |
Collapse
|
141
|
Zhang Y, Wu C, Xiao Z, Lv F, Liu Y. A Deep Learning Radiomics Nomogram to Predict Response to Neoadjuvant Chemotherapy for Locally Advanced Cervical Cancer: A Two-Center Study. Diagnostics (Basel) 2023; 13:diagnostics13061073. [PMID: 36980381 PMCID: PMC10047639 DOI: 10.3390/diagnostics13061073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Purpose: This study aimed to establish a deep learning radiomics nomogram (DLRN) based on multiparametric MR images for predicting the response to neoadjuvant chemotherapy (NACT) in patients with locally advanced cervical cancer (LACC). Methods: Patients with LACC (FIGO stage IB-IIIB) who underwent preoperative NACT were enrolled from center 1 (220 cases) and center 2 (independent external validation dataset, 65 cases). Handcrafted and deep learning-based radiomics features were extracted from T2WI, DWI and contrast-enhanced (CE)-T1WI, and radiomics signatures were built based on the optimal features. Two types of radiomics signatures and clinical features were integrated into the DLRN for prediction. The AUC, calibration curve and decision curve analysis (DCA) were employed to illustrate the performance of these models and their clinical utility. In addition, disease-free survival (DFS) was assessed by Kaplan–Meier survival curves based on the DLRN. Results: The DLRN showed favorable predictive values in differentiating responders from nonresponders to NACT with AUCs of 0.963, 0.940 and 0.910 in the three datasets, with good calibration (all p > 0.05). Furthermore, the DLRN performed better than the clinical model and handcrafted radiomics signature in all datasets (all p < 0.05) and slightly higher than the DL-based radiomics signature in the internal validation dataset (p = 0.251). DCA indicated that the DLRN has potential in clinical applications. Furthermore, the DLRN was strongly correlated with the DFS of LACC patients (HR = 0.223; p = 0.004). Conclusion: The DLRN performed well in preoperatively predicting the therapeutic response in LACC and could provide valuable information for individualized treatment.
Collapse
Affiliation(s)
- Yajiao Zhang
- College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China;
| | - Chao Wu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhibo Xiao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Furong Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yanbing Liu
- College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China;
- Correspondence:
| |
Collapse
|
142
|
Cheng Z, Ma J, Yin L, Yu L, Yuan Z, Zhang B, Tian J, Du Y. Non-invasive molecular imaging for precision diagnosis of metastatic lymph nodes: opportunities from preclinical to clinical applications. Eur J Nucl Med Mol Imaging 2023; 50:1111-1133. [PMID: 36443568 DOI: 10.1007/s00259-022-06056-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022]
Abstract
Lymph node metastasis is an indicator of the invasiveness and aggressiveness of cancer. It is a vital prognostic factor in clinical staging of the disease and therapeutic decision-making. Patients with positive metastatic lymph nodes are likely to develop recurrent disease, distant metastasis, and succumb to death in the coming few years. Lymph node dissection and histological analysis are needed to detect whether regional lymph nodes have been infiltrated by cancer cells and determine the likely outcome of treatment and the patient's chances of survival. However, these procedures are invasive, and tissue biopsies are prone to sampling error. In recent years, advanced molecular imaging with novel imaging probes has provided new technologies that are contributing to comprehensive management of cancer, including non-invasive investigation of lymphatic drainage from tumors, identifying metastatic lymph nodes, and guiding surgeons to operate efficiently in patients with complex lesions. In this review, first, we outline the current status of different molecular imaging modalities applied for lymph node metastasis management. Second, we summarize the multi-functional imaging probes applied with the different imaging modalities as well as applications of cancer lymph node metastasis from preclinical studies to clinical translations. Third, we describe the limitations that must be considered in the field of molecular imaging for improved detection of lymph node metastasis. Finally, we propose future directions for molecular imaging technology that will allow more personalized treatment plans for patients with lymph node metastasis.
Collapse
Affiliation(s)
- Zhongquan Cheng
- Department of General Surgery, Capital Medical University, Beijing Friendship Hospital, Beijing, 100050, China.,CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiaojiao Ma
- Department of Medical Ultrasonics, China-Japan Friendship Hospital, Yinghua East Road 2#, ChaoYang Dist., Beijing, 100029, China
| | - Lin Yin
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100080, China
| | - Leyi Yu
- Department of General Surgery, Capital Medical University, Beijing Friendship Hospital, Beijing, 100050, China
| | - Zhu Yuan
- Department of General Surgery, Capital Medical University, Beijing Friendship Hospital, Beijing, 100050, China.
| | - Bo Zhang
- Department of Medical Ultrasonics, China-Japan Friendship Hospital, Yinghua East Road 2#, ChaoYang Dist., Beijing, 100029, China.
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China. .,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine Science and Engineering, Beihang University, Beijing, 100191, China.
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100080, China.
| |
Collapse
|
143
|
Pan L, He T, Huang Z, Chen S, Zhang J, Zheng S, Chen X. Radiomics approach with deep learning for predicting T4 obstructive colorectal cancer using CT image. Abdom Radiol (NY) 2023; 48:1246-1259. [PMID: 36859730 DOI: 10.1007/s00261-023-03838-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 03/03/2023]
Abstract
OBJECTIVES Patients with T4 obstructive colorectal cancer (OCC) have a high mortality rate. Therefore, an accurate distinction between T4 and T1-T3 (NT4) in OCC is an important part of preoperative evaluation, especially in the emergency setting. This paper introduces three models of radiomics, deep learning, and deep learning-based radiomics to identify T4 OCC. METHODS We established a dataset of computed tomography (CT) images of 164 patients with pathologically confirmed OCC, from which 2537 slides were extracted. First, since T4 tumors penetrate the bowel wall and involve adjacent organs, we explored whether the peritumoral region contributes to the assessment of T4 OCC. Furthermore, we visualized the radiomics and deep learning features using the t-distributed stochastic neighbor embedding technique (t-SNE). Finally, we built a merged model by fusing radiomic features with deep learning features. In this experiment, the performance of each model was evaluated by the area under the receiver operating characteristic curve (AUC). RESULTS In the test cohort, the AUC values predicted by the radiomics model in the dilated region of interest (dROI) was 0.770. And the AUC value of the deep learning model with the patches extended 20-pixel reached 0.936. Combining the characteristics of radiomics and deep learning, our method achieved an AUC value of 0.947 in the T4 and non-T4 (NT4) classification, and increased the AUC value to 0.950 after the addition of clinical features. CONCLUSION The prediction results of our merged model of deep learning radiomics outperformed the deep learning model and significantly outperformed the radiomics model. The experimental results demonstrate that combining the peritumoral region improves the prediction performance of the radiomics model and the deep learning model.
Collapse
Affiliation(s)
- Lin Pan
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Tian He
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Zihan Huang
- School of Future Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Shuai Chen
- Department of Emergency Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Junrong Zhang
- Department of Emergency Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Shaohua Zheng
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Xianqiang Chen
- Department of Emergency Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| |
Collapse
|
144
|
Zhang ST, Wang SY, Zhang J, Dong D, Mu W, Xia XE, Fu FF, Lu YN, Wang S, Tang ZC, Li P, Qu JR, Wang MY, Tian J, Liu JH. Artificial intelligence-based computer-aided diagnosis system supports diagnosis of lymph node metastasis in esophageal squamous cell carcinoma: A multicenter study. Heliyon 2023; 9:e14030. [PMID: 36923854 PMCID: PMC10009687 DOI: 10.1016/j.heliyon.2023.e14030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Background This study aimed to develop an artificial intelligence-based computer-aided diagnosis system (AI-CAD) emulating the diagnostic logic of radiologists for lymph node metastasis (LNM) in esophageal squamous cell carcinoma (ESCC) patients, which contributed to clinical treatment decision-making. Methods A total of 689 ESCC patients with PET/CT images were enrolled from three hospitals and divided into a training cohort and two external validation cohorts. 452 CT images from three publicly available datasets were also included for pretraining the model. Anatomic information from CT images was first obtained automatically using a U-Net-based multi-organ segmentation model, and metabolic information from PET images was subsequently extracted using a gradient-based approach. AI-CAD was developed in the training cohort and externally validated in two validation cohorts. Results The AI-CAD achieved an accuracy of 0.744 for predicting pathological LNM in the external cohort and a good agreement with a human expert in two external validation cohorts (kappa = 0.674 and 0.587, p < 0.001). With the aid of AI-CAD, the human expert's diagnostic performance for LNM was significantly improved (accuracy [95% confidence interval]: 0.712 [0.669-0.758] vs. 0.833 [0.797-0.865], specificity [95% confidence interval]: 0.697 [0.636-0.753] vs. 0.891 [0.851-0.928]; p < 0.001) among patients underwent lymphadenectomy in the external validation cohorts. Conclusions The AI-CAD could aid in preoperative diagnosis of LNM in ESCC patients and thereby support clinical treatment decision-making.
Collapse
Key Words
- 18F-FDG PET/CT, 18-fluorine-fluorodeoxyglucose positron-emission tomography/computed tomography
- AI, Artificial intelligence
- AI-CAD, Artificial intelligence-based computer-aided diagnosis
- Artificial intelligence
- CI, Confidence interval
- CT, Computed tomography
- ESCC, Esophageal squamous cell carcinoma
- Esophageal squamous cell carcinoma
- LNM, Lymph node metastasis
- Lymph node metastasis
- OS, Overall survival
- PET/CT
- PFS, Progression-free survival
- SD, Standard deviation
- SLR, Ratio of the SUV value to liver uptake
- SUV, Standardized uptake value
- cN, Clinical N stage
- nCRT, Neoadjuvant chemoradiotherapy
- pN, Pathological N stage
Collapse
Affiliation(s)
- Shuai-Tong Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.,CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Si-Yun Wang
- Department of PET Center, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Zhang
- Department of Radiology, Zhuhai City People's Hospital/Zhuhai Hospital Affiliated to Jinan University, Zhuhai, Guangdong, China
| | - Di Dong
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Wei Mu
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.,Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Xue-Er Xia
- Department of Gastrointestinal Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Fang-Fang Fu
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Ya-Nan Lu
- Department of Radiology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Shuo Wang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.,Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Zhen-Chao Tang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.,Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Peng Li
- Department of PET Center, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Jin-Rong Qu
- Department of Radiology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Mei-Yun Wang
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Jie Tian
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.,CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Jian-Hua Liu
- Department of Oncology, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
145
|
Bao J, Hou Y, Qin L, Zhi R, Wang XM, Shi HB, Sun HZ, Hu CH, Zhang YD. High-throughput precision MRI assessment with integrated stack-ensemble deep learning can enhance the preoperative prediction of prostate cancer Gleason grade. Br J Cancer 2023; 128:1267-1277. [PMID: 36646808 PMCID: PMC10050457 DOI: 10.1038/s41416-022-02134-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/11/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND To develop and test a Prostate Imaging Stratification Risk (PRISK) tool for precisely assessing the International Society of Urological Pathology Gleason grade (ISUP-GG) of prostate cancer (PCa). METHODS This study included 1442 patients with prostate biopsy from two centres (training, n = 672; internal test, n = 231 and external test, n = 539). PRISK is designed to classify ISUP-GG 0 (benign), ISUP-GG 1, ISUP-GG 2, ISUP-GG 3 and ISUP GG 4/5. Clinical indicators and high-throughput MRI features of PCa were integrated and modelled with hybrid stacked-ensemble learning algorithms. RESULTS PRISK achieved a macro area-under-curve of 0.783, 0.798 and 0.762 for the classification of ISUP-GGs in training, internal and external test data. Permitting error ±1 in grading ISUP-GGs, the overall accuracy of PRISK is nearly comparable to invasive biopsy (train: 85.1% vs 88.7%; internal test: 85.1% vs 90.4%; external test: 90.4% vs 94.2%). PSA ≥ 20 ng/ml (odds ratio [OR], 1.58; p = 0.001) and PRISK ≥ GG 3 (OR, 1.45; p = 0.005) were two independent predictors of biochemical recurrence (BCR)-free survival, with a C-index of 0.76 (95% CI, 0.73-0.79) for BCR-free survival prediction. CONCLUSIONS PRISK might offer a potential alternative to non-invasively assess ISUP-GG of PCa.
Collapse
Affiliation(s)
- Jie Bao
- Department of Radiology, The First Affiliated Hospital of Soochow University, 188N, Shizi Road, 215006, Suzhou, Jiangsu, China
| | - Ying Hou
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, 300N, Guangzhou Road, 210029, Nanjing, Jiangsu, China
| | - Lang Qin
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, 300N, Guangzhou Road, 210029, Nanjing, Jiangsu, China
| | - Rui Zhi
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, 300N, Guangzhou Road, 210029, Nanjing, Jiangsu, China
| | - Xi-Ming Wang
- Department of Radiology, The First Affiliated Hospital of Soochow University, 188N, Shizi Road, 215006, Suzhou, Jiangsu, China
| | - Hai-Bin Shi
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, 300N, Guangzhou Road, 210029, Nanjing, Jiangsu, China
| | - Hong-Zan Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Chun-Hong Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, 188N, Shizi Road, 215006, Suzhou, Jiangsu, China.
| | - Yu-Dong Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, 300N, Guangzhou Road, 210029, Nanjing, Jiangsu, China.
| |
Collapse
|
146
|
Yuan L, Yang L, Zhang S, Xu Z, Qin J, Shi Y, Yu P, Wang Y, Bao Z, Xia Y, Sun J, He W, Chen T, Chen X, Hu C, Zhang Y, Dong C, Zhao P, Wang Y, Jiang N, Lv B, Xue Y, Jiao B, Gao H, Chai K, Li J, Wang H, Wang X, Guan X, Liu X, Zhao G, Zheng Z, Yan J, Yu H, Chen L, Ye Z, You H, Bao Y, Cheng X, Zhao P, Wang L, Zeng W, Tian Y, Chen M, You Y, Yuan G, Ruan H, Gao X, Xu J, Xu H, Du L, Zhang S, Fu H, Cheng X. Development of a tongue image-based machine learning tool for the diagnosis of gastric cancer: a prospective multicentre clinical cohort study. EClinicalMedicine 2023; 57:101834. [PMID: 36825238 PMCID: PMC9941057 DOI: 10.1016/j.eclinm.2023.101834] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Tongue images (the colour, size and shape of the tongue and the colour, thickness and moisture content of the tongue coating), reflecting the health state of the whole body according to the theory of traditional Chinese medicine (TCM), have been widely used in China for thousands of years. Herein, we investigated the value of tongue images and the tongue coating microbiome in the diagnosis of gastric cancer (GC). METHODS From May 2020 to January 2021, we simultaneously collected tongue images and tongue coating samples from 328 patients with GC (all newly diagnosed with GC) and 304 non-gastric cancer (NGC) participants in China, and 16 S rDNA was used to characterize the microbiome of the tongue coating samples. Then, artificial intelligence (AI) deep learning models were established to evaluate the value of tongue images and the tongue coating microbiome in the diagnosis of GC. Considering that tongue imaging is more convenient and economical as a diagnostic tool, we further conducted a prospective multicentre clinical study from May 2020 to March 2022 in China and recruited 937 patients with GC and 1911 participants with NGC from 10 centres across China to further evaluate the role of tongue images in the diagnosis of GC. Moreover, we verified this approach in another independent external validation cohort that included 294 patients with GC and 521 participants with NGC from 7 centres. This study is registered at ClinicalTrials.gov, NCT01090362. FINDINGS For the first time, we found that both tongue images and the tongue coating microbiome can be used as tools for the diagnosis of GC, and the area under the curve (AUC) value of the tongue image-based diagnostic model was 0.89. The AUC values of the tongue coating microbiome-based model reached 0.94 using genus data and 0.95 using species data. The results of the prospective multicentre clinical study showed that the AUC values of the three tongue image-based models for GCs reached 0.88-0.92 in the internal verification and 0.83-0.88 in the independent external verification, which were significantly superior to the combination of eight blood biomarkers. INTERPRETATION Our results suggest that tongue images can be used as a stable method for GC diagnosis and are significantly superior to conventional blood biomarkers. The three kinds of tongue image-based AI deep learning diagnostic models that we developed can be used to adequately distinguish patients with GC from participants with NGC, even early GC and precancerous lesions, such as atrophic gastritis (AG). FUNDING The National Key R&D Program of China (2021YFA0910100), Program of Zhejiang Provincial TCM Sci-tech Plan (2018ZY006), Medical Science and Technology Project of Zhejiang Province (2022KY114, WKJ-ZJ-2104), Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer (JBZX-202006), Natural Science Foundation of Zhejiang Province (HDMY22H160008), Science and Technology Projects of Zhejiang Province (2019C03049), National Natural Science Foundation of China (82074245, 81973634, 82204828), and Chinese Postdoctoral Science Foundation (2022M713203).
Collapse
Key Words
- AFP, alpha fetoprotein
- AG, atrophic gastritis
- AI, artificial intelligence
- APINet, attentive pairwise interaction neural network
- AUC, area under the curve
- Artificial intelligence
- BC, breast cancer
- CA, carbohydrate antigen
- CEA, carcinoembryonic antigen
- CRC, colorectal cancer
- DT, decision tree learning
- EC, esophageal cancer
- GC, gastric cancer
- Gastric cancer
- HBPC, hepatobiliary pancreatic carcinoma
- HC, healthy control
- KNN, K-nearest neighbours
- LC, lung cancer
- NGC, non-gastric cancers
- PCoA, principal coordinates analysis
- SG, superficial gastritis
- SVM, support vector machine
- TCM, traditional Chinese medicine
- Tongue coating microbiome
- Tongue images
- Traditional Chinese medicine
- TransFG, transformer architecture for fine-grained recognition
Collapse
Affiliation(s)
- Li Yuan
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, 310022, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Lin Yang
- Artificial Intelligence and Biomedical Images Analysis Lab, School of Engineering, Westlake University, China
| | - Shichuan Zhang
- Artificial Intelligence and Biomedical Images Analysis Lab, School of Engineering, Westlake University, China
| | - Zhiyuan Xu
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, 310022, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Jiangjiang Qin
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, 310022, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Yunfu Shi
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Oncology Department, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Pengcheng Yu
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yi Wang
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhehan Bao
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yuhang Xia
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jiancheng Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325099, China
| | - Weiyang He
- Department of Gastrointestinal Surgery, Sichuan Cancer Hospital, Chengdu, 610042, China
| | - Tianhui Chen
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Xiaolei Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325099, China
| | - Can Hu
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yunlong Zhang
- Artificial Intelligence and Biomedical Images Analysis Lab, School of Engineering, Westlake University, China
| | - Changwu Dong
- College of Traditional Chinese Medicine, Anhui University of Traditional Chinese Medicine, HeFei, 230038, China
| | - Ping Zhao
- Department of Gastrointestinal Surgery, Sichuan Cancer Hospital, Chengdu, 610042, China
| | - Yanan Wang
- College of Traditional Chinese Medicine, Anhui University of Traditional Chinese Medicine, HeFei, 230038, China
| | - Nan Jiang
- College of Traditional Chinese Medicine, Anhui University of Traditional Chinese Medicine, HeFei, 230038, China
| | - Bin Lv
- Department of Gastroenterology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yingwei Xue
- Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Baoping Jiao
- Department of General Surgery, Shanxi Cancer Hospital, Taiyuan, 030013, China
| | - Hongyu Gao
- Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Kequn Chai
- Oncology Department, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Jun Li
- Department of General Surgery, Shanxi Cancer Hospital, Taiyuan, 030013, China
| | - Hao Wang
- Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xibo Wang
- Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xiaoqing Guan
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Xu Liu
- Department of Gastrointestinal Surgery, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Gang Zhao
- Department of Gastrointestinal Surgery, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Zhichao Zheng
- Department of Gastric Surgery, Cancer Hospital of China Medical University (Liaoning Cancer Hospital and Institute), Shenyang, 110042, China
| | - Jie Yan
- Department of Gastric Surgery, Cancer Hospital of China Medical University (Liaoning Cancer Hospital and Institute), Shenyang, 110042, China
| | - Haiyue Yu
- Department of Gastric Surgery, Cancer Hospital of China Medical University (Liaoning Cancer Hospital and Institute), Shenyang, 110042, China
| | - Luchuan Chen
- Department of Gastrointestinal Surgery, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China
| | - Zaisheng Ye
- Department of Gastrointestinal Surgery, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China
| | - Huaqiang You
- Department of Gastroenterology, Yuhang District People's Hospital, Hangzhou, 311199, China
| | - Yu Bao
- Department of Gastrointestinal Surgery, Sichuan Cancer Hospital, Chengdu, 610042, China
| | - Xi Cheng
- Department of Gastrointestinal Surgery, Sichuan Cancer Hospital, Chengdu, 610042, China
| | - Peizheng Zhao
- Department of Health Management Center, Yueyang Central Hospital, Yueyang, 414000, China
| | - Liang Wang
- Department of Endoscopy Center, Kecheng District People's Hospital, Quzhou, 324000, China
| | - Wenting Zeng
- Department of General Surgery, Shanxi Cancer Hospital, Taiyuan, 030013, China
| | - Yanfei Tian
- Department of Gastric Surgery, Cancer Hospital of China Medical University (Liaoning Cancer Hospital and Institute), Shenyang, 110042, China
| | - Ming Chen
- Department of Endoscopy Center, Shandong Cancer Hospital, Shandong, 250117, China
| | - You You
- Department of Health Management Center, Zigong Fourth People's Hospital, Zigong, 643099, China
| | - Guihong Yuan
- Department of Gastroenterology, Hainan Cancer Hospital, Hainan, 570312, China
| | - Hua Ruan
- Department of Chinese Surgery, Linping District Hospital of Traditional Chinese Medicine, Hangzhou, 311100, China
| | - Xiaole Gao
- The First Affiliated Hospital of Henan University of Science and Technology, Zhengzhou, 450062, China
| | - Jingli Xu
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Handong Xu
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lingbin Du
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Shengjie Zhang
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Huanying Fu
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Xiangdong Cheng
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, 310022, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, 310022, China
- Corresponding author. Department of Gastric surgery, Zhejiang Cancer Hospital, Banshan Road 1#, Hangzhou, Zhejiang, 310022, China.
| |
Collapse
|
147
|
Qiao W, Sha S, Song J, Chen Y, Lian G, Wang J, Zhou X, Peng L, Li L, Tian F, Jing C. Association between multiple coagulation-related factors and lymph node metastasis in patients with gastric cancer: A retrospective cohort study. Front Oncol 2023; 13:1099857. [PMID: 36910598 PMCID: PMC9996287 DOI: 10.3389/fonc.2023.1099857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/30/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Patients with tumors generally present with accompanying activation of the coagulation system, which may be related to tumor stage. To our knowledge, few studies have examined the activation of the coagulation system in reference to lymph node metastasis within gastric cancer. This study aimed to investigate the correlation between multiple coagulation-related factors and lymph node metastasis in patients with gastric cancer after excluding the influence of tumor T stage. MATERIALS AND METHODS We retrospectively evaluated the relationship between lymph node metastasis and coagulation-related factors in 516 patients with T4a stage gastric cancer. We further analyzed influencing factors for lymph node metastasis and verified the predictive value of maximum amplitude (MA, a parameter of thromboelastography which is widely used to assess the strength of platelet-fibrinogen interaction in forming clots) in reference to lymph node metastasis. RESULTS Platelet counts (P=0.011), fibrinogen levels (P=0.002) and MA values (P=0.006) were statistically significantly higher in patients with T4a stage gastric cancer presenting with lymph node metastasis than in those without lymph node metastasis. Moreover, tumor N stage was statistically significantly and positively correlated with platelet count (P<0.001), fibrinogen level (P=0.003), MA value (P<0.001), and D-dimer level (P=0.010). The MA value was an independent factor for lymph node metastasis (β=0.098, 95% CI: 1.020-1.193, P=0.014) and tumor N stage (β=0.059, 95% CI: 0.015-0.104, P=0.009), and could be used to predict the presence of lymph node metastasis in patients with gastric cancer (sensitivity 0.477, specificity 0.783, P=0.006). The independent influencing factors for MA value mainly included platelet levels, fibrinogen levels, D-dimer and hemoglobin levels; we found no statistically significant correlations with tumor diameter, tumor area, and other evaluated factors. CONCLUSION We conclude that MA value is an independent influencing factor for lymph node metastasis and tumor N stage in patients with T4a stage gastric cancer. The MA value has important value in predicting the presence or absence of lymph node metastasis in patients with gastric cancer. CLINICAL TRIAL REGISTRATION http://www.chictr.org.cn, identifier ChiCTR2200064936.
Collapse
Affiliation(s)
- Wenhao Qiao
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Shengxu Sha
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Jiyuan Song
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yuezhi Chen
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Guodong Lian
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Junke Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xinxiu Zhou
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Lipan Peng
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Leping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Feng Tian
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Changqing Jing
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
148
|
Zhang S, Mu W, Dong D, Wei J, Fang M, Shao L, Zhou Y, He B, Zhang S, Liu Z, Liu J, Tian J. The Applications of Artificial Intelligence in Digestive System Neoplasms: A Review. HEALTH DATA SCIENCE 2023; 3:0005. [PMID: 38487199 PMCID: PMC10877701 DOI: 10.34133/hds.0005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/05/2022] [Indexed: 03/17/2024]
Abstract
Importance Digestive system neoplasms (DSNs) are the leading cause of cancer-related mortality with a 5-year survival rate of less than 20%. Subjective evaluation of medical images including endoscopic images, whole slide images, computed tomography images, and magnetic resonance images plays a vital role in the clinical practice of DSNs, but with limited performance and increased workload of radiologists or pathologists. The application of artificial intelligence (AI) in medical image analysis holds promise to augment the visual interpretation of medical images, which could not only automate the complicated evaluation process but also convert medical images into quantitative imaging features that associated with tumor heterogeneity. Highlights We briefly introduce the methodology of AI for medical image analysis and then review its clinical applications including clinical auxiliary diagnosis, assessment of treatment response, and prognosis prediction on 4 typical DSNs including esophageal cancer, gastric cancer, colorectal cancer, and hepatocellular carcinoma. Conclusion AI technology has great potential in supporting the clinical diagnosis and treatment decision-making of DSNs. Several technical issues should be overcome before its application into clinical practice of DSNs.
Collapse
Affiliation(s)
- Shuaitong Zhang
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Wei Mu
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Di Dong
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jingwei Wei
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Mengjie Fang
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Lizhi Shao
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Yu Zhou
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Bingxi He
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Song Zhang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Zhenyu Liu
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jianhua Liu
- Department of Oncology, Guangdong Provincial People's Hospital/Second Clinical Medical College of Southern Medical University/Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jie Tian
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
149
|
Mori M, Palumbo D, De Cobelli F, Fiorino C. Does radiomics play a role in the diagnosis, staging and re-staging of gastroesophageal junction adenocarcinoma? Updates Surg 2023; 75:273-279. [PMID: 36114920 DOI: 10.1007/s13304-022-01377-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/04/2022] [Indexed: 01/24/2023]
Abstract
Radiomics is an emerging field of investigation in medicine consisting in the extraction of quantitative features from conventional medical images and exploring their potentials in improving diagnosis, prognosis and outcome prediction after therapy. Clinical applications are still limited, mostly due to reproducibility and repeatability issues as well as to limited interpretability of predictive radiomic-based features/signatures. In the specific case of gastroesophageal junction (GEJ) adenocarcinoma, the expectancies are particularly high, mainly due to its increasing incidence and to the limited performance of conventional imaging techniques in assessing correct diagnosis and accurate pre-surgical tumor characterization. Accordingly, current literature was reviewed, emphasizing the methodological quality. In addition, papers were scored according to the Radiomic Quality Score (RQS), weighting more the clinical applicability and generalizability of the resulting models. According to the criteria of the search, only two papers were retained: the resulting technical quality was relatively high for both, while the corresponding RQS were 15 and 19 (on a scale of 31). Although the potentials of radiomics in the setting of GEJ adenocarcinoma are relevant, they remain largely unexplored, warranting an urgent need of high-quality, possibly prospective, multicenter studies.
Collapse
Affiliation(s)
- Martina Mori
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy.,Medical Physics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Diego Palumbo
- Department of Radiology, San Raffaele Scientific Institute, Milan, Italy.,School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco De Cobelli
- Department of Radiology, San Raffaele Scientific Institute, Milan, Italy.,School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Claudio Fiorino
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy. .,Medical Physics, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
150
|
Fang M, Wang Z, Tian J, Dong D. Predicting origin for bone metastatic cancer using deep learning-based pathology. EBioMedicine 2023; 88:104449. [PMID: 36716573 PMCID: PMC9900359 DOI: 10.1016/j.ebiom.2023.104449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/30/2023] Open
Affiliation(s)
- Mengjie Fang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China,Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China,CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Zipei Wang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China,School of Modern Post (School of Automation), Beijing University of Posts and Telecommunications, Beijing, China
| | - Jie Tian
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China,Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China,CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Di Dong
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|