101
|
Taverna S, Cammarata G, Colomba P, Sciarrino S, Zizzo C, Francofonte D, Zora M, Scalia S, Brando C, Curto AL, Marsana EM, Olivieri R, Vitale S, Duro G. Pompe disease: pathogenesis, molecular genetics and diagnosis. Aging (Albany NY) 2020; 12:15856-15874. [PMID: 32745073 PMCID: PMC7467391 DOI: 10.18632/aging.103794] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022]
Abstract
Pompe disease (PD) is a rare autosomal recessive disorder caused by mutations in the GAA gene, localized on chromosome 17 and encoding for acid alpha-1,4-glucosidase (GAA). Currently, more than 560 mutations spread throughout GAA gene have been reported. GAA catalyzes the hydrolysis of α-1,4 and α-1,6-glucosidic bonds of glycogen and its deficiency leads to lysosomal storage of glycogen in several tissues, particularly in muscle. PD is a chronic and progressive pathology usually characterized by limb-girdle muscle weakness and respiratory failure. PD is classified as infantile and childhood/adult forms. PD patients exhibit a multisystemic manifestation that depends on age of onset. Early diagnosis is essential to prevent or reduce the irreversible organ damage associated with PD progression. Here, we make an overview of PD focusing on pathogenesis, clinical phenotypes, molecular genetics, diagnosis, therapies, autophagy and the role of miRNAs as potential biomarkers for PD.
Collapse
Affiliation(s)
- Simona Taverna
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Giuseppe Cammarata
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Paolo Colomba
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Serafina Sciarrino
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Carmela Zizzo
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Daniele Francofonte
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Marco Zora
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Simone Scalia
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Chiara Brando
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Alessia Lo Curto
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Emanuela Maria Marsana
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Roberta Olivieri
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Silvia Vitale
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Giovanni Duro
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| |
Collapse
|
102
|
Legerská B, Chmelová D, Ondrejovič M, Miertuš S. The TLC-Bioautography as a Tool for Rapid Enzyme Inhibitors detection - A Review. Crit Rev Anal Chem 2020; 52:275-293. [PMID: 32744081 DOI: 10.1080/10408347.2020.1797467] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microorganisms and plants can be important sources of many compounds with potential pharmaceutical applications. Extraction of these matrices is one of the ways of identifying the presence of inhibitory active substances against enzymes whose high activity leads to serious human diseases including cancer, Parkinson's or Crohn's diseases. The isolation and purification of inhibitors are time-consuming and expensive steps in the analysis of the crude extract and therefore, it is necessary to find a fast, efficient, and inexpensive method for screening extracts of interest. TLC-Bioautography combines the separation of the extract on a thin layer with its subsequent biological analysis. TLC-Bioautography methods have been developed for several classes of enzymes including oxidoreductases, hydrolases and isomerases, and there is a potential for developing functional methods for other classes of enzymes. This review summarizes known TLC-Bioautography methods and their applications for determining the presence of enzyme inhibitors in extracts and compares the effectiveness of different methodological approaches. It also indicates the current state and perspective of the development of TLC-Bioautography and its possible future applications.
Collapse
Affiliation(s)
- Barbora Legerská
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Daniela Chmelová
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Miroslav Ondrejovič
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Stanislav Miertuš
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia.,ICARST n.o., Bratislava, Slovakia
| |
Collapse
|
103
|
Tran ML, Génisson Y, Ballereau S, Dehoux C. Second-Generation Pharmacological Chaperones: Beyond Inhibitors. Molecules 2020; 25:molecules25143145. [PMID: 32660097 PMCID: PMC7397201 DOI: 10.3390/molecules25143145] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Accepted: 07/05/2020] [Indexed: 02/06/2023] Open
Abstract
Protein misfolding induced by missense mutations is the source of hundreds of conformational diseases. The cell quality control may eliminate nascent misfolded proteins, such as enzymes, and a pathological loss-of-function may result from their early degradation. Since the proof of concept in the 2000s, the bioinspired pharmacological chaperone therapy became a relevant low-molecular-weight compound strategy against conformational diseases. The first-generation pharmacological chaperones were competitive inhibitors of mutant enzymes. Counterintuitively, in binding to the active site, these inhibitors stabilize the proper folding of the mutated protein and partially rescue its cellular function. The main limitation of the first-generation pharmacological chaperones lies in the balance between enzyme activity enhancement and inhibition. Recent research efforts were directed towards the development of promising second-generation pharmacological chaperones. These non-inhibitory ligands, targeting previously unknown binding pockets, limit the risk of adverse enzymatic inhibition. Their pharmacophore identification is however challenging and likely requires a massive screening-based approach. This review focuses on second-generation chaperones designed to restore the cellular activity of misfolded enzymes. It intends to highlight, for a selected set of rare inherited metabolic disorders, the strategies implemented to identify and develop these pharmacologically relevant small organic molecules as potential drug candidates.
Collapse
Affiliation(s)
| | | | | | - Cécile Dehoux
- Correspondence: (S.B.); (C.D.); Tel.: +33-5-6155-6127 (C.D.)
| |
Collapse
|
104
|
Hino H, Iriyama N, Kokuba H, Kazama H, Moriya S, Takano N, Hiramoto M, Aizawa S, Miyazawa K. Abemaciclib induces atypical cell death in cancer cells characterized by formation of cytoplasmic vacuoles derived from lysosomes. Cancer Sci 2020; 111:2132-2145. [PMID: 32304130 PMCID: PMC7293084 DOI: 10.1111/cas.14419] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 03/18/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
In the cell cycle, the G1 /S transition is controlled by the cyclin-dependent kinase (CDK) 4/6-cyclin D complex. Constitutive activation of CDK4/6 dysregulates G1 /S transition, leading to oncogenic transformation. We found that 3 CDK4/6 inhibitors, abemaciclib, ribociclib, and palbociclib, exerted a cytocidal effect as well as a cytostatic effect at the G1 phase in cancer cell lines, including A549 human non-small cell lung cancer cells. Among these inhibitors, abemaciclib exhibited the most potent cytotoxic effect. The cell-death phenotype induced by abemaciclib, which entailed formation of multiple cytoplasmic vacuoles, was not consistent with apoptosis or necroptosis. Abemaciclib blocked autophagic flux, resulting in accumulation of autophagosomes, however vacuole formation and cell death induced by abemaciclib were independent of autophagy. In addition, methuosis, a cell-death phenotype characterized by vacuole formation induced by excessive macropinocytosis, was excluded because the vacuoles did not incorporate fluorescent dextran. Of note, both formation of vacuoles and induction of cell death in response to abemaciclib were inhibited by vacuolar-type ATPase (V-ATPase) inhibitors such as bafilomycin A1 and concanamycin A. Live-cell imaging revealed that the abemaciclib-induced vacuoles were derived from lysosomes that expanded following acidification. Transmission electron microscopy revealed that these vacuoles contained undigested debris and remnants of organelles. Cycloheximide chase assay revealed that lysosomal turnover was blocked by abemaciclib. Furthermore, mTORC1 inhibition along with partial lysosomal membrane permeabilization occurred after abemaciclib treatment. Together, these results indicate that, in cancer cells, abemaciclib induces a unique form of cell death accompanied by swollen and dysfunctional lysosomes.
Collapse
Affiliation(s)
- Hirotsugu Hino
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan.,Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Tokyo, Japan
| | - Noriyoshi Iriyama
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Hiroko Kokuba
- Joint Research Center for Basic Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Hiromi Kazama
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Shota Moriya
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Naoharu Takano
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Masaki Hiramoto
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Shin Aizawa
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Tokyo, Japan
| | - Keisuke Miyazawa
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
105
|
Growth Plate Pathology in the Mucopolysaccharidosis Type VI Rat Model-An Experimental and Computational Approach. Diagnostics (Basel) 2020; 10:diagnostics10060360. [PMID: 32486376 PMCID: PMC7344727 DOI: 10.3390/diagnostics10060360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mucopolysaccharidoses (MPS) are a group of inherited metabolic diseases caused by impaired function or absence of lysosomal enzymes involved in degradation of glycosaminoglycans. Clinically, MPS are skeletal dysplasias, characterized by cartilage abnormalities and disturbances in the process of endochondral ossification. Histologic abnormalities of growth cartilage have been reported at advanced stages of the disease, but information regarding growth plate pathology progression either in humans or in animal models, as well as its pathophysiology, is limited. METHODS Histological analyses of distal femur growth plates of wild type (WT) and mucopolysaccharidosis type VI (MPS VI) rats at different stages of development were performed, including quantitative data. Experimental findings were then analyzed in a theoretical scenario. RESULTS Histological evaluation showed a progressive loss of histological architecture within the growth plate. Furthermore, in silico simulation suggest the abnormal cell distribution in the tissue may lead to alterations in biochemical gradients, which may be one of the factors contributing to the growth plate abnormalities observed, highlighting aspects that must be the focus of future experimental works. CONCLUSION The results presented shed some light on the progression of growth plate alterations observed in MPS VI and evidence the potentiality of combined theoretical and experimental approaches to better understand pathological scenarios, which is a necessary step to improve the search for novel therapeutic approaches.
Collapse
|
106
|
Hossain MI, Marcus JM, Lee JH, Garcia PL, Singh V, Shacka JJ, Zhang J, Gropen TI, Falany CN, Andrabi SA. Restoration of CTSD (cathepsin D) and lysosomal function in stroke is neuroprotective. Autophagy 2020; 17:1330-1348. [PMID: 32450052 DOI: 10.1080/15548627.2020.1761219] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Stroke is a leading cause of death and disability. The pathophysiological mechanisms associated with stroke are very complex and not fully understood. Lysosomal function has a vital physiological function in the maintenance of cellular homeostasis. In neurons, CTSD (cathepsin D) is an essential protease involved in the regulation of proteolytic activity of the lysosomes. Loss of CTSD leads to lysosomal dysfunction and accumulation of different cellular proteins implicated in neurodegenerative diseases. In cerebral ischemia, the role of CTSD and lysosomal function is not clearly defined. We used oxygen-glucose deprivation (OGD) in mouse cortical neurons and the middle cerebral artery occlusion (MCAO) model of stroke to assess the role of CTSD in stroke pathophysiology. Our results show a time-dependent decrease in CTSD protein levels and activity in the mouse brain after stroke and neurons following OGD, with concurrent defects in lysosomal function. We found that shRNA-mediated knockdown of CTSD in neurons is sufficient to cause lysosomal dysfunction. CTSD knockdown further aggravates lysosomal dysfunction and cell death in OGD-exposed neurons. Restoration of CTSD protein levels via lentiviral transduction increases CTSD activity in neurons and, thus, renders resistance to OGD-mediated defects in lysosomal function and cell death. This study indicates that CTSD-dependent lysosomal function is critical for maintaining neuronal survival in cerebral ischemia; thus, strategies focused on maintaining CTSD function in neurons are potentially novel therapeutic approaches to prevent neuronal death in stroke.Abbreviations: 3-MA: 3-methyladenine; ACTB: actin beta; AD: Alzheimer disease; ALS: amyotrophic lateral sclerosis; CQ: chloroquine; CTSB: cathepsin B; CTSD: cathepsin D; CTSL: cathepsin L; FTD: frontotemporal dementia, HD: Huntington disease; LAMP1: lysosomal associated membrane protein 1; LSD: lysosomal storage disease; MCAO: middle cerebral artery occlusion; OGD: oxygen glucose deprivation; OGR: oxygen glucose resupply; PD: Parkinson disease; SQSMT1: sequestosome 1; TCA: trichloroacetic acid; TTC: triphenyl tetrazolium chloride.
Collapse
Affiliation(s)
- M Iqbal Hossain
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Joshua M Marcus
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Jun Hee Lee
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Patrick L Garcia
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - VinodKumar Singh
- Department of Anesthesiology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - John J Shacka
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Toby I Gropen
- Department of Neurology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Charles N Falany
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Shaida A Andrabi
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA.,Department of Neurology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| |
Collapse
|
107
|
Talreja J, Bauerfeld C, Sendler E, Pique-Regi R, Luca F, Samavati L. Derangement of Metabolic and Lysosomal Gene Profiles in Response to Dexamethasone Treatment in Sarcoidosis. Front Immunol 2020; 11:779. [PMID: 32477331 PMCID: PMC7235403 DOI: 10.3389/fimmu.2020.00779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
Glucocorticoids (GCs) play a central role in modulation of inflammation in various diseases, including respiratory diseases such as sarcoidosis. Surprisingly, the specific anti-inflammatory effects of GCs on different myeloid cells especially in macrophages remain poorly understood. Sarcoidosis is a systemic granulomatous disease of unknown etiology that occurs worldwide and is characterized by granuloma formation in different organs. Alveolar macrophages play a role in sarcoidosis granuloma formation and progressive lung disease. The goal of the present study is to identify the effect of GCs on transcriptomic profiles and the cellular pathways in sarcoidosis alveolar macrophages and their corresponding blood myeloid cells. We determined and compared the whole transcriptional signatures of alveolar macrophages from sarcoidosis patients and blood CD14+ monocytes of the same subjects in response to in vitro treatment with dexamethasone (DEX) via RNA-sequencing. In response to DEX, we identified 2,834 genes that were differentially expressed in AM. Predominant pathways affected were as following: metabolic pathway (FDR = 4.1 × 10−10), lysosome (FDR = 6.3 × 10−9), phagosome (FDR = 3.9 × 10−5). The DEX effect on AMs is associated with metabolic derangements involving glycolysis, oxidative phosphorylation and lipid metabolisms. In contrast, the top impacted pathways in response to DEX treatment in blood CD14+ monocytes were as following; cytokine-cytokine receptor interaction (FDR = 6 × 10−6) and transcriptional misregulation in cancer (FDR = 1 × 10−4). Pathways similarly affected in both cell types were genes involved in lysosomes, cytoskeleton and transcriptional misregulation in cancer. These data suggest that the different effects of DEX on AMs and peripheral blood monocytes are partly dictated by lineage specific transcriptional programs and their physiological functions.
Collapse
Affiliation(s)
- Jaya Talreja
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine and Detroit Medical Center, Wayne State University, Detroit, MI, United States
| | - Christian Bauerfeld
- Division of Critical Care, Department of Pediatrics, School of Medicine and Detroit Medical Center, Wayne State University, Detroit, MI, United States
| | - Edward Sendler
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, United States.,Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Francesca Luca
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, United States.,Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Lobelia Samavati
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine and Detroit Medical Center, Wayne State University, Detroit, MI, United States.,Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, United States
| |
Collapse
|
108
|
Song Q, Meng B, Xu H, Mao Z. The emerging roles of vacuolar-type ATPase-dependent Lysosomal acidification in neurodegenerative diseases. Transl Neurodegener 2020; 9:17. [PMID: 32393395 PMCID: PMC7212675 DOI: 10.1186/s40035-020-00196-0] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022] Open
Abstract
Background Lysosomes digest extracellular material from the endocytic pathway and intracellular material from the autophagic pathway. This process is performed by the resident hydrolytic enzymes activated by the highly acidic pH within the lysosomal lumen. Lysosome pH gradients are mainly maintained by the vacuolar (H+) ATPase (or V-ATPase), which pumps protons into lysosomal lumen by consuming ATP. Dysfunction of V-ATPase affects lysosomal acidification, which disrupts the clearance of substrates and leads to many disorders, including neurodegenerative diseases. Main body As a large multi-subunit complex, the V-ATPase is composed of an integral membrane V0 domain involved in proton translocation and a peripheral V1 domain catalyzing ATP hydrolysis. The canonical functions of V-ATPase rely on its H+-pumping ability in multiple vesicle organelles to regulate endocytic traffic, protein processing and degradation, synaptic vesicle loading, and coupled transport. The other non-canonical effects of the V-ATPase that are not readily attributable to its proton-pumping activity include membrane fusion, pH sensing, amino-acid-induced activation of mTORC1, and scaffolding for protein-protein interaction. In response to various stimuli, V-ATPase complex can reversibly dissociate into V1 and V0 domains and thus close ATP-dependent proton transport. Dysregulation of pH and lysosomal dysfunction have been linked to many human diseases, including neurodegenerative disorders such as Alzheimer disease, Parkinson’s disease, amyotrophic lateral sclerosis as well as neurodegenerative lysosomal storage disorders. Conclusion V-ATPase complex is a universal proton pump and plays an important role in lysosome acidification in all types of cells. Since V-ATPase dysfunction contributes to the pathogenesis of multiple neurodegenerative diseases, further understanding the mechanisms that regulate the canonical and non-canonical functions of V-ATPase will reveal molecular details of disease process and help assess V-ATPase or molecules related to its regulation as therapeutic targets.
Collapse
Affiliation(s)
- Qiaoyun Song
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Reproductive Genetics, Hebei General Hospital, Shijiazhuang, Hebei Province, 050051, People's Republic of China.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Bo Meng
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Haidong Xu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Zixu Mao
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA. .,Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
109
|
Durso W, Martins M, Marchetti L, Cremisi F, Luin S, Cardarelli F. Lysosome Dynamic Properties during Neuronal Stem Cell Differentiation Studied by Spatiotemporal Fluctuation Spectroscopy and Organelle Tracking. Int J Mol Sci 2020; 21:ijms21093397. [PMID: 32403391 PMCID: PMC7247004 DOI: 10.3390/ijms21093397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 01/20/2023] Open
Abstract
We investigated lysosome dynamics during neuronal stem cell (NSC) differentiation by two quantitative and complementary biophysical methods based on fluorescence: imaging-derived mean square displacement (iMSD) and single-particle tracking (SPT). The former extracts the average dynamics and size of the whole population of moving lysosomes directly from imaging, with no need to calculate single trajectories; the latter resolves the finest heterogeneities and dynamic features at the single-lysosome level, which are lost in the iMSD analysis. In brief, iMSD analysis reveals that, from a structural point of view, lysosomes decrement in size during NSC differentiation, from 1 μm average diameter in the embryonic cells to approximately 500 nm diameter in the fully differentiated cells. Concomitantly, iMSD analysis highlights modification of key dynamic parameters, such as the average local organelle diffusivity and anomalous coefficient, which may parallel cytoskeleton remodeling during the differentiation process. From average to local, SPT allows mapping heterogeneous dynamic responses of single lysosomes in different districts of the cells. For instance, a dramatic decrease of lysosomal transport in the soma is followed by a rapid increase of transport in the projections at specific time points during neuronal differentiation, an observation compatible with the hypothesis that lysosomal active mobilization shifts from the soma to the newborn projections. Our combined results provide new insight into the lysosome size and dynamics regulation throughout NSC differentiation, supporting new functions proposed for this organelle.
Collapse
Affiliation(s)
- William Durso
- NEST Laboratory—Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy;
| | - Manuella Martins
- Bio@SNS Laboratory—Scuola Normale Superiore, via G. Moruzzi, 1, 56126 Pisa, Italy; (M.M.); (F.C.)
| | - Laura Marchetti
- Center for Nanotechnology Innovation@NEST (CNI@NEST), Piazza San Silvestro 12, 56126 Pisa, Italy;
| | - Federico Cremisi
- Bio@SNS Laboratory—Scuola Normale Superiore, via G. Moruzzi, 1, 56126 Pisa, Italy; (M.M.); (F.C.)
| | - Stefano Luin
- NEST Laboratory—Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy;
- NEST, Istituto Nanoscienze, CNR, Piazza San Silvestro 12, 56127 Pisa, Italy
- Correspondence: (S.L.); (F.C.)
| | - Francesco Cardarelli
- NEST Laboratory—Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy;
- Correspondence: (S.L.); (F.C.)
| |
Collapse
|
110
|
Weber T, Schlotawa L, Dosch R, Hamilton N, Kaiser J, Schiller S, Wenske B, Gärtner J, Henneke M. Zebrafish disease model of human RNASET2-deficient cystic leukoencephalopathy displays abnormalities in early microglia. Biol Open 2020; 9:bio049239. [PMID: 32295832 PMCID: PMC7225086 DOI: 10.1242/bio.049239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/02/2020] [Indexed: 12/14/2022] Open
Abstract
Human infantile-onset RNASET2-deficient cystic leukoencephalopathy is a Mendelian mimic of in utero cytomegalovirus brain infection with prenatally developing inflammatory brain lesions. We used an RNASET2-deficient zebrafish model to elucidate the underlying disease mechanisms. Mutant and wild-type zebrafish larvae brain development between 2 and 5 days post fertilization (dpf) was examined by confocal live imaging in fluorescent reporter lines of the major types of brain cells. In contrast to wild-type brains, RNASET2-deficient larvae displayed increased numbers of microglia with altered morphology, often containing inclusions of neurons. Furthermore, lysosomes within distinct populations of the myeloid cell lineage including microglia showed increased lysosomal staining. Neurons and oligodendrocyte precursor cells remained unaffected. This study provides a first look into the prenatal onset pathomechanisms of human RNASET2-deficient leukoencephalopathy, linking this inborn lysosomal disease to the innate immune system and other immune-related childhood encephalopathies like Aicardi-Goutières syndrome (AGS).
Collapse
Affiliation(s)
- Thomas Weber
- Department of Pediatrics and Adolescent Medicine, University Medical Center Goettingen, Robert- Koch- Str. 40, 37075 Goettingen, Germany
| | - Lars Schlotawa
- Department of Pediatrics and Adolescent Medicine, University Medical Center Goettingen, Robert- Koch- Str. 40, 37075 Goettingen, Germany
| | - Roland Dosch
- Department of Human Genetics, University Medical Center Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany
| | - Noémie Hamilton
- The Bateson Centre, University of Sheffield, Firth Court D31, Sheffield S10 2PT, United Kingdom
| | - Jens Kaiser
- Department of Pediatrics and Adolescent Medicine, University Medical Center Goettingen, Robert- Koch- Str. 40, 37075 Goettingen, Germany
| | - Stina Schiller
- Department of Pediatrics and Adolescent Medicine, University Medical Center Goettingen, Robert- Koch- Str. 40, 37075 Goettingen, Germany
| | - Britta Wenske
- Department of Haematology and Oncology, University Medical Center Goettingen, Robert- Koch- Str. 40, 37075 Goettingen, Germany
| | - Jutta Gärtner
- Department of Pediatrics and Adolescent Medicine, University Medical Center Goettingen, Robert- Koch- Str. 40, 37075 Goettingen, Germany
| | - Marco Henneke
- Department of Pediatrics and Adolescent Medicine, University Medical Center Goettingen, Robert- Koch- Str. 40, 37075 Goettingen, Germany
| |
Collapse
|
111
|
Shen W, Wang L, Zhu S, Yu S, Cai C, Yi W, Zhu Q. A dicyanoisophorone-based, near-infrared, lysosome-targeting pH sensor with an extremely large Stokes shift. Anal Biochem 2020; 596:113609. [DOI: 10.1016/j.ab.2020.113609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/25/2019] [Accepted: 01/29/2020] [Indexed: 02/08/2023]
|
112
|
Parini R, Deodato F. Intravenous Enzyme Replacement Therapy in Mucopolysaccharidoses: Clinical Effectiveness and Limitations. Int J Mol Sci 2020; 21:E2975. [PMID: 32340185 PMCID: PMC7215308 DOI: 10.3390/ijms21082975] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/13/2020] [Accepted: 04/21/2020] [Indexed: 12/21/2022] Open
Abstract
The aim of this review is to summarize the evidence on efficacy, effectiveness and safety of intravenous enzyme replacement therapy (ERT) available for mucopolysaccharidoses (MPSs) I, II, IVA, VI and VII, gained in phase III clinical trials and in observational post-approval studies. Post-marketing data are sometimes conflicting or controversial, possibly depending on disease severity, differently involved organs, age at starting treatment, and development of anti-drug antibodies (ADAs). There is general agreement that ERT is effective in reducing urinary glycosaminoglycans and liver and spleen volume, while heart and joints outcomes are variable in different studies. Effectiveness on cardiac valves, trachea and bronchi, hearing and eyes is definitely poor, probably due to limited penetration in the specific tissues. ERT does not cross the blood-brain barrier, with the consequence that the central nervous system is not cured by intravenously injected ERT. All patients develop ADAs but their role in ERT tolerance and effectiveness has not been well defined yet. Lack of reliable biomarkers contributes to the uncertainties about effectiveness. The data obtained from affected siblings strongly indicates the need of neonatal screening for treatable MPSs. Currently, other treatments are under evaluation and will surely help improve the prognosis of MPS patients.
Collapse
Affiliation(s)
- Rossella Parini
- UOS Malattie Metaboliche Rare, Clinica Pediatrica dell’Università Milano Bicocca, Fondazione MBBM, ATS Monza e Brianza, 20900 Monza, Italy
| | - Federica Deodato
- Division of Metabolic Disease, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| |
Collapse
|
113
|
Mikulka CR, Dearborn JT, Benitez BA, Strickland A, Liu L, Milbrandt J, Sands MS. Cell-autonomous expression of the acid hydrolase galactocerebrosidase. Proc Natl Acad Sci U S A 2020; 117:9032-9041. [PMID: 32253319 PMCID: PMC7183170 DOI: 10.1073/pnas.1917675117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are typically caused by a deficiency in a soluble acid hydrolase and are characterized by the accumulation of undegraded substrates in the lysosome. Determining the role of specific cell types in the pathogenesis of LSDs is a major challenge due to the secretion and subsequent uptake of lysosomal hydrolases by adjacent cells, often referred to as "cross-correction." Here we create and validate a conditional mouse model for cell-autonomous expression of galactocerebrosidase (GALC), the lysosomal enzyme deficient in Krabbe disease. We show that lysosomal membrane-tethered GALC (GALCLAMP1) retains enzyme activity, is able to cleave galactosylsphingosine, and is unable to cross-correct. Ubiquitous expression of GALCLAMP1 fully rescues the phenotype of the GALC-deficient mouse (Twitcher), and widespread deletion of GALCLAMP1 recapitulates the Twitcher phenotype. We demonstrate the utility of this model by deleting GALCLAMP1 specifically in myelinating Schwann cells in order to characterize the peripheral neuropathy seen in Krabbe disease.
Collapse
Affiliation(s)
- Christina R Mikulka
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Joshua T Dearborn
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Bruno A Benitez
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Amy Strickland
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Lin Liu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Mark S Sands
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110;
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
114
|
Breiden B, Sandhoff K. Mechanism of Secondary Ganglioside and Lipid Accumulation in Lysosomal Disease. Int J Mol Sci 2020; 21:ijms21072566. [PMID: 32272755 PMCID: PMC7178057 DOI: 10.3390/ijms21072566] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/26/2020] [Accepted: 04/04/2020] [Indexed: 02/06/2023] Open
Abstract
Gangliosidoses are caused by monogenic defects of a specific hydrolase or an ancillary sphingolipid activator protein essential for a specific step in the catabolism of gangliosides. Such defects in lysosomal function cause a primary accumulation of multiple undegradable gangliosides and glycosphingolipids. In reality, however, predominantly small gangliosides also accumulate in many lysosomal diseases as secondary storage material without any known defect in their catabolic pathway. In recent reconstitution experiments, we identified primary storage materials like sphingomyelin, cholesterol, lysosphingolipids, and chondroitin sulfate as strong inhibitors of sphingolipid activator proteins (like GM2 activator protein, saposin A and B), essential for the catabolism of many gangliosides and glycosphingolipids, as well as inhibitors of specific catabolic steps in lysosomal ganglioside catabolism and cholesterol turnover. In particular, they trigger a secondary accumulation of ganglioside GM2, glucosylceramide and cholesterol in Niemann–Pick disease type A and B, and of GM2 and glucosylceramide in Niemann–Pick disease type C. Chondroitin sulfate effectively inhibits GM2 catabolism in mucopolysaccharidoses like Hurler, Hunter, Sanfilippo, and Sly syndrome and causes a secondary neuronal ganglioside GM2 accumulation, triggering neurodegeneration. Secondary ganglioside and lipid accumulation is furthermore known in many more lysosomal storage diseases, so far without known molecular basis.
Collapse
|
115
|
Pathogenesis of Mucopolysaccharidoses, an Update. Int J Mol Sci 2020; 21:ijms21072515. [PMID: 32260444 PMCID: PMC7178160 DOI: 10.3390/ijms21072515] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 01/08/2023] Open
Abstract
The recent advancements in the knowledge of lysosomal biology and function have translated into an improved understanding of the pathophysiology of mucopolysaccharidoses (MPSs). The concept that MPS manifestations are direct consequences of lysosomal engorgement with undegraded glycosaminoglycans (GAGs) has been challenged by new information on the multiple biological roles of GAGs and by a new vision of the lysosome as a signaling hub involved in many critical cellular functions. MPS pathophysiology is now seen as the result of a complex cascade of secondary events that lead to dysfunction of several cellular processes and pathways, such as abnormal composition of membranes and its impact on vesicle fusion and trafficking; secondary storage of substrates; impairment of autophagy; impaired mitochondrial function and oxidative stress; dysregulation of signaling pathways. The characterization of this cascade of secondary cellular events is critical to better understand the pathophysiology of MPS clinical manifestations. In addition, some of these pathways may represent novel therapeutic targets and allow for the development of new therapies for these disorders.
Collapse
|
116
|
Turpin-Nolan SM, Brüning JC. The role of ceramides in metabolic disorders: when size and localization matters. Nat Rev Endocrinol 2020; 16:224-233. [PMID: 32060415 DOI: 10.1038/s41574-020-0320-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/13/2020] [Indexed: 01/21/2023]
Abstract
Ceramide accumulation is a hallmark in the manifestation of numerous obesity-related diseases, such as type 2 diabetes mellitus and atherosclerosis. Until the early 2000s, ceramides were viewed as a homogenous class of sphingolipids. However, it has now become clear that ceramides exert fundamentally different effects depending on the specific fatty acyl chain lengths, which are integrated into ceramides by a group of enzymes known as dihydroceramide synthases. In addition, alterations in ceramide synthesis, trafficking and metabolism in specific cellular compartments exert distinct consequences on metabolic homeostasis. Here, we examine the emerging concept of how the intracellular localization of ceramides with distinct acyl chain lengths can regulate glucose metabolism, thus emphasizing their potential as targets in the development of novel and specific therapies for obesity and obesity-associated diseases.
Collapse
Affiliation(s)
- Sarah M Turpin-Nolan
- Max Planck Institute for Metabolism Research, Köln, Germany
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Köln, Germany
| | - Jens C Brüning
- Max Planck Institute for Metabolism Research, Köln, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Köln, Germany.
- Centre for Molecular Medicine Cologne (CMMC), Köln, Germany.
- Centre for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Köln, Germany.
| |
Collapse
|
117
|
Di Martino S, Tardia P, Cilibrasi V, Caputo S, Mazzonna M, Russo D, Penna I, Realini N, Margaroli N, Migliore M, Pizzirani D, Ottonello G, Bertozzi SM, Armirotti A, Nguyen D, Sun Y, Bongarzone ER, Lansbury P, Liu M, Skerlj R, Scarpelli R. Lead Optimization of Benzoxazolone Carboxamides as Orally Bioavailable and CNS Penetrant Acid Ceramidase Inhibitors. J Med Chem 2020; 63:3634-3664. [PMID: 32176488 PMCID: PMC7997574 DOI: 10.1021/acs.jmedchem.9b02004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Sphingolipids
(SphLs) are a diverse class of molecules that are
regulated by a complex network of enzymatic pathways. A disturbance
in these pathways leads to lipid accumulation and initiation of several
SphL-related disorders. Acid ceramidase is one of the key enzymes
that regulate the metabolism of ceramides and glycosphingolipids,
which are important members of the SphL family. Herein, we describe
the lead optimization studies of benzoxazolone carboxamides resulting
in piperidine 22m, where we demonstrated target engagement
in two animal models of neuropathic lysosomal storage diseases (LSDs),
Gaucher’s and Krabbe’s diseases. After daily intraperitoneal
administration at 90 mg kg–1, 22m significantly
reduced the brain levels of the toxic lipids glucosylsphingosine (GluSph)
in 4L;C* mice and galactosylsphingosine (GalSph) in Twitcher mice.
We believe that 22m is a lead molecule that can be further
developed for the correction of severe neurological LSDs where GluSph
or GalSph play a significant role in disease pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Duc Nguyen
- The Myelin Regeneration Group at the Dept. Anatomy & Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, 60612, United States
| | - Ying Sun
- The Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039, United States
| | - Ernesto R Bongarzone
- The Myelin Regeneration Group at the Dept. Anatomy & Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, 60612, United States
| | - Peter Lansbury
- Lysosomal Therapeutics Inc., 19 Blackstone Street, Cambridge, Massachusetts 02139, United States
| | - Min Liu
- Lysosomal Therapeutics Inc., 19 Blackstone Street, Cambridge, Massachusetts 02139, United States
| | - Renato Skerlj
- Lysosomal Therapeutics Inc., 19 Blackstone Street, Cambridge, Massachusetts 02139, United States
| | | |
Collapse
|
118
|
Glucocerebrosidase: Functions in and Beyond the Lysosome. J Clin Med 2020; 9:jcm9030736. [PMID: 32182893 PMCID: PMC7141376 DOI: 10.3390/jcm9030736] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023] Open
Abstract
Glucocerebrosidase (GCase) is a retaining β-glucosidase with acid pH optimum metabolizing the glycosphingolipid glucosylceramide (GlcCer) to ceramide and glucose. Inherited deficiency of GCase causes the lysosomal storage disorder named Gaucher disease (GD). In GCase-deficient GD patients the accumulation of GlcCer in lysosomes of tissue macrophages is prominent. Based on the above, the key function of GCase as lysosomal hydrolase is well recognized, however it has become apparent that GCase fulfills in the human body at least one other key function beyond lysosomes. Crucially, GCase generates ceramides from GlcCer molecules in the outer part of the skin, a process essential for optimal skin barrier property and survival. This review covers the functions of GCase in and beyond lysosomes and also pays attention to the increasing insight in hitherto unexpected catalytic versatility of the enzyme.
Collapse
|
119
|
Ponnaiyan S, Akter F, Singh J, Winter D. Comprehensive draft of the mouse embryonic fibroblast lysosomal proteome by mass spectrometry based proteomics. Sci Data 2020; 7:68. [PMID: 32103020 PMCID: PMC7044164 DOI: 10.1038/s41597-020-0399-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/23/2020] [Indexed: 11/09/2022] Open
Abstract
Lysosomes are the main degradative organelles of cells and involved in a variety of processes including the recycling of macromolecules, storage of compounds, and metabolic signaling. Despite an increasing interest in the proteomic analysis of lysosomes, no systematic study of sample preparation protocols for lysosome enriched fractions has been performed to date. In the current study, we used samples enriched for lysosomes by paramagnetic nanoparticles and systematically evaluated experimental parameters for the analysis of the lysosomal proteome. This includes different approaches for the concentration of lysosome-containing fractions; desalting of samples by solid phase extraction; fractionation of peptide samples; and different gradient lengths for LC-MS/MS analyses of unfractionated samples by data dependent and data independent acquisition. Furthermore, we evaluated four different digestion methods including filter aided sample preparation (FASP), in-gel digestion, and in-solution digestion using either RapiGest or urea. Using the combined data, we generated a benchmark lysosomal proteome data set for mouse embryonic fibroblasts as well as a spectral library for the analysis of lysosomes by data independent acquisition.
Collapse
Affiliation(s)
- Srigayatri Ponnaiyan
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, 53115, Germany
| | - Fatema Akter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, 53115, Germany
- Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Jasjot Singh
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, 53115, Germany
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, 53115, Germany.
| |
Collapse
|
120
|
Viana GM, Gonzalez EA, Alvarez MMP, Cavalheiro RP, do Nascimento CC, Baldo G, D’Almeida V, de Lima MA, Pshezhetsky AV, Nader HB. Cathepsin B-associated Activation of Amyloidogenic Pathway in Murine Mucopolysaccharidosis Type I Brain Cortex. Int J Mol Sci 2020; 21:ijms21041459. [PMID: 32093427 PMCID: PMC7073069 DOI: 10.3390/ijms21041459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 01/28/2023] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is caused by genetic deficiency of α-l-iduronidase and impairment of lysosomal catabolism of heparan sulfate and dermatan sulfate. In the brain, these substrates accumulate in the lysosomes of neurons and glial cells, leading to neuroinflammation and neurodegeneration. Their storage also affects lysosomal homeostasis-inducing activity of several lysosomal proteases including cathepsin B (CATB). In the central nervous system, increased CATB activity has been associated with the deposition of amyloid plaques due to an alternative pro-amyloidogenic processing of the amyloid precursor protein (APP), suggesting a potential role of this enzyme in the neuropathology of MPS I. In this study, we report elevated levels of protein expression and activity of CATB in cortex tissues of 6-month-old MPS I (Idua -/- mice. Besides, increased CATB leakage from lysosomes to the cytoplasm of Idua -/- cortical pyramidal neurons was indicative of damaged lysosomal membranes. The increased CATB activity coincided with an elevated level of the 16-kDa C-terminal APP fragment, which together with unchanged levels of β-secretase 1 was suggestive for the role of this enzyme in the amyloidogenic APP processing. Neuronal accumulation of Thioflavin-S-positive misfolded protein aggregates and drastically increased levels of neuroinflammatory glial fibrillary acidic protein (GFAP)-positive astrocytes and CD11b-positive activated microglia were observed in Idua -/- cortex by confocal fluorescent microscopy. Together, our results point to the existence of a novel CATB-associated alternative amyloidogenic pathway in MPS I brain induced by lysosomal storage and potentially leading to neurodegeneration.
Collapse
Affiliation(s)
- Gustavo Monteiro Viana
- Department of Biochemistry, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04044-020, Brazil; (M.M.P.A.); (R.P.C.); (H.B.N.)
- Correspondence: (G.M.V); (A.V.P); Tel.: +55-11-55764438 (ext. 1188) (G.M.V.); Tel.: +1 (514)-345-4931 (ext. 2736) (A.V.P.)
| | - Esteban Alberto Gonzalez
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-903, Brazil; (E.A.G.); (G.B.)
| | - Marcela Maciel Palacio Alvarez
- Department of Biochemistry, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04044-020, Brazil; (M.M.P.A.); (R.P.C.); (H.B.N.)
| | - Renan Pelluzzi Cavalheiro
- Department of Biochemistry, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04044-020, Brazil; (M.M.P.A.); (R.P.C.); (H.B.N.)
| | - Cinthia Castro do Nascimento
- Department of Psychobiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04024-002, Brazil; (C.C.d.N.); (V.D.)
| | - Guilherme Baldo
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-903, Brazil; (E.A.G.); (G.B.)
| | - Vânia D’Almeida
- Department of Psychobiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04024-002, Brazil; (C.C.d.N.); (V.D.)
| | - Marcelo Andrade de Lima
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK;
| | - Alexey V. Pshezhetsky
- Division of Medical Genetics, CHU Ste-Justine Research Centre, Montreal, QC H3T 1C5, Canada
- Correspondence: (G.M.V); (A.V.P); Tel.: +55-11-55764438 (ext. 1188) (G.M.V.); Tel.: +1 (514)-345-4931 (ext. 2736) (A.V.P.)
| | - Helena Bonciani Nader
- Department of Biochemistry, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04044-020, Brazil; (M.M.P.A.); (R.P.C.); (H.B.N.)
| |
Collapse
|
121
|
Lysosomal Abnormalities in Cardiovascular Disease. Int J Mol Sci 2020; 21:ijms21030811. [PMID: 32012649 PMCID: PMC7036830 DOI: 10.3390/ijms21030811] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/20/2020] [Accepted: 01/25/2020] [Indexed: 12/12/2022] Open
Abstract
The lysosome, a key organelle for cellular clearance, is associated with a wide variety of pathological conditions in humans. Lysosome function and its related pathways are particularly important for maintaining the health of the cardiovascular system. In this review, we highlighted studies that have improved our understanding of the connection between lysosome function and cardiovascular diseases with an emphasis on a recent breakthrough that characterized a unique autophagosome-lysosome fusion mechanism employed by cardiomyocytes through a lysosomal membrane protein LAMP-2B. This finding may impact the development of future therapeutic applications.
Collapse
|
122
|
Takagaki Y, Lee SM, Dongqing Z, Kitada M, Kanasaki K, Koya D. Endothelial autophagy deficiency induces IL6 - dependent endothelial mesenchymal transition and organ fibrosis. Autophagy 2020; 16:1905-1914. [PMID: 31965901 DOI: 10.1080/15548627.2020.1713641] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Macroautophagy/autophagy plays a vital role in the homeostasis of diverse cell types. Vascular endothelial cells contribute to vascular health and play a unique role in vascular biology. Here, we demonstrated that autophagy defects in endothelial cells induced IL6 (interleukin 6)-dependent endothelial-to-mesenchymal transition (EndMT) and organ fibrosis with metabolic defects in mice. Inhibition of autophagy, either by a specific inhibitor or small interfering RNA (siRNA) for ATG5 (autophagy related 5), in human microvascular endothelial cells (HMVECs) induced EndMT. The IL6 level was significantly higher in ATG5 siRNA-transfected HMVECs culture medium compared with the control HMVECs culture medium, and neutralization of IL6 by a specific antibody completely inhibited EndMT in ATG5 siRNA-transfected HMVECs. Similar to the in vitro data, endothelial-specific atg5 knockout mice (Atg5 Endo; Cdh5-Cre Atg5 flox/flox mice) displayed both EndMT-associated kidney and heart fibrosis when compared to littermate controls. The plasma level of IL6 was higher in Atg5 Endo compared to that of control mice, and fibrosis was accelerated in Atg5 Endo treated with a HFD; neutralization of IL6 by a specific antibody inhibited EndMT and fibrosis in HFD-fed Atg5 Endo associated with the amelioration of metabolic defects. These results revealed the essential role of autophagy in endothelial cell integrity and revealed that the disruption of endothelial autophagy could lead to significant pathological IL6-dependent EndMT and organ fibrosis. Abbreviations: 3-MA: 3-methyladenine; ATG5: autophagy related 5; EndMT: endothelial-to-mesenchymal transition; HES: hematoxylin and eosin stain; HFD: high-fat diet; HMVECs: human microvascular endothelial cells; IFNG: interferon gamma; IL6: interleukin 6; MTS: Masson's trichrome staining; NFD: normal-fat diet; siRNA: small interfering RNA; SMAD3: SMAD family member 3; TGFB: transforming growth factor β; TNF: tumor necrosis factor; VEGFA: vascular endothelial growth factor A.
Collapse
Affiliation(s)
- Yuta Takagaki
- Department of Diabetology and Endocrinology, Kanazawa Medical University , Uchinada, Japan
| | - Seon Myeong Lee
- Department of Diabetology and Endocrinology, Kanazawa Medical University , Uchinada, Japan
| | - Zha Dongqing
- Department of Diabetology and Endocrinology, Kanazawa Medical University , Uchinada, Japan
| | - Munehiro Kitada
- Department of Diabetology and Endocrinology, Kanazawa Medical University , Uchinada, Japan.,Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University , Uchinada, Japan
| | - Keizo Kanasaki
- Department of Diabetology and Endocrinology, Kanazawa Medical University , Uchinada, Japan.,Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University , Uchinada, Japan.,Internal Medicine 1, Shimane University Faculty of Medicine , Izumo, Japan
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University , Uchinada, Japan.,Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University , Uchinada, Japan
| |
Collapse
|
123
|
Bahrami A, Bianconi V, Pirro M, Orafai HM, Sahebkar A. The role of TFEB in tumor cell autophagy: Diagnostic and therapeutic opportunities. Life Sci 2020; 244:117341. [PMID: 31972208 DOI: 10.1016/j.lfs.2020.117341] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/29/2019] [Accepted: 01/18/2020] [Indexed: 12/12/2022]
Abstract
Autophagy is a conserved "self-eating" recycling process which removes aggregated or misfolded proteins, or defective organelles, to maintain cellular hemostasis. In the autophagy-lysosome pathway (ALP), clearance of unwanted debris and materials occurs through the generation of the autophagosome, a complex of double-membrane bounded vesicles that form around cytosolic cargos and catabolize their contents by fusion to lysosomes. In tumors, autophagy has dichotomous functions via preventing tumor initiation but promoting tumor progression. The basic helix-loop-helix leucine zipper transcription factor EB (TFEB) activates the promoters of genes encoding for proteins, which participate in this cellular degradative system by regulating lysosomal biogenesis, lysosomal acidification, lysosomal exocytosis and autophagy. In humans, disturbances of ALP are related to various pathological conditions. Recently, TFEB dysregulation was found to have a crucial pathogenic role in different tumors by modulating tumor cell autophagy. Notably, in renal cell carcinomas, different TFEB gene fusions were reported to promote oncogenic features. In this review, we discuss the role of TFEB in human cancers with a special focus on potential diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Vanessa Bianconi
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Matteo Pirro
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Hossein M Orafai
- Department of Pharmaceutics, Faculty of Pharmacy, University of Ahl Al Bayt, Karbala, Iraq; Department of Pharmaceutics, Faculty of Pharmacy, Al-Zahraa University, Karbala, Iraq
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
124
|
Screening Readthrough Compounds to Suppress Nonsense Mutations: Possible Application to β-Thalassemia. J Clin Med 2020; 9:jcm9020289. [PMID: 31972957 PMCID: PMC7073686 DOI: 10.3390/jcm9020289] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023] Open
Abstract
Several types of thalassemia (including β039-thalassemia) are caused by nonsense mutations in genes controlling globin production, leading to premature translation termination and mRNA destabilization mediated by the nonsense mediated mRNA decay. Drugs (for instance, aminoglycosides) can be designed to suppress premature translation termination by inducing readthrough (or nonsense suppression) at the premature termination codon. These findings have introduced new hopes for the development of a pharmacologic approach to cure this genetic disease. In the present review, we first summarize the principle and current status of the chemical relief for the expression of functional proteins from genes otherwise unfruitful for the presence of nonsense mutations. Second, we compare data available on readthrough molecules for β0-thalassemia. The examples reported in the review strongly suggest that ribosomal readthrough should be considered as a therapeutic approach for the treatment of β0-thalassemia caused by nonsense mutations. Concluding, the discovery of molecules, exhibiting the property of inducing β-globin, such as readthrough compounds, is of great interest and represents a hope for several patients, whose survival will depend on the possible use of drugs rendering blood transfusion and chelation therapy unnecessary.
Collapse
|
125
|
Singh J, Kaade E, Muntel J, Bruderer R, Reiter L, Thelen M, Winter D. Systematic Comparison of Strategies for the Enrichment of Lysosomes by Data Independent Acquisition. J Proteome Res 2020; 19:371-381. [PMID: 31738065 DOI: 10.1021/acs.jproteome.9b00580] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In mammalian cells, the lysosome is the main organelle for the degradation of macromolecules and the recycling of their building blocks. Correct lysosomal function is essential, and mutations in every known lysosomal hydrolase result in so-called lysosomal storage disorders, a group of rare and often fatal inherited diseases. Furthermore, it is becoming more and more apparent that lysosomes play also decisive roles in other diseases, such as cancer and common neurodegenerative disorders. This leads to an increasing interest in the proteomic analysis of lysosomes for which enrichment is a prerequisite. In this study, we compared the four most common strategies for the enrichment of lysosomes using data-independent acquisition. We performed centrifugation at 20,000 × g to generate an organelle-enriched pellet, two-step sucrose density gradient centrifugation, enrichment by superparamagnetic iron oxide nanoparticles (SPIONs), and immunoprecipitation using a 3xHA tagged version of the lysosomal membrane protein TMEM192. Our results show that SPIONs and TMEM192 immunoprecipitation outperform the other approaches with enrichment factors of up to 118-fold for certain proteins relative to whole cell lysates. Furthermore, we achieved an increase in identified lysosomal proteins and a higher reproducibility in protein intensities for label-free quantification in comparison to the other strategies.
Collapse
Affiliation(s)
- Jasjot Singh
- Institute for Biochemistry and Molecular Biology , University of Bonn , 53115 Bonn , Germany
| | - Edgar Kaade
- Institute for Biochemistry and Molecular Biology , University of Bonn , 53115 Bonn , Germany
| | - Jan Muntel
- Biognosys , 8952 Schlieren , Switzerland
| | | | | | - Melanie Thelen
- Institute for Biochemistry and Molecular Biology , University of Bonn , 53115 Bonn , Germany
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology , University of Bonn , 53115 Bonn , Germany
| |
Collapse
|
126
|
Wang H, Han X, Xu J. Lysosome as the Black Hole for Checkpoint Molecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:325-346. [PMID: 32185717 DOI: 10.1007/978-981-15-3266-5_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lysosomes, as digestive organelles full of hydrolases, have complex functions and play an important role in cellular physiological and pathological processes. In normal physiological conditions, lysosomes can sense the nutritional state and be responsible for recycling raw materials to provide nutrients, affecting cell signaling pathways and regulating cell proliferation. Lysosomes are related to many diseases and associated with metastasis and drug resistance of tumors. In recent years, much attention has been paid to the tumor immunotherapy especially immune checkpoint blockade therapy. Accumulating data suggest that lysosomes may serve as a major destruction for immune checkpoint molecules, and secretory lysosomes can temporarily store immune checkpoint proteins. Once activated, the compounds contained in secretory lysosomes are released to the surface of cell membrane rapidly. Inhibitions of lysosomes can overcome the chemoresistance of some tumors and enhance the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Huanbin Wang
- School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Xue Han
- Institutes of Biological Sciences, Fudan University, Shanghai, 200032, China
| | - Jie Xu
- Institutes of Biomedical Sciences, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
127
|
Abstract
The goal of screening programs for inborn errors of metabolism (IEM) is early detection and timely intervention to significantly reduce morbidity, mortality and associated disabilities. Phenylketonuria exemplifies their success as neonates are identified at birth and then promptly treated allowing normal neurological development. Lysosomal diseases comprise about 50 IEM arising from a deficiency in a protein required for proper lysosomal function. Typically, these defects are in lysosomal enzymes with the concomitant accumulation of the enzyme's substrate as the cardinal feature. None of the lysosomal diseases are screened at birth in Australia and in the absence of a family history, traditional laboratory diagnosis of the majority, involves demonstrating a deficiency of the requisite enzyme. Diagnostic confusion can arise from interpretation of the degree of residual enzyme activity causative of disease and is impractical when the disorder is not due to an enzyme deficiency per se. Advances in mass spectrometry technologies has enabled simultaneous measurement of the enzymes' substrates and their metabolites which facilitates the efficiency of diagnosis. Employing urine chemistry as a reflection of multisystemic disease, individual lysosomal diseases can be identified by a characteristic substrate pattern complicit with the enzyme deficiency. Determination of lipids in plasma allows the diagnosis of a further class of lysosomal disorders, the sphingolipids. The ideal goal would be to measure biomarkers for each specific lysosomal disorder in the one mass spectrometry-based platform to achieve a diagnosis. Confirmation of the diagnosis is usually by identifying pathogenic variants in the underlying gene, and although molecular genetic technologies can provide the initial diagnosis, the biochemistry will remain important for interpreting molecular variants of uncertain significance.
Collapse
|
128
|
β-Galactosylceramidase Deficiency Causes Bone Marrow Vascular Defects in an Animal Model of Krabbe Disease. Int J Mol Sci 2019; 21:ijms21010251. [PMID: 31905906 PMCID: PMC6982065 DOI: 10.3390/ijms21010251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/13/2019] [Accepted: 12/28/2019] [Indexed: 01/04/2023] Open
Abstract
Krabbe disease (KD) is an autosomal recessive sphingolipidosis caused by the deficiency of the lysosomal hydrolase β-galactosylceramidase (GALC). Oligodendroglia degeneration and demyelination of the nervous system lead to neurological dysfunctions which are usually lethal by two years of age. At present, the only clinical treatment with any proven efficacy is hematopoietic stem-cell transplantation, which is more effective when administered in the neonatal period to presymptomatic recipients. Bone marrow (BM) sinusoidal endothelial cells (SECs) play a pivotal role in stem cell engraftment and reconstitution of hematopoiesis. Previous observations had shown significant alterations of microvascular endothelial cells in the brain of KD patients and in Galc mutant twitcher mice, an authentic model of the disease. In the present study, we investigated the vascular component of the BM in the femurs of symptomatic homozygous twitcher mice at postnatal day P36. Histological, immunohistochemical, and two-photon microscopy imaging analyses revealed the presence of significant alterations of the diaphyseal BM vasculature, characterized by enlarged, discontinuous, and hemorrhagic SECs that express the endothelial marker vascular endothelial growth factor receptor-2 (VEGFR2) but lack platelet/endothelial cell adhesion molecule-1 (CD31) expression. In addition, computer-aided image analysis indicates that twitcher CD31-/VEGFR2+ SECs show a significant increase in lumen size and in the number and size of endothelial gaps compared to BM SECs of wild type littermates. These results suggest that morphofunctional defects in the BM vascular niche may contribute to the limited therapeutic efficacy of hematopoietic stem-cell transplantation in KD patients at symptomatic stages of the disease.
Collapse
|
129
|
Nakamura T, Fahmi M, Tanaka J, Seki K, Kubota Y, Ito M. Genome-Wide Analysis of Whole Human Glycoside Hydrolases by Data-Driven Analysis in Silico. Int J Mol Sci 2019; 20:E6290. [PMID: 31847093 PMCID: PMC6940844 DOI: 10.3390/ijms20246290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/14/2022] Open
Abstract
Glycans are involved in various metabolic processes via the functions of glycosyltransferases and glycoside hydrolases. Analysing the evolution of these enzymes is essential for improving the understanding of glycan metabolism and function. Based on our previous study of glycosyltransferases, we performed a genome-wide analysis of whole human glycoside hydrolases using the UniProt, BRENDA, CAZy and KEGG databases. Using cluster analysis, 319 human glycoside hydrolases were classified into four clusters based on their similarity to enzymes conserved in chordates or metazoans (Class 1), metazoans (Class 2), metazoans and plants (Class 3) and eukaryotes (Class 4). The eukaryote and metazoan clusters included N- and O-glycoside hydrolases, respectively. The significant abundance of disordered regions within the most conserved cluster indicated a role for disordered regions in the evolution of glycoside hydrolases. These results suggest that the biological diversity of multicellular organisms is related to the acquisition of N- and O-linked glycans.
Collapse
Affiliation(s)
- Takahiro Nakamura
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan; (T.N.); (M.F.); (J.T.); (K.S.)
| | - Muhamad Fahmi
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan; (T.N.); (M.F.); (J.T.); (K.S.)
| | - Jun Tanaka
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan; (T.N.); (M.F.); (J.T.); (K.S.)
| | - Kaito Seki
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan; (T.N.); (M.F.); (J.T.); (K.S.)
| | - Yukihiro Kubota
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan;
| | - Masahiro Ito
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan; (T.N.); (M.F.); (J.T.); (K.S.)
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan;
| |
Collapse
|
130
|
de Araujo MEG, Liebscher G, Hess MW, Huber LA. Lysosomal size matters. Traffic 2019; 21:60-75. [PMID: 31808235 PMCID: PMC6972631 DOI: 10.1111/tra.12714] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/25/2022]
Abstract
Lysosomes are key cellular catabolic centers that also perform fundamental metabolic, signaling and quality control functions. Lysosomes are not static and they respond dynamically to intra‐ and extracellular stimuli triggering changes in organelle numbers, size and position. Such physical changes have a strong impact on lysosomal activity ultimately influencing cellular homeostasis. In this review, we summarize the current knowledge on lysosomal size regulation, on its physiological role(s) and association to several disease conditions.
Collapse
Affiliation(s)
- Mariana E G de Araujo
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Gudrun Liebscher
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael W Hess
- Institute of Histology and Embryology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas A Huber
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.,Austrian Drug Screening Institute, ADSI, Innsbruck, Austria
| |
Collapse
|
131
|
Abstract
Lysosomes are membrane-bound organelles with roles in processes involved in degrading and recycling cellular waste, cellular signalling and energy metabolism. Defects in genes encoding lysosomal proteins cause lysosomal storage disorders, in which enzyme replacement therapy has proved successful. Growing evidence also implicates roles for lysosomal dysfunction in more common diseases including inflammatory and autoimmune disorders, neurodegenerative diseases, cancer and metabolic disorders. With a focus on lysosomal dysfunction in autoimmune disorders and neurodegenerative diseases - including lupus, rheumatoid arthritis, multiple sclerosis, Alzheimer disease and Parkinson disease - this Review critically analyses progress and opportunities for therapeutically targeting lysosomal proteins and processes, particularly with small molecules and peptide drugs.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- CNRS-University of Strasbourg, Biotechnology and Cell Signalling, Illkirch, France
- Laboratory of Excellence Medalis, Team Neuroimmunology and Peptide Therapy, Institut de Science et d'Ingénierie Supramoléculaire (ISIS), Strasbourg, France
| | - Fengjuan Wang
- CNRS-University of Strasbourg, Biotechnology and Cell Signalling, Illkirch, France
- Laboratory of Excellence Medalis, Team Neuroimmunology and Peptide Therapy, Institut de Science et d'Ingénierie Supramoléculaire (ISIS), Strasbourg, France
| | - Sylviane Muller
- CNRS-University of Strasbourg, Biotechnology and Cell Signalling, Illkirch, France.
- Laboratory of Excellence Medalis, Team Neuroimmunology and Peptide Therapy, Institut de Science et d'Ingénierie Supramoléculaire (ISIS), Strasbourg, France.
- University of Strasbourg Institute for Advanced Study, Strasbourg, France.
- Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg University, Strasbourg, France.
| |
Collapse
|
132
|
Wang T, Qu G, Deng Y, Shang J, Feng Z, Yang F, He N, Zheng J. Post-self-repair process of neuron cells under the influence of neutral and cationic nanoparticles. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.11.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
133
|
Tonin R, Caciotti A, Procopio E, Fischetto R, Deodato F, Mancardi MM, Di Rocco M, Ardissone A, Salviati A, Marangi A, Strisciuglio P, Mangone G, Casini A, Ricci S, Fiumara A, Parini R, Pavone FS, Guerrini R, Calamai M, Morrone A. Pre-diagnosing and managing patients with GM1 gangliosidosis and related disorders by the evaluation of GM1 ganglioside content. Sci Rep 2019; 9:17684. [PMID: 31776384 PMCID: PMC6881353 DOI: 10.1038/s41598-019-53995-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/26/2019] [Indexed: 01/03/2023] Open
Abstract
GM1 ganglioside, a monosialic glycosphingolipid and a crucial component of plasma membranes, accumulates in lysosomal storage disorders, primarily in GM1 gangliosidosis. The development of biomarkers for simplifying diagnosis, monitoring disease progression and evaluating drug therapies is an important objective in research into neurodegenerative lysosomal disorders. With this in mind, we established fluorescent imaging and flow-cytometric methods to track changes in GM1 ganglioside levels in patients with GM1 gangliosidosis and in control cells. We also evaluated GM1 ganglioside content in patients’ cells treated with the commercially available Miglustat, a substrate inhibitor potentially suitable for the treatment of late-onset GM1 gangliosidosis. The flow-cytometric method proved to be sensitive, unbiased, and rapid in determining variations in GM1 ganglioside content in human lymphocytes derived from small amounts of fresh blood. We detected a strong correlation between GM1 ganglioside content and the clinical severity of GM1 gangliosidosis. We confirm the ability of Miglustat to act as a substrate reduction agent in the patients’ treated cells. As well as being suitable for diagnosing and managing patients with GM1 gangliosidosis this method could be useful in the diagnosis and management of other lysosomal diseases, such as galactosialidosis, Type C Niemann-Pick, and any other disease with pathologic variations of GM1 ganglioside.
Collapse
Affiliation(s)
- Rodolfo Tonin
- Molecular and Cell Biology Laboratory of Neurometabolic Diseases, Neuroscience Department, Meyer Children's Hospital, Florence, Italy
| | - Anna Caciotti
- Molecular and Cell Biology Laboratory of Neurometabolic Diseases, Neuroscience Department, Meyer Children's Hospital, Florence, Italy
| | - Elena Procopio
- Metabolic Unit, Meyer Children's Hospital, Florence, Italy
| | - Rita Fischetto
- Divisione Malattie Metaboliche-Genetica Medica, Ospedale Regionale Pediatrico Giovanni XXIII, Bari, Italy
| | - Federica Deodato
- Division of Metabolism, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Maja Di Rocco
- Unit of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Anna Ardissone
- Divisione Neuropsichiatria Infantile, Fondazione IRCCS Istituto Nazionale Neurologico C. Besta, Milan, Italy
| | | | | | - Pietro Strisciuglio
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University of Naples, Naples, Italy
| | - Giusi Mangone
- Division of Immunology, Section of Pediatrics, Department of Health Sciences, University of Florence and Meyer Children's Hospital, Florence, Italy
| | - Arianna Casini
- Division of Immunology, Section of Pediatrics, Department of Health Sciences, University of Florence and Meyer Children's Hospital, Florence, Italy
| | - Silvia Ricci
- Division of Immunology, Section of Pediatrics, Department of Health Sciences, University of Florence and Meyer Children's Hospital, Florence, Italy
| | - Agata Fiumara
- Malattie Metaboliche e Sindromi Malformative Congenite, P.O. Gaspare Rodolico, Catania, Italy
| | - Rossella Parini
- UOS Malattie Metaboliche Rare, Clinica Pediatrica, Ospedale San Gerardo, Monza, Italy
| | | | - Renzo Guerrini
- Molecular and Cell Biology Laboratory of Neurometabolic Diseases, Neuroscience Department, Meyer Children's Hospital, Florence, Italy.,Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, University of Florence, Florence, Italy
| | - Martino Calamai
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Florence, Italy.,National Institute of Optics, National Research Council of Italy (CNR), Florence, Italy
| | - Amelia Morrone
- Molecular and Cell Biology Laboratory of Neurometabolic Diseases, Neuroscience Department, Meyer Children's Hospital, Florence, Italy. .,Metabolic Unit, Meyer Children's Hospital, Florence, Italy.
| |
Collapse
|
134
|
Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat Rev Mol Cell Biol 2019; 21:101-118. [DOI: 10.1038/s41580-019-0185-4] [Citation(s) in RCA: 408] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2019] [Indexed: 12/11/2022]
|
135
|
Do MA, Levy D, Brown A, Marriott G, Lu B. Targeted delivery of lysosomal enzymes to the endocytic compartment in human cells using engineered extracellular vesicles. Sci Rep 2019; 9:17274. [PMID: 31754156 PMCID: PMC6872767 DOI: 10.1038/s41598-019-53844-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/01/2019] [Indexed: 12/12/2022] Open
Abstract
Targeted delivery of lysosomal enzymes to the endocytic compartment of human cells represents a transformative technology for treating a large family of lysosomal storage diseases (LSDs). Gaucher disease is one of the most common types of LSDs caused by mutations to the lysosomal β-glucocerebrosidase (GBA). Here, we describe a genetic strategy to produce engineered exosomes loaded with GBA in two different spatial configurations for targeted delivery to the endocytic compartment of recipient cells. By fusing human GBA to an exosome-anchoring protein: vesicular stomatitis virus glycoprotein (VSVG), we demonstrate that the chimeric proteins were successfully integrated into exosomes which were secreted as extracellular vesicles (EVs) by producer cells. Isolation and molecular characterization of EVs confirmed that the fusion proteins were loaded onto exosomes without altering their surface markers, particle size or distribution. Further, enzyme-loaded exosomes/EVs added to cultured medium were taken up by recipient cells. Further, the endocytosed exosomes/EVs targeted to endocytic compartments exhibited a significant increase in GBA activity. Together, we have developed a novel method for targeting and delivery of lysosomal enzymes to their natural location: the endocytic compartment of recipient cells. Since exosomes/EVs have an intrinsic ability to cross the blood-brain-barrier, our technology may provide a new approach to treat severe types of LSDs, including Gaucher disease with neurological complications.
Collapse
Affiliation(s)
- Mai Anh Do
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California, 95053, USA
| | - Daniel Levy
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California, 95053, USA
| | - Annie Brown
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California, 95053, USA
| | - Gerard Marriott
- Department of Bioengineering, University of California at Berkeley, Berkeley, CA94720, USA
| | - Biao Lu
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California, 95053, USA.
| |
Collapse
|
136
|
Novel bicistronic lentiviral vectors correct β-Hexosaminidase deficiency in neural and hematopoietic stem cells and progeny: implications for in vivo and ex vivo gene therapy of GM2 gangliosidosis. Neurobiol Dis 2019; 134:104667. [PMID: 31682993 DOI: 10.1016/j.nbd.2019.104667] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/28/2019] [Accepted: 10/31/2019] [Indexed: 01/03/2023] Open
Abstract
The favorable outcome of in vivo and ex vivo gene therapy approaches in several Lysosomal Storage Diseases suggests that these treatment strategies might equally benefit GM2 gangliosidosis. Tay-Sachs and Sandhoff disease (the main forms of GM2 gangliosidosis) result from mutations in either the HEXA or HEXB genes encoding, respectively, the α- or β-subunits of the lysosomal β-Hexosaminidase enzyme. In physiological conditions, α- and β-subunits combine to generate β-Hexosaminidase A (HexA, αβ) and β-Hexosaminidase B (HexB, ββ). A major impairment to establishing in vivo or ex vivo gene therapy for GM2 gangliosidosis is the need to synthesize the α- and β-subunits at high levels and with the correct stoichiometric ratio, and to safely deliver the therapeutic products to all affected tissues/organs. Here, we report the generation and in vitro validation of novel bicistronic lentiviral vectors (LVs) encoding for both the murine and human codon optimized Hexa and Hexb genes. We show that these LVs drive the safe and coordinate expression of the α- and β-subunits, leading to supranormal levels of β-Hexosaminidase activity with prevalent formation of a functional HexA in SD murine neurons and glia, murine bone marrow-derived hematopoietic stem/progenitor cells (HSPCs), and human SD fibroblasts. The restoration/overexpression of β-Hexosaminidase leads to the reduction of intracellular GM2 ganglioside storage in transduced and in cross-corrected SD murine neural progeny, indicating that the transgenic enzyme is secreted and functional. Importantly, bicistronic LVs safely and efficiently transduce human neurons/glia and CD34+ HSPCs, which are target and effector cells, respectively, in prospective in vivo and ex vivo GT approaches. We anticipate that these bicistronic LVs may overcome the current requirement of two vectors co-delivering the α- or β-subunits genes. Careful assessment of the safety and therapeutic potential of these bicistronic LVs in the SD murine model will pave the way to the clinical development of LV-based gene therapy for GM2 gangliosidosis.
Collapse
|
137
|
Mohamed S, He QQ, Singh AA, Ferro V. Mucopolysaccharidosis type II (Hunter syndrome): Clinical and biochemical aspects of the disease and approaches to its diagnosis and treatment. Adv Carbohydr Chem Biochem 2019; 77:71-117. [PMID: 33004112 DOI: 10.1016/bs.accb.2019.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mucopolysaccharidosis type II (MPS II, Hunter syndrome) is a rare X-linked lysosomal storage disease caused by mutations of the gene encoding the lysosomal enzyme iduronate-2-sulfatase (IDS), the role of which is to hydrolytically remove O-linked sulfates from the two glycosaminoglycans (GAGs) heparan sulfate (HS) and dermatan sulfate (DS). HS and DS are linear, heterogeneous polysaccharides composed of repeating disaccharide subunits of l-iduronic acid (IdoA) or d-glucuronic acid, (1→4)-linked to d-glucosamine (for HS), or (1→3)-linked to 2-acetamido-2-deoxy-d-galactose (N-acetyl-d-galactosamine) (for DS). In healthy cells, IDS cleaves the sulfo group found at the C-2 position of terminal non-reducing end IdoA residues in HS and DS. The loss of IDS enzyme activity leads to progressive lysosomal storage of HS and DS in tissues and organs such as the brain, liver, spleen, heart, bone, joints and airways. Consequently, this leads to the phenotypic features characteristic of the disease. This review provides an overview of the disease profile and clinical manifestation, with a particular focus on the biochemical basis of the disease and chemical approaches to the development of new diagnostics, as well as discussing current treatment options and emerging new therapies.
Collapse
Affiliation(s)
- Shifaza Mohamed
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Qi Qi He
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Arti A Singh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
138
|
Lombardi S, Ferrarese M, Marchi S, Pinton P, Pinotti M, Bernardi F, Branchini A. Translational readthrough of GLA nonsense mutations suggests dominant-negative effects exerted by the interaction of wild-type and missense variants. RNA Biol 2019; 17:254-263. [PMID: 31613176 DOI: 10.1080/15476286.2019.1676115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nonsense mutations are relatively frequent in the rare X-linked lysosomal α-galactosidase A (α-Gal) deficiency (Fabry disease; FD), but have been poorly investigated. Here, we evaluated the responsiveness of a wide panel (n = 14) of GLA premature termination codons (PTCs) to the RNA-based approach of drug-induced readthrough through expression of recombinant α-Gal (rGal) nonsense and missense variants.We identified four high-responders to the readthrough-inducing aminoglycoside G418 in terms of full-length protein (C56X/W209X, ≥10% of wild-type rGal) and/or activity (Q119X/W209X/Q321X, ~5-7%), resulting in normal (Q119X/Q321X) or reduced (C56X, 0.27 ± 0.11; W209X, 0.35 ± 0.1) specific activity.To provide mechanistic insights we investigated the predicted amino acid substitutions mediated by readthrough (W209C/R, C56W/R), which resulted in correct lysosomal localization and appreciable protein/activity levels for the W209C/R variants. Differently, the C56W/R variants, albeit appreciably produced and localized into lysosomes, were inactive, thus indicating detrimental effects of substitutions at this position.Noticeably, when co-expressed with the functional W209C or W209R variants, the wild-type rGal displayed a reduced specific activity (0.5 ± 0.2 and 0.6 ± 0.2, respectively) that, considering the dimeric features of the α-Gal enzyme, suggested dominant-negative effects of missense variants through their interaction with the wild-type.Overall, we provide a novel mechanism through which amino acids inserted during readthrough might impact on the functional protein output. Our findings may also have implications for the interpretation of pathological phenotypes in heterozygous FD females, and for other human disorders involving dimeric or oligomeric proteins.
Collapse
Affiliation(s)
- Silvia Lombardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Mattia Ferrarese
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alessio Branchini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
139
|
Álvarez JV, Herrero Filgueira C, González ADLF, Colón Mejeras C, Beiras Iglesias A, Tomatsu S, Blanco Méndez J, Luzardo Álvarez A, Couce ML, Otero Espinar FJ. Enzyme-Loaded Gel Core Nanostructured Lipid Carriers to Improve Treatment of Lysosomal Storage Diseases: Formulation and In Vitro Cellular Studies of Elosulfase Alfa-Loaded Systems. Pharmaceutics 2019; 11:pharmaceutics11100522. [PMID: 31614479 PMCID: PMC6835858 DOI: 10.3390/pharmaceutics11100522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/28/2019] [Accepted: 10/03/2019] [Indexed: 01/03/2023] Open
Abstract
Mucopolysaccharidosis IVA (Morquio A) is a rare inherited metabolic disease caused by deficiency of the lysosomal enzyme N-acetylgalatosamine-6-sulfate-sulfatase (GALNS). Until now, treatments employed included hematopoietic stem cell transplantation and enzyme replacement therapy (ERT); the latter being the most commonly used to treat mucopolysaccharidoses, but with serious disadvantages due to rapid degradation and clearance. The purpose of this study was to develop and evaluate the potential of nanostructured lipid carriers (NLCs) by encapsulating elosulfase alfa and preserving its enzyme activity, leading to enhancement of its biological effect in chondrocyte cells. A pegylated elosulfase alfa-loaded NLC was characterized in terms of size, ζ potential, structural lipid composition (DSC and XRD), morphology (TEM microscopy), and stability in human plasma. The final formulation was freeze-dried by selecting the appropriate cryoprotective agent. Viability assays confirmed that NLCs were non-cytotoxic to human fibroblasts. Imaging techniques (confocal and TEM) were used to assess the cellular uptake of NLCs loaded with elosulfase alfa. This study provides evidence that the encapsulated drug exhibits enzyme activity inside the cells. Overall, this study provides a new approach regarding NLCs as a promising delivery system for the encapsulation of elosulfase alfa or other enzymes and the preservation of its activity and stability to be used in enzymatic replacement therapy (ERT).
Collapse
Affiliation(s)
- J. Víctor Álvarez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy. Campus Vida, University of Santiago de Compostela, 15872 Santiago de Compostela, Spain; (J.V.Á.); (J.B.M.)
- Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain;
- Skeletal Dysplasia Lab Nemours Biomedical Research Nemours/Alfred I. duPont Hospital for Children, 1600 Rockland Road,Wilmington, DE 19803, USA;
| | - Carolina Herrero Filgueira
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela, Trav. Choupana s/n, 15706 Santiago de Compostela, Spain;
- Nasasbiotech, S.L., Canton Grande 3, 15003 A Coruña, Spain;
| | | | - Cristóbal Colón Mejeras
- Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain;
| | - Andrés Beiras Iglesias
- Department of Morphological Sciences, School of Medicine, Hospital Clínico Universitario de Santiago de Compostela, 15872 Santiago de Compostela, Spain;
| | - Shunji Tomatsu
- Skeletal Dysplasia Lab Nemours Biomedical Research Nemours/Alfred I. duPont Hospital for Children, 1600 Rockland Road,Wilmington, DE 19803, USA;
| | - José Blanco Méndez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy. Campus Vida, University of Santiago de Compostela, 15872 Santiago de Compostela, Spain; (J.V.Á.); (J.B.M.)
| | - Asteria Luzardo Álvarez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Sciences, Campus de Lugo, University of Santiago de Compostela, 27002 Lugo, Spain
- Correspondence: (A.L.Á.); (M.L.C.); (F.J.O.E.); Tel.: +34-981563100 (ext. 24142 (A.L.Á.); ext. 14878 (F.J.O.E.)); +34-981951134 (M.L.C.)
| | - María Luz Couce
- Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain;
- Correspondence: (A.L.Á.); (M.L.C.); (F.J.O.E.); Tel.: +34-981563100 (ext. 24142 (A.L.Á.); ext. 14878 (F.J.O.E.)); +34-981951134 (M.L.C.)
| | - Francisco J. Otero Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy. Campus Vida, University of Santiago de Compostela, 15872 Santiago de Compostela, Spain; (J.V.Á.); (J.B.M.)
- Correspondence: (A.L.Á.); (M.L.C.); (F.J.O.E.); Tel.: +34-981563100 (ext. 24142 (A.L.Á.); ext. 14878 (F.J.O.E.)); +34-981951134 (M.L.C.)
| |
Collapse
|
140
|
ER-lysosome contacts enable cholesterol sensing by mTORC1 and drive aberrant growth signalling in Niemann-Pick type C. Nat Cell Biol 2019; 21:1206-1218. [PMID: 31548609 PMCID: PMC6936960 DOI: 10.1038/s41556-019-0391-5] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/15/2019] [Indexed: 12/24/2022]
Abstract
Cholesterol activates the master growth regulator, mTORC1 kinase, by promoting its recruitment to the surface of lysosomes via the Rag guanosine triphosphatases (GTPases). The mechanisms that regulate lysosomal cholesterol content to enable mTORC1 signaling are unknown. We show that Oxysterol Binding Protein (OSBP) and its anchors at the endoplasmic reticulum (ER), VAPA/B, deliver cholesterol across ER-lysosome contacts to activate mTORC1. In cells lacking OSBP, but not other VAP-interacting cholesterol carriers, mTORC1 recruitment by the Rag GTPases is inhibited due to impaired cholesterol transport to lysosomes. Conversely, OSBP-mediated cholesterol trafficking drives constitutive mTORC1 activation in a disease model caused by loss of the lysosomal cholesterol transporter, Niemann-Pick C1 (NPC1). Chemical and genetic inactivation of OSBP suppresses aberrant mTORC1 signaling and restores autophagic function in cellular models of NPC. Thus, ER-lysosome contacts are signaling hubs that enable cholesterol sensing by mTORC1, and targeting their sterol-transfer activity could be beneficial in NPC.
Collapse
|
141
|
Gigliobianco MR, Di Martino P, Deng S, Casadidio C, Censi R. New Advanced Strategies for the Treatment of Lysosomal Diseases Affecting the Central Nervous System. Curr Pharm Des 2019; 25:1933-1950. [DOI: 10.2174/1381612825666190708213159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/19/2019] [Indexed: 11/22/2022]
Abstract
Lysosomal Storage Disorders (LSDs), also known as lysosomal diseases (LDs) are a group of serious genetic diseases characterized by not only the accumulation of non-catabolized compounds in the lysosomes due to the deficiency of specific enzymes which usually eliminate these compounds, but also by trafficking, calcium changes and acidification. LDs mainly affect the central nervous system (CNS), which is difficult to reach for drugs and biological molecules due to the presence of the blood-brain barrier (BBB). While some therapies have proven highly effective in treating peripheral disorders in LD patients, they fail to overcome the BBB. Researchers have developed many strategies to circumvent this problem, for example, by creating carriers for enzyme delivery, which improve the enzyme’s half-life and the overexpression of receptors and transporters in the luminal or abluminal membranes of the BBB. This review aims to successfully examine the strategies developed during the last decade for the treatment of LDs, which mainly affect the CNS. Among the LD treatments, enzyme-replacement therapy (ERT) and gene therapy have proven effective, while nanoparticle, fusion protein, and small molecule-based therapies seem to offer considerable promise to treat the CNS pathology. This work also analyzed the challenges of the study to design new drug delivery systems for the effective treatment of LDs. Polymeric nanoparticles and liposomes are explored from their technological point of view and for the most relevant preclinical studies showing that they are excellent choices to protect active molecules and transport them through the BBB to target specific brain substrates for the treatment of LDs.
Collapse
Affiliation(s)
- Maria R. Gigliobianco
- School of Pharmacy, University of Camerino, Via A. D'Accoiso, 16, 62032, Camerino MC, Italy
| | - Piera Di Martino
- School of Pharmacy, University of Camerino, Via A. D'Accoiso, 16, 62032, Camerino MC, Italy
| | - Siyuan Deng
- School of Pharmacy, University of Camerino, Via A. D'Accoiso, 16, 62032, Camerino MC, Italy
| | - Cristina Casadidio
- School of Pharmacy, University of Camerino, Via A. D'Accoiso, 16, 62032, Camerino MC, Italy
| | - Roberta Censi
- School of Pharmacy, University of Camerino, Via A. D'Accoiso, 16, 62032, Camerino MC, Italy
| |
Collapse
|
142
|
Manthe RL, Rappaport JA, Long Y, Solomon M, Veluvolu V, Hildreth M, Gugutkov D, Marugan J, Zheng W, Muro S. δ-Tocopherol Effect on Endocytosis and Its Combination with Enzyme Replacement Therapy for Lysosomal Disorders: A New Type of Drug Interaction? J Pharmacol Exp Ther 2019; 370:823-833. [PMID: 31101681 PMCID: PMC6806345 DOI: 10.1124/jpet.119.257345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/15/2019] [Indexed: 12/27/2022] Open
Abstract
Induction of lysosomal exocytosis alleviates lysosomal storage of undigested metabolites in cell models of lysosomal disorders (LDs). However, whether this strategy affects other vesicular compartments, e.g., those involved in endocytosis, is unknown. This is important both to predict side effects and to use this strategy in combination with therapies that require endocytosis for intracellular delivery, such as lysosomal enzyme replacement therapy (ERT). We investigated this using δ-tocopherol as a model previously shown to induce lysosomal exocytosis and cell models of type A Niemann-Pick disease, a LD characterized by acid sphingomyelinase (ASM) deficiency and sphingomyelin storage. δ-Tocopherol and derivative CF3-T reduced net accumulation of fluid phase, ligands, and polymer particles via phagocytic, caveolae-, clathrin-, and cell adhesion molecule (CAM)-mediated pathways, yet the latter route was less affected due to receptor overexpression. In agreement, δ-tocopherol lowered uptake of recombinant ASM by deficient cells (known to occur via the clathrin pathway) and via targeting intercellular adhesion molecule-1 (associated to the CAM pathway). However, the net enzyme activity delivered and lysosomal storage attenuation were greater via the latter route. Data suggest stimulation of exocytosis by tocopherols is not specific of lysosomes and affects endocytic cargo. However, this effect was transient and became unnoticeable several hours after tocopherol removal. Therefore, induction of exocytosis in combination with therapies requiring endocytic uptake, such as ERT, may represent a new type of drug interaction, yet this strategy could be valuable if properly timed for minimal interference.
Collapse
Affiliation(s)
- Rachel L Manthe
- Fischell Department of Bioengineering (R.L.M., J.A.R., V.V., M.H.) and Institute for Bioscience and Biotechnology Research (M.S., S.M.), University of Maryland, College Park, Maryland; National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland (Y.L., J.M., W.Z.); Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain (D.G., S.M.); and Institution of Catalonia for Research and Advanced Studies, Barcelona, Spain (S.M.)
| | - Jeffrey A Rappaport
- Fischell Department of Bioengineering (R.L.M., J.A.R., V.V., M.H.) and Institute for Bioscience and Biotechnology Research (M.S., S.M.), University of Maryland, College Park, Maryland; National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland (Y.L., J.M., W.Z.); Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain (D.G., S.M.); and Institution of Catalonia for Research and Advanced Studies, Barcelona, Spain (S.M.)
| | - Yan Long
- Fischell Department of Bioengineering (R.L.M., J.A.R., V.V., M.H.) and Institute for Bioscience and Biotechnology Research (M.S., S.M.), University of Maryland, College Park, Maryland; National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland (Y.L., J.M., W.Z.); Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain (D.G., S.M.); and Institution of Catalonia for Research and Advanced Studies, Barcelona, Spain (S.M.)
| | - Melani Solomon
- Fischell Department of Bioengineering (R.L.M., J.A.R., V.V., M.H.) and Institute for Bioscience and Biotechnology Research (M.S., S.M.), University of Maryland, College Park, Maryland; National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland (Y.L., J.M., W.Z.); Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain (D.G., S.M.); and Institution of Catalonia for Research and Advanced Studies, Barcelona, Spain (S.M.)
| | - Vinay Veluvolu
- Fischell Department of Bioengineering (R.L.M., J.A.R., V.V., M.H.) and Institute for Bioscience and Biotechnology Research (M.S., S.M.), University of Maryland, College Park, Maryland; National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland (Y.L., J.M., W.Z.); Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain (D.G., S.M.); and Institution of Catalonia for Research and Advanced Studies, Barcelona, Spain (S.M.)
| | - Michael Hildreth
- Fischell Department of Bioengineering (R.L.M., J.A.R., V.V., M.H.) and Institute for Bioscience and Biotechnology Research (M.S., S.M.), University of Maryland, College Park, Maryland; National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland (Y.L., J.M., W.Z.); Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain (D.G., S.M.); and Institution of Catalonia for Research and Advanced Studies, Barcelona, Spain (S.M.)
| | - Dencho Gugutkov
- Fischell Department of Bioengineering (R.L.M., J.A.R., V.V., M.H.) and Institute for Bioscience and Biotechnology Research (M.S., S.M.), University of Maryland, College Park, Maryland; National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland (Y.L., J.M., W.Z.); Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain (D.G., S.M.); and Institution of Catalonia for Research and Advanced Studies, Barcelona, Spain (S.M.)
| | - Juan Marugan
- Fischell Department of Bioengineering (R.L.M., J.A.R., V.V., M.H.) and Institute for Bioscience and Biotechnology Research (M.S., S.M.), University of Maryland, College Park, Maryland; National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland (Y.L., J.M., W.Z.); Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain (D.G., S.M.); and Institution of Catalonia for Research and Advanced Studies, Barcelona, Spain (S.M.)
| | - Wei Zheng
- Fischell Department of Bioengineering (R.L.M., J.A.R., V.V., M.H.) and Institute for Bioscience and Biotechnology Research (M.S., S.M.), University of Maryland, College Park, Maryland; National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland (Y.L., J.M., W.Z.); Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain (D.G., S.M.); and Institution of Catalonia for Research and Advanced Studies, Barcelona, Spain (S.M.)
| | - Silvia Muro
- Fischell Department of Bioengineering (R.L.M., J.A.R., V.V., M.H.) and Institute for Bioscience and Biotechnology Research (M.S., S.M.), University of Maryland, College Park, Maryland; National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland (Y.L., J.M., W.Z.); Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain (D.G., S.M.); and Institution of Catalonia for Research and Advanced Studies, Barcelona, Spain (S.M.)
| |
Collapse
|
143
|
Dysregulated autophagy as a new aspect of the molecular pathogenesis of Krabbe disease. Neurobiol Dis 2019; 129:195-207. [DOI: 10.1016/j.nbd.2019.05.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022] Open
|
144
|
De Pasquale V, Pavone LM. Heparan sulfate proteoglycans: The sweet side of development turns sour in mucopolysaccharidoses. Biochim Biophys Acta Mol Basis Dis 2019; 1865:165539. [PMID: 31465828 DOI: 10.1016/j.bbadis.2019.165539] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/05/2019] [Accepted: 08/23/2019] [Indexed: 12/20/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) are complex carbohydrate-modified proteins ubiquitously expressed on cell surfaces, extracellular matrix and basement membrane of mammalian tissues. Beside to serve as structural constituents, they regulate multiple cellular activities. A critical involvement of HSPGs in development has been established, and perturbations of HSPG-dependent pathways are associated with many human diseases. Recent evidence suggest a role of HSPGs in the pathogenesis of mucopolysaccharidoses (MPSs) where the accumulation of undigested HS results in the loss of cellular functions, tissue damage and organ dysfunctions accounting for clinical manifestations which include central nervous system (CNS) involvement, degenerative joint disease and reduced bone growth. Current therapies are not curative but only ameliorate the disease symptoms. Here, we highlight the link between HSPG functions in the development of CNS and musculoskeletal structures and the etiology of some MPS phenotypes, suggesting that HSPGs may represent potential targets for the therapy of such incurable diseases.
Collapse
Affiliation(s)
- Valeria De Pasquale
- Department of Molecular Medicine and Medical Biotechnology, Medical School, University of Naples Federico II, Via S. Pansini n. 5, 80131 Naples, Italy.
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, Medical School, University of Naples Federico II, Via S. Pansini n. 5, 80131 Naples, Italy.
| |
Collapse
|
145
|
Visualizing Nitric oxide in mitochondria and lysosomes of living cells with N-Nitrosation of BODIPY-based fluorescent probes. Anal Chim Acta 2019; 1067:88-97. [DOI: 10.1016/j.aca.2019.03.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/15/2019] [Accepted: 03/21/2019] [Indexed: 12/31/2022]
|
146
|
Di Malta C, Cinque L, Settembre C. Transcriptional Regulation of Autophagy: Mechanisms and Diseases. Front Cell Dev Biol 2019; 7:114. [PMID: 31312633 PMCID: PMC6614182 DOI: 10.3389/fcell.2019.00114] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/05/2019] [Indexed: 12/18/2022] Open
Abstract
Macro (Autophagy) is a catabolic process that relies on the cooperative function of two organelles: the lysosome and the autophagosome. The recent discovery of a transcriptional gene network that co-regulates the biogenesis and function of these two organelles, and the identification of transcription factors, miRNAs and epigenetic regulators of autophagy, demonstrated that this catabolic process is controlled by both transcriptional and post-transcriptional mechanisms. In this review article, we discuss the nuclear events that control autophagy, focusing particularly on the role of the MiT/TFE transcription factor family. In addition, we will discuss evidence suggesting that the transcriptional regulation of autophagy could be targeted for the treatment of human genetic diseases, such as lysosomal storage disorders (LSDs) and neurodegeneration.
Collapse
Affiliation(s)
- Chiara Di Malta
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Medical and Translational Sciences, University of Naples Federico II, Naples, Italy
| | - Laura Cinque
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Carmine Settembre
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Medical and Translational Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
147
|
Abstract
Glycosphingolipids are cell-type-specific components of the outer leaflet of mammalian plasma membranes. Gangliosides, sialic acid–containing glycosphingolipids, are especially enriched on neuronal surfaces. As amphi-philic molecules, they comprise a hydrophilic oligosaccharide chain attached to a hydrophobic membrane anchor, ceramide. Whereas glycosphingolipid formation is catalyzed by membrane-bound enzymes along the secretory pathway, degradation takes place at the surface of intralysosomal vesicles of late endosomes and lysosomes catalyzed in a stepwise fashion by soluble hydrolases and assisted by small lipid-binding glycoproteins. Inherited defects of lysosomal hydrolases or lipid-binding proteins cause the accumulation of undegradable material in lysosomal storage diseases (GM1 and GM2 gangliosidosis; Fabry, Gaucher, and Krabbe diseases; and metachromatic leukodystrophy). The catabolic processes are strongly modified by the lipid composition of the substrate-carrying membranes, and the pathological accumulation of primary storage compounds can trigger an accumulation of secondary storage compounds (e.g., small glycosphingolipids and cholesterol in Niemann-Pick disease).
Collapse
Affiliation(s)
- Bernadette Breiden
- LIMES Institute, Membrane Biology and Lipid Biochemistry Unit, Universität Bonn, D-53121 Bonn, Germany;,
| | - Konrad Sandhoff
- LIMES Institute, Membrane Biology and Lipid Biochemistry Unit, Universität Bonn, D-53121 Bonn, Germany;,
| |
Collapse
|
148
|
Fiorenza MT, Moro E, Erickson RP. The pathogenesis of lysosomal storage disorders: beyond the engorgement of lysosomes to abnormal development and neuroinflammation. Hum Mol Genet 2019; 27:R119-R129. [PMID: 29718288 DOI: 10.1093/hmg/ddy155] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/24/2018] [Indexed: 01/03/2023] Open
Abstract
There is growing evidence that the complex clinical manifestations of lysosomal storage diseases (LSDs) are not fully explained by the engorgement of the endosomal-autophagic-lysosomal system. In this review, we explore current knowledge of common pathogenetic mechanisms responsible for the early onset of tissue abnormalities of two LSDs, Mucopolysaccharidosis type II (MPSII) and Niemann-Pick type C (NPC) diseases. In particular, perturbations of the homeostasis of glycosaminoglycans (GAGs) and cholesterol (Chol) in MPSII and NPC diseases, respectively, affect key biological processes, including morphogen signaling. Both GAGs and Chol finely regulate the release, reception and tissue distribution of Shh. Hence, not surprisingly, developmental processes depending on correct Shh signaling have been found altered in both diseases. Besides abnormal signaling, exaggerated activation of microglia and impairment of autophagy and mitophagy occur in both diseases, largely before the appearance of typical pathological signs.
Collapse
Affiliation(s)
- Maria Teresa Fiorenza
- Division of Neuroscience, Department of Psychology and "Daniel Bovet" Neurobiology Research Center, Sapienza University of Rome, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Enrico Moro
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | |
Collapse
|
149
|
Li J, Zhang X, Raynald, Jiang T, Li C. Surgical consideration in Hunter syndrome: a case of hydrocephalus and a case of epidural hematoma. Childs Nerv Syst 2019; 35:889-891. [PMID: 30443672 DOI: 10.1007/s00381-018-3998-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/31/2018] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Hunter syndrome (HS) is a rare X-linked lysosomal storage disorder which affects multiple organ systems. Surgical intervention and general anesthesia should be used with caution because of significant airway complications. CASE REPORT Two HS patients underwent surgery with different prognosis are presented below. In the first case, symptoms of progressive disabilities on motor function, language, intelligence, and development last for 1 year in a 6-year-old boy; magnetic resonance imaging (MRI) showed severe hydrocephalus. Third ventriculostomy was performed in this patient to relieve the hydrocephalus. Unfortunately, this patient died postoperatively due to postsurgical tracheal collapse. In the second case, an 8-year-old girl was referred to our hospital with epidural hematoma because of a falling accident. Trephination surgery was performed under local anesthesia to remove the hematoma. Three days postsurgical, the patient was discharged uneventfully. CONCLUSION General anesthesia in HS patients was associated with poor prognosis due to respiratory complications. Local anesthesia and less intensified treatment should be recommended.
Collapse
Affiliation(s)
- Jin Li
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Xinyan Zhang
- Emergency Department, Beijing Haidian Hospital, Beijing Haidian Section, Peking University, Beijing, 100080, China
| | - Raynald
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100050, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Chunde Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
150
|
Spinelli A, Girelli M, Arosio D, Polito L, Podini P, Martino G, Seneci P, Muzio L, Menegon A. Intracisternal delivery of PEG-coated gold nanoparticles results in high brain penetrance and long-lasting stability. J Nanobiotechnology 2019; 17:49. [PMID: 30943991 PMCID: PMC6448280 DOI: 10.1186/s12951-019-0481-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 03/21/2019] [Indexed: 12/20/2022] Open
Abstract
Background The increasing use of gold nanoparticles (AuNPs) in the field of neuroscience instilled hope for their rapid translation to the clinical practice. AuNPs can be engineered to carry therapeutics or diagnostics in the diseased brain, possibly providing greater cell specificity and low toxicity. Although there is a general enthusiasm for these tools, we are in early stages of their development. Overall, their brain penetrance, stability and cell specificity are critical issues that must be addressed to drive AuNPs to the clinic. Results We studied the kinetic, distribution and stability of PEG-coated AuNPs in mice receiving a single injection into the cisterna magna of the 4th ventricle. AuNPs were conjugated with the fluorescent tag Cy5.5 (Cy5.5-AuNPs) to track their in vivo distribution. Fluorescence levels from such particles were detected in mice for weeks. In situ analysis of brains by immunofluorescence and electron microscopy revealed that Cy5.5-AuNPs penetrated the brain parenchyma, spreading in the CNS parenchyma beneath the 4th ventricle. Cy5.5-AuNPs were preferentially found in neurons, although a subset of resting microglia also entrapped these particles. Conclusions Our results suggest that the ICM route for delivering gold particles allows the targeting of neurons. This approach might be pursued to carry therapeutics or diagnostics inside a diseased brain with a surgical procedure that is largely used in gene therapy approaches. Furthermore, this approach could be used for radiotherapy, enhancing the agent’s efficacy to kill brain cancer cells. Electronic supplementary material The online version of this article (10.1186/s12951-019-0481-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Antonello Spinelli
- Experimental Imaging Centre, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Maria Girelli
- Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Daniela Arosio
- Institute of Molecular Science and Technologies (ISTM), CNR, Via C. Golgi 19, 20133, Milan, Italy
| | - Laura Polito
- Institute of Molecular Science and Technologies (ISTM), CNR, Via C. Golgi 19, 20133, Milan, Italy
| | - Paola Podini
- Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Gianvito Martino
- Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Pierfausto Seneci
- Chemistry Department, Università degli Studi di Milano, Via Venezian 21, 20133, Milan, Italy
| | - Luca Muzio
- Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, 20132, Milan, Italy.
| | - Andrea Menegon
- Experimental Imaging Centre, San Raffaele Scientific Institute, 20132, Milan, Italy.
| |
Collapse
|