101
|
Wang Q, Wei S, Li L, Qiu J, Zhou S, Shi C, Shi Y, Zhou H, Lu L. TGR5 deficiency aggravates hepatic ischemic/reperfusion injury via inhibiting SIRT3/FOXO3/HIF-1ɑ pathway. Cell Death Discov 2020; 6:116. [PMID: 33298860 PMCID: PMC7604280 DOI: 10.1038/s41420-020-00347-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/22/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Ischemia/reperfusion (I/R) injury is responsible for liver injury during hepatic resection and liver transplantation. The plasma membrane-bound G protein-coupled bile acid receptor (TGR5) could regulate immune response in multiple liver diseases. Nevertheless, the underlying role of TGR5 in hepatic I/R injury remains largely unknown. This study aimed to investigate the potential mechanism of TGR5 in hepatic I/R injury. Wild-type (WT) and TGR5 knockout (TGR5KO) mice were used to perform hepatic I/R, and macrophages were isolated from mice for in vitro experiments. The results demonstrated that knockout of TGR5 in mice significantly exacerbated liver injury and inflammatory response. TGR5KO mice infused with WT macrophages showed relieved liver injury. Further study revealed that TGR5 knockout inhibited sirtuin 3 (SIRT3) and forkhead box O3 (FOXO3) expression. In vitro experiments indicated that SIRT3 inhibited acetylation, ubiquitination and degradation of FOXO3. FOXO3 inhibited HIF-1α transcription by binding to its promoter. TGR5 knockout inhibited SIRT3 expression, thus promoted the acetylation, ubiquitination, and degradation of FOXO3, which resulted in increased HIF-1α transcription and macrophages proinflammatory response. Collectively, TGR5 plays a critical protective role in hepatic I/R injury. FOXO3 deacetylation mediated by SIRT3 can attenuate hepatic I/R injury. TGR5 deficiency aggravates hepatic I/R injury via inhibiting SIRT3/FOXO3/HIF-1α pathway.
Collapse
Affiliation(s)
- Qi Wang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Song Wei
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Lei Li
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Jiannan Qiu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Shun Zhou
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Chengyu Shi
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Yong Shi
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Haoming Zhou
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China. .,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.
| | - Ling Lu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China. .,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China. .,School of Medicine, Southeast University, Nanjing, China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China. .,State Key Laboratory of Reproductive Medicine, Nanjing, China.
| |
Collapse
|
102
|
Bile Acids: A Communication Channel in the Gut-Brain Axis. Neuromolecular Med 2020; 23:99-117. [PMID: 33085065 DOI: 10.1007/s12017-020-08625-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
Abstract
Bile acids are signalling hormones involved in the regulation of several metabolic pathways. The ability of bile acids to bind and signal through their receptors is modulated by the gut microbiome, since the microbiome contributes to the regulation and synthesis of bile acids as well to their physiochemical properties. From the gut, bacteria have been shown to send signals to the central nervous system via their metabolites, thus affecting the behaviour and brain function of the host organism. In the last years it has become increasingly evident that bile acids affect brain function, during normal physiological and pathological conditions. Although bile acids may be synthesized locally in the brain, the majority of brain bile acids are taken up from the systemic circulation. Since the composition of the brain bile acid pool may be regulated by the action of intestinal bacteria, it is possible that bile acids function as a communication bridge between the gut microbiome and the brain. However, little is known about the molecular mechanisms and the physiological roles of bile acids in the central nervous system. The possibility that bile acids may be a direct link between the intestinal microbiome and the brain is also an understudied subject. Here we review the influence of gut bacteria on the bile acid pool composition and properties, as well as striking evidence showing the role of bile acids as neuroactive molecules.
Collapse
|
103
|
Sahu R, Mishra R, Majee C. An insight into primary biliary cholangitis and its recent advances in treatment: semi-synthetic analogs to combat ursodeoxycholic-acid resistance. Expert Rev Gastroenterol Hepatol 2020; 14:985-998. [PMID: 32674617 DOI: 10.1080/17474124.2020.1797485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Primary biliary cholangitis (PBC) is a chronic cholestatic liver disease which on progression causes cirrhosis; various studies also suggested that several diseases can co-exist in patients. In existing depiction of disease PBC, apart from entire use of ursodeoxycholic acid (UDCA), several patients need to step forward to liver-transplantation or death due to resistance or non-responder with UDCA monotherapy. AREAS COVERED To overcome this non-respondent treatment, novel bile acid semi-synthetic analogs have been identified which shows their potency against for farnesoid X receptor and transmembrane G protein-coupled receptor-5 which are identified as target for many developing analogs which have desirable pharmacokinetic profiles. EXPERT OPINION A range of studies suggests that adding semisynthetic analogs in therapeutic regime improves liver biochemistries in patients with suboptimal response to UDCA. Thus, the aspire of this review is to abridge and compare therapeutic value and current markets affirm of various bile acids semi-synthetic analogs which certainly are having promising effects in PBC monotherapy or in pooled treatment with UDCA for PBC.
Collapse
Affiliation(s)
- Rakesh Sahu
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute) , Greater Noida, India
| | - Rakhi Mishra
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute) , Greater Noida, India
| | - Chandana Majee
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute) , Greater Noida, India
| |
Collapse
|
104
|
Holter MM, Chirikjian MK, Govani VN, Cummings BP. TGR5 Signaling in Hepatic Metabolic Health. Nutrients 2020; 12:nu12092598. [PMID: 32859104 PMCID: PMC7551395 DOI: 10.3390/nu12092598] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
TGR5 is a G protein-coupled bile acid receptor that is increasingly recognized as a key regulator of glucose homeostasis. While the role of TGR5 signaling in immune cells, adipocytes and enteroendocrine L cells in metabolic regulation has been well described and extensively reviewed, the impact of TGR5-mediated effects on hepatic physiology and pathophysiology in metabolic regulation has received less attention. Recent studies suggest that TGR5 signaling contributes to improvements in hepatic insulin signaling and decreased hepatic inflammation, as well as metabolically beneficial improvements in bile acid profile. Additionally, TGR5 signaling has been associated with reduced hepatic steatosis and liver fibrosis, and improved liver function. Despite the beneficial effects of TGR5 signaling on metabolic health, TGR5-mediated gallstone formation and gallbladder filling complicate therapeutic targeting of TGR5 signaling. To this end, there is a growing need to identify cell type-specific effects of hepatic TGR5 signaling to begin to identify and target the downstream effectors of TGR5 signaling. Herein, we describe and integrate recent advances in our understanding of the impact of TGR5 signaling on liver physiology and how its effects on the liver integrate more broadly with whole body glucose regulation.
Collapse
|
105
|
Perino A, Demagny H, Velazquez-Villegas L, Schoonjans K. Molecular Physiology of Bile Acid Signaling in Health, Disease, and Aging. Physiol Rev 2020; 101:683-731. [PMID: 32790577 DOI: 10.1152/physrev.00049.2019] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the past two decades, bile acids (BAs) have become established as important signaling molecules that enable fine-tuned inter-tissue communication from the liver, their site of production, over the intestine, where they are modified by the gut microbiota, to virtually any organ, where they exert their pleiotropic physiological effects. The chemical variety of BAs, to a large extent determined by the gut microbiome, also allows for a complex fine-tuning of adaptive responses in our body. This review provides an overview of the mechanisms by which BA receptors coordinate several aspects of physiology and highlights new therapeutic strategies for diseases underlying pathological BA signaling.
Collapse
Affiliation(s)
- Alessia Perino
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne (EPFL), Switzerland
| | - Hadrien Demagny
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne (EPFL), Switzerland
| | - Laura Velazquez-Villegas
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne (EPFL), Switzerland
| | - Kristina Schoonjans
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne (EPFL), Switzerland
| |
Collapse
|
106
|
Ni Y, Ni L, Zhuge F, Fu Z. The Gut Microbiota and Its Metabolites, Novel Targets for Treating and Preventing Non-Alcoholic Fatty Liver Disease. Mol Nutr Food Res 2020; 64:e2000375. [PMID: 32738185 DOI: 10.1002/mnfr.202000375] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Indexed: 12/15/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent metabolic disorders worldwide, along with obesity and type 2 diabetes. NAFLD involves a series of liver abnormalities from simple hepatic steatosis to non-alcoholic steatohepatitis, which can ultimately lead to liver cirrhosis and cancer. The gut-liver axis plays an important role in the development of NAFLD, which depends mainly on regulation of the gut microbiota and its bacterial products. These intestinal bacterial species and their metabolites, including bile acids, tryptophan catabolites, and branched-chain amino acids, regulate adipose tissue and intestinal homeostasis and contribute to the pathogenesis of NAFLD/non-alcoholic steatohepatitis. In this review, the current evidence regarding the key role of the gut microbiota and its metabolites in the pathogenesis and development of NAFLD is highlighted, and the advances in the progression and applied prospects of gut microbiota-targeted dietary and exercise therapies is also discussed.
Collapse
Affiliation(s)
- Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Liyang Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Fen Zhuge
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, 310015, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| |
Collapse
|
107
|
Fiorucci S, Baldoni M, Ricci P, Zampella A, Distrutti E, Biagioli M. Bile acid-activated receptors and the regulation of macrophages function in metabolic disorders. Curr Opin Pharmacol 2020; 53:45-54. [DOI: 10.1016/j.coph.2020.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
|
108
|
Abstract
Neonatal cholestasis is characterized by conjugated hyperbilirubinemia in the newborn and young infant and is a sign common to over 100 hepatobiliary and/or metabolic disorders. A timely evaluation for its etiology is critical in order to quickly identify treatable causes such as biliary atresia, many of which benefit from early therapy. An expanding group of molecularly defined disorders involving bile formation, canalicular transporters, tight junction proteins and inborn errors of metabolism are being continuously discovered because of advances in genetic testing and bioinformatics. The advent of next generation sequencing has transformed our ability to test for multiple genes and whole exome or whole genome sequencing within days to weeks, enabling rapid and affordable molecular diagnosis for disorders that cannot be directly diagnosed from standard blood tests or liver biopsy. Thus, our diagnostic algorithms for neonatal cholestasis are undergoing transformation, moving genetic sequencing to earlier in the evaluation pathway once biliary atresia, "red flag" disorders and treatable disorders are excluded. Current therapies focus on promoting bile flow, reducing pruritus, ensuring optimal nutrition, and monitoring for complications, without addressing the underlying cause of cholestasis in most instances. Our improved understanding of bile formation and the enterohepatic circulation of bile acids has led to emerging therapies for cholestasis which require appropriate pediatric clinical trials. Despite these advances, the cause and optimal therapy for biliary atresia remain elusive. The goals of this review are to outline the etiologies, diagnostic pathways and current and emerging management strategies for neonatal cholestasis.
Collapse
Affiliation(s)
- Amy G. Feldman
- Pediatric Liver Center, Digestive Health Institute, Children’s Hospital Colorado, Section of Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Ronald J. Sokol
- Pediatric Liver Center, Digestive Health Institute, Children’s Hospital Colorado, Section of Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine, Aurora, Colorado, USA,Colorado Clinical and Translational Sciences Institute, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA,Corresponding Author: Ronald J. Sokol, Digestive Health Institute, Children’s Hospital Colorado, Box B290, 13123 E. 16th Ave., Aurora, Colorado, 80045, USA Phone: 720-777-6669, Fax: 720-777-7277,
| |
Collapse
|
109
|
Wu X, Li JY, Lee A, Lu YX, Zhou SY, Owyang C. Satiety induced by bile acids is mediated via vagal afferent pathways. JCI Insight 2020; 5:132400. [PMID: 32699194 DOI: 10.1172/jci.insight.132400] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 06/11/2020] [Indexed: 12/21/2022] Open
Abstract
The aim of this study was to elucidate the role and the pathways used by bile acid receptor TGR5 in transmitting satiety signals. We showed TGR5 colocalized with cholecystokinin type A (CCK-A) receptors in a subpopulation of rat nodose ganglia (NG) neurons. Intra-arterial injection of deoxycholic acid (DCA) dose-dependently increased firing rate in NG while a subthreshold dose of DCA and CCK-8 increased firing rates synergistically. TGR5-specific agonist oleanolic acid induced NG neuronal firing in a dose-dependent manner. However, the same units did not respond to GW4064, a nuclear receptor-specific agonist. Quantity of DCA-activated neurons in the hypothalamus was determined by c-Fos expression. Combining DCA and CCK-8 caused a 4-fold increase in c-Fos activation. In the arcuate nucleus, c-Fos-positive neurons coexpressed cocaine and amphetamine regulated transcript and proopiomelanocortin. DCA-induced c-Fos expression was eliminated following truncal vagotomy or silencing of TGR5 in the NG. Feeding studies showed intravenous injection of 1 μg/kg of DCA reduced food intake by 12% ± 3%, 24% ± 5%, and 32% ± 6% in the first 3 hours, respectively. Silencing of TGR5 or CCK-A receptor in the NG enhanced spontaneous feeding by 18% ± 2% and 13.5% ± 2.4%, respectively. When both TGR5 and CCK-A receptor were silenced, spontaneous feeding was enhanced by 37% ± 4% in the first 3 hours, suggesting that bile acid may have a physiological role in regulating satiety. Working in concert with CCK, bile acid synergistically enhanced satiety signals to reduce spontaneous feeding.
Collapse
|
110
|
Holter MM, Chirikjian MK, Briere DA, Maida A, Sloop KW, Schoonjans K, Cummings BP. Compound 18 Improves Glucose Tolerance in a Hepatocyte TGR5-dependent Manner in Mice. Nutrients 2020; 12:nu12072124. [PMID: 32708970 PMCID: PMC7400836 DOI: 10.3390/nu12072124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
The bile acid receptor, TGR5, is a key regulator of glucose homeostasis, but the mechanisms by which TGR5 signaling improves glucose regulation are incompletely defined. In particular, TGR5 has an increasingly appreciated role in liver physiology and pathobiology; however, whether TGR5 signaling within the liver contributes to its glucoregulatory effects is unknown. Therefore, we investigated the role of hepatocyte TGR5 signaling on glucose regulation using a hepatocyte-specific TGR5 knockout mouse model. Hepatocyte-specific Tgr5Hep+/+ and Tgr5Hep−/− mice were fed a high fat diet (HFD) for 7 weeks and then orally gavaged with three doses of a highly potent, TGR5-specific agonist, Compound 18 (10 mg/kg), or vehicle, over 72 h and underwent an oral glucose tolerance test (OGTT) after the last dose. Herein, we report that TGR5 mRNA and protein is present in mouse hepatocytes. Cumulative food intake, body weight, and adiposity do not differ between Tgr5Hep+/+ and Tgr5Hep−/− mice with or without treatment with Compound 18. However, administration of Compound 18 improves glucose tolerance in Tgr5HEP+/+ mice, but not in Tgr5Hep−/− mice. Further, this effect occurred independent of body weight and GLP-1 secretion. Together, these data demonstrate that TGR5 is expressed in hepatocytes, where it functions as a key regulator of whole-body glucose homeostasis.
Collapse
Affiliation(s)
- Marlena M. Holter
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA; (M.M.H.); (M.K.C.)
| | - Margot K. Chirikjian
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA; (M.M.H.); (M.K.C.)
| | - Daniel A. Briere
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46225, USA (K.W.S.)
| | - Adriano Maida
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (A.M.); (K.S.)
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Kyle W. Sloop
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46225, USA (K.W.S.)
| | - Kristina Schoonjans
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (A.M.); (K.S.)
| | - Bethany P. Cummings
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA; (M.M.H.); (M.K.C.)
- Correspondence: ; Tel.: +1-607-253-3552
| |
Collapse
|
111
|
Yang H, Liu H, Jiao Y, Qian J. Roux-en-Y Gastrointestinal Bypass Promotes Activation of TGR5 and Peptide YY. Endocr Metab Immune Disord Drug Targets 2020; 20:1262-1267. [PMID: 32600238 DOI: 10.2174/1871530320666200628024500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 04/26/2020] [Accepted: 05/04/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND G protein-coupled bile acid receptor (TGR5) is involved in a number of metabolic diseases. The aim of this study was to identify the role of TGR5 after Roux-en-Y gastric bypass (GBP). METHODS Wild type and TGR5 knockout mice (tgr5-/-) were fed a high-fat diet (HFD) to establish the obesity model. GBP was performed. The changes in body weight and food intake were measured. The levels of TGR5 and peptide YY (PYY) were evaluated by RT-PCR, Western blot, and ELISA. Moreover, the L-cells were separated from wild type and tgr5-/- mice. The levels of PYY in L-cells were evaluated by ELISA. RESULTS The body weights were significantly decreased after GBP in wild type mice (p<0.05), but not tgr5-/- mice (p>0.05). Food intake was reduced after GBP in wild type mice, but also not significantly affected in tgr5-/- mice (p>0.05). The levels of PYY were significantly increased after GBP compared with the sham group (p<0.05); however, in tgr5-/- mice the expression of PYY was not significantly affected (p>0.05). After INT-777 stimulation in L-cells obtained from murine intestines, the levels of PYY were significantly increased in L-cells tgr5+/+ (p<0.05). CONCLUSION Our study suggests that GBP up-regulated the expression of TGR5 in murine intestines, and increased the levels of PYY, which further reduced food intake and decreased the body weight.
Collapse
Affiliation(s)
- Haojun Yang
- Department of Gastrointestinal Surgery, Nanjing Medical University Affiliated Changzhou No. 2 People's Hospital, Changzhou, 213000, China
| | - Hanyang Liu
- Department of Gastrointestinal Surgery, Nanjing Medical University Affiliated Changzhou No. 2 People's Hospital, Changzhou, 213000, China
| | - YuWen Jiao
- Department of Gastrointestinal Surgery, Nanjing Medical University Affiliated Changzhou No. 2 People's Hospital, Changzhou, 213000, China
| | - Jun Qian
- Department of Gastrointestinal Surgery, Nanjing Medical University Affiliated Changzhou No. 2 People's Hospital, Changzhou, 213000, China
| |
Collapse
|
112
|
Hunt JE, Billeschou A, Windeløv JA, Hartmann B, Ullmer C, Holst JJ, Kissow H. Pharmacological activation of TGR5 promotes intestinal growth via a GLP-2-dependent pathway in mice. Am J Physiol Gastrointest Liver Physiol 2020; 318:G980-G987. [PMID: 32308039 DOI: 10.1152/ajpgi.00062.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glucagon-like peptide (GLP)-1 and -2-secreting L cells have been shown to express the bile acid receptor Takeda G protein-receptor-5 (TGR5) and increase secretion upon receptor activation. Previous studies have explored GLP-1 secretion following acute TGR5 activation, but chronic activation and GLP-2 responses have not been characterized. In this study, we aimed to investigate the consequences of pharmacological TGR5 receptor activation on L cell hormone production in vivo using the specific TGR5 agonist RO5527239 and the GLP-2 receptor knockout mouse. Here, we show that 1) TGR5 receptor activation led to increased GLP-1 and GLP-2 content in the colon, which 2) was associated with an increased small intestinal weight that 3) was GLP-2 dependent. Additionally, we report that TGR5-mediated gallbladder filling occurred independently of GLP-2 signaling. In conclusion, we demonstrate that pharmacological TGR5 receptor activation stimulates L cells, triggering GLP-2-dependent intestinal adaption in mice.NEW & NOTEWORTHY Using the specific Takeda G protein-receptor-5 (TGR5) agonist RO5527239 and GLP-2 receptor knockout mice, we show that activation of TGR5 led to the increase in colonic GLP-1 and GLP-2 concomitant with a GLP-2 dependent growth response in the proximal portion of the small intestine.
Collapse
Affiliation(s)
- Jenna Elizabeth Hunt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna Billeschou
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johanne Agerlin Windeløv
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christoph Ullmer
- Roche Pharmaceutical Research and Early Development, F. Hoffmann-La Roche Limited, Basel, Switzerland
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hannelouise Kissow
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
113
|
Merlen G, Bidault-Jourdainne V, Kahale N, Glenisson M, Ursic-Bedoya J, Doignon I, Garcin I, Humbert L, Rainteau D, Tordjmann T. Hepatoprotective impact of the bile acid receptor TGR5. Liver Int 2020; 40:1005-1015. [PMID: 32145703 DOI: 10.1111/liv.14427] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 02/13/2023]
Abstract
During liver repair after injury, bile secretion has to be tightly modulated in order to preserve liver parenchyma from bile acid (BA)-induced injury. The mechanisms allowing the liver to maintain biliary homeostasis during repair after injury are not completely understood. Besides their historical role in lipid digestion, bile acids (BA) and their receptors constitute a signalling network with multiple impacts on liver repair, both stimulating regeneration and protecting the liver from BA overload. BA signal through nuclear (mainly Farnesoid X Receptor, FXR) and membrane (mainly G Protein-coupled BA Receptor 1, GPBAR-1 or TGR5) receptors to elicit a wide array of biological responses. While a great number of studies have been dedicated to the hepato-protective impact of FXR signalling, TGR5 is by far less explored in this context. Because the liver has to face massive and potentially harmful BA overload after partial ablation or destruction, BA-induced protective responses crucially contribute to spare liver repair capacities. Based on the available literature, the TGR5 BA receptor protects the remnant liver and maintains biliary homeostasis, mainly through the control of inflammation, biliary epithelial barrier permeability, BA pool hydrophobicity and sinusoidal blood flow. Mouse experimental models of liver injury reveal that in the lack of TGR5, excessive inflammation, leaky biliary epithelium and hydrophobic BA overload result in parenchymal insult and compromise optimal restoration of a functional liver mass. Translational perspectives are thus opened to target TGR5 with the aim of protecting the liver in the context of injury and BA overload.
Collapse
Affiliation(s)
- Grégory Merlen
- INSERM U1193, Faculté des Sciences d'Orsay, Université Paris Saclay, Orsay, France
| | | | - Nicolas Kahale
- INSERM U1193, Faculté des Sciences d'Orsay, Université Paris Saclay, Orsay, France
| | - Mathilde Glenisson
- INSERM U1193, Faculté des Sciences d'Orsay, Université Paris Saclay, Orsay, France
| | - José Ursic-Bedoya
- INSERM U1193, Faculté des Sciences d'Orsay, Université Paris Saclay, Orsay, France
| | - Isabelle Doignon
- INSERM U1193, Faculté des Sciences d'Orsay, Université Paris Saclay, Orsay, France
| | - Isabelle Garcin
- INSERM U1193, Faculté des Sciences d'Orsay, Université Paris Saclay, Orsay, France
| | - Lydie Humbert
- Centre de Recherche Saint Antoine, CRSA, Sorbonne Université, Paris, France
| | - Dominique Rainteau
- Centre de Recherche Saint Antoine, CRSA, Sorbonne Université, Paris, France
| | - Thierry Tordjmann
- INSERM U1193, Faculté des Sciences d'Orsay, Université Paris Saclay, Orsay, France
| |
Collapse
|
114
|
Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2020; 17:223-237. [PMID: 32076145 DOI: 10.1038/s41575-019-0258-z] [Citation(s) in RCA: 1146] [Impact Index Per Article: 229.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2019] [Indexed: 02/06/2023]
Abstract
A key role of the gut microbiota in the establishment and maintenance of health, as well as in the pathogenesis of disease, has been identified over the past two decades. One of the primary modes by which the gut microbiota interacts with the host is by means of metabolites, which are small molecules that are produced as intermediate or end products of microbial metabolism. These metabolites can derive from bacterial metabolism of dietary substrates, modification of host molecules, such as bile acids, or directly from bacteria. Signals from microbial metabolites influence immune maturation, immune homeostasis, host energy metabolism and maintenance of mucosal integrity. Alterations in the composition and function of the microbiota have been described in many studies on IBD. Alterations have also been described in the metabolite profiles of patients with IBD. Furthermore, specific classes of metabolites, notably bile acids, short-chain fatty acids and tryptophan metabolites, have been implicated in the pathogenesis of IBD. This Review aims to define the key classes of microbial-derived metabolites that are altered in IBD, describe the pathophysiological basis of these associations and identify future targets for precision therapeutic modulation.
Collapse
|
115
|
Chait A, den Hartigh LJ. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Front Cardiovasc Med 2020; 7:22. [PMID: 32158768 PMCID: PMC7052117 DOI: 10.3389/fcvm.2020.00022] [Citation(s) in RCA: 742] [Impact Index Per Article: 148.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/10/2020] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue plays essential roles in maintaining lipid and glucose homeostasis. To date several types of adipose tissue have been identified, namely white, brown, and beige, that reside in various specific anatomical locations throughout the body. The cellular composition, secretome, and location of these adipose depots define their function in health and metabolic disease. In obesity, adipose tissue becomes dysfunctional, promoting a pro-inflammatory, hyperlipidemic and insulin resistant environment that contributes to type 2 diabetes mellitus (T2DM). Concurrently, similar features that result from adipose tissue dysfunction also promote cardiovascular disease (CVD) by mechanisms that can be augmented by T2DM. The mechanisms by which dysfunctional adipose tissue simultaneously promote T2DM and CVD, focusing on adipose tissue depot-specific adipokines, inflammatory profiles, and metabolism, will be the focus of this review. The impact that various T2DM and CVD treatment strategies have on adipose tissue function and body weight also will be discussed.
Collapse
Affiliation(s)
- Alan Chait
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Laura J den Hartigh
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
116
|
Jia ET, Liu ZY, Pan M, Lu JF, Ge QY. Regulation of bile acid metabolism-related signaling pathways by gut microbiota in diseases. J Zhejiang Univ Sci B 2020; 20:781-792. [PMID: 31489798 DOI: 10.1631/jzus.b1900073] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the past decade, there has been increasing attention on the interaction between microbiota and bile acid metabolism. Bile acids are not only involved in the metabolism of nutrients, but are also important in signal transduction for the regulation of host physiological activities. Microbial-regulated bile acid metabolism has been proven to affect many diseases, but there have not been many studies of disease regulation by microbial receptor signaling pathways. This review considers findings of recent research on the core roles of farnesoid X receptor (FXR), G protein-coupled bile acid receptor (TGR5), and vitamin D receptor (VDR) signaling pathways in microbial-host interactions in health and disease. Studying the relationship between these pathways can help us understand the pathogenesis of human diseases, and lead to new solutions for their treatments.
Collapse
Affiliation(s)
- Er-Teng Jia
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhi-Yu Liu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Min Pan
- School of Medicine, Southeast University, Nanjing 210097, China
| | - Jia-Feng Lu
- Center of Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215002, China
| | - Qin-Yu Ge
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
117
|
Gulamhusein AF, Hirschfield GM, Milovanovic J, Arsenijevic D, Arsenijevic N, Milovanovic M. Primary biliary cholangitis: pathogenesis and therapeutic opportunities. Nat Rev Gastroenterol Hepatol 2020; 17:93-110. [PMID: 31819247 DOI: 10.1038/s41575-019-0226-7] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2019] [Indexed: 02/08/2023]
Abstract
Primary biliary cholangitis is a chronic, seropositive and female-predominant inflammatory and cholestatic liver disease, which has a variable rate of progression towards biliary cirrhosis. Substantial progress has been made in patient risk stratification with the goal of personalized care, including early adoption of next-generation therapy with licensed use of obeticholic acid or off-label fibrate derivatives for those with insufficient benefit from ursodeoxycholic acid, the current first-line drug. The disease biology spans genetic risk, epigenetic changes, dysregulated mucosal immunity and altered biliary epithelial cell function, all of which interact and arise in the context of ill-defined environmental triggers. A current focus of research on nuclear receptor pathway modulation that specifically and potently improves biliary excretion, reduces inflammation and attenuates fibrosis is redefining therapy. Patients are benefiting from pharmacological agonists of farnesoid X receptor and peroxisome proliferator-activated receptors. Immunotherapy remains a challenge, with a lack of target definition, pleiotropic immune pathways and an interplay between hepatic immune responses and cholestasis, wherein bile acid-induced inflammation and fibrosis are dominant clinically. The management of patient symptoms, particularly pruritus, is a notable goal reflected in the development of rational therapy with apical sodium-dependent bile acid transporter inhibitors.
Collapse
Affiliation(s)
- Aliya F Gulamhusein
- Toronto Centre for Liver Disease, University Health Network and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Gideon M Hirschfield
- Toronto Centre for Liver Disease, University Health Network and Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Jelena Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia.,Department of Histology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Dragana Arsenijevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Marija Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| |
Collapse
|
118
|
Wäschenbach L, Gertzen CGW, Keitel V, Gohlke H. Dimerization energetics of the G-protein coupled bile acid receptor TGR5 from all-atom simulations. J Comput Chem 2019; 41:874-884. [PMID: 31880348 DOI: 10.1002/jcc.26135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 12/20/2022]
Abstract
We describe the first extensive energetic evaluation of GPCR dimerization on the atomistic level by means of potential of mean force (PMF) computations and implicit solvent/implicit membrane end-point free energy calculations (MM-PBSA approach). Free energies of association computed from the PMFs show that the formation of both the 1/8 and 4/5 interface is energetically favorable for TGR5, the first GPCR known to be activated by hydrophobic bile acids and neurosteroids. Furthermore, formation of the 1/8 interface is favored over that of the 4/5 interface. Both results are in line with our previous FRET experiments in live cells. Differences in lipid-protein interactions are identified to contribute to the observed differences in free energies of association. A per-residue decomposition of the MM-PBSA effective binding energy reveals hot spot residues specific for both interfaces that form clusters. This knowledge may be used to guide the design of dimerization inhibitors or perform mutational studies to explore physiological consequences of distorted TGR5 association. Finally, we characterized the role of Y111, located in the conserved (D/E)RY motif, as a facilitator of TGR5 interactions. The types of computations performed here should be transferable to other transmembrane proteins that form dimers or higher oligomers as long as good structural models of the dimeric or oligomeric states are available. Such computations may help to overcome current restrictions due to an imperfect energetic representation of protein association at the coarse-grained level. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lucas Wäschenbach
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Christoph G W Gertzen
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.,Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.,John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), and Institute for Complex Systems-Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.,John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), and Institute for Complex Systems-Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| |
Collapse
|
119
|
Zhang L, Fu X, Gui T, Wang T, Wang Z, Kullak-Ublick GA, Gai Z. Effects of Farnesiferol B on Ischemia-Reperfusion-Induced Renal Damage, Inflammation, and NF-κB Signaling. Int J Mol Sci 2019; 20:ijms20246280. [PMID: 31842453 PMCID: PMC6940812 DOI: 10.3390/ijms20246280] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/03/2019] [Accepted: 12/10/2019] [Indexed: 12/26/2022] Open
Abstract
Background: G-protein-coupled bile acid receptor (TGR5), a membrane bile acid receptor, regulates macrophage reactivity, and attenuates inflammation in different disease models. However, the regulatory effects of TGR5 in ischemia/reperfusion (I/R)-induced kidney injury and inflammation have not yet been extensively studied. Therefore, we hypothesize that Farnesiferol B, a natural TGR5 agonist, could alleviate renal I/R injury by reducing inflammation and macrophage migration through activating TGR5. Methods: Mice were treated with Farnesiferol B before I/R or sham procedures. Renal function, pathological analysis, and inflammatory mediators were examined. In vitro, the regulatory effects of Farnesiferol B on the Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway in macrophages were investigated. Results: After I/R, Farnesiferol B-treated mice displayed better renal function and less tubular damage. Farnesiferol B reduced renal oxidative stress and inflammation significantly. In vitro, Farnesiferol B treatment alleviated lipopolysaccharide (LPS)-induced macrophage migration and activation, as well as LPS-induced NF-κB activation through TGR5. Conclusions: Farnesiferol B could protect kidney function from I/R-induced damage by attenuating inflammation though activating TGR5 in macrophages. Farnesiferol B might be a potent TGR5 ligand for the treatment of I/R-induced renal inflammation.
Collapse
Affiliation(s)
- Lu Zhang
- College of Traditional Chinese Medicine; Shandong Co-innovation Center of TCM Formula; Institute for Literature and Culture of Chinese Medicine; Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland
| | - Xianjun Fu
- College of Traditional Chinese Medicine; Shandong Co-innovation Center of TCM Formula; Institute for Literature and Culture of Chinese Medicine; Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ting Gui
- College of Traditional Chinese Medicine; Shandong Co-innovation Center of TCM Formula; Institute for Literature and Culture of Chinese Medicine; Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Tianqi Wang
- College of Traditional Chinese Medicine; Shandong Co-innovation Center of TCM Formula; Institute for Literature and Culture of Chinese Medicine; Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhenguo Wang
- College of Traditional Chinese Medicine; Shandong Co-innovation Center of TCM Formula; Institute for Literature and Culture of Chinese Medicine; Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Gerd A. Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland
- Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis Pharma, 4056 Basel, Switzerland
- Correspondence: (G.A.K.-U.); (Z.G.); Tel.: +43-253-31-45
| | - Zhibo Gai
- College of Traditional Chinese Medicine; Shandong Co-innovation Center of TCM Formula; Institute for Literature and Culture of Chinese Medicine; Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland
- Correspondence: (G.A.K.-U.); (Z.G.); Tel.: +43-253-31-45
| |
Collapse
|
120
|
Human Postprandial Nutrient Metabolism and Low-Grade Inflammation: A Narrative Review. Nutrients 2019; 11:nu11123000. [PMID: 31817857 PMCID: PMC6950246 DOI: 10.3390/nu11123000] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022] Open
Abstract
The importance of the postprandial state has been acknowledged, since hyperglycemia and hyperlipidemia are linked with several chronic systemic low-grade inflammation conditions. Humans spend more than 16 h per day in the postprandial state and the postprandial state is acknowledged as a complex interplay between nutrients, hormones and diet-derived metabolites. The purpose of this review is to provide insight into the physiology of the postprandial inflammatory response, the role of different nutrients, the pro-inflammatory effects of metabolic endotoxemia and the anti-inflammatory effects of bile acids. Moreover, we discuss nutritional strategies that may be linked to the described pathways to modulate the inflammatory component of the postprandial response.
Collapse
|
121
|
Bile acid receptor TGR5 is critically involved in preference for dietary lipids and obesity. J Nutr Biochem 2019; 76:108298. [PMID: 31812910 DOI: 10.1016/j.jnutbio.2019.108298] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/29/2019] [Accepted: 11/12/2019] [Indexed: 12/25/2022]
Abstract
We investigated the implication of Takeda G protein-coupled receptor 5 (TGR5) in fat preference and fat sensing in taste bud cells (TBC) in C57BL/6 wild-type (WT) and TGR5 knock out (TGR5-/-) male mice maintained for 20 weeks on a high-fat diet (HFD). We also assessed the implication of TGR5 single nucleotide polymorphism (SNP) in young obese humans. The high-fat diet (HFD)-fed TGR5-/- mice were more obese, marked with higher liver weight, lipidemia and steatosis than WT obese mice. The TGR5-/- obese mice exhibited high daily food/energy intake, fat mass and inflammatory status. WT obese mice lost the preference for dietary fat, but the TGR5-/- obese mice exhibited no loss towards the attraction for lipids. In lingual TBC, the fatty acid-triggered Ca2+ signaling was decreased in WT obese mice; however, it was increased in TBC from TGR5-/- obese mice. Fatty acid-induced in vitro release of GLP-1 was higher, but PYY concentrations were lower, in TBC from TGR5-/- obese mice than those in WT obese mice. We noticed an association between obesity and variations in TGR5 rs11554825 SNP. Finally, we can state that TGR5 modulates fat eating behavior and obesity.
Collapse
|
122
|
Klindt C, Reich M, Hellwig B, Stindt J, Rahnenführer J, Hengstler JG, Köhrer K, Schoonjans K, Häussinger D, Keitel V. The G Protein-Coupled Bile Acid Receptor TGR5 (Gpbar1) Modulates Endothelin-1 Signaling in Liver. Cells 2019; 8:cells8111467. [PMID: 31752395 PMCID: PMC6912679 DOI: 10.3390/cells8111467] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/05/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022] Open
Abstract
TGR5 (Gpbar1) is a G protein-coupled receptor responsive to bile acids (BAs), which is expressed in different non-parenchymal cells of the liver, including biliary epithelial cells, liver-resident macrophages, sinusoidal endothelial cells (LSECs), and activated hepatic stellate cells (HSCs). Mice with targeted deletion of TGR5 are more susceptible towards cholestatic liver injury induced by cholic acid-feeding and bile duct ligation, resulting in a reduced proliferative response and increased liver injury. Conjugated lithocholic acid (LCA) represents the most potent TGR5 BA ligand and LCA-feeding has been used as a model to rapidly induce severe cholestatic liver injury in mice. Thus, TGR5 knockout (KO) mice and wildtype (WT) littermates were fed a diet supplemented with 1% LCA for 84 h. Liver injury and gene expression changes induced by the LCA diet revealed an enrichment of pathways associated with inflammation, proliferation, and matrix remodeling. Knockout of TGR5 in mice caused upregulation of endothelin-1 (ET-1) expression in the livers. Analysis of TGR5-dependent ET-1 signaling in isolated LSECs and HSCs demonstrated that TGR5 activation reduces ET-1 expression and secretion from LSECs and triggers internalization of the ET-1 receptor in HSCs, dampening ET-1 responsiveness. Thus, we identified two independent mechanisms by which TGR5 inhibits ET-1 signaling and modulates portal pressure.
Collapse
Affiliation(s)
- Caroline Klindt
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Medical Faculty of Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.K.); (M.R.); (J.S.); (D.H.)
| | - Maria Reich
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Medical Faculty of Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.K.); (M.R.); (J.S.); (D.H.)
| | - Birte Hellwig
- Department of Statistics, TU Dortmund University, 44221 Dortmund, Germany; (B.H.); (J.R.)
| | - Jan Stindt
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Medical Faculty of Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.K.); (M.R.); (J.S.); (D.H.)
| | - Jörg Rahnenführer
- Department of Statistics, TU Dortmund University, 44221 Dortmund, Germany; (B.H.); (J.R.)
| | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund, 44139 Dortmund, Germany;
| | - Karl Köhrer
- Genomics and Transcriptomics Laboratory, Biologisch-Medizinisches-Forschungszentrum (BMFZ), Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Kristina Schoonjans
- Laboratory of Metabolic Signaling, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland;
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Medical Faculty of Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.K.); (M.R.); (J.S.); (D.H.)
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Medical Faculty of Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.K.); (M.R.); (J.S.); (D.H.)
- Correspondence:
| |
Collapse
|
123
|
Chen X, Zhang X, Xu B, Cui Y, He Y, Yang T, Shao Y, Ding M. The urinary bile acid profiling analysis of asymptomatic hypercholanemia of pregnancy: A pseudo-targeted metabolomics study. Clin Chim Acta 2019; 497:67-75. [DOI: 10.1016/j.cca.2019.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/26/2019] [Accepted: 07/01/2019] [Indexed: 12/20/2022]
|
124
|
Li ZY, Zhou JJ, Luo CL, Zhang LM. Activation of TGR5 alleviates inflammation in rheumatoid arthritis peripheral blood mononuclear cells and in mice with collagen II‑induced arthritis. Mol Med Rep 2019; 20:4540-4550. [PMID: 31702035 PMCID: PMC6797944 DOI: 10.3892/mmr.2019.10711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 04/02/2019] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is characterized by chronic inflammatory synovitis resulting in progressive joint destruction. Persistent synovial inflammation is induced by activation of various inflammatory cells. G-protein-coupled bile acid receptor 1 (TGR5) is a G-protein-coupled receptor activated by various bile acids, which has been reported to act as a key adaptor in regulating various signaling pathways involved in inflammatory responses and a diverse array of physiological processes, including bile acid synthesis, lipid and carbohydrate metabolism, carcinogenesis, immunity and inflammation. In the present study, TGR5 expression was detected in RA peripheral blood mononuclear cells (PBMCs), and its association with clinical disease activity, histological synovitis severity and radiological joint destruction was analyzed. Subsequently, the role and potential underlying mechanisms of TGR5 in the PBMCs of patients with RA and mice with collagen II-induced arthritis (CIA) were investigated. PBMCs were obtained from 50 patients with RA and 40 healthy controls (HCs). The mRNA and protein expression levels of TGR5 were detected in PBMCs via reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunofluorescence staining, respectively. Additionally, the levels of proinflammatory cytokines were analyzed by RT-qPCR and enzyme-linked immunosorbent assay (ELISA). The activation of nuclear factor-κB (NF-κB) and IκB kinase a was determined via western blot analysis. The anti-arthritic and anti-inflammatory effects of LCA on mice with CIA were then investigated. The arthritis score was assessed, and the protein levels of proinflammatory cytokines in the plasma of mice were detected via ELISA. TGR5 mRNA expression was significantly downregulated in the PBMCs of patients with RA compared with in those of the HCs (0.53±0.58 for patients vs. 1.49±0.83 for HCs; P<0.001); similar findings were observed at the protein level. The mRNA expression levels of TGR5 in the PBMCs of patients with RA with a high 28-Joint Disease Activity Score (DAS28) were significantly decreased compared with in patients with a low DAS28 (0.81±0.65 for low score vs. 0.35±0.46 for high score; P=0.002). Furthermore, TGR5 expression was significantly correlated with the levels of C-reactive protein (r=−0.429; P=0.002) and the DAS28 (r=−0.383; P=0.006). RT-qPCR and ELISA analyses indicated that lithocholic acid (LCA, 10 mg/kg/day) attenuated lipopolysaccharide-induced proinflammatory cytokine production via inhibition of NF-κB activity in the PBMCs of patients with RA. In addition, the arthritis score was significantly decreased in LCA-treated CIA mice compared with in non-treated CIA mice. The increased production of tumor necrosis factor-α, interleukin (IL)-1β, IL-6 and IL-8 was significantly reduced in the plasma of LCA-treated CIA mice compared with the control. In conclusion, TGR5 may contribute to the inflammation of PBMCs in patients with RA and mice with CIA.
Collapse
Affiliation(s)
- Zhe-Yong Li
- Department of General Surgery, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang 310017, P.R. China
| | - Jing-Jing Zhou
- Department of Rheumatology, Navy General Hospital, Beijing 100048, P.R. China
| | - Chun-Lei Luo
- Department of Nephrology, Ningbo First Hospital, Ningbo, Zhejiang 3150102, P.R. China
| | - Le-Meng Zhang
- Thoracic Medicine Department 1, Hunan Cancer Hospital, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
125
|
Peng XR, Feng L, Jiang WD, Wu P, Liu Y, Jiang J, Kuang SY, Tang L, Zhou XQ. Supplementation exogenous bile acid improved growth and intestinal immune function associated with NF-κB and TOR signalling pathways in on-growing grass carp (Ctenopharyngodon idella): Enhancement the effect of protein-sparing by dietary lipid. FISH & SHELLFISH IMMUNOLOGY 2019; 92:552-569. [PMID: 31252043 DOI: 10.1016/j.fsi.2019.06.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/14/2019] [Accepted: 06/24/2019] [Indexed: 06/09/2023]
Abstract
This study investigated the effects of bile acid (BA) supplementation on growth performance, intestinal immune function and the mRNA expression of the related signalling molecules in on-growing grass carp (Ctenopharyngodon idella). A total of 540 healthy grass carp (mean weight 179.85 ± 1.34 g) were fed a normal protein and lipid (NPNL) diet containing 29% crude protein (CP) and 5% ether extract (EE), and five low-protein and high-lipid (LPHL) diets (26% CP, 6% EE) with graded levels of BA (0-320 mg/kg diet) for 50 days. The fish were then challenged with Aeromonas hydrophila for 14 days. The results indicated that compared with the NPNL diet, the LPHL diet (unsupplemented BA) suppressed the growth performance, intestinal development and enteritis resistance capability and impaired the partial intestinal immune function of on-growing grass carp. Whereas in the LPHL diet, optimal BA supplementation significantly improved fish growth performance (percent weight gain, specific growth rate, feed intake and feed efficiency) and intestinal growth and function (intestine weight, intestine length and intestosomatic index), increased beneficial bacteria Lactobacillus and Bifidobacterium amounts, decreased harmful bacteria Aeromonas and Escherichia coli amounts, elevated lysozyme and acid phosphatase activities, increased complement (C3 and C4) and immunoglobulin M contents, and upregulated β-defensin-1, hepcidin, liver expressed antimicrobial peptide 2A (LEAP-2A), LEAP-2B, Mucin2, interleukin 10 (IL-10), IL-11, transforming growth factor (TGF)-β1, TGF-β2, IL-4/13A (not IL-4/13B), TOR, S6K1 and inhibitor of κBα (IκBα) mRNA levels. In addition, optimal BA supplementation in the LPHL diet downregulated tumour necrosis factor α (TNF-α), interferon γ2 (IFN-γ2), IL-1β, IL-6, IL-8, IL-15, IL-17D, IL-12p35, IL-12p40 (rather than proximal intestine (PI) or mid intestine (MI), nuclear factor kappa B p65 (NF-κB p65) (except NF-κB p52), c-Rel, IκB kinase β (IKKβ), IKKγ (except IKKα), eIF4E-binding proteins (4E-BP)1 and 4E-BP2 mRNA levels in all three intestinal segments of on-growing grass carp (P < 0.05). These findings suggest that BA supplementation in the LPHL diet improves growth and intestinal immune function of fish. Furthermore, 240 mg/kg BA supplementation in the LPHL diet was superior to the NPNL diet in improving growth and enhancing intestinal immune function of fish. Finally, based on percent weight gain, feed intake, protecting fish against enteritis, lysozyme activity in MI and acid phosphatase activity in distal intestine (DI), the optimal BA supplementation for on-growing grass carp were estimated to be 168.98, 170.23, 166.67, 176.50 and 191.97 mg/kg diet, respectively.
Collapse
Affiliation(s)
- Xiu-Rong Peng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, China.
| |
Collapse
|
126
|
Liu T, Song X, Khan S, Li Y, Guo Z, Li C, Wang S, Dong W, Liu W, Wang B, Cao H. The gut microbiota at the intersection of bile acids and intestinal carcinogenesis: An old story, yet mesmerizing. Int J Cancer 2019; 146:1780-1790. [DOI: 10.1002/ijc.32563] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/05/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Tianyu Liu
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical University Tianjin China
| | - Xueli Song
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical University Tianjin China
| | - Samiullah Khan
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical University Tianjin China
| | - Yun Li
- Department of Pharmacy, General HospitalTianjin Medical University Tianjin China
| | - Zixuan Guo
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical University Tianjin China
| | - Chuqiao Li
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical University Tianjin China
| | - Sinan Wang
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical University Tianjin China
| | - Wenxiao Dong
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical University Tianjin China
| | - Wentian Liu
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical University Tianjin China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical University Tianjin China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical University Tianjin China
| |
Collapse
|
127
|
Das P, Marcišauskas S, Ji B, Nielsen J. Metagenomic analysis of bile salt biotransformation in the human gut microbiome. BMC Genomics 2019; 20:517. [PMID: 31234773 PMCID: PMC6591925 DOI: 10.1186/s12864-019-5899-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/12/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In the biochemical milieu of human colon, bile acids act as signaling mediators between the host and its gut microbiota. Biotransformation of primary to secondary bile acids have been known to be involved in the immune regulation of human physiology. Several 16S amplicon-based studies with inflammatory bowel disease (IBD) subjects were found to have an association with the level of fecal bile acids. However, a detailed investigation of all the bile salt biotransformation genes in the gut microbiome of healthy and IBD subjects has not been performed. RESULTS Here, we report a comprehensive analysis of the bile salt biotransformation genes and their distribution at the phyla level. Based on the analysis of shotgun metagenomes, we found that the IBD subjects harbored a significantly lower abundance of these genes compared to the healthy controls. Majority of these genes originated from Firmicutes in comparison to other phyla. From metabolomics data, we found that the IBD subjects were measured with a significantly low level of secondary bile acids and high levels of primary bile acids compared to that of the healthy controls. CONCLUSIONS Our bioinformatics-driven approach of identifying bile salt biotransformation genes predicts the bile salt biotransformation potential in the gut microbiota of IBD subjects. The functional level of dysbiosis likely contributes to the variation in the bile acid pool. This study sets the stage to envisage potential solutions to modulate the gut microbiome with the objective to restore the bile acid pool in the gut.
Collapse
Affiliation(s)
- Promi Das
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Simonas Marcišauskas
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Boyang Ji
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
128
|
Chen Y, Le TH, Du Q, Zhao Z, Liu Y, Zou J, Hua W, Liu C, Zhu Y. Genistein protects against DSS-induced colitis by inhibiting NLRP3 inflammasome via TGR5-cAMP signaling. Int Immunopharmacol 2019; 71:144-154. [PMID: 30901677 DOI: 10.1016/j.intimp.2019.01.021] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 12/17/2022]
Abstract
NLRP3 inflammasome has been reported to be associated with inflammatory bowel disease including colitis due to its potential ability to induce IL-1β secretion. Emerging studies have demonstrated that Genistein, a major isoflavone, has potential anti-inflammatory effects in murine model colitis. However, its anti-inflammatory mechanism remains unclear. The effects of Genistein in dextran sulfate sodium (DSS)-induced murine colitis via targeting NLRP3 inflammasome was investigated in this study. Also, the mechanisms of protective action of Genistein in DSS-induced colitis may relate to TGR5 signaling. Genistein treatment not only remarkably attenuated loss of body weight and shortening of colon length but also significantly reduced inflammatory cells infiltration and pro-inflammatory mediator production in serum and colon. Moreover, Genistein treatment down-regulated production of caspase-1 and IL-1β and increased intracellular cAMP level, which were similar to the treatment for INT-777, a semi-synthetic TGR5 agonist, in phorbol myristate acetate (PMA)-differentiated monocytic THP-1 cells and U937 cells. These protective effects of Genistein might be attributed by ubiquination of NLRP3 which was induced due to interaction of cAMP with NLRP3. Furthermore, the effects of Genistein on NLRP3 inflammasome disappeared in TGR5-silenced U937 cells. In conclusion, our study unveils that Genistein was able to inhibit NLRP3 inflammasome via TGR5-cAMP signaling in macrophages. It therefore might be a potential effective drug for inflammatory bowel diseases.
Collapse
Affiliation(s)
- Yu Chen
- Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Thi Ha Le
- Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Qianming Du
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, PR China
| | - Zheng Zhao
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, PR China
| | - Yunxin Liu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, PR China
| | - Jianjun Zou
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, PR China
| | - Weiwei Hua
- Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Chao Liu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, PR China.
| | - Yubing Zhu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, PR China.
| |
Collapse
|
129
|
Ferrell JM, Chiang JYL. Understanding Bile Acid Signaling in Diabetes: From Pathophysiology to Therapeutic Targets. Diabetes Metab J 2019; 43:257-272. [PMID: 31210034 PMCID: PMC6581552 DOI: 10.4093/dmj.2019.0043] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023] Open
Abstract
Diabetes and obesity have reached an epidemic status worldwide. Diabetes increases the risk for cardiovascular disease and non-alcoholic fatty liver disease. Primary bile acids are synthesized in hepatocytes and are transformed to secondary bile acids in the intestine by gut bacteria. Bile acids are nutrient sensors and metabolic integrators that regulate lipid, glucose, and energy homeostasis by activating nuclear farnesoid X receptor and membrane Takeda G protein-coupled receptor 5. Bile acids control gut bacteria overgrowth, species population, and protect the integrity of the intestinal barrier. Gut bacteria, in turn, control circulating bile acid composition and pool size. Dysregulation of bile acid homeostasis and dysbiosis causes diabetes and obesity. Targeting bile acid signaling and the gut microbiome have therapeutic potential for treating diabetes, obesity, and non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Jessica M Ferrell
- Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - John Y L Chiang
- Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA.
| |
Collapse
|
130
|
Flynn CR, Albaugh VL, Abumrad NN. Metabolic Effects of Bile Acids: Potential Role in Bariatric Surgery. Cell Mol Gastroenterol Hepatol 2019; 8:235-246. [PMID: 31075353 PMCID: PMC6664228 DOI: 10.1016/j.jcmgh.2019.04.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 02/08/2023]
Abstract
Bariatric surgery is the most effective and durable treatment for morbid obesity, with an unexplained yet beneficial side effect of restoring insulin sensitivity and improving glycemia, often before weight loss is observed. Among the many contributing mechanisms often cited, the altered handling of intestinal bile acids is of considerable therapeutic interest. Here, we review a growing body of literature examining the metabolic effects of bile acids ranging from their physical roles in dietary fat handling within the intestine to their functions as endocrine and paracrine hormones in potentiating responses to bariatric surgery. The roles of 2 important bile acid receptors, Takeda G-protein coupled receptor (also known as G-protein coupled bile acid receptor) and farnesoid X receptor, are highlighted as is downstream signaling through glucagon-like polypeptide 1 and its cognate receptor. Additional improvements in other phenotypes and potential contributions of commensal gut bacteria, such as Akkermansia muciniphila, which are manifest after Roux-en-Y gastric bypass and other emulations, such as gallbladder bile diversion to the ileum, are also discussed.
Collapse
Affiliation(s)
- Charles R. Flynn
- Correspondence Address correspondence to: Charles R. Flynn, PhD, 1161 21st Avenue S, CCC-2308 MCN, Nashville, Tennessee 37232-2730. fax: (615) 343-6456.
| | | | | |
Collapse
|
131
|
Etherington RE, Millar BJM, Innes BA, Jones DEJ, Kirby JA, Brain JG. Bile acid receptor agonists in primary biliary cholangitis: Regulation of the cholangiocyte secretome and downstream T cell differentiation. FASEB Bioadv 2019; 1:332-343. [PMID: 32123836 PMCID: PMC6996327 DOI: 10.1096/fba.2018-00046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/20/2022] Open
Abstract
Primary biliary cholangitis (PBC) is a chronic autoimmune liver disease. Approximately 30% of patients do not respond to therapy with ursodeoxycholic acid (UDCA). Previous studies have implicated increased senescence of cholangiocytes in patients who do not respond to UDCA. This may increase the release of cytokines which drive pathogenic T cell polarization. As FXR agonists are beneficial in treating UDCA non-responsive patients, the current study was designed to model the interactions between cholangiocytes and CD4+ T cells to investigate potential immunomodulatory mechanisms of bile acid receptor agonists. Human cholangiocytes were co-cultured with CD4+ T cells to model the biliary stress response. Senescent cholangiocytes were able to polarize T cells toward a Th17 phenotype and suppressed expression of FoxP3 (P = 0.0043). Whilst FXR and TGR5 receptor agonists were unable directly to alter cholangiocyte cytokine expression, FGF19 was capable of significantly reducing IL-6 release (P = 0.044). Bile acid receptor expression was assessed in PBC patients with well-characterized responsiveness to UDCA therapy. A reduction in FXR staining was observed in both cholangiocytes and hepatocytes in PBC patients without adequate response to UDCA. Increased IL-6 expression by senescent cholangiocytes represents a potential mechanism by which biliary damage in PBC could contribute to excessive inflammation.
Collapse
Affiliation(s)
| | | | - Barbara A. Innes
- Institute of Cellular MedicineNewcastle UniversityNewcastle upon TyneUK
| | - David E. J. Jones
- Institute of Cellular MedicineNewcastle UniversityNewcastle upon TyneUK
| | - John A. Kirby
- Institute of Cellular MedicineNewcastle UniversityNewcastle upon TyneUK
| | - John G. Brain
- Institute of Cellular MedicineNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
132
|
Weston CJ, Zimmermann HW, Adams DH. The Role of Myeloid-Derived Cells in the Progression of Liver Disease. Front Immunol 2019; 10:893. [PMID: 31068952 PMCID: PMC6491757 DOI: 10.3389/fimmu.2019.00893] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
Control of homeostasis and rapid response to tissue damage in the liver is orchestrated by crosstalk between resident and infiltrating inflammatory cells. A crucial role for myeloid cells during hepatic injury and repair has emerged where resident Kupffer cells, circulating monocytes, macrophages, dendritic cells and neutrophils control local tissue inflammation and regenerative function to maintain tissue architecture. Studies in humans and rodents have revealed a heterogeneous population of myeloid cells that respond to the local environment by either promoting regeneration or driving the inflammatory processes that can lead to hepatitis, fibrogenesis, and the development of cirrhosis and malignancy. Such plasticity of myeloid cell responses presents unique challenges for therapeutic intervention strategies and a greater understanding of the underlying mechanisms is needed. Here we review the role of myeloid cells in the establishment and progression of liver disease and highlight key pathways that have become the focus for current and future therapeutic strategies.
Collapse
Affiliation(s)
- Chris John Weston
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, Medical School, University of Birmingham, Birmingham, United Kingdom.,NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, United Kingdom
| | | | - David H Adams
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, Medical School, University of Birmingham, Birmingham, United Kingdom.,NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
133
|
Schadt HS, Wolf A, Mahl JA, Wuersch K, Couttet P, Schwald M, Fischer A, Lienard M, Emotte C, Teng CH, Skuba E, Richardson TA, Manenti L, Weiss A, Graus Porta D, Fairhurst RA, Kullak-Ublick GA, Chibout SD, Pognan F, Kluwe W, Kinyamu-Akunda J. Bile Acid Sequestration by Cholestyramine Mitigates FGFR4 Inhibition-Induced ALT Elevation. Toxicol Sci 2019; 163:265-278. [PMID: 29432567 DOI: 10.1093/toxsci/kfy031] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The FGF19- fibroblast growth factor receptor (FGFR4)-βKlotho (KLB) pathway plays an important role in the regulation of bile acid (BA) homeostasis. Aberrant activation of this pathway has been described in the development and progression of a subset of liver cancers including hepatocellular carcinoma, establishing FGFR4 as an attractive therapeutic target for such solid tumors. FGF401 is a highly selective FGFR4 kinase inhibitor being developed for hepatocellular carcinoma, currently in phase I/II clinical studies. In preclinical studies in mice and dogs, oral administration of FGF401 led to induction of Cyp7a1, elevation of its peripheral marker 7alpha-hydroxy-4-cholesten-3-one, increased BA pool size, decreased serum cholesterol and diarrhea in dogs. FGF401 was also associated with increases of serum aminotransferases, primarily alanine aminotransferase (ALT), in the absence of any observable adverse histopathological findings in the liver, or in any other organs. We hypothesized that the increase in ALT could be secondary to increased BAs and conducted an investigative study in dogs with FGF401 and coadministration of the BA sequestrant cholestyramine (CHO). CHO prevented and reversed FGF401-related increases in ALT in dogs in parallel to its ability to reduce BAs in the circulation. Correlation analysis showed that FGF401-mediated increases in ALT strongly correlated with increases in taurolithocholic acid and taurodeoxycholic acid, the major secondary BAs in dog plasma, indicating a mechanistic link between ALT elevation and changes in BA pool hydrophobicity. Thus, CHO may offer the potential to mitigate elevations in serum aminotransferases in human subjects that are caused by targeted FGFR4 inhibition and elevated intracellular BA levels.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Corinne Emotte
- PK Sciences, Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Chi-Hse Teng
- Biostatistics and Pharmacometrics, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139
| | | | | | - Luigi Manenti
- Oncology, Novartis Institutes for Biomedical Research, East Hanover, New Jersey 07936
| | | | | | - Robin A Fairhurst
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Gerd A Kullak-Ublick
- Mechanistic Safety, Novartis Global Drug Development, 4002 Basel, Switzerland.,Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
134
|
Lin S, Yang X, Yuan P, Yang J, Wang P, Zhong H, Zhang X, Che L, Feng B, Li J, Zhuo Y, Lin Y, Xu S, Wu D, Burrin DG, Fang Z. Undernutrition Shapes the Gut Microbiota and Bile Acid Profile in Association with Altered Gut-Liver FXR Signaling in Weaning Pigs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3691-3701. [PMID: 30864445 DOI: 10.1021/acs.jafc.9b01332] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bile acids, synthesized in the liver and metabolized by microbiota, have emerged as important signaling molecules regulating immune responses and cell proliferation. However, the crosstalk among nutrition, microbiota, and bile acids remains unclear. Our study indicated that undernutrition in weaning piglets led to intestinal atrophy, increased colonic production, and systemic accumulation of lithocholic acid (LCA), deoxycholic acid (DCA), or their conjugated forms, which might be associated with decreased Lactobacillus abundance. Moreover, undernutrition led to increased portal fibroblast growth factor 19 ( FGF19) level, upregulated hepatic heterodimer partner ( SHP), and downregulated cholesterol 7a-hydroxylase ( CYP7A1) expression. The detrimental effects of DCA and LCA on proliferation and barrier function were confirmed in porcine enterocytes, whereas their roles in weaning piglets warrant further research. In summary, undernutrition in weaning piglets led to increased secondary bile acids production, which might be related to altered gut microbiome and enhanced farnesoid X receptor (FXR) signaling while CYP7A1 expression was suppressed.
Collapse
Affiliation(s)
- Sen Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute , Sichuan Agricultural University , Chengdu 611130 , People's Republic of China
| | - Xiaomin Yang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute , Sichuan Agricultural University , Chengdu 611130 , People's Republic of China
| | - Peiqiang Yuan
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute , Sichuan Agricultural University , Chengdu 611130 , People's Republic of China
| | - Jiameng Yang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute , Sichuan Agricultural University , Chengdu 611130 , People's Republic of China
| | - Peng Wang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute , Sichuan Agricultural University , Chengdu 611130 , People's Republic of China
| | - Heju Zhong
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute , Sichuan Agricultural University , Chengdu 611130 , People's Republic of China
| | - Xiaoling Zhang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute , Sichuan Agricultural University , Chengdu 611130 , People's Republic of China
| | - Lianqiang Che
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute , Sichuan Agricultural University , Chengdu 611130 , People's Republic of China
| | - Bin Feng
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute , Sichuan Agricultural University , Chengdu 611130 , People's Republic of China
| | - Jian Li
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute , Sichuan Agricultural University , Chengdu 611130 , People's Republic of China
| | - Yong Zhuo
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute , Sichuan Agricultural University , Chengdu 611130 , People's Republic of China
| | - Yan Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute , Sichuan Agricultural University , Chengdu 611130 , People's Republic of China
| | - Shengyu Xu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute , Sichuan Agricultural University , Chengdu 611130 , People's Republic of China
| | - De Wu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute , Sichuan Agricultural University , Chengdu 611130 , People's Republic of China
| | - Douglas G Burrin
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics , Baylor College of Medicine , Houston , Texas 77030 , United States
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute , Sichuan Agricultural University , Chengdu 611130 , People's Republic of China
| |
Collapse
|
135
|
|
136
|
Zhang Y, Lu Y, Ji H, Li Y. Anti-inflammatory, anti-oxidative stress and novel therapeutic targets for cholestatic liver injury. Biosci Trends 2019; 13:23-31. [PMID: 30814402 DOI: 10.5582/bst.2018.01247] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cholestasis is a pathological process in which bile drainage is poor for a variety of reasons. Many studies have shown that cholestatic liver injury is a neutrophil-mediated inflammatory response, and oxidative stress induced by neutrophils is the main mechanism of liver cell death. The literature summarizes the bile acid signaling pathway, the neutrophil chemotaxis recruitment process during cholestasis, and the oxidative stress damage produced by neutrophil activation, summarizes the latest research progress. Sphingosine-1-phosphate receptor (S1PR) is a potential therapeutic target for cholestasis that reduces neutrophil aggregation without inhibiting systemic immune status. Early growth response factor 1 (Egr-1) may play a central role in the inflammation induced by cholestasis, and it is also a potential therapeutic target to inhibit the inflammation induced by cholestasis. Strengthening the antioxidant system of hepatocytes to cope with oxidative stress of neutrophils is a feasible treatment for cholestatic liver injury.
Collapse
Affiliation(s)
- Yafei Zhang
- Department of General Surgery, Second Affiliated Hospital of Xi'an Jiaotong University
| | - Yuxuan Lu
- The High School Affiliated to xi'an Jiaotong University
| | - Hong Ji
- Department of General Surgery, Second Affiliated Hospital of Xi'an Jiaotong University
| | - Yiming Li
- Department of General Surgery, Second Affiliated Hospital of Xi'an Jiaotong University
| |
Collapse
|
137
|
Chu H, Duan Y, Yang L, Schnabl B. Small metabolites, possible big changes: a microbiota-centered view of non-alcoholic fatty liver disease. Gut 2019; 68:359-370. [PMID: 30171065 DOI: 10.1136/gutjnl-2018-316307] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022]
Abstract
The spectrum of non-alcoholic fatty liver disease (NAFLD) ranges from simple hepatic steatosis, commonly associated with obesity, to non-alcoholic steatohepatitis, which can progress to fibrosis, cirrhosis and hepatocellular carcinoma. NAFLD pathophysiology involves environmental, genetic and metabolic factors, as well as changes in the intestinal microbiota and their products. Dysfunction of the intestinal barrier can contribute to NAFLD development and progression. Although there are technical limitations in assessing intestinal permeability in humans and the number of patients in these studies is rather small, fewer than half of the patients have increased intestinal permeability and translocation of bacterial products. Microbe-derived metabolites and the signalling pathways they affect might play more important roles in development of NAFLD. We review the microbial metabolites that contribute to the development of NAFLD, such as trimethylamine, bile acids, short-chain fatty acids and ethanol. We discuss the mechanisms by which metabolites produced by microbes might affect disease progression and/or serve as therapeutic targets or biomarkers for NAFLD.
Collapse
Affiliation(s)
- Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Medicine, University of California San Diego, San Diego, California, USA
| | - Yi Duan
- Department of Medicine, University of California San Diego, San Diego, California, USA.,Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, San Diego, California, USA.,Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
138
|
Wu X, Lv YG, Du YF, Hu M, Reed MN, Long Y, Suppiramaniam V, Hong H, Tang SS. Inhibitory effect of INT-777 on lipopolysaccharide-induced cognitive impairment, neuroinflammation, apoptosis, and synaptic dysfunction in mice. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:360-374. [PMID: 30144494 DOI: 10.1016/j.pnpbp.2018.08.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/02/2018] [Accepted: 08/19/2018] [Indexed: 01/09/2023]
Abstract
Neuroinflammation plays an important role in the pathophysiology of Alzheimer's disease (AD) and memory impairment. Herein, we evaluated the neuroprotective effects of 6-ethyl-23(S)-methyl-cholic acid (INT-777), a specific G-protein coupled bile acid receptor 1 (TGR5) agonist, in the LPS-treated mouse model of acute neurotoxicity. Single intracerebroventricular (i.c.v.) injection of LPS remarkably induced mouse behavioral impairments in Morris water maze, novel object recognition, and Y-maze avoidance tests, which were ameliorated by INT-777 (1.5 or 3.0 μg/mouse, i.c.v.) treatment. Importantly, INT-777 treatment reversed LPS-induced TGR5 down-regulation, suppressed the increase of nuclear NF-κB p65, and mitigated neuroinflammation, evidenced by lower proinflammatory cytokines, less activation of microglia, and increased the ratio of p-CREB/CREB or mBDNF/proBDNF in the hippocampus and frontal cortex. In addition, INT-777 treatment also suppressed neuronal apoptosis, as indicated by the reduction of TUNEL-positive cells, decreased activation of caspase-3, increased the ratio of Bcl-2/Bax, and ameliorated synaptic dysfunction as evidenced by the upregulation of PSD95 and synaptophysin in the hippocampus and frontal cortex. Taken together, this study showed the potential neuroprotective effects of INT-777 against LPS-induced cognitive impairment, neuroinflammation, apoptosis, and synaptic dysfunction in mice.
Collapse
Affiliation(s)
- Xian Wu
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 210009, China
| | - Yang-Ge Lv
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 210009, China
| | - Yi-Feng Du
- Department of Drug Discovery and Development, School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Mei Hu
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 210009, China
| | - Miranda N Reed
- Department of Drug Discovery and Development, School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Yan Long
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 210009, China
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Hao Hong
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 210009, China.
| | - Su-Su Tang
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
139
|
Bile Acid-Activated Receptors: GPBAR1 (TGR5) and Other G Protein-Coupled Receptors. Handb Exp Pharmacol 2019; 256:19-49. [PMID: 31302759 DOI: 10.1007/164_2019_230] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The BA-responsive GPCRs S1PR2 and TGR5 are almost ubiquitously expressed in human and rodent tissues. In the liver, S1PR2 is expressed in all cell types, while TGR5 is predominately found in non-parenchymal cells. In contrast to S1PR2, which is mainly activated by conjugated bile acids (BAs), all BAs serve as ligands for TGR5 irrespective of their conjugation state and substitution pattern.Mice with targeted deletion of either S1PR2 or TGR5 are viable and develop no overt phenotype. In liver injury models, S1PR2 exerts pro-inflammatory and pro-fibrotic effects and thus aggravates liver damage, while TGR5 mediates anti-inflammatory, anti-cholestatic, and anti-fibrotic effects. Thus, inhibitors of S1PR2 signaling and agonists for TGR5 have been employed to attenuate liver injury in rodent models for cholestasis, nonalcoholic steatohepatitis, and fibrosis/cirrhosis.In biliary epithelial cells, both receptors activate a similar signaling cascade resulting in ERK1/2 phosphorylation and cell proliferation. Overexpression of both S1PR2 and TGR5 was found in human cholangiocarcinoma tissue as well as in CCA cell lines, where stimulation of both GPCRs resulted in transactivation of the epidermal growth factor receptor and triggered cell proliferation as well as increased cell migration and invasiveness.This chapter will focus on the function of S1PR2 and TGR5 in different liver cell types and summarizes current knowledge on the role of these receptors in liver disease models.
Collapse
|
140
|
Yang T, Khan GJ, Wu Z, Wang X, Zhang L, Jiang Z. Bile acid homeostasis paradigm and its connotation with cholestatic liver diseases. Drug Discov Today 2019; 24:112-128. [DOI: 10.1016/j.drudis.2018.09.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/03/2018] [Accepted: 09/12/2018] [Indexed: 02/07/2023]
|
141
|
Crosstalk between FXR and TGR5 controls glucagon-like peptide 1 secretion to maintain glycemic homeostasis. Lab Anim Res 2018; 34:140-146. [PMID: 30671099 PMCID: PMC6333617 DOI: 10.5625/lar.2018.34.4.140] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 12/05/2018] [Indexed: 12/28/2022] Open
Abstract
Though bile acids have been well known as digestive juice, recent studies have demonstrated that bile acids bind to their endogenous receptors, including Farnesoid X receptor (FXR) and G protein-coupled bile acid receptor 1 (GPBAR1; TGR5) and serve as hormone to control various biological processes, including cholesterol/bile acid metabolism, glucose/lipid metabolism, immune responses, and energy metabolism. Deficiency of those bile acid receptors has been reported to induce diverse metabolic syndromes such as obesity, hyperlipidemia, hyperglycemia, and insulin resistance. As consistent, numerous studies have reported alteration of bile acid signaling pathways in type II diabetes patients. Interestingly, bile acids have shown to activate TGR5 in intestinal L cells and enhance secretion of glucagon-like peptide 1 (GLP-1) to potentiate insulin secretion in response to glucose. Moreover, FXR has been shown to crosstalk with TGR5 to control GLP-1 secretion. Altogether, bile acid receptors, FXR and TGR5 are potent therapeutic targets for the treatment of metabolic diseases, including type II diabetes.
Collapse
|
142
|
Hanafi NI, Mohamed AS, Sheikh Abdul Kadir SH, Othman MHD. Overview of Bile Acids Signaling and Perspective on the Signal of Ursodeoxycholic Acid, the Most Hydrophilic Bile Acid, in the Heart. Biomolecules 2018; 8:E159. [PMID: 30486474 PMCID: PMC6316857 DOI: 10.3390/biom8040159] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 12/12/2022] Open
Abstract
Bile acids (BA) are classically known as an important agent in lipid absorption and cholesterol metabolism. Nowadays, their role in glucose regulation and energy homeostasis are widely reported. BAs are involved in various cellular signaling pathways, such as protein kinase cascades, cyclic AMP (cAMP) synthesis, and calcium mobilization. They are ligands for several nuclear hormone receptors, including farnesoid X-receptor (FXR). Recently, BAs have been shown to bind to muscarinic receptor and Takeda G-protein-coupled receptor 5 (TGR5), both G-protein-coupled receptor (GPCR), independent of the nuclear hormone receptors. Moreover, BA signals have also been elucidated in other nonclassical BA pathways, such as sphingosine-1-posphate and BK (large conductance calcium- and voltage activated potassium) channels. Hydrophobic BAs have been proven to affect heart rate and its contraction. Elevated BAs are associated with arrhythmias in adults and fetal heart, and altered ratios of primary and secondary bile acid are reported in chronic heart failure patients. Meanwhile, in patients with liver cirrhosis, cardiac dysfunction has been strongly linked to the increase in serum bile acid concentrations. In contrast, the most hydrophilic BA, known as ursodeoxycholic acid (UDCA), has been found to be beneficial in improving peripheral blood flow in chronic heart failure patients and in protecting the heart against reperfusion injury. This review provides an overview of BA signaling, with the main emphasis on past and present perspectives on UDCA signals in the heart.
Collapse
Affiliation(s)
- Noorul Izzati Hanafi
- Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia.
| | - Anis Syamimi Mohamed
- Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia.
| | - Siti Hamimah Sheikh Abdul Kadir
- Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia.
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia.
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Johor Bharu 81310, Johor, Malaysia.
| |
Collapse
|
143
|
Abstract
PURPOSE OF REVIEW Mucosal immune cells in the intestinal tract are continuously exposed to a barrage of both foreign and endogenously generated metabolites, termed xenobiotics, and endobiotics, respectively. This review summarizes recent insights into the mechanisms by which xenobiotics and endobiotics regulate intestinal immunity and inflammation. RECENT FINDINGS The community of enteric microbes (i.e., microbiota) has profound impacts on the development and function of the mucosal immune system. The composition and function of gut microbiota is dynamically regulated by diet, and this interplay dictates which and how many immunomodulatory xenobiotics are present in the intestine. Microbiota also regulate the concentration and composition of circulating bile acids, an abundant class of liver-derived endobiotics with pleotropic immunoregulatory activities. A growing body of literature is emerging that sheds new light on the mechanisms by which xenobiotics and endobiotics interact with germline-encoded receptors and transporters to shape mucosal immune function. SUMMARY The complex and dynamic interplay among xenobiotics, endobiotics, and the mucosal immune system is a new frontier in mucosal immunology that is proving fruitful for the discovery of novel and pharmacologically accessible mechanisms with relevance to human inflammatory diseases.
Collapse
|
144
|
Iracheta-Vellve A, Calenda CD, Petrasek J, Ambade A, Kodys K, Adorini L, Szabo G. FXR and TGR5 Agonists Ameliorate Liver Injury, Steatosis, and Inflammation After Binge or Prolonged Alcohol Feeding in Mice. Hepatol Commun 2018; 2:1379-1391. [PMID: 30411084 PMCID: PMC6211332 DOI: 10.1002/hep4.1256] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022] Open
Abstract
Bile acids (BAs) activate various dedicated receptors, including the farnesoid X receptor (FXR) and the Takeda G protein‐coupled receptor 5 (TGR5). The FXR agonist obeticholic acid (OCA) is licensed for the treatment of primary biliary cholangitis and has shown promising results in NASH patients, whereas TGR5 agonists target inflammation and metabolism. We hypothesized that FXR and/or TGR5 agonists may be therapeutic in early alcoholic liver disease (ALD) in mice, in which hepatic inflammation plays a major role. OCA, INT‐777, and INT‐767 are BA derivatives with selective agonist properties for FXR, TGR5, or both, respectively. These compounds were tested in two mouse models (3‐day binge model and prolonged Lieber DeCarli diet for 12 days) of early ALD. Serum alanine aminotransferase and liver histology were used to assess liver injury, Oil Red O staining of liver sections to assess steatosis, and real‐time polymerase chain reaction to assess changes in gene expression. In the ethanol binge model, treatment with OCA and INT‐777 decreased hepatic macrovesicular steatosis and protected from ethanol‐induced liver injury. After prolonged ethanol administration, mice treated with OCA, INT‐767, or INT‐777 showed decreased hepatic steatosis, associated with reduced liver fatty acid synthase protein expression, and protection from liver injury. Treatment with BA receptor agonists in both models of ethanol administration modulated lipogenic gene expression, and decreased liver interleukin‐1β mRNA expression associated with increased ubiquitination of NLRP3 inflammasome through cyclic adenosine monophosphate–induced activation of protein kinase A. Conclusion: OCA, INT‐767, or INT‐777 administration is effective in reducing acute and chronic ethanol‐induced steatosis and inflammation in mice, with varying degrees of efficacy depending on the duration of ethanol administration, indicating that both FXR and TGR5 activation can protect from liver injury in ALD models.
Collapse
Affiliation(s)
| | | | - Jan Petrasek
- University of Massachusetts Medical School Worcester MA
| | - Aditya Ambade
- University of Massachusetts Medical School Worcester MA
| | - Karen Kodys
- University of Massachusetts Medical School Worcester MA
| | | | - Gyongyi Szabo
- University of Massachusetts Medical School Worcester MA
| |
Collapse
|
145
|
Schubert K, Olde Damink SWM, von Bergen M, Schaap FG. Interactions between bile salts, gut microbiota, and hepatic innate immunity. Immunol Rev 2018; 279:23-35. [PMID: 28856736 DOI: 10.1111/imr.12579] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bile salts are the water-soluble end products of hepatic cholesterol catabolism that are released into the duodenum and solubilize lipids due to their amphipathic structure. Bile salts also act as endogenous ligands for dedicated nuclear receptors that exert a plethora of biological processes, mostly related to metabolism. Bile salts are actively reclaimed in the distal part of the small intestine, released into the portal system, and subsequently extracted by the liver. This enterohepatic cycle is critically dependent on dedicated bile salt transporters. In the intestinal lumen, bile salts exert direct antimicrobial activity based on their detergent property and shape the gut microbiota. Bile salt metabolism by gut microbiota serves as a mechanism to counteract this toxicity and generates bile salt species that are distinct from those of the host. Innate immune cells of the liver play an important role in the early recognition and effector response to invading microbes. Bile salts signal primarily via the membrane receptor TGR5 and the intracellular farnesoid-x receptor, both present in innate immune cells. In this review, the interactions between bile salts, gut microbiota, and hepatic innate immunity are discussed.
Collapse
Affiliation(s)
- Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz Center for Environmental Research, Leipzig, Germany
| | - Steven W M Olde Damink
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Center for Environmental Research, Leipzig, Germany.,Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
| | - Frank G Schaap
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
146
|
Chevre R, Silvestre-Roig C, Soehnlein O. Nutritional Modulation of Innate Immunity: The Fat-Bile-Gut Connection. Trends Endocrinol Metab 2018; 29:686-698. [PMID: 30197155 DOI: 10.1016/j.tem.2018.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 02/08/2023]
Abstract
Altered nutritional behavior in Western societies has unleashed numerous metabolic disorders, intimately linked to profound disruptions of the immune system. Here we summarize how nutrition modulates innate immunity. We outline recent findings regarding nutrient signaling and we particularly focus on the collateral impact of nutrition on the microbiome and on the bile acid (BA) pool. We discuss how the integration of postprandial signals by the gut microbiota, along with the absorption routes of metabolites, differentially affects immune niches to orchestrate immune responses. Finally, we discuss the potential consequences of these signals in the light of trained immunity. A better understanding of nutrition signaling will permit the optimization of therapeutic and dietary strategies against the arising immune disorders.
Collapse
Affiliation(s)
- Raphael Chevre
- Institute for Cardiovascular Prevention, LMU Munich, Munich, Germany.
| | | | - Oliver Soehnlein
- Institute for Cardiovascular Prevention, LMU Munich, Munich, Germany; Department of Physiology and Pharmacology (FyFa) and Department of Medicine, Karolinska Institutet, Stockholm, Sweden; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
147
|
Pathak P, Xie C, Nichols RG, Ferrell JM, Boehme S, Krausz KW, Patterson AD, Gonzalez FJ, Chiang JYL. Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism. Hepatology 2018; 68:1574-1588. [PMID: 29486523 PMCID: PMC6111007 DOI: 10.1002/hep.29857] [Citation(s) in RCA: 384] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/07/2018] [Accepted: 02/22/2018] [Indexed: 12/14/2022]
Abstract
Bile acids activate farnesoid X receptor (FXR) and G protein-coupled bile acid receptor-1 (aka Takeda G protein-coupled receptor-5 [TGR5]) to regulate bile acid metabolism and glucose and insulin sensitivity. FXR and TGR5 are coexpressed in the enteroendocrine L cells, but their roles in integrated regulation of metabolism are not completely understood. We reported recently that activation of FXR induces TGR5 to stimulate glucagon-like peptide-1 (GLP-1) secretion to improve insulin sensitivity and hepatic metabolism. In this study, we used the intestine-restricted FXR agonist fexaramine (FEX) to study the effect of activation of intestinal FXR on the gut microbiome, bile acid metabolism, and FXR and TGR5 signaling. The current study revealed that FEX markedly increased taurolithocholic acid, increased secretion of fibroblast growth factors 15 and 21 and GLP-1, improved insulin and glucose tolerance, and promoted white adipose tissue browning in mice. Analysis of 16S ribosomal RNA sequences of the gut microbiome identified the FEX-induced and lithocholic acid-producing bacteria Acetatifactor and Bacteroides. Antibiotic treatment completely reversed the FEX-induced metabolic phenotypes and inhibited taurolithocholic acid synthesis, adipose tissue browning, and liver bile acid synthesis gene expression but further increased intestinal FXR target gene expression. FEX treatment effectively improved lipid profiles, increased GLP-1 secretion, improved glucose and insulin tolerance, and promoted adipose tissue browning, while antibiotic treatment reversed the beneficial metabolic effects of FEX in obese and diabetic mice. CONCLUSION This study uncovered a mechanism in which activation of intestinal FXR shaped the gut microbiota to activate TGR5/GLP-1 signaling to improve hepatic glucose and insulin sensitivity and increase adipose tissue browning; the gut microbiota plays a critical role in bile acid metabolism and signaling to regulate metabolic homeostasis in health and disease. (Hepatology 2018).
Collapse
Affiliation(s)
- Preeti Pathak
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272
| | - Cen Xie
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Robert G. Nichols
- Department of Molecular Toxicology, The Pennsylvania State University, University Park, PA, 16802
| | - Jessica M. Ferrell
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272
| | - Shannon Boehme
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272
| | - Kristopher W. Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Andrew D. Patterson
- Department of Molecular Toxicology, The Pennsylvania State University, University Park, PA, 16802
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - John Y. L. Chiang
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272
| |
Collapse
|
148
|
van Niekerk G, Davis T, de Villiers W, Engelbrecht AM. The role of bile acids in nutritional support. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:231. [PMID: 30268137 PMCID: PMC6164178 DOI: 10.1186/s13054-018-2160-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022]
Abstract
Nutritional support continues to receive much attention as a possible intervention to prevent loss of lean tissue mass, promote recovery and re-establish proper immune function in critical care patients. Yet there remains much controversy regarding the clinical efficacy of such interventions. In addition to the direct effect of nutrition in terms of micro- and macronutrient content, nutritional formulations may exert an effect via the physiological response to feeding. Here, we highlight the key role of postprandial reabsorbed bile acids in attenuating both the inflammatory response and autophagy. These observations suggest that not all patients would benefit from aggressive nutritional support.
Collapse
Affiliation(s)
- Gustav van Niekerk
- Stellenbosch University, Stellenbosch Central, Stellenbosch, 7599, South Africa.
| | - Tanja Davis
- Stellenbosch University, Stellenbosch Central, Stellenbosch, 7599, South Africa
| | - Willem de Villiers
- Stellenbosch University, Stellenbosch Central, Stellenbosch, 7599, South Africa
| | | |
Collapse
|
149
|
Abstract
PURPOSE OF REVIEW Herein, we review the role of FXR and TGR5 in the regulation of hepatic bile acid metabolism, with a focus on how our understanding of bile acid metabolic regulation by these receptors has evolved in recent years and how this improved understanding may facilitate targeting bile acids for type 2 diabetes treatment. RECENT FINDINGS Bile acid profile is a key regulator of metabolic homeostasis. Inhibition of expression of the enzyme that is required for cholic acid synthesis and thus determines bile acid profile, Cyp8b1, may be an effective target for type 2 diabetes treatment. FXR and, more recently, TGR5 have been shown to regulate bile acid metabolism and Cyp8b1 expression and, therefore, may provide a mechanism with which to target bile acid profile for type 2 diabetes treatment. Inhibition of Cyp8b1 expression is a promising therapeutic modality for type 2 diabetes; however, further work is needed to fully understand the pathways regulating Cyp8b1 expression.
Collapse
Affiliation(s)
- Karolina E Zaborska
- Department of Biomedical Sciences, Cornell University, T3 014A Veterinary Research Tower, Ithaca, NY, 14853, USA
| | - Bethany P Cummings
- Department of Biomedical Sciences, Cornell University, T3 014A Veterinary Research Tower, Ithaca, NY, 14853, USA.
| |
Collapse
|
150
|
Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Mol Aspects Med 2018; 65:37-55. [PMID: 30213667 DOI: 10.1016/j.mam.2018.09.002] [Citation(s) in RCA: 756] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 02/06/2023]
Abstract
The progression of chronic liver diseases (CLD), irrespective of etiology, involves chronic parenchymal injury, persistent activation of inflammatory response as well as sustained activation of liver fibrogenesis and wound healing response. Liver fibrogenesis, is a dynamic, highly integrated molecular, cellular and tissue process responsible for driving the excess accumulation of extracellular matrix (ECM) components (i.e., liver fibrosis) sustained by an eterogeneous population of hepatic myofibroblasts (MFs). The process of liver fibrogenesis recognizes a number of common and etiology-independent mechanisms and events but it is also significantly influenced by the specific etiology, as also reflected by peculiar morphological patterns of liver fibrosis development. In this review we will analyze the most relevant established and/or emerging pathophysiological issues underlying CLD progression with a focus on the role of critical hepatic cell populations, mechanisms and signaling pathways involved, as they represent potential therapeutic targets, to finally analyze selected and relevant clinical issues.
Collapse
|