101
|
Abstract
Mitogen-activated protein kinases (MAPKs) play a pivotal role in the transduction of extracellular signals to the nucleus, which results in numerous cellular responses, including proliferation, differentiation, and regulation of specific metabilic pathways. P38 MAPK is one of the MAPK-family groups. Hepatic stellate cells (HSCs) are the main effector cells in the occurrence of liver fibrosis, so this review describes P38 MAPK signal pathway and its role in HSCs.
Collapse
|
102
|
Blatt NB, Boitano AE, Lyssiotis CA, Opipari AW, Glick GD. Bz-423 superoxide signals apoptosis via selective activation of JNK, Bak, and Bax. Free Radic Biol Med 2008; 45:1232-42. [PMID: 18718527 PMCID: PMC2837238 DOI: 10.1016/j.freeradbiomed.2008.07.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Revised: 07/14/2008] [Accepted: 07/16/2008] [Indexed: 02/07/2023]
Abstract
Bz-423 is a proapoptotic 1,4-benzodiazepine with potent therapeutic properties in murine models of lupus and psoriasis. Bz-423 modulates the F(1)F(0)-ATPase, inducing the formation of superoxide within the mitochondrial respiratory chain, which then functions as a second messenger initiating apoptosis. Herein, we report the signaling pathway activated by Bz-423 in mouse embryonic fibroblasts containing knockouts of key apoptotic proteins. Bz-423-induced superoxide activates cytosolic ASK1 and its release from thioredoxin. A mitogen-activated protein kinase cascade follows, leading to the specific phosphorylation of JNK. JNK signals activation of Bax and Bak which then induces mitochondrial outer membrane permeabilization to cause the release of cytochrome c and a commitment to apoptosis. The response of these cells to Bz-423 is critically dependent on both superoxide and JNK activation as antioxidants and the JNK inhibitor SP600125 prevents Bax translocation, cytochrome c release, and cell death. These results demonstrate that superoxide generated from the mitochondrial respiratory chain as a consequence of a respiratory transition can signal a sequential and specific apoptotic response. Collectively, these data suggest that the selectivity of Bz-423 observed in vivo results from cell-type specific differences in redox balance and signaling by ASK1 and Bcl-2 proteins.
Collapse
Affiliation(s)
- Neal B. Blatt
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48109
| | - Anthony E. Boitano
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | | | - Anthony W. Opipari
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan 48109
| | - Gary D. Glick
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
103
|
Boutros T, Chevet E, Metrakos P. Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death, and cancer. Pharmacol Rev 2008; 60:261-310. [PMID: 18922965 DOI: 10.1124/pr.107.00106] [Citation(s) in RCA: 450] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mitogen-activated protein kinase dual-specificity phosphatase-1 (also called MKP-1, DUSP1, ERP, CL100, HVH1, PTPN10, and 3CH134) is a member of the threonine-tyrosine dual-specificity phosphatases, one of more than 100 protein tyrosine phosphatases. It was first identified approximately 20 years ago, and since that time extensive investigations into both mkp-1 mRNA and protein regulation and function in different cells, tissues, and organs have been conducted. However, no general review on the topic of MKP-1 exists. As the subject matter pertaining to MKP-1 encompasses many branches of the biomedical field, we focus on the role of this protein in cancer development and progression, highlighting the potential role of the mitogen-activated protein kinase (MAPK) family. Section II of this article elucidates the MAPK family cross-talk. Section III reviews the structure of the mkp-1 encoding gene, and the known mechanisms regulating the expression and activity of the protein. Section IV is an overview of the MAPK-specific dual-specificity phosphatases and their role in cancer. In sections V and VI, mkp-1 mRNA and protein are examined in relation to cancer biology, therapeutics, and clinical studies, including a discussion of the potential role of the MAPK family. We conclude by proposing an integrated scheme for MKP-1 and MAPK in cancer.
Collapse
Affiliation(s)
- Tarek Boutros
- Department of Surgery, Royal Victoria Hospital, McGill University, 687 Pine Ave. W., Montreal, QC H3A1A1, Canada.
| | | | | |
Collapse
|
104
|
Gelmedin V, Caballero-Gamiz R, Brehm K. Characterization and inhibition of a p38-like mitogen-activated protein kinase (MAPK) from Echinococcus multilocularis: antiparasitic activities of p38 MAPK inhibitors. Biochem Pharmacol 2008; 76:1068-81. [PMID: 18789902 DOI: 10.1016/j.bcp.2008.08.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 08/06/2008] [Accepted: 08/07/2008] [Indexed: 10/21/2022]
Abstract
Alveolar echinococcosis (AE), caused by the metacestode larval stage of the fox-tapeworm Echinococcus multilocularis, is a life-threatening disease with very limited treatment options. In search for novel drug targets, we concentrate on factors of the cellular signaling machinery and report herein the characterization of a novel gene, Emmpk2, which is expressed in the parasite's larval stage and which codes for a member of the mitogen-activated protein kinase (MAPK) family. On the amino acid sequence level, the encoded protein, EmMPK2, shares considerable homologies with p38 MAPKs from a wide variety of animal organisms but also displays several distinct differences, particularly in amino acid residues known to be involved in the regulation of enzyme activity. Upon heterologous expression in Escherichia coli, purified EmMPK2 showed prominent autophosphorylation activity and strongly elevated basal activity towards a MAPK substrate, when compared to the closest human orthologue, p38-alpha. EmMPK2 activity could be effectively inhibited in the presence of ML3403 and SB202190, two ATP-competitive pyridinyl imidazole inhibitors of p38 MAPKs, in a concentration-dependent manner. When added to in vitro cultivated metacestode vesicles, SB202190 and particularly ML3403 led to dephosphorylation of EmMPK2 in the parasite and effectively killed parasite vesicles at concentrations that did not affect cultivated mammalian cells. Taken together, these results identify pyridinyl imidazoles as a novel class of anti-Echinococcus compounds and EmMPK2 as a promising target for the development of drugs against alveolar echinococcosis.
Collapse
Affiliation(s)
- Verena Gelmedin
- University of Würzburg, Institute of Hygiene and Microbiology, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
| | | | | |
Collapse
|
105
|
Deletion of ERK2 mitogen-activated protein kinase identifies its key roles in cortical neurogenesis and cognitive function. J Neurosci 2008; 28:6983-95. [PMID: 18596172 DOI: 10.1523/jneurosci.0679-08.2008] [Citation(s) in RCA: 231] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The mitogen-activated protein (MAP) kinases ERK1 and ERK2 are critical intracellular signaling intermediates; however, little is known about their isoform-specific functions in vivo. We have examined the role of ERK2 in neural development by conditional inactivation of the murine mapk1/ERK2 gene in neural progenitor cells of the developing cortex. ERK MAP kinase (MAPK) activity in neural progenitor cells is required for neuronal cell fate determination. Loss of ERK2 resulted in a reduction in cortical thickness attributable to impaired proliferation of neural progenitors during the neurogenic period and the generation of fewer neurons. Mutant neural progenitor cells remained in an undifferentiated state until gliogenic stimuli induced their differentiation, resulting in the generation of more astrocytes. The mutant mice displayed profound deficits in associative learning. Importantly, we have identified patients with a 1 Mb microdeletion on chromosome 22q11.2 encompassing the MAPK1/ERK2 gene. These children, who have reduced ERK2 levels, exhibit microcephaly, impaired cognition, and developmental delay. These findings demonstrate an important role for ERK2 in cellular proliferation and differentiation during neural development as well as in cognition and memory formation.
Collapse
|
106
|
Neuropilin-1 in regulation of VEGF-induced activation of p38MAPK and endothelial cell organization. Blood 2008; 112:3638-49. [PMID: 18664627 DOI: 10.1182/blood-2007-12-125856] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Vascular endothelial growth factor (VEGF)-A regulates vascular development and angiogenesis. VEGF isoforms differ in ability to bind coreceptors heparan sulfate (HS) and neuropilin-1 (NRP1). We used VEGF-A165 (which binds HS and NRP1), VEGF-A121 (binds neither HS nor NRP1), and parapoxvirus VEGF-E-NZ2 (binds NRP1 but not HS) to investigate the role of NRP1 in organization of endothelial cells into vascular structures. All 3 ligands induced similar level of VEGFR-2 tyrosine phosphorylation in the presence of NRP1. In contrast, sprouting angiogenesis in differentiating embryonic stem cells (embryoid bodies), formation of branching pericyte-embedded vessels in subcutaneous matrigel plugs, and sprouting of intersegmental vessels in developing zebrafish were induced by VEGF-A165 and VEGF-E-NZ2 but not by VEGF-A121. Analyses of recombinant factors with NRP1-binding gain- and loss-of-function properties supported the conclusion that NRP1 is critical for VEGF-induced sprouting and branching of endothelial cells. Signal transduction antibody arrays implicated NRP1 in VEGF-induced activation of p38MAPK. Inclusion of the p38MAPK inhibitor SB203580 in VEGF-A165-containing matrigel plugs led to attenuated angiogenesis and poor association with pericytes. Our data strongly indicate that the ability of VEGF ligands to bind NRP1 influences p38MAPK activation, and formation of functional, pericyte-associated vessels.
Collapse
|
107
|
Neurotoxicity of cadmium on immature hippocampus and a neuroprotective role for p38MAPK. Neurotoxicology 2008; 29:727-34. [DOI: 10.1016/j.neuro.2008.04.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 04/22/2008] [Accepted: 04/24/2008] [Indexed: 11/23/2022]
|
108
|
Polzer K, Soleiman A, Baum W, Axmann R, Distler J, Redlich K, Kilian A, Krönke G, Schett G, Zwerina J. Selective p38MAPK isoform expression and activation in antineutrophil cytoplasmatic antibody-associated crescentic glomerulonephritis: role of p38MAPKalpha. Ann Rheum Dis 2008; 67:602-8. [PMID: 17704065 DOI: 10.1136/ard.2007.077263] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Crescentic glomerulonephritis (crGN) is a frequent and life-threatening manifestation of antineutrophil cytoplasmatic antibody-associated vasculitis. Up-regulation of proinflammatory cytokines contributes to renal damage by activation of p38 mitogen-activated protein kinases (MAPKs). However, it is unclear which of the four p38MAPK isoforms are expressed, activated and hence of major importance in crGN. METHODS Kidney biopsies of patients with antineutrophil cytoplasmatic antibody-positive crGN and control samples were investigated for the expression and phosphorylation of p38MAPK isoforms and downstream target kinase MAPKAP2 by immunohistochemistry. Expression and functional activation of p38MAPK isoforms by TNF was also assessed in a human podocyte cell line by reverse transcription-polymerase chain reaction, immunoblotting and kinase array. RESULTS Strong expression of p38MAPKalpha, beta and gamma isoforms was found in glomerular podocytes and crescents. Infiltrating leucocytes showed predominant p38MAPKalpha expression. Activation of p38MAPK and its downstream mediator MAPKAP2 was found in crGN confined to glomerular podocytes, crescents and inflammatory infiltrates. Interestingly, corticosteroid treatment before kidney biopsy diminished p38MAPK activation in crGN. Activated p38MAPK co-localised with alpha, beta and gamma isoforms in podocytes and crescents, while leucocytes showed mainly p38MAPKalpha activation. In a human podocyte cell line mRNA and protein of all four p38MAPK isoforms was expressed but only p38MAPKalpha was activated upon challenge with TNF. CONCLUSIONS This study shows selective p38MAPK isoform expression and activation in crGN. Podocytes and podocyte-induce crescent formation is the main source of p38MAPK activation in crGN. TNF is a potent and selective activator of the alpha-isoform in podocytes, which therefore appears as a main contributor to proinflammatory signalling in the glomerulum of crGN.
Collapse
Affiliation(s)
- K Polzer
- Department of Internal Medicine 3, Institute for Clinical Immunology, University of Erlangen, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Trouillas M, Saucourt C, Duval D, Gauthereau X, Thibault C, Dembele D, Feraud O, Menager J, Rallu M, Pradier L, Boeuf H. Bcl2, a transcriptional target of p38alpha, is critical for neuronal commitment of mouse embryonic stem cells. Cell Death Differ 2008; 15:1450-9. [PMID: 18437159 DOI: 10.1038/cdd.2008.63] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mouse embryonic stem (ES) cells remain pluripotent in vitro when grown in the presence of leukemia inhibitory factor (LIF) cytokine. LIF starvation leads to cell commitment, and part of the ES-derived differentiated cells die by apoptosis together with caspase3-cleavage and p38alpha activation. Inhibition of p38 activity by chemical compounds (PD169316 and SB203580), along with LIF withdrawal, leads to different outcomes on cell apoptosis, giving the opportunity to study the influence of apoptosis on cell differentiation. By gene profiling studies on ES-derived differentiated cells treated or not with these inhibitors, we have characterized the common and specific set of genes modulated by each inhibitor. We have also identified key genes that might account for their different survival effects. In addition, we have demonstrated that some genes, similarly regulated by both inhibitors (upregulated as Bcl2, Id2, Cd24a or downregulated as Nodal), are bona fide p38alpha targets involved in neurogenesis and found a correlation with their expression profiles and the onset of neuronal differentiation triggered upon retinoic acid treatment. We also showed, in an embryoid body differentiation protocol, that overexpression of EGFP (enhanced green fluorescent protein)-BCL2 fusion protein and repression of p38alpha are essential to increase formation of TUJ1-positive neuronal cell networks along with an increase in Map2-expressing cells.
Collapse
|
110
|
Gerits N, Kostenko S, Shiryaev A, Johannessen M, Moens U. Relations between the mitogen-activated protein kinase and the cAMP-dependent protein kinase pathways: comradeship and hostility. Cell Signal 2008; 20:1592-607. [PMID: 18423978 DOI: 10.1016/j.cellsig.2008.02.022] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 02/28/2008] [Accepted: 02/29/2008] [Indexed: 01/05/2023]
Abstract
Inter- and intracellular communications and responses to environmental changes are pivotal for the orchestrated and harmonious operation of multi-cellular organisms. These well-tuned functions in living organisms are mediated by the action of signal transduction pathways, which are responsible for receiving a signal, transmitting and amplifying it, and eliciting the appropriate cellular responses. Mammalian cells posses numerous signal transduction pathways that, rather than acting in solitude, interconnect with each other, a phenomenon referred to as cross-talk. This allows cells to regulate the distribution, duration, intensity and specificity of the response. The cAMP/cAMP-dependent protein kinase (PKA) pathway and the mitogen-activated protein kinase (MAPK) cascades modulate common processes in the cell and multiple levels of cross-talk between these signalling pathways have been described. The first- and best-characterized interconnections are the PKA-dependent inhibition of the MAPKs ERK1/2 mediated by RAF-1, and PKA-induced activation of ERK1/2 interceded through B-RAF. Recently, novel interactions between components of these pathways and new mechanisms for cross-talk have been elucidated. This review discusses both known and novel interactions between compounds of the cAMP/PKA and MAPKs signalling pathways in mammalian cells.
Collapse
Affiliation(s)
- Nancy Gerits
- Department of Microbiology and Virology, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | | | |
Collapse
|
111
|
22q11.2 distal deletion: a recurrent genomic disorder distinct from DiGeorge syndrome and velocardiofacial syndrome. Am J Hum Genet 2008; 82:214-21. [PMID: 18179902 DOI: 10.1016/j.ajhg.2007.09.014] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 09/04/2007] [Accepted: 09/12/2007] [Indexed: 11/23/2022] Open
Abstract
Microdeletions within chromosome 22q11.2 cause a variable phenotype, including DiGeorge syndrome (DGS) and velocardiofacial syndrome (VCFS). About 97% of patients with DGS/VCFS have either a common recurrent approximately 3 Mb deletion or a smaller, less common, approximately 1.5 Mb nested deletion. Both deletions apparently occur as a result of homologous recombination between nonallelic flanking low-copy repeat (LCR) sequences located in 22q11.2. Interestingly, although eight different LCRs are located in proximal 22q, only a few cases of atypical deletions utilizing alternative LCRs have been described. Using array-based comparative genomic hybridization (CGH) analysis, we have detected six unrelated cases of deletions that are within 22q11.2 and are located distal to the approximately 3 Mb common deletion region. Further analyses revealed that the rearrangements had clustered breakpoints and either a approximately 1.4 Mb or approximately 2.1 Mb recurrent deletion flanked proximally by LCR22-4 and distally by either LCR22-5 or LCR22-6, respectively. Parental fluorescence in situ hybridization (FISH) analyses revealed that none of the available parents (11 out of 12 were available) had the deletion, indicating de novo events. All patients presented with characteristic facial dysmorphic features. A history of prematurity, prenatal and postnatal growth delay, developmental delay, and mild skeletal abnormalities was prevalent among the patients. Two patients were found to have a cardiovascular malformation, one had truncus arteriosus, and another had a bicuspid aortic valve. A single patient had a cleft palate. We conclude that distal deletions of chromosome 22q11.2 between LCR22-4 and LCR22-6, although they share some characteristic features with DGS/VCFS, represent a novel genomic disorder distinct genomically and clinically from the well-known DGS/VCF deletion syndromes.
Collapse
|
112
|
Henklová P, Vrzal R, Ulrichová J, Dvorák Z. Role of mitogen-activated protein kinases in aryl hydrocarbon receptor signaling. Chem Biol Interact 2007; 172:93-104. [PMID: 18282562 DOI: 10.1016/j.cbi.2007.12.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 12/14/2007] [Accepted: 12/19/2007] [Indexed: 10/22/2022]
Abstract
Human populations are increasingly exposed to a number of environmental pollutants such as polycyclic aromatic hydrocarbons, polychlorinated biphenyls and dioxins. These compounds are activators of the aryl hydrocarbon receptor (AhR) that controls the expression of many genes including those for detoxification enzymes. The regulatory mechanisms of AhR are multi-factorial and include phosphorylation by various protein kinases. Significant progress in the research of mitogen-activated protein kinases (MAPKs) has been achieved in the last decade. Isolated reports have been published on the role of MAPKs in AhR functions and vice versa, with activation of MAPKs by AhR ligands. This mini-review summarizes current knowledge on the mutual interactions between MAPKs and AhR. The majority of studies has been done on cancer-derived cell lines that have impaired cell cycle regulation and lacks the complete detoxification apparatus. We emphasize the importance of the future studies that should be done on non-transformed cells to distinguish the role of MAPKs in cancer and normal cells. Primary cultures of human or rodent hepatocytes that are equipped with a fully functional biotransformation battery or xenobiotics-metabolizing extra-hepatic tissues should be the models of choice, as the results in our experiments confirm.
Collapse
Affiliation(s)
- Pavla Henklová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotínská 3, 775 15 Olomouc, Czech Republic
| | | | | | | |
Collapse
|
113
|
Aouadi M, Jager J, Laurent K, Gonzalez T, Cormont M, Binétruy B, Le Marchand-Brustel Y, Tanti JF, Bost F. p38MAP Kinase activity is required for human primary adipocyte differentiation. FEBS Lett 2007; 581:5591-5596. [PMID: 17997987 DOI: 10.1016/j.febslet.2007.10.064] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 10/30/2007] [Accepted: 10/30/2007] [Indexed: 11/24/2022]
Abstract
Little is known about the role of p38MAPK in human adipocyte differentiation. Here we showed that p38MAPK activity increases during human preadipocytes differentiation. Pharmacological inhibition of p38MAPK during adipocyte differentiation of primary human preadipocytes markedly reduced triglycerides accumulation and adipocyte markers expression. Cell cycle arrest or proliferation was not affected by p38MAPK inhibition. Although induction of C/EBPbeta was not altered by the p38MAPK inhibitor, its phosphorylation on Threonine(188) was decreased as well as PPARgamma expression. These results indicate that p38MAPK plays a positive role in human adipogenesis through regulation of C/EBPbeta and PPARgamma factors.
Collapse
Affiliation(s)
- M Aouadi
- INSERM, U 568, IFR50, F-06107, Nice, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Kang TH, Kim KT. VRK3-mediated inactivation of ERK signaling in adult and embryonic rodent tissues. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1783:49-58. [PMID: 18035061 DOI: 10.1016/j.bbamcr.2007.10.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 10/11/2007] [Accepted: 10/22/2007] [Indexed: 12/15/2022]
Abstract
Vaccinia-related kinase 3 (VRK3), previously characterized as a direct activator of vaccinia H1-related (VHR) phosphatase, inactivates extracellular signal-regulated kinase (ERK) in the nucleus of neuronal cells. Here we show that VRK3 is expressed in various other rodent tissues and in embryos, and regulates VHR phosphatase activity in these tissues. We observed colocalization of VRK3 and VHR in the testis tissue and could detect protein complex containing VRK3, VHR and ERK in immunoprecipitation analysis. Notably, the addition of recombinant VRK3 protein to total protein lysates, obtained either from adult tissues or embryos, enhanced the phosphatase activity of VHR, but not the activity of MKP3. The results further indicate that the VHR-VRK3 complex is a phosphatase-active form. In addition, we found that VRK3 can regulate EGF-induced cellular growth signaling that is mediated by ERK activation. Our results suggest that in addition to neuronal cells, various other rodent adult tissues and embryos possess a common signaling mechanism which is involved in an indirect regulation of ERK activity by VRK3-mediated VHR activity.
Collapse
Affiliation(s)
- Tae-Hong Kang
- Department of Life Science, Biotechnology Research Center, Division of Molecular and Life Science, Pohang University of Science and Technology (POSTECH), San-31, Hyoja-Dong, Pohang, 790-784, Republic of Korea
| | | |
Collapse
|
115
|
Abstract
Recent studies demonstrated a number of links between chromatin structure, gene expression, extracellular signaling and cellular differentiation during lens development. Lens progenitor cells originate from a pool of common progenitor cells, the pre-placodal region (PPR) which is formed from a combination of extracellular signaling between the neural plate, naïve ectoderm and mesendoderm. A specific commitment to the lens program over alternate choices such as the formation of olfactory epithelium or the anterior pituitary is manifested by the formation of a thickened surface ectoderm, the lens placode. Mouse lens progenitor cells are characterized by the expression of a complement of lens lineage-specific transcription factors including Pax6, Six3 and Sox2, controlled by FGF and BMP signaling, followed later by c-Maf, Mab21like1, Prox1 and FoxE3. Proliferation of lens progenitors together with their morphogenetic movements results in the formation of the lens vesicle. This transient structure, comprised of lens precursor cells, is polarized with its anterior cells retaining their epithelial morphology and proliferative capacity, whereas the posterior lens precursor cells initiate terminal differentiation forming the primary lens fibers. Lens differentiation is marked by expression and accumulation of crystallins and other structural proteins. The transcriptional control of crystallin genes is characterized by the reiterative use of transcription factors required for the establishment of lens precursors in combination with more ubiquitously expressed factors (e.g. AP-1, AP-2alpha, CREB and USF) and recruitment of histone acetyltransferases (HATs) CBP and p300, and chromatin remodeling complexes SWI/SNF and ISWI. These studies have poised the study of lens development at the forefront of efforts to understand the connections between development, cell signaling, gene transcription and chromatin remodeling.
Collapse
Affiliation(s)
- Ales Cvekl
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | |
Collapse
|
116
|
Rudich A, Kanety H, Bashan N. Adipose stress-sensing kinases: linking obesity to malfunction. Trends Endocrinol Metab 2007; 18:291-9. [PMID: 17855109 DOI: 10.1016/j.tem.2007.08.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 07/30/2007] [Accepted: 08/30/2007] [Indexed: 12/19/2022]
Abstract
Obesity has been proposed to inflict a variety of stresses on adipose tissue, including inflammatory, metabolic, oxidative and endoplasmic reticulum stress. Through the activation of 'stress-sensing pathways', metabolic and endocrine alterations are produced, which probably contribute to the co-morbidities associated with obesity. Here, we review the evidence supporting the development of various obesity-related stresses and the activation of several stress-sensing pathways, specifically in adipocytes and/or adipose tissue, which manifest metabolic and endocrine dysfunction frequently in obesity. As the central role of adipose tissue in regulating whole-body metabolism is elucidated, understanding adipose tissue stress-sensing pathways might provide potential new therapeutic targets to attenuate obesity-related morbidity.
Collapse
Affiliation(s)
- Assaf Rudich
- Department of Clinical Biochemistry Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, 84103 Israel
| | | | | |
Collapse
|
117
|
Binétruy B, Heasley L, Bost F, Caron L, Aouadi M. Concise review: regulation of embryonic stem cell lineage commitment by mitogen-activated protein kinases. Stem Cells 2007; 25:1090-1095. [PMID: 17218395 DOI: 10.1634/stemcells.2006-0612] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Embryonic stem (ES) cells can give rise, in vivo, to the ectodermal, endodermal, and mesodermal germ layers and, in vitro, can differentiate into multiple cell lineages, offering broad perspectives in regenerative medicine. Understanding the molecular mechanisms governing ES cell commitment is an essential challenge in this field. The mitogen-activated protein kinase (MAPK) pathways extracellular signal-regulated kinase (ERK), c-Jun amino-terminal kinase (JNK), and p38MAPK are able to regulate ES commitment from early steps of the process to mature differentiated cells. Whereas the ERK pathway inhibits the self-renewal of ES cells, upon commitment this pathway is involved in the development of extraembryonic tissues, in early mesoderm differentiation, and in the formation of mature adipocytes; p38MAPK displays a large spectrum of action from neurons to adipocytes, and JNK is involved in both ectoderm and primitive endoderm differentiations. Furthermore, for a given pathway, several of these effects are isoform-dependent, revealing the complexity of the cellular response to activation of MAPK pathways. Regarding tissue regeneration, the potential outcome of systematic analysis of the function of different MAPKs in different ES cell differentiation programs is discussed. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Bernard Binétruy
- INSERM, U626, Faculté de Médecine, 27 Bd J Moulin, 13385 Marseille, France.
| | | | | | | | | |
Collapse
|
118
|
Gerits N, Kostenko S, Moens U. In vivo functions of mitogen-activated protein kinases: conclusions from knock-in and knock-out mice. Transgenic Res 2007; 16:281-314. [PMID: 17219248 DOI: 10.1007/s11248-006-9052-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Accepted: 10/24/2006] [Indexed: 01/09/2023]
Abstract
Multicellular organisms achieve intercellular communication by means of signalling molecules whose effect on the target cell is mediated by signal transduction pathways. Such pathways relay, amplify and integrate signals to elicit appropriate biological responses. Protein kinases form crucial intermediate components of numerous signalling pathways. One group of protein kinases, the mitogen-activated protein kinases (MAP kinases) are kinases involved in signalling pathways that respond primarily to mitogens and stress stimuli. In vitro studies revealed that the MAP kinases are implicated in several cellular processes, including cell division, differentiation, cell survival/apoptosis, gene expression, motility and metabolism. As such, dysfunction of specific MAP kinases is associated with diseases such as cancer and immunological disorders. However, the genuine in vivo functions of many MAP kinases remain elusive. Genetically modified mouse models deficient in a specific MAP kinase or expressing a constitutive active or a dominant negative variant of a particular MAP kinase offer valuable tools for elucidating the biological role of these protein kinases. In this review, we focus on the current status of MAP kinase knock-in and knock-out mouse models and their phenotypes. Moreover, examples of the application of MAP kinase transgenic mice for validating therapeutic properties of specific MAP kinase inhibitors, and for investigating the role of MAP kinase in pathogen-host interactions will be discussed.
Collapse
Affiliation(s)
- Nancy Gerits
- Department of Microbiology and Virology, Institute of Medical Biology, University of Tromsø, Tromsø, Norway.
| | | | | |
Collapse
|