101
|
Singh VK, Arora D, Ansari MI, Sharma PK. Phytochemicals based chemopreventive and chemotherapeutic strategies and modern technologies to overcome limitations for better clinical applications. Phytother Res 2019; 33:3064-3089. [DOI: 10.1002/ptr.6508] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 07/26/2019] [Accepted: 08/23/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Vipendra Kumar Singh
- Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology GroupCSIR‐Indian Institute of Toxicology Research Lucknow India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad‐ 201002 India
| | - Deepika Arora
- Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology GroupCSIR‐Indian Institute of Toxicology Research Lucknow India
- Material and Measurement LaboratoryNational Institute of Standards and Technology Gaithersburg 20899 Maryland USA
| | - Mohammad Imran Ansari
- Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology GroupCSIR‐Indian Institute of Toxicology Research Lucknow India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad‐ 201002 India
| | - Pradeep Kumar Sharma
- Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology GroupCSIR‐Indian Institute of Toxicology Research Lucknow India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad‐ 201002 India
| |
Collapse
|
102
|
Zhang Y, Li W, Liu D, Ge Y, Zhao M, Zhu X, Li W, Wang L, Zheng T, Li J. Oral Curcumin via Hydrophobic Porous Silicon Carrier: Preparation, Characterization, and Toxicological Evaluation In Vivo. ACS APPLIED MATERIALS & INTERFACES 2019; 11:31661-31670. [PMID: 31430116 DOI: 10.1021/acsami.9b10368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Curcumin has antioxidant, anti-inflammatory, antimicrobial, and anticarcinogenic activities. However, the clinical application of curcumin has been restricted by the poor water solubility and low bioavailability of this molecule. In this work, hydrophobic porous silicon (pSi) particles were prepared by electrochemical etching method and grafted with the different hydrophobic groups on their surfaces. The loading efficiency of curcumin in pSi has been investigated. The properties of pSi particles have been characterized by scanning electron microscopy (SEM) and Fourier transform-infrared spectroscopy (FTIR). The highest loading efficiency of curcumin can be obtained with pSi surface modified with the octadecyl silane group. The release properties of curcumin in hydrophobic pSi have been researched in vitro and in vivo. The curcumin in the hydrophobic pSi surface keeps a high antioxidant bioactivity. The toxicological evaluation of the hydrophobic pSi particles indicates they have a high in vivo biocompatibility within the observed dose ranges. The hydrophobic pSi particles could provide an effective and controlled release delivery carrier for curcumin, which may provide a new tool platform for the further development of curcumin.
Collapse
Affiliation(s)
- Yue Zhang
- School of Food Science and Pharmaceutical Engineering , Nanjing Normal University , Nanjing 210024 , P. R. China
| | - Wei Li
- Department of Electronic and Electrical Engineering , The University of Sheffield , Sheffield S3 7HQ , United Kingdom
| | - Di Liu
- School of Food Science and Pharmaceutical Engineering , Nanjing Normal University , Nanjing 210024 , P. R. China
| | - Yafang Ge
- School of Food Science and Pharmaceutical Engineering , Nanjing Normal University , Nanjing 210024 , P. R. China
| | - Mengyuan Zhao
- School of Food Science and Pharmaceutical Engineering , Nanjing Normal University , Nanjing 210024 , P. R. China
| | - Xuerui Zhu
- School of Food Science and Pharmaceutical Engineering , Nanjing Normal University , Nanjing 210024 , P. R. China
| | - Weiwei Li
- School of Food Science and Pharmaceutical Engineering , Nanjing Normal University , Nanjing 210024 , P. R. China
| | - Longfeng Wang
- School of Food Science and Pharmaceutical Engineering , Nanjing Normal University , Nanjing 210024 , P. R. China
| | - Tiesong Zheng
- School of Food Science and Pharmaceutical Engineering , Nanjing Normal University , Nanjing 210024 , P. R. China
| | - Jianlin Li
- School of Food Science and Pharmaceutical Engineering , Nanjing Normal University , Nanjing 210024 , P. R. China
| |
Collapse
|
103
|
Nasri Nasrabadi P, Zareian S, Nayeri Z, Salmanipour R, Parsafar S, Gharib E, Asadzadeh Aghdaei H, Zali MR. A detailed image of rutin underlying intracellular signaling pathways in human SW480 colorectal cancer cells based on miRNAs-lncRNAs-mRNAs-TFs interactions. J Cell Physiol 2019; 234:15570-15580. [PMID: 30697726 DOI: 10.1002/jcp.28204] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Natural dietary ingredients like flavonoids are important for body improvement against diseases. The flavonol rutin is widely found in fruits and vegetables and shows significant anticancer properties. However, the underlined signaling pathways have not been elucidated yet. In this study, the impacts of various doses of rutin (400-700 mM/ml) have been examined on human colon cancer SW480 cells metabolism, cell cycle, and apoptosis. The transcriptome was analyzed by bioinformatics tools and the interactions between rutin modulated microRNAs (miRNAs), long noncoding RNAs (lncRNAs), messenger RNAs (mRNAs), and transcription factors (TFs) were built, filtered and enriched. A dose of 600 mM of rutin significantly decreased cells metabolic activity, halved the population and arrested the cell cycle at the sub-G1 phase. The enrichment analysis of miRNAs-lncRNAs-mRNAs-TFs network showed that these effects were mediated through alteration of glucose, lipid, and protein metabolism, modulating endoplasmic reticulum stress responses, negative regulation of cell cycle process, and inducing the extrinsic and intrinsic apoptotic signaling pathways. Additionally, the key parent nodes of each annotation were illustrated. These findings create a detailed image of rutin underlying intracellular signaling pathways in CRC and also help us to better understand the role of dietary natural compounds in cancer treatment.
Collapse
Affiliation(s)
- Parinaz Nasri Nasrabadi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Somaye Zareian
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Nayeri
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Salmanipour
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Soha Parsafar
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ehsan Gharib
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
104
|
Cross-linking of hyaluronic acid by curcumin analogue to construct nanomicelles for delivering anticancer drug. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
105
|
Del Prado-Audelo M, Magaña J, Mejía-Contreras B, Borbolla-Jiménez F, Giraldo-Gomez D, Piña-Barba M, Quintanar-Guerrero D, Leyva-Gómez G. In vitro cell uptake evaluation of curcumin-loaded PCL/F68 nanoparticles for potential application in neuronal diseases. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
106
|
Ke X, Tang H, Mao HQ. Effective encapsulation of curcumin in nanoparticles enabled by hydrogen bonding using flash nanocomplexation. Int J Pharm 2019; 564:273-280. [DOI: 10.1016/j.ijpharm.2019.04.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 01/08/2023]
|
107
|
|
108
|
Grolez GP, Hammadi M, Barras A, Gordienko D, Slomianny C, Völkel P, Angrand PO, Pinault M, Guimaraes C, Potier-Cartereau M, Prevarskaya N, Boukherroub R, Gkika D. Encapsulation of a TRPM8 Agonist, WS12, in Lipid Nanocapsules Potentiates PC3 Prostate Cancer Cell Migration Inhibition through Channel Activation. Sci Rep 2019; 9:7926. [PMID: 31138874 PMCID: PMC6538610 DOI: 10.1038/s41598-019-44452-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/14/2019] [Indexed: 01/24/2023] Open
Abstract
In prostate carcinogenesis, expression and/or activation of the Transient Receptor Potential Melastatin 8 channel (TRPM8) was shown to block in vitro Prostate Cancer (PCa) cell migration. Because of their localization at the plasma membrane, ion channels, such as TRPM8 and other membrane receptors, are promising pharmacological targets. The aim of this study was thus to use nanocarriers encapsulating a TRPM8 agonist to efficiently activate the channel and therefore arrest PCa cell migration. To achieve this goal, the most efficient TRPM8 agonist, WS12, was encapsulated into Lipid NanoCapsules (LNC). The effect of the nanocarriers on channel activity and cellular physiological processes, such as cell viability and migration, were evaluated in vitro and in vivo. These results provide a proof-of-concept support for using TRPM8 channel-targeting nanotechnologies based on LNC to develop more effective methods inhibiting PCa cell migration in zebrafish xenograft.
Collapse
Affiliation(s)
- G P Grolez
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, F-59000, Lille, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Villeneuve d'Ascq, France
| | - M Hammadi
- Univ. Lille, CNRS, Central Lille, ISEN, Univ. Valenciennes, UMR 8520, IEMN, F-59000, Lille, France
| | - A Barras
- Univ. Lille, CNRS, Central Lille, ISEN, Univ. Valenciennes, UMR 8520, IEMN, F-59000, Lille, France
| | - D Gordienko
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, F-59000, Lille, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Villeneuve d'Ascq, France
| | - C Slomianny
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, F-59000, Lille, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Villeneuve d'Ascq, France
| | - P Völkel
- Univ. Lille, U908 - CPAC, Cell Plasticity and Cancer, F-59000, Lille, France.,CNRS, CPAC, Cell Plasticity and Cancer, Lille, France
| | - P O Angrand
- Univ. Lille, U908 - CPAC, Cell Plasticity and Cancer, F-59000, Lille, France
| | - M Pinault
- Université de Tours, Nutrition, Croissance et Cancer, Inserm UMR1069, Tours, France.,Ion channel Network and Cancer-Canceropole Grand Ouest, (IC-CGO), Nantes, France
| | - C Guimaraes
- Université de Tours, Nutrition, Croissance et Cancer, Inserm UMR1069, Tours, France.,Ion channel Network and Cancer-Canceropole Grand Ouest, (IC-CGO), Nantes, France
| | - M Potier-Cartereau
- Université de Tours, Nutrition, Croissance et Cancer, Inserm UMR1069, Tours, France.,Ion channel Network and Cancer-Canceropole Grand Ouest, (IC-CGO), Nantes, France
| | - N Prevarskaya
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, F-59000, Lille, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Villeneuve d'Ascq, France
| | - R Boukherroub
- Univ. Lille, CNRS, Central Lille, ISEN, Univ. Valenciennes, UMR 8520, IEMN, F-59000, Lille, France
| | - D Gkika
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, F-59000, Lille, France. .,Laboratory of Excellence, Ion Channels Science and Therapeutics, Villeneuve d'Ascq, France.
| |
Collapse
|
109
|
Serpa Guerra AM, Gómez Hoyos C, Velásquez-Cock JA, Vélez Acosta L, Gañán Rojo P, Velásquez Giraldo AM, Zuluaga Gallego R. The nanotech potential of turmeric ( Curcuma longa L.) in food technology: A review. Crit Rev Food Sci Nutr 2019; 60:1842-1854. [PMID: 31017458 DOI: 10.1080/10408398.2019.1604490] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
New trends in food are emerging in response to consumer awareness of the relationship between food and health, which has triggered the need to generate new alternatives that meet the expectations of the market. Revolutionary fields such as nanotechnology have been used for the encapsulation of nutritional ingredients and have great potential for the management of food additives derived from fruits and plant species. Turmeric, a spice that has been used as a dyeing agent, is recognized for its properties in Ayurveda medicine. This article aims to provide an overview of the characteristics of turmeric as an ingredient for the food industry, including its properties as a coloring agent, antioxidant, and functional ingredient. This article also highlights the potential of nanotechnology to enhance these properties of turmeric and increase the possibilities for the application of its components, such as cellulose and starch, in the development of nanostructures for food development.
Collapse
Affiliation(s)
- Angélica M Serpa Guerra
- Facultad de Ingeniería Agroindustrial, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Catalina Gómez Hoyos
- Programa de Ingeniería en Nanotecnología, Universidad Pontificia Bolivariana, Medellín, Colombia
| | | | - Lina Vélez Acosta
- Facultad de Ingeniería Agroindustrial, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Piedad Gañán Rojo
- Facultad de Ingeniería Química, Universidad Pontificia Bolivariana, Medellín, Colombia
| | | | - Robin Zuluaga Gallego
- Facultad de Ingeniería Agroindustrial, Universidad Pontificia Bolivariana, Medellín, Colombia
| |
Collapse
|
110
|
Delivering Combination Chemotherapies and Targeting Oncogenic Pathways via Polymeric Drug Delivery Systems. Polymers (Basel) 2019; 11:polym11040630. [PMID: 30959799 PMCID: PMC6523645 DOI: 10.3390/polym11040630] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/22/2019] [Accepted: 03/24/2019] [Indexed: 12/24/2022] Open
Abstract
The side-effects associated with chemotherapy necessitates better delivery of chemotherapeutics to the tumor. Nanoparticles can load higher amounts of drug and improve delivery to tumors, increasing the efficacy of treatment. Polymeric nanoparticles, in particular, have been used extensively for chemotherapeutic delivery. This review describes the efforts made to deliver combination chemotherapies and inhibit oncogenic pathways using polymeric drug delivery systems. Combinations of chemotherapeutics with other drugs or small interfering RNA (siRNA) combinations have been summarized. Special attention is given to the delivery of drug combinations that involve either paclitaxel or doxorubicin, two popular chemotherapeutics in clinic. Attempts to inhibit specific pathways for oncotherapy have also been described. These include inhibition of oncogenic pathways (including those involving HER2, EGFR, MAPK, PI3K/Akt, STAT3, and HIF-1α), augmentation of apoptosis by inhibiting anti-apoptosis proteins (Bcl-2, Bcl-xL, and survivin), and targeting dysregulated pathways such as Wnt/β-catenin and Hedgehog.
Collapse
|
111
|
Juneja R, Lyles Z, Vadarevu H, Afonin KA, Vivero-Escoto JL. Multimodal Polysilsesquioxane Nanoparticles for Combinatorial Therapy and Gene Delivery in Triple-Negative Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2019; 11:12308-12320. [PMID: 30844224 DOI: 10.1021/acsami.9b00704] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Multifunctional hybrid nanoparticles are being developed to carry a wide variety of therapeutic and imaging agents for multiple biomedical applications. Polysilsesquioxane (PSilQ) nanoparticles are a promising hybrid platform with numerous advantages to be used as a delivery system. In this report, we demonstrate the ability of a stimuli-responsive PSilQ-based platform to transport and deliver simultaneously protoporphyrin IX, curcumin, and RNA interference inducers inside human cells. This multimodal delivery system shows a synergistic performance for the combined phototherapy and chemotherapy of triple-negative breast cancer and can be used for efficient transfection of therapeutic nucleic acids. The current work represents the first report of using the PSilQ platform for the combined phototherapy and chemotherapy and gene delivery.
Collapse
|
112
|
Ma Z, Fan Y, Wu Y, Kebebe D, Zhang B, Lu P, Pi J, Liu Z. Traditional Chinese medicine-combination therapies utilizing nanotechnology-based targeted delivery systems: a new strategy for antitumor treatment. Int J Nanomedicine 2019; 14:2029-2053. [PMID: 30962686 PMCID: PMC6435121 DOI: 10.2147/ijn.s197889] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cancer is a major public health problem, and is now the world’s leading cause of death. Traditional Chinese medicine (TCM)-combination therapy is a new treatment approach and a vital therapeutic strategy for cancer, as it exhibits promising antitumor potential. Nano-targeted drug-delivery systems have remarkable advantages and allow the development of TCM-combination therapies by systematically controlling drug release and delivering drugs to solid tumors. In this review, the anticancer activity of TCM compounds is introduced. The combined use of TCM for antitumor treatment is analyzed and summarized. These combination therapies, using a single nanocarrier system, namely codelivery, are analyzed, issues that require attention are determined, and future perspectives are identified. We carried out a systematic review of >280 studies published in PubMed since 1985 (no patents involved), in order to provide a few basic considerations in terms of the design principles and management of targeted nanotechnology-based TCM-combination therapies.
Collapse
Affiliation(s)
- Zhe Ma
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ;
| | - Yuqi Fan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yumei Wu
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ;
| | - Dereje Kebebe
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,School of Pharmacy, Institute of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Bing Zhang
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ;
| | - Peng Lu
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ;
| | - Jiaxin Pi
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ;
| | - Zhidong Liu
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ;
| |
Collapse
|
113
|
Wang C, Song X, Shang M, Zou W, Zhang M, Wei H, Shao H. Curcumin exerts cytotoxicity dependent on reactive oxygen species accumulation in non-small-cell lung cancer cells. Future Oncol 2019; 15:1243-1253. [PMID: 30843426 DOI: 10.2217/fon-2018-0708] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM Curcumin induces cytotoxic cell death in several human cancer cells. Here, we have investigated the effects of curcumin on non-small-cell lung cancer (NSCLC) with an aim to identify underlying mechanisms of its cytotoxic effect. MATERIALS & METHODS The effects of various concentrations of curcumin on the NSCLC cell lines A549 and SPC-A1 were evaluated by MTT assay, colony-forming assay and flow cytometry. Additionally, protein expression associated with different signaling pathways was assessed using western blotting. RESULTS Curcumin exhibited cytotoxicity against NSCLC, evident from the inhibition of cell proliferation, G2/M arrest, DNA damage, endoplasmic reticulum stress and mitochondrial apoptosis. The anticancer effect was related to reactive oxygen species (ROS) accumulation and could be reversed by ROS scavengers, catalase and N-acetyl-l-cysteine. Curcumin decreased mitochondrial transmembrane potential and induced ROS production, thereby activating the DNA damage/repair pathway and mitochondrial apoptosis. CONCLUSION These results indicate that curcumin could be an effective therapeutic candidate for NSCLC.
Collapse
Affiliation(s)
- Cuijuan Wang
- Key Laboratory of Public Health, Shandong Academy of Occupational Health & Occupational Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, PR China
| | - Xingguo Song
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, PR China
| | - Ming Shang
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, PR China
| | - Wei Zou
- Key Laboratory of Public Health, Shandong Academy of Occupational Health & Occupational Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, PR China
| | - Mengping Zhang
- Key Laboratory of Public Health, Shandong Academy of Occupational Health & Occupational Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, PR China
| | - Haiyan Wei
- Key Laboratory of Public Health, Shandong Academy of Occupational Health & Occupational Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, PR China
| | - Hua Shao
- Key Laboratory of Public Health, Shandong Academy of Occupational Health & Occupational Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, PR China
| |
Collapse
|
114
|
Phytochemical Evaluation, Embryotoxicity, and Teratogenic Effects of Curcuma longa Extract on Zebrafish ( Danio rerio). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3807207. [PMID: 30949217 PMCID: PMC6425308 DOI: 10.1155/2019/3807207] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/07/2019] [Accepted: 02/13/2019] [Indexed: 11/17/2022]
Abstract
Curcuma longa L. is a rhizome plant often used as traditional medicinal preparations in Southeast Asia. The dried powder is commonly known as cure-all herbal medicine with a wider spectrum of pharmaceutical activities. In spite of the widely reported therapeutic applications of C. longa, research on its safety and teratogenic effects on zebrafish embryos and larvae is still limited. Hence, this research aimed to assess the toxicity of C. longa extract on zebrafish. Using a reflux flask, methanol extract of C. longa was extracted and the identification and quantification of total flavonoids were carried out with HPLC. Twelve fertilized embryos were selected to test the embryotoxicity and teratogenicity at different concentration points. The embryos were exposed to the extract in the E3M medium while the control was only exposed to E3M and different developmental endpoints were recorded with the therapeutic index calculated using the ratio of LC50/EC50. C. longa extract was detected to be highly rich in flavonoids with catechin, epicatechin, and naringenin as the 3 most abundant with concentrations of 3,531.34, 688.70, and 523.83μg/mL, respectively. The toxicity effects were discovered to be dose-dependent at dosage above 62.50μg/mL, while, at 125.0μg/mL, mortality of embryos was observed and physical body deformities of larvae were recorded among the hatched embryos at higher concentrations. Teratogenic effect of the extract was severe at higher concentrations producing physical body deformities such as kink tail, bend trunk, and enlarged yolk sac edema. Finally, the therapeutic index (TI) values calculated were approximately the same for different concentration points tested. Overall, the result revealed that plants having therapeutic potential could also pose threats when consumed at higher doses especially on the embryos. Therefore, detailed toxicity analysis should be carried out on medicinal plants to ascertain their safety on the embryos and its development.
Collapse
|
115
|
Yang Y, Huang Z, Pu X, Yin G, Wang L, Gao F. Fabrication of magnetic nanochains linked with CTX and curcumin for dual modal imaging detection and limitation of early tumour. Cell Prolif 2018; 51:e12486. [PMID: 30133050 PMCID: PMC6528879 DOI: 10.1111/cpr.12486] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/02/2018] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Five-year survival rate at early lung tumour was about 70%; however, its early diagnosis rate was still at a low level, so the enhancement of diagnosis level for early lung tumour is the key factor to increase the survival rate. Diagnosis and therapy of early lung tumour are still challenged. METHODS The magnetic nanochains (NCs) with biocompatibility and transverse relaxivity (r2 = 231 Fe mmol l-1 s-1 ) were fabricated through a co-precipitation method in the assistance of dextran, and then, linked with chlorotoxin (CTX) and curcumin (Cur) via the PEGylation and carbodiimide technique (named as CTX-NCs-Cur). RESULTS The results of cell test indicated that CTX-conjugated NCs could obviously target non-small-cell lung cancer cells and limit their growth. The in vivo results of magnetic resonance imaging and fluorescence imaging indicated that the CTX-NCs-Cur significantly targeted the tumour site and enhanced images contrast of the small-size tumour. Moreover, the results of everyday tail-vein injection confirmed that CTX-NCs-Cur could significantly limit the growth of early tumour, due to blocking Cl ion channels from CTX-NCs-Cur-MMP-2 composite and intracellular ROS increase from Cur treatment. CONCLUSIONS We provided a mechanism about the effect of CTX-NCs-Cur on the targeting and limiting early tumour, and these results indicated the application foreground of CTX-NCs-Cur in tumour diagnosis and therapy.
Collapse
Affiliation(s)
- Yuedi Yang
- College of Materials Science and EngineeringSichuan UniversityChengduChina
| | - Zhongbing Huang
- College of Materials Science and EngineeringSichuan UniversityChengduChina
| | - Ximing Pu
- College of Materials Science and EngineeringSichuan UniversityChengduChina
| | - Guangfu Yin
- College of Materials Science and EngineeringSichuan UniversityChengduChina
| | - Lei Wang
- Department of RadiologyMolecular Imaging CenterWest China Hospital of Sichuan UniversityChengduChina
| | - Fabao Gao
- Department of RadiologyMolecular Imaging CenterWest China Hospital of Sichuan UniversityChengduChina
| |
Collapse
|
116
|
Camargo LEAD, Brustolin Ludwig D, Tominaga TT, Carletto B, Favero GM, Mainardes RM, Khalil NM. Bovine serum albumin nanoparticles improve the antitumour activity of curcumin in a murine melanoma model. J Microencapsul 2018; 35:467-474. [DOI: 10.1080/02652048.2018.1526340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Luciana Erzinger Alves de Camargo
- Faculdade Guairacá, Guarapuava, Brazil
- Laboratory of Pharmaceutical Nanotechnology, Universidade Estadual do Centro-Oeste/UNICENTRO, Guarapuava, Brazil
| | - Daniel Brustolin Ludwig
- Faculdade Guairacá, Guarapuava, Brazil
- Laboratory of Pharmaceutical Nanotechnology, Universidade Estadual do Centro-Oeste/UNICENTRO, Guarapuava, Brazil
| | - Tania Toyomi Tominaga
- Laboratory of Pharmaceutical Nanotechnology, Universidade Estadual do Centro-Oeste/UNICENTRO, Guarapuava, Brazil
| | - Bruna Carletto
- Multidisciplinary Laboratory of Basic Research and Applied Biology and Health, Universidade Estadual de Ponta Grossa/UEPG, Ponta Grossa, Brazil
| | - Giovani Marino Favero
- Multidisciplinary Laboratory of Basic Research and Applied Biology and Health, Universidade Estadual de Ponta Grossa/UEPG, Ponta Grossa, Brazil
| | - Rubiana Mara Mainardes
- Laboratory of Pharmaceutical Nanotechnology, Universidade Estadual do Centro-Oeste/UNICENTRO, Guarapuava, Brazil
| | - Najeh Maissar Khalil
- Laboratory of Pharmaceutical Nanotechnology, Universidade Estadual do Centro-Oeste/UNICENTRO, Guarapuava, Brazil
| |
Collapse
|
117
|
Vela D. Iron Metabolism in Prostate Cancer; From Basic Science to New Therapeutic Strategies. Front Oncol 2018; 8:547. [PMID: 30538952 PMCID: PMC6277552 DOI: 10.3389/fonc.2018.00547] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 11/05/2018] [Indexed: 01/09/2023] Open
Abstract
An increasing amount of research has recently strengthened the case for the existence of iron dysmetabolism in prostate cancer. It is characterized with a wide array of differential expression of iron-related proteins compared to normal cells. These proteins control iron entry, cellular iron distribution but also iron exit from prostate cells. Iron dysmetabolism is not an exclusive feature of prostate cancer cells, but it is observed in other cells of the tumor microenvironment. Disrupting the machinery that secures iron for prostate cancer cells can retard tumor growth and its invasive potential. This review unveils the current understanding of the ways that prostate cancer cells secure iron in the tumor milieu and how can we exploit this knowledge for therapeutic purposes.
Collapse
Affiliation(s)
- Driton Vela
- Department of Physiology, University of Prishtina, Prishtina, Kosovo
| |
Collapse
|
118
|
Chitemere RP, Stafslien S, Rasulev B, Webster DC, Quadir M. Soysome: A Surfactant-Free, Fully Biobased, Self-Assembled Platform for Nanoscale Drug Delivery Applications. ACS APPLIED BIO MATERIALS 2018; 1:1830-1841. [DOI: 10.1021/acsabm.8b00317] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ruvimbo P. Chitemere
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Shane Stafslien
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Bakhtiyor Rasulev
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Dean C. Webster
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
119
|
Hesari A, Azizian M, Sheikhi A, Nesaei A, Sanaei S, Mahinparvar N, Derakhshani M, Hedayt P, Ghasemi F, Mirzaei H. Chemopreventive and therapeutic potential of curcumin in esophageal cancer: Current and future status. Int J Cancer 2018; 144:1215-1226. [PMID: 30362511 DOI: 10.1002/ijc.31947] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 09/15/2018] [Accepted: 10/10/2018] [Indexed: 12/15/2022]
Abstract
Esophageal cancer is a common malignant tumor with an increasing trend during the past three decades. Currently, esophagectomy, often in combination with neoadjuvant chemo- and radiotherapy, is the cornerstone of curative treatment for esophageal cancer. However, esophagostomy is related to significant risks of perioperative mortality and morbidity, as well as lengthy recovery. Moreover, the adjuvant therapies including chemotherapy and radiotherapy are associated with numerous side effects, limiting compliance and outcome. The dietary agent curcumin has been extensively studied over the past few decades and is known to have many biological activities especially in regard to the prevention and potential treatment of cancer. This review summarizes the chemo-preventive and chemotherapeutic potential of curcumin in esophageal cancer in both preclinical and clinical settings.
Collapse
Affiliation(s)
- AmirReza Hesari
- Molecular and Medicine Research Center, Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mitra Azizian
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Alireza Sheikhi
- Department of Medical Biochemistry, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Abolfazl Nesaei
- Department of Basic Sciences, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Shahin Sanaei
- General Practitioner, Medical Researcher, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nazanin Mahinparvar
- General Practitioner, Medical Researcher, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Pegah Hedayt
- Department of Pathology, Medical University of Isfahan, Isfahan, Iran
| | - Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
120
|
Tian JY, Guo FJ, Zheng GY, Ahmad A. Prostate cancer: updates on current strategies for screening, diagnosis and clinical implications of treatment modalities. Carcinogenesis 2018; 39:307-317. [PMID: 29216344 DOI: 10.1093/carcin/bgx141] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/29/2017] [Indexed: 01/23/2023] Open
Abstract
Prostate cancer is the most common cancer in men by way of diagnosis and a leading cause of cancer-related deaths. Early detection and intervention remains key to its optimum clinical management. This review provides the most updated information on the recent methods of prostate cancer screening, imaging and treatment modalities. Wherever possible, clinical trial data has been supplemented to provide a comprehensive overview of current prostate cancer research and development. Considering the recent success of immunotherapy in prostate cancer, we discuss cell, DNA and viruses based, as well as combinatorial immunotherapeutic strategies in detail. Furthermore, the potential of nanotechnology is increasingly being realized, especially in prostate cancer research, and we provide an overview of nanotechnology-based strategies, with special emphasis on nanotheranostics and multifunctional nanoconstructs. Understanding these recent developments is critical to the design of future therapeutic strategies to counter prostate cancer.
Collapse
Affiliation(s)
- Jing-Yan Tian
- Department of Urology, Second Division of the First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Feng-Jun Guo
- Department of Gynaecology and Obstetrics, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Guo-You Zheng
- Department of Urology, Second Division of the First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Aamir Ahmad
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| |
Collapse
|
121
|
Ernest U, Chen HY, Xu MJ, Taghipour YD, Asad MHHB, Rahimi R, Murtaza G. Anti-Cancerous Potential of Polyphenol-Loaded Polymeric Nanotherapeutics. Molecules 2018; 23:2787. [PMID: 30373235 PMCID: PMC6278361 DOI: 10.3390/molecules23112787] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/04/2018] [Accepted: 10/12/2018] [Indexed: 12/14/2022] Open
Abstract
Recent evidence has extensively demonstrated the anticancer potential of nutraceuticals, including plant polyphenols. Polymeric nanocarrier systems have played an important role in improving the physicochemical and pharmacological properties of polyphenols, thus ameliorating their therapeutic effectiveness. This article summarizes the benefits and shortcomings of various polymeric systems developed for the delivery of polyphenols in cancer therapy and reveals some ideas for future work.
Collapse
Affiliation(s)
- Umeorah Ernest
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Hai-Yan Chen
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Ming-Jun Xu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Yasamin Davatgaran Taghipour
- Department of Medical Nanotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 1416663547, Iran.
| | | | - Roja Rahimi
- Department of Traditional Pharmacy, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran 5165665931, Iran.
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus 54600, Pakistan.
| |
Collapse
|
122
|
Justin C, Samrot AV, P. DS, Sahithya CS, Bhavya KS, Saipriya C. Preparation, characterization and utilization of coreshell super paramagnetic iron oxide nanoparticles for curcumin delivery. PLoS One 2018; 13:e0200440. [PMID: 30021002 PMCID: PMC6051608 DOI: 10.1371/journal.pone.0200440] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/26/2018] [Indexed: 01/10/2023] Open
Abstract
In this study, super paramagnetic iron oxide nanoparticles (SPIONs) were produced by chemical co-precipitation method, then it was constructed to be a core shell nanoparticle by functionalizing with SDS, loading with curcumin and coating with a biopolymer i.e. chitosan. Each step was analyzed microscopically and spectroscopically. The produced coreshell particles were between 40 and 45nm and these coreshell particles were utilized for drug delivery studies against cervical cancer cell line-HeLa cells. The coreshell SPIONs were found to be releasing curcumin in between 6 and 12 h, which was evidenced by increased apoptotic cells and increased caspase 3 expression in HeLa cells.
Collapse
Affiliation(s)
- C. Justin
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, Tamil Nadu, India
| | - Antony V. Samrot
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, Tamil Nadu, India
| | - Durga Sruthi P.
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, Tamil Nadu, India
| | - Chamarthy Sai Sahithya
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, Tamil Nadu, India
| | - Karanam Sai Bhavya
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, Tamil Nadu, India
| | - C. Saipriya
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, Tamil Nadu, India
| |
Collapse
|
123
|
Chowdhury P, Nagesh PK, Khan S, Hafeez BB, Chauhan SC, Jaggi M, Yallapu MM. Development of polyvinylpyrrolidone/paclitaxel self-assemblies for breast cancer. Acta Pharm Sin B 2018; 8:602-614. [PMID: 30109184 PMCID: PMC6090082 DOI: 10.1016/j.apsb.2017.10.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/13/2017] [Accepted: 10/20/2017] [Indexed: 12/13/2022] Open
Abstract
The goal of this investigation was to develop and demonstrate a polymer/paclitaxel self-assembly (PTX-SA) formulation. Polymer/PTX-SAs were screened based on smaller size of formulation using dynamic light scattering analysis. Additionally, fluorescence microscopy and flow cytometry studies exhibited that polyvinylpyrrolidone (PVP)-based PTX-SAs (PVP/PTX-SAs) had superior cellular internalization capability in MCF7 and MDA-MB-231 breast cancer cells. The optimized PVP/PTX-SAs exhibited less toxicity to human red blood cells indicating a suitable formulation for reducing systemic toxicity. The formation of PVP and PTX self-assemblies was confirmed using fluorescence quenching and transmission electron microscopy which indicated that the PVP/PTX-SAs were spherical in shape with an average size range of 53.81 nm as detected by transmission electron microscopy (TEM). FTIR spectral analysis demonstrates incorporation of polymer and paclitaxel functional groups in PVP/PTX-SAs. Both proliferation (MTS) and clonogenic (colony formation) assays were used to validate superior anticancer activity of PVP/PTX-SAs in breast cancer cells over paclitaxel. Such superior anticancer activity was also demonstrated by downregulation of the expression of pro-survival protein (Bcl-xL), upregulation of apoptosis-associated proteins (Bid, Bax, cleaved caspase 7, and cleaved PARP) and β-tubulin stabilization. These results support the hypothesis that PVP/PTX-SAs improved paclitaxel delivery to cancer cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Murali M. Yallapu
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
124
|
Arasoğlu T, Derman S. Assessment of the Antigenotoxic Activity of Poly(d,l-lactic- co-glycolic acid) Nanoparticles Loaded with Caffeic Acid Phenethyl Ester Using the Ames Salmonella/Microsome Assay. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6196-6204. [PMID: 29799193 DOI: 10.1021/acs.jafc.8b01622] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the present study, the antigenotoxic activity of poly(d,l-lactic- co-glycolic acid) (PLGA) nanoparticles (NPs) loaded with caffeic acid phenethyl ester (CAPE) was investigated in comparison to free CAPE using the Ames Salmonella/microsome assay. Additionally, to elucidate the impacts of the type of solvent effect on antigenotoxic activity, the following systems were tested: CAPE in water (poor solvent), ethyl alcohol (good solvent), and PLGA NPs (unknown). The effect of the NP system on solubility was investigated for the first time by assessing the antigenotoxic potential. In this study, the CAPE/PLGA NPs were synthesized using an oil-in-water (o/w) single-emulsion solvent evaporation method with an average size of 206.2 ± 1.2 nm, ζ potential of -19.8 ± 2.5 mV, encapsulation efficiency of 87.2 ± 2.5%, and drug loading of 53.3 ± 1.8%. According to the results of the antigenotoxic activity, the highest antimutagenic activity in both applied strains was found for CAPE in ethanol, and the lowest activity was detected for CAPE in water. Our study has shown that NP systems exhibit high antigenotoxic activity, which is similar to the results of CAPE dissolved in ethanol. These results have shown that NP systems increase biological activity of hydrophobic substances by increasing their solubility and that the use of PLGA instead of organic solvents in drug production may provide an increase in their medical utility.
Collapse
|
125
|
Noyer L, Grolez GP, Prevarskaya N, Gkika D, Lemonnier L. TRPM8 and prostate: a cold case? Pflugers Arch 2018; 470:1419-1429. [PMID: 29926226 DOI: 10.1007/s00424-018-2169-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 12/19/2022]
Abstract
While originally cloned from the prostate in 2001, transient receptor potential, melastatin member 8 (TRPM8) has since been identified as the cold/menthol receptor in the peripheral nervous system. This discovery has led to hundreds of studies regarding the role of this channel in pain and thermosensation phenomena, while relegating TRPM8 involvement in cancer to a secondary role. Despite these findings, there is growing evidence that TRPM8 should be carefully studied within the frame of carcinogenesis, especially in the prostate, where it is highly expressed and where many teams have confirmed variations in its expression during cancer progression. Its regulation by physiological factors, such as PSA and androgens, has proved that TRPM8 can exhibit an activity beyond that of a cold receptor, thus explaining how the channel can be activated in organs not exposed to temperature variations. With this review, we aim to provide a brief overview of the current knowledge regarding the complex roles of TRPM8 in prostate carcinogenesis and to show that this research path still represents a "hot" topic with potential clinical applications in the short term.
Collapse
Affiliation(s)
- Lucile Noyer
- Inserm, U1003, Laboratory of Cell Physiology, University Lille Nord de France, 59655 Cedex, Villeneuve d'Ascq, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Villeneuve d'Ascq, France
| | - Guillaume P Grolez
- Inserm, U1003, Laboratory of Cell Physiology, University Lille Nord de France, 59655 Cedex, Villeneuve d'Ascq, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Villeneuve d'Ascq, France
| | - Natalia Prevarskaya
- Inserm, U1003, Laboratory of Cell Physiology, University Lille Nord de France, 59655 Cedex, Villeneuve d'Ascq, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Villeneuve d'Ascq, France
| | - Dimitra Gkika
- Inserm, U1003, Laboratory of Cell Physiology, University Lille Nord de France, 59655 Cedex, Villeneuve d'Ascq, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Villeneuve d'Ascq, France
| | - Loic Lemonnier
- Inserm, U1003, Laboratory of Cell Physiology, University Lille Nord de France, 59655 Cedex, Villeneuve d'Ascq, France.
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Villeneuve d'Ascq, France.
| |
Collapse
|
126
|
Khandelwal P, Alam A, Choksi A, Chattopadhyay S, Poddar P. Retention of Anticancer Activity of Curcumin after Conjugation with Fluorescent Gold Quantum Clusters: An in Vitro and in Vivo Xenograft Study. ACS OMEGA 2018; 3:4776-4785. [PMID: 30023902 PMCID: PMC6045371 DOI: 10.1021/acsomega.8b00113] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/23/2018] [Indexed: 05/05/2023]
Abstract
Gold nanoparticles (Au NPs) have been thoroughly investigated for anti-cancer therapy. However, their undesired high gold content remains a problem when injected into the body for drug delivery applications. In this report, we made an effort to conjugate the curcumin molecules on the surface of gold quantum clusters (Au QCs) by a novel in situ synthesis method which provides an alternative route to not only reduce the metallic content but also increase the water solubility of curcumin and the loading efficiency. Here, curcumin itself acts as a reducing and capping agent for the synthesis of Au QCs. The UV-vis absorption, fluorescence, transmission electron microscopy, and electrospray ionization mass spectrometry results confirmed the synthesis of fluorescent Au QCs. Curcumin-conjugated Au NPs (C-Au NPs) and glutathione (GSH)-conjugated Au QCs (GSH-Au QCs) were also synthesized to visualize the effect of particle size and the capping agent, respectively, on the cytotoxicity to normal and cancer cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that the curcumin-conjugated Au QCs (C-Au QCs) were less cytotoxic to normal cells while almost the same cytotoxic to cancer cells in comparison to curcumin itself, which indicates that curcumin preserves its anticancer property even after binding to the Au QCs. However, C-Au NPs and GSH-Au QCs did not show any cytotoxicity against the normal and cancer cells at the concentration used. The western blot assay indicated that C-Au QCs promote apoptosis in cancer cells. Further, the in vivo study on severe combined immunodeficiency mice showed that C-Au QCs also inhibited the tumor growth efficiently without showing significant toxicity to internal organs.
Collapse
Affiliation(s)
- Puneet Khandelwal
- Physical
& Materials Chemistry Division, CSIR-National
Chemical Laboratory, Pune 411008, India
| | - Aftab Alam
- National
Center for Cell Science, Ganeshkhind, Pune 411 007, India
| | | | - Samit Chattopadhyay
- CSIR-Indian
Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Pankaj Poddar
- Physical
& Materials Chemistry Division, CSIR-National
Chemical Laboratory, Pune 411008, India
| |
Collapse
|
127
|
Hamzehzadeh L, Atkin SL, Majeed M, Butler AE, Sahebkar A. The versatile role of curcumin in cancer prevention and treatment: A focus on PI3K/AKT pathway. J Cell Physiol 2018; 233:6530-6537. [PMID: 29693253 DOI: 10.1002/jcp.26620] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 03/28/2018] [Indexed: 12/24/2022]
Abstract
Despite significant advances in treatment modalities, millions of cancer-related deaths continue to occur annually, often as a consequence of developing resistance against the range of available chemotherapeutic drugs. Furthermore, available anti-cancer chemotherapeutic agents show limited efficacy, often have severe side effects, and are expensive. Thus, the discovery of pharmacological agents that do not have these disadvantages is necessary. Curcumin, a polyphenolic compound derived from turmeric (Curcumin longa L.), is one such agent that has been widely studied for its anti-inflammatory and/or anti-cancer effects. Curcumin exerts its anti-cancer effect by suppressing the initiation, progression, and metastasis of a variety of cancers and appears to inhibit carcinogenesis by affecting two main processes: angiogenesis and tumor growth. These anti-cancer effects are largely mediated via negative regulation of various transcription factors, growth factors, inflammatory cytokines, protein kinases, and other oncogenic molecules. The PI3K/AKT pathway is commonly activated in cancer initiation and progression. Considered to be the key signaling pathway, the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) pathway therefore represents a key target for cancer therapeutics. In the current review, we focus upon curcumin's targeting of PI3K/AKT in different malignancies to effect inhibition of cancer development and progression.
Collapse
Affiliation(s)
- Leila Hamzehzadeh
- Faculty of Medicine, Department of Medical Genetics, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Alexandra E Butler
- Life Sciences Research Division, Anti-Doping Laboratory Qatar, Doha, Qatar
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
128
|
Sundar Dhilip Kumar S, Houreld NN, Abrahamse H. Therapeutic Potential and Recent Advances of Curcumin in the Treatment of Aging-Associated Diseases. Molecules 2018; 23:molecules23040835. [PMID: 29621160 PMCID: PMC6017430 DOI: 10.3390/molecules23040835] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 02/01/2023] Open
Abstract
Curcumin, a low molecular weight, lipophilic, major yellow natural polyphenolic, and the most well-known plant-derived compound, is extracted from the rhizomes of the turmeric (Curcuma longa) plant. Curcumin has been demonstrated as an effective therapeutic agent in traditional medicine for the treatment and prevention of different diseases. It has also shown a wide range of biological and pharmacological effects in drug delivery, and has actively been used for the treatment of aging-associated diseases, including cardiovascular diseases, atherosclerosis, neurodegenerative diseases, cancer, rheumatoid arthritis, ocular diseases, osteoporosis, diabetes, hypertension, chronic kidney diseases, chronic inflammation and infection. The functional application and therapeutic potential of curcumin in the treatment of aging-associated diseases is well documented in the literature. This review article focuses mainly on the potential role of plant-derived natural compounds such as curcumin, their mechanism of action and recent advances in the treatment of aging-associated diseases. Moreover, the review briefly recaps on the recent progress made in the preparation of nanocurcumins and their therapeutic potential in clinical research for the treatment of aging-associated diseases.
Collapse
Affiliation(s)
- Sathish Sundar Dhilip Kumar
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg-2028, South Africa.
| | - Nicolette Nadene Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg-2028, South Africa.
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg-2028, South Africa.
| |
Collapse
|
129
|
Genipin-stabilized caseinate-chitosan nanoparticles for enhanced stability and anti-cancer activity of curcumin. Colloids Surf B Biointerfaces 2018; 164:308-315. [DOI: 10.1016/j.colsurfb.2018.01.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 12/12/2017] [Accepted: 01/20/2018] [Indexed: 12/12/2022]
|
130
|
McCubrey JA, Lertpiriyapong K, Steelman LS, Abrams SL, Yang LV, Murata RM, Rosalen PL, Scalisi A, Neri LM, Cocco L, Ratti S, Martelli AM, Laidler P, Dulińska-Litewka J, Rakus D, Gizak A, Lombardi P, Nicoletti F, Candido S, Libra M, Montalto G, Cervello M. Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs. Aging (Albany NY) 2018; 9:1477-1536. [PMID: 28611316 PMCID: PMC5509453 DOI: 10.18632/aging.101250] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/04/2017] [Indexed: 02/07/2023]
Abstract
Natural products or nutraceuticals have been shown to elicit anti-aging, anti-cancer and other health-enhancing effects. A key target of the effects of natural products may be the regulation of microRNA (miR) expression which results in cell death or prevents aging, diabetes, cardiovascular and other diseases. This review will focus on a few natural products, especially on resveratrol (RES), curcumin (CUR) and berberine (BBR). RES is obtained from the skins of grapes and other fruits and berries. RES may extend human lifespan by activating the sirtuins and SIRT1 molecules. CUR is isolated from the root of turmeric (Curcuma longa). CUR is currently used in the treatment of many disorders, especially in those involving an inflammatory process. CUR and modified derivatives have been shown to have potent anti-cancer effects, especially on cancer stem cells (CSC). BBR is also isolated from various plants (e.g., Coptis chinensis) and has been used for centuries in traditional medicine to treat diseases such as adult- onset diabetes. Understanding the benefits of these and other nutraceuticals may result in approaches to improve human health.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Steve L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Li V Yang
- Department of Internal Medicine, Hematology/Oncology Section, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Ramiro M Murata
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA.,Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Aurora Scalisi
- Unit of Oncologic Diseases, ASP-Catania, Catania 95100, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Piotr Laidler
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
| | | | - Dariusz Rakus
- Department of Animal Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Agnieszka Gizak
- Department of Animal Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | | | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy.,Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| |
Collapse
|
131
|
Molecular Mechanisms Underlying Curcumin-Mediated Therapeutic Effects in Type 2 Diabetes and Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9698258. [PMID: 29743988 PMCID: PMC5884026 DOI: 10.1155/2018/9698258] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/12/2018] [Accepted: 02/15/2018] [Indexed: 01/14/2023]
Abstract
The growing prevalence of age-related diseases, especially type 2 diabetes mellitus (T2DM) and cancer, has become global health and economic problems. Due to multifactorial nature of both diseases, their pathophysiology is not completely understood so far. Compelling evidence indicates that increased oxidative stress, resulting from an imbalance between production of reactive oxygen species (ROS) and their clearance by antioxidant defense mechanisms, as well as the proinflammatory state contributes to the development and progression of the diseases. Curcumin (CUR; diferuloylmethane), a well-known polyphenol derived from the rhizomes of turmeric Curcuma longa, has attracted a great deal of attention as a natural compound with beneficial antidiabetic and anticancer properties, partly due to its antioxidative and anti-inflammatory actions. Although this polyphenolic compound is increasingly being recognized for its growing number of protective health effects, the precise molecular mechanisms through which it reduces diabetes- and cancer-related pathological events have not been fully unraveled. Hence, CUR is the subject of intensive research in the fields Diabetology and Oncology as a potential candidate in the treatment of both T2DM and cancer, particularly since current therapeutic options for their treatment are not satisfactory in clinics. In this review, we summarize the recent progress made on the molecular targets and pathways involved in antidiabetic and anticancer activities of CUR that are responsible for its beneficial health effects.
Collapse
|
132
|
Montalbán MG, Coburn JM, Lozano-Pérez AA, Cenis JL, Víllora G, Kaplan DL. Production of Curcumin-Loaded Silk Fibroin Nanoparticles for Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E126. [PMID: 29495296 PMCID: PMC5853757 DOI: 10.3390/nano8020126] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 02/16/2018] [Accepted: 02/22/2018] [Indexed: 12/19/2022]
Abstract
Curcumin, extracted from the rhizome of Curcuma longa, has been widely used in medicine for centuries due to its anti-inflammatory, anti-cancer, anti-oxidant and anti-microbial effects. However, its bioavailability during treatments is poor because of its low solubility in water, slow dissolution rate and rapid intestinal metabolism. For these reasons, improving the therapeutic efficiency of curcumin using nanocarriers (e.g., biopolymer nanoparticles) has been a research focus, to foster delivery of the curcumin inside cells due to their small size and large surface area. Silk fibroin from the Bombyx mori silkworm is a biopolymer characterized by its biocompatibility, biodegradability, amphiphilic chemistry, and excellent mechanical properties in various material formats. These features make silk fibroin nanoparticles useful vehicles for delivering therapeutic drugs, such as curcumin. Curcumin-loaded silk fibroin nanoparticles were synthesized using two procedures (physical adsorption and coprecipitation) more scalable than methods previously described using ionic liquids. The results showed that nanoparticle formulations were 155 to 170 nm in diameter with a zeta potential of approximately -45 mV. The curcumin-loaded silk fibroin nanoparticles obtained by both processing methods were cytotoxic to carcinogenic cells, while not decreasing viability of healthy cells. In the case of tumor cells, curcumin-loaded silk fibroin nanoparticles presented higher efficacy in cytotoxicity against neuroblastoma cells than hepatocarcinoma cells. In conclusion, curcumin-loaded silk fibroin nanoparticles constitute a biodegradable and biocompatible delivery system with the potential to treat tumors by local, long-term sustained drug delivery.
Collapse
Affiliation(s)
- Mercedes G. Montalbán
- Department of Chemical Engineering, Faculty of Chemistry, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30071 Murcia, Spain;
| | - Jeannine M. Coburn
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA; (J.M.C.); (D.L.K.)
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - A. Abel Lozano-Pérez
- Department of Biotechnology, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), La Alberca, 30150 Murcia, Spain; (A.A.L.-P.); (J.L.C.)
| | - José L. Cenis
- Department of Biotechnology, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), La Alberca, 30150 Murcia, Spain; (A.A.L.-P.); (J.L.C.)
| | - Gloria Víllora
- Department of Chemical Engineering, Faculty of Chemistry, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30071 Murcia, Spain;
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA; (J.M.C.); (D.L.K.)
| |
Collapse
|
133
|
Rajagopal C, Lankadasari MB, Aranjani JM, Harikumar KB. Targeting oncogenic transcription factors by polyphenols: A novel approach for cancer therapy. Pharmacol Res 2018; 130:273-291. [PMID: 29305909 DOI: 10.1016/j.phrs.2017.12.034] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/30/2017] [Accepted: 12/31/2017] [Indexed: 02/06/2023]
Abstract
Inflammation is one of the major causative factor of cancer and chronic inflammation is involved in all the major steps of cancer initiation, progression metastasis and drug resistance. The molecular mechanism of inflammation driven cancer is the complex interplay between oncogenic and tumor suppressive transcription factors which include FOXM1, NF-kB, STAT3, Wnt/β- Catenin, HIF-1α, NRF2, androgen and estrogen receptors. Several products derived from natural sources modulate the expression and activity of multiple transcription factors in various tumor models as evident from studies conducted in cell lines, pre-clinical models and clinical samples. Further combination of these natural products along with currently approved cancer therapies added an additional advantage and they considered as promising targets for prevention and treatment of inflammation and cancer. In this review we discuss the application of multi-targeting natural products by analyzing the literature and future directions for their plausible applications in drug discovery.
Collapse
Affiliation(s)
- Chitra Rajagopal
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India
| | - Manendra Babu Lankadasari
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India
| | - Jesil Mathew Aranjani
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - K B Harikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India.
| |
Collapse
|
134
|
Gao T, Bi A, Yang S, Liu Y, Kong X, Zeng W. Applications of Nanoparticles Probes for Prostate Cancer Imaging and Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1096:99-115. [PMID: 30324350 DOI: 10.1007/978-3-319-99286-0_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Prostate cancer (PCa) is the most common type of cancer in men with high morbidity and mortality. However, the current treatment with drugs often leads to chemotherapy resistance. It is known that the multi-disciplines research on molecular imaging is very helpful for early diagnosing, staging, restaging and precise treatment of PCa. In the past decades, the tumor-specific targeted drugs were developed for the clinic to treat prostate cancer. Among them, the emerging nanotechnology has brought about many exciting novel diagnosis and treatments systems for PCa. Nanotechnology can greatly enhance the treatment activity of PCa and provide novel theranostics platform by utilizing the unique physical/chemical properties, targeting strategy, or by loading with imaging/therapeutic agents. Herein, this chapter focuses on state-of-art advances in imaging and diagnosing PCa with nanomaterials and highlights the approaches used for functionalization of the targeted biomolecules, and in the treatment for various aspects of PCa with multifunctional nanoparticles, nanoplatforms and nanodelivery system.
Collapse
Affiliation(s)
- Tang Gao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Molecular Imaging Research Center, Central South University, Changsha, China
| | - Anyao Bi
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Molecular Imaging Research Center, Central South University, Changsha, China
| | - Shuiqi Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Molecular Imaging Research Center, Central South University, Changsha, China
| | - Yi Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Molecular Imaging Research Center, Central South University, Changsha, China
| | - Xiangqi Kong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Molecular Imaging Research Center, Central South University, Changsha, China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China. .,Molecular Imaging Research Center, Central South University, Changsha, China.
| |
Collapse
|
135
|
Chen YC, Chen BH. Preparation of curcuminoid microemulsions fromCurcuma longaL. to enhance inhibition effects on growth of colon cancer cells HT-29. RSC Adv 2018; 8:2323-2337. [PMID: 35541476 PMCID: PMC9077335 DOI: 10.1039/c7ra12297g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/20/2017] [Indexed: 12/12/2022] Open
Abstract
The objectives of this study were to extract curcuminoids from a vital medicinal plantCurcuma longaL. and prepare the curcuminoid extract and microemulsion for studying the inhibition mechanism of HT-29 colon cancer cells.
Collapse
Affiliation(s)
- Yen Chu Chen
- Department of Food Science
- Fu Jen Catholic University
- New Taipei City 242
- Taiwan
| | - Bing Huei Chen
- Department of Food Science
- Fu Jen Catholic University
- New Taipei City 242
- Taiwan
| |
Collapse
|
136
|
Targeted Therapeutic Nanoparticles: An Immense Promise to Fight against Cancer. JOURNAL OF DRUG DELIVERY 2017; 2017:9090325. [PMID: 29464123 PMCID: PMC5804325 DOI: 10.1155/2017/9090325] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/12/2017] [Accepted: 10/19/2017] [Indexed: 11/17/2022]
Abstract
In nanomedicine, targeted therapeutic nanoparticle (NP) is a virtual outcome of nanotechnology taking the advantage of cancer propagation pattern. Tying up all elements such as therapeutic or imaging agent, targeting ligand, and cross-linking agent with the NPs is the key concept to deliver the payload selectively where it intends to reach. The microenvironment of tumor tissues in lymphatic vessels can also help targeted NPs to achieve their anticipated accumulation depending on the formulation objectives. This review accumulates the application of poly(lactic-co-glycolic acid) (PLGA) and polyethylene glycol (PEG) based NP systems, with a specific perspective in cancer. Nowadays, PLGA, PEG, or their combinations are the mostly used polymers to serve the purpose of targeted therapeutic NPs. Their unique physicochemical properties along with their biological activities are also discussed. Depending on the biological effects from parameters associated with existing NPs, several advantages and limitations have been explored in teaming up all the essential facts to give birth to targeted therapeutic NPs. Therefore, the current article will provide a comprehensive review of various approaches to fabricate a targeted system to achieve appropriate physicochemical properties. Based on such findings, researchers can realize the benefits and challenges for the next generation of delivery systems.
Collapse
|
137
|
Lv L, Liu C, Chen C, Yu X, Chen G, Shi Y, Qin F, Ou J, Qiu K, Li G. Quercetin and doxorubicin co-encapsulated biotin receptor-targeting nanoparticles for minimizing drug resistance in breast cancer. Oncotarget 2017; 7:32184-99. [PMID: 27058756 PMCID: PMC5078006 DOI: 10.18632/oncotarget.8607] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/14/2016] [Indexed: 12/12/2022] Open
Abstract
The combination of a chemotherapeutic drug with a chemosensitizer has emerged as a promising strategy for cancers showing multidrug resistance (MDR). Herein we describe the simultaneous targeted delivery of two drugs to tumor cells by using biotin-decorated poly(ethylene glycol)-b-poly(ε-caprolactone) nanoparticles encapsulating the chemotherapeutic drug doxorubicin and the chemosensitizer quercetin (BNDQ). Next, the potential ability of BNDQ to reverse MDR in vitro and in vivo was investigated. Studies demonstrated that BNDQ was more effectively taken up with less efflux by doxorubicin-resistant MCF-7 breast cancer cells (MCF-7/ADR cells) than by the cells treated with the free drugs, single-drug–loaded nanoparticles, or non-biotin–decorated nanoparticles. BNDQ exhibited clear inhibition of both the activity and expression of P-glycoprotein in MCF-7/ADR cells. More importantly, it caused a significant reduction in doxorubicin resistance in MCF-7/ADR breast cancer cells both in vitro and in vivo, among all the groups. Overall, this study suggests that BNDQ has a potential role in the treatment of drug-resistant breast cancer.
Collapse
Affiliation(s)
- Li Lv
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China.,Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| | - Chunxia Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China.,Department of Pharmacy, Zengcheng District People's Hospital of Guangzhou, Guangzhou 511300, Guangdong, China
| | - Chuxiong Chen
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| | - Xiaoxia Yu
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| | - Guanghui Chen
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| | - Yonghui Shi
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| | - Fengchao Qin
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| | - Jiebin Ou
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| | - Kaifeng Qiu
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| | - Guocheng Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China.,Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| |
Collapse
|
138
|
Wang B, Liu X, Teng Y, Yu T, Chen J, Hu Y, Liu N, Zhang L, Shen Y. Improving anti-melanoma effect of curcumin by biodegradable nanoparticles. Oncotarget 2017; 8:108624-108642. [PMID: 29312556 PMCID: PMC5752469 DOI: 10.18632/oncotarget.20585] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/06/2017] [Indexed: 02/05/2023] Open
Abstract
Melanoma is known as the most common malignant cutaneous cancer. Curcumin, a natural component, has been shown to have various activities such as anti-oxidant, anti-septic, anti-inflammatory, anti-biotic, anti-amyloid and anti-thrombosis. However, there is a greatest obstacle in the administration of curcumin due to its hydrophobicity and low oral bioavailability. In this study, we formulated curcumin-loaded MPEG-PLA (Curcumin/MPEG-PLA) micelles aiming to improve its solubility in aqueous solution and investigated anti-tumor effect on melanoma in vitro and in vivo. The spherical curcumin/MPEG-PLA micelles were completely dispersed in normal saline and could release curcumin in a sustained manner in vitro. In addition, we demonstrated that curcumin/MPEG-PLA micelles had stronger cytotoxicity and induced a higher percentage of apoptosis in B16 and A375 cancer cells than free curcumin in vitro. The immunohistochemical study revealed that curcumin/MPEG-PLA micelles induced more melanoma cell apoptosis than free curcumin and inhibited neovascularization in tumor tissues. In conclusion, the curcumin/MPEG-PLA micelles have potential clinical application for melanoma.
Collapse
Affiliation(s)
- Bilan Wang
- Department of Pharmacy, West China Second university Hospital, Sichuan University, Chengdu, PR China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second university Hospital, Sichuan University, Chengdu, PR China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, PR China
- Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center, Chengdu, PR China
| | - Xiaoxiao Liu
- Department of Radiation Oncolo, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center, Chengdu, PR China
| | - Yan Teng
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Ting Yu
- Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center, Chengdu, PR China
| | - Junli Chen
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yuzhu Hu
- Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center, Chengdu, PR China
| | - Na Liu
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
- Puyang Medical College, Puyang, Henan, China
| | - Lingli Zhang
- Department of Pharmacy, West China Second university Hospital, Sichuan University, Chengdu, PR China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second university Hospital, Sichuan University, Chengdu, PR China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, PR China
- Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center, Chengdu, PR China
| | - Yangmei Shen
- Department of Pathology, West China Second university Hospital, Sichuan University, Chengdu, PR China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second university Hospital, Sichuan University, Chengdu, PR China
| |
Collapse
|
139
|
Gupta S, Gupta PK, Dharanivasan G, Verma RS. Current prospects and challenges of nanomedicine delivery in prostate cancer therapy. Nanomedicine (Lond) 2017; 12:2675-2692. [DOI: 10.2217/nnm-2017-0236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Management of prostate cancer is currently being pursued by systemic delivery of anticancer drugs, but it has drawbacks like nonspecific distribution, decreased bioavailability, coupled with adverse side effects. These problems have been resolved using nanomedicine-based anticancer drug delivery to improve the therapeutic index with higher drug dose and reduced nonspecific distribution. Targeting prostate tumor by delivering nanomedicine through locoregional route is more effective, than the systemic delivery, which can decrease systemic exposure of the therapeutics significantly. Therefore, in this article, we have reviewed the current prospects and challenges of prostate cancer therapy using nanomedicine, by providing a comprehensive description of advantages and limitations of the systemic route and locoregional route. Eventually, we have emphasized on the need for localized prostate cancer therapy developments using nanomedicines.
Collapse
Affiliation(s)
- Santosh Gupta
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai-600036, Tamilnadu, India
| | - Piyush Kumar Gupta
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai-600036, Tamilnadu, India
| | - Gunasekaren Dharanivasan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai-600036, Tamilnadu, India
| | - Rama Shanker Verma
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai-600036, Tamilnadu, India
| |
Collapse
|
140
|
Mohajeri M, Behnam B, Cicero AFG, Sahebkar A. Protective effects of curcumin against aflatoxicosis: A comprehensive review. J Cell Physiol 2017; 233:3552-3577. [PMID: 29034472 DOI: 10.1002/jcp.26212] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 09/29/2017] [Indexed: 12/22/2022]
Abstract
Aflatoxicosis is a deleterious medical condition that results from aflatoxins (AFs) or ochratoxins (OTs). Contamination with these toxins exerts detrimental effects on the liver, kidneys, reproductive organs, and also on immunological and cardiovascular systems. Aflatoxicosis is closely associated with overproduction of reactive oxygen species (ROS) as key contributors to oxidative and nitrosative stress responses, and subsequent damages to lipids, proteins, RNA, and DNA. The main target organ for AF toxicity is the liver, where DNA adducts, degranulation of endoplasmic reticulum, increased hepatic lipid peroxide, GSH depletion, mitochondrial dysfunction, and reduction of enzymatic and non-enzymatic antioxidants are manifestations of aflatoxicosis. Curcuma longa L. (turmeric) is a medicinal plant widely utilized all over the world for culinary and phytomedical purposes. Considering the antioxidant characteristic of curcumin, the main active component of turmeric, this review is intended to critically summarize the available evidence supporting possible effectiveness of curcumin against aflatoxicosis. Curcumin can serve as a promising candidate for attenuation of the adverse consequences of aflatoxicosis, acting mainly through intrinsic antioxidant effects aroused from its structure, modulation of the immune system as reflected by interleukin-1β and transforming growth factor-β, and interfering with AF's biotransformation by cytochrome P450 isoenzymes CYP1A, CYP3A, CYP2A, CYP2B, and CYP2C.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behzad Behnam
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Arrigo F G Cicero
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
141
|
Xie M, Fan D, Li Y, He X, Chen X, Chen Y, Zhu J, Xu G, Wu X, Lan P. Supercritical carbon dioxide-developed silk fibroin nanoplatform for smart colon cancer therapy. Int J Nanomedicine 2017; 12:7751-7761. [PMID: 29118580 PMCID: PMC5659230 DOI: 10.2147/ijn.s145012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose To deliver insoluble natural compounds into colon cancer cells in a controlled fashion. Materials and methods Curcumin (CM)–silk fibroin (SF) nanoparticles (NPs) were prepared by solution-enhanced dispersion by supercritical CO2 (SEDS) (20 MPa pressure, 1:2 CM:SF ratio, 1% concentration), and their physicochemical properties, intracellular uptake efficiency, in vitro anticancer effect, toxicity, and mechanisms were evaluated and analyzed. Results CM-SF NPs (<100 nm) with controllable particle size were prepared by SEDS. CM-SF NPs had a time-dependent intracellular uptake ability, which led to an improved inhibition effect on colon cancer cells. Interestingly, the anticancer effect of CM-SF NPs was improved, while the side effect on normal human colon mucosal epithelial cells was reduced by a concentration of ~10 μg/mL. The anticancer mechanism involves cell-cycle arrest in the G0/G1 and G2/M phases in association with inducing apoptotic cells. Conclusion The natural compound-loaded SF nanoplatform prepared by SEDS indicates promising colon cancer-therapy potential.
Collapse
Affiliation(s)
- Maobin Xie
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dejun Fan
- Department of Colorectal Surgery, Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yi Li
- School of Materials, University of Manchester, Manchester, UK
| | - Xiaowen He
- Department of Colorectal Surgery, Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaoming Chen
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yufeng Chen
- Department of Colorectal Surgery, Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jixiang Zhu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guibin Xu
- Department of Urology, Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaojian Wu
- Department of Colorectal Surgery, Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ping Lan
- Department of Colorectal Surgery, Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
142
|
Srinivasan K. Antimutagenic and cancer preventive potential of culinary spices and their bioactive compounds. PHARMANUTRITION 2017. [DOI: 10.1016/j.phanu.2017.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
143
|
Imran M, Ullah A, Saeed F, Nadeem M, Arshad MU, Suleria HAR. Cucurmin, anticancer, & antitumor perspectives: A comprehensive review. Crit Rev Food Sci Nutr 2017; 58:1271-1293. [PMID: 27874279 DOI: 10.1080/10408398.2016.1252711] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cucurmin, a naturally yellow component isolated from turmeric, ability to prevent various life-style related disorders. The current review article mainly emphasizes on different anticancer perspectives of cucurmin, i.e., colon, cervical, uterine, ovarian, prostate head and neck, breast, pulmonary, stomach and gastric, pancreatic, bladder oral, oesophageal, and bone cancer. It holds a mixture of strong bioactive molecule known as cucurminoids that has ability to reduce cancer/tumor at initial, promotion and progression stages of tumor development. In particular, these compounds block several enzymes required for the growth of tumors and may therefore involve in tumor treatments. Moreover, it modulates an array of cellular progressions, i.e., nitric oxide synthetase activity, protein kinase C activity, epidermal growth factor (EGF) receptor intrinsic kinase activity, nuclear factor kappa (NF-kB) activity, inhibiting lipid peroxidation and production of reactive oxygen species. However, current manuscript summarizes most of the recent investigations of cucurmin but still further research should be conducted to explore the role of curcumin to mitigate various cancers.
Collapse
Affiliation(s)
- Muhammad Imran
- a Department of Diet and Nutritional Sciences , Imperial College of Business Studies , Lahore , Pakistan.,b National Institute of Food Science and Technology , University of Agriculture Faisalabad , Pakistan
| | - Azmat Ullah
- e Department of Food Science and Human Nutrition , University of Veterinary and Animal Sciences , Lahore , Pakistan
| | - Farhan Saeed
- c Institute of Home & Food Sciences , Government College University Faisalabad , Pakistan
| | - Muhammad Nadeem
- d Department of Environmental Sciences , COMSATS Institute of Information Technology Vehari , Pakistan
| | - Muhammad Umair Arshad
- c Institute of Home & Food Sciences , Government College University Faisalabad , Pakistan
| | | |
Collapse
|
144
|
Liu T, Chi H, Chen J, Chen C, Huang Y, Xi H, Xue J, Si Y. Curcumin suppresses proliferation and in vitro invasion of human prostate cancer stem cells by ceRNA effect of miR-145 and lncRNA-ROR. Gene 2017; 631:29-38. [PMID: 28843521 DOI: 10.1016/j.gene.2017.08.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/04/2017] [Accepted: 08/20/2017] [Indexed: 12/12/2022]
Abstract
Many studies have demonstrated that curcumin can effectively inhibit the proliferation, invasion, and tumorigenesis of prostate cancer cells in vitro and in vivo. In this study, CD44+/CD133+ human prostate cancer stem cells (HuPCaSCs) were isolated from the prostate cancer cell lines Du145 and 22RV1. Curcumin treatment of these cells resulted in the inhibition of in vitro proliferation and invasion, and cell cycle arrest. The expression levels of cell cycle proteins (Ccnd1 and Cdk4) and stem cell markers (Oct4, CD44, and CD133) were decreased in curcumin-treated HuPCaSCs. Microarray analysis and northern blotting assays indicated that miR-145 was overexpressed in curcumin-treated HuPCaSCs. Insights of the mechanism of competitive endogenous RNAs (ceRNAs) were gained from bioinformatic analysis, bioinformatics analysis and luciferase activity assays showed that the lncRNA-ROR and Oct4 mRNA both contain miR-145 binding sites, and Oct4 and lncRNA-ROR directly compete for microRNA binding. Curcumin induced high miR-145 expression and inhibited the expression of lncRNA-ROR. The tumorigenicity of curcumin- treated HuPCaSCs in nude mice was significantly reduced. In summary, reducing the expression of endogenous lncRNA-ROR could effectively increase the available concentration of miR-145 in HuPCaSCs, where miR-145 prevents cell proliferation by decreasing Oct4 expression. In particular, we hypothesized that lncRNA-ROR may act as a ceRNA, effectively becoming a sink for miR-145, thereby activating the derepression of core transcription factors Oct4. Thus, curcumin suppresses the proliferation, in vitro invasion, and tumorigenicity of HuPCaSCs through ceRNA effect of miR-145 and lncRNA-ROR caused.
Collapse
Affiliation(s)
- Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China; Department of Pathology, Yale University School of Medicine, New Haven 06520, USA; Shanghai Tenth People's Hospital, Medical School, Tongji University, Shanghai 200072, China.
| | - Huiying Chi
- Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Jiulin Chen
- Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Chuan Chen
- Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Yongyi Huang
- Shanghai Tenth People's Hospital, Medical School, Tongji University, Shanghai 200072, China
| | - Hao Xi
- Shanghai Tenth People's Hospital, Medical School, Tongji University, Shanghai 200072, China
| | - Jun Xue
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Yibing Si
- Nursing Department, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
145
|
Bai F, Diao J, Wang Y, Sun S, Zhang H, Liu Y, Wang Y, Cao J. A New Water-Soluble Nanomicelle Formed through Self-Assembly of Pectin-Curcumin Conjugates: Preparation, Characterization, and Anticancer Activity Evaluation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6840-6847. [PMID: 28721737 DOI: 10.1021/acs.jafc.7b02250] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Curcumin is a dominating active component of Curcuma longa and has been studied widely because of its prominent biological activities. The extremely low aqueous solubility, stability, and bioavailability of curcumin limit its application in the field of medicine. In this study, we developed pectin-curcumin (PEC-CCM) conjugates that could self-assemble water-soluble nanomicelles in aqueous solution. The structure of PEC-CCM conjugates was characterized by ultraviolet-visible spectra, fluorescence spectra, Fourier transform infrared spectroscopy, and 1H nuclear magnetic resonance spectroscopy. The thermal property of PEC-CCM conjugates was investigated by thermogravimetric analysis. It was found that PEC-CCM conjugates had formed nanomicelles in aqueous medium via self-assembly. These nanomicelles were observed as small spheres or ellipsoids and aggregated with a size range of 70-190 nm by transmission electron microscopy analysis. In a solution of nanomicelles, the stability of curcumin was improved, and its antioxidant property was preserved. The anticancer activity of PEC-CCM conjugates was quantified by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay using a hepatic cancer cell line (HepG2), a breast cancer cell line (MCF-7), a cervical cancer cell line (HeLa), and a human normal kidney cell line (293A). It was found that the curcumin of PEC-CCM conjugates had a more significant inhibitory effect on cancer cells and was less cytotoxic to normal cells than free curcumin was. PEC-CCM conjugates have great potential for some food and pharmaceutical applications.
Collapse
Affiliation(s)
- Feng Bai
- Institute of Applied Chemistry and Environmental Engineering, Yancheng Teachers University , Yancheng City, Jiangsu Province 224002, People's Republic of China
- Chemistry and Chemical Engineering, Nanjing University of Technology , Nanjing City, Jiangsu Province 210009, People's Republic of China
| | - Jiajing Diao
- Institute of Applied Chemistry and Environmental Engineering, Yancheng Teachers University , Yancheng City, Jiangsu Province 224002, People's Republic of China
| | - Ying Wang
- Institute of Applied Chemistry and Environmental Engineering, Yancheng Teachers University , Yancheng City, Jiangsu Province 224002, People's Republic of China
- Chemistry and Chemical Engineering, Nanjing University of Technology , Nanjing City, Jiangsu Province 210009, People's Republic of China
| | - Shixin Sun
- Institute of Applied Chemistry and Environmental Engineering, Yancheng Teachers University , Yancheng City, Jiangsu Province 224002, People's Republic of China
| | - Hongmei Zhang
- Institute of Applied Chemistry and Environmental Engineering, Yancheng Teachers University , Yancheng City, Jiangsu Province 224002, People's Republic of China
| | - Yunyun Liu
- Institute of Applied Chemistry and Environmental Engineering, Yancheng Teachers University , Yancheng City, Jiangsu Province 224002, People's Republic of China
| | - Yanqing Wang
- Institute of Applied Chemistry and Environmental Engineering, Yancheng Teachers University , Yancheng City, Jiangsu Province 224002, People's Republic of China
| | - Jian Cao
- Institute of Applied Chemistry and Environmental Engineering, Yancheng Teachers University , Yancheng City, Jiangsu Province 224002, People's Republic of China
| |
Collapse
|
146
|
Adiwidjaja J, McLachlan AJ, Boddy AV. Curcumin as a clinically-promising anti-cancer agent: pharmacokinetics and drug interactions. Expert Opin Drug Metab Toxicol 2017; 13:953-972. [PMID: 28776444 DOI: 10.1080/17425255.2017.1360279] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Curcumin has been extensively studied for its anti-cancer properties. While a diverse array of in vitro and preclinical research support the prospect of curcumin use as an anti-cancer therapeutic, most human studies have failed to meet the intended clinical expectation. Poor systemic availability of orally-administered curcumin may account for this disparity. Areas covered: This descriptive review aims to concisely summarise available clinical studies investigating curcumin pharmacokinetics when administered in different formulations. A critical analysis of pharmacokinetic- and pharmacodynamic-based interactions of curcumin with concomitantly administered drugs is also provided. Expert opinion: The encouraging clinical results of curcumin administration are currently limited to people with colorectal cancer, given that sufficient curcumin concentrations persist in colonic mucosa. Higher parent curcumin systemic exposure, which can be achieved by several newer formulations, has important implications for optimal treatment of cancers other than those in gastrointestinal tract. Curcumin-drug pharmacokinetic interactions are also almost exclusively in the enterocytes, owing to extensive first pass metabolism and poor curcumin bioavailability. Greater scope of these interactions, i.e. modulation of the systemic elimination of co-administered drugs, may be expected from more-bioavailable curcumin formulations. Further studies are still warranted, especially with newer formulations to support the inclusion of curcumin in cancer therapy regimens.
Collapse
Affiliation(s)
- Jeffry Adiwidjaja
- a Faculty of Pharmacy , The University of Sydney , Sydney , Australia
| | - Andrew J McLachlan
- a Faculty of Pharmacy , The University of Sydney , Sydney , Australia.,b Centre for Education and Research on Ageing , Concord Repatriation General Hospital , Concord , Australia
| | - Alan V Boddy
- a Faculty of Pharmacy , The University of Sydney , Sydney , Australia
| |
Collapse
|
147
|
Mirzaei H, Masoudifar A, Sahebkar A, Zare N, Sadri Nahand J, Rashidi B, Mehrabian E, Mohammadi M, Mirzaei HR, Jaafari MR. MicroRNA: A novel target of curcumin in cancer therapy. J Cell Physiol 2017; 233:3004-3015. [DOI: 10.1002/jcp.26055] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/14/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Hamed Mirzaei
- Department of Medical Biotechnology; School of Medicine, Mashhad University of Medical Sciences; Mashhad Iran
| | - Aria Masoudifar
- Department of Molecular Biotechnology; Cell Science Research Center, Royan Institute for Biotechnology, ACECR; Isfahan Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center; Mashhad University of Medical Sciences; Mashhad Iran
| | - Naser Zare
- School of Medicine; Isfahan University of Medical Sciences; Isfahan Iran
| | - Javid Sadri Nahand
- Department of Virology; School of Medicine, Iran University of Medical Sciences; Tehran Iran
| | - Bahman Rashidi
- Department of Anatomical Sciences and Molecular Biology; School of Medicine, Isfahan University of Medical Sciences; Isfahan Iran
| | | | - Mohsen Mohammadi
- Razi Herbal Medicines Research Center and Department of Pharmaceutical Biotechnology; Faculty of Pharmacy; Lorestan University of Medical Sciences; Khorramabad Iran
| | - Hamid Reza Mirzaei
- Department of Immunology; School of Medicine, Tehran University of Medical Sciences; Tehran Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center; School of Pharmacy, Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
148
|
Kalashnikova I, Mazar J, Neal CJ, Rosado AL, Das S, Westmoreland TJ, Seal S. Nanoparticle delivery of curcumin induces cellular hypoxia and ROS-mediated apoptosis via modulation of Bcl-2/Bax in human neuroblastoma. NANOSCALE 2017; 9:10375-10387. [PMID: 28702620 DOI: 10.1039/c7nr02770b] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, several formulations of nanoceria and dextran-nanoceria with curcumin, each demonstrated to have anti-cancer properties, were synthesized and applied as treatment for human childhood neuroblastoma. The anti-cancer activities of these formulations were explored in neuroblastoma models of both MYCN-amplified and non-amplified cell lines. Ceria nanoparticles, coated with dextran and loaded with curcumin, were found to induce substantial cell death in neuroblastoma cells (up to a 2-fold and a 1.6-fold decrease in cell viability for MYCN-upregulated and normal expressing cell lines, respectively; *p < 0.05) while producing no or only minor toxicity in healthy cells (no toxicity at 100 μM; **p < 0.01). This formulation evokes prolonged oxidative stress, stabilizing HIF-1α, and inducing caspase-dependent apoptosis (up to a 2.4-fold increase over control; *p < 0.05). Overall, nano-therapeutic treatments showed a more pronounced effect in MYCN-amplified cells, which are traditionally more resistant to drug therapies. These results represent a very promising alternative to small molecule drug therapies for robust cancers.
Collapse
Affiliation(s)
- Irina Kalashnikova
- Materials Science and Engineering, Advanced Materials Processing Center, University of Central Florida, Orlando, FL 32816, USA
| | - Joseph Mazar
- Nemours Children Hospital, 13535 Nemours Parkway, Orlando, FL 32827, USA
| | - Craig J Neal
- Materials Science and Engineering, Advanced Materials Processing Center, University of Central Florida, Orlando, FL 32816, USA
| | - Amy L Rosado
- Nemours Children Hospital, 13535 Nemours Parkway, Orlando, FL 32827, USA
| | - Soumen Das
- Nanoscience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | - Tamarah J Westmoreland
- Nanoscience Technology Center, University of Central Florida, Orlando, FL 32826, USA and College of Medicine, University of Central Florida, Orlando, FL 32816, USA.
| | - Sudipta Seal
- Materials Science and Engineering, Advanced Materials Processing Center, University of Central Florida, Orlando, FL 32816, USA and Nanoscience Technology Center, University of Central Florida, Orlando, FL 32826, USA and College of Medicine, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|
149
|
Curcumin mediates anticancer effects by modulating multiple cell signaling pathways. Clin Sci (Lond) 2017; 131:1781-1799. [PMID: 28679846 DOI: 10.1042/cs20160935] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 04/05/2017] [Accepted: 04/21/2017] [Indexed: 12/18/2022]
Abstract
Curcumin, a component of a spice native to India, was first isolated in 1815 by Vogel and Pelletier from the rhizomes of Curcuma longa (turmeric) and, subsequently, the chemical structure of curcumin as diferuloylmethane was reported by Milobedzka et al. [(1910) 43., 2163-2170]. Since then, this polyphenol has been shown to exhibit antioxidant, anti-inflammatory, anticancer, antiviral, antibacterial, and antifungal activities. The current review primarily focuses on the anticancer potential of curcumin through the modulation of multiple cell signaling pathways. Curcumin modulates diverse transcription factors, inflammatory cytokines, enzymes, kinases, growth factors, receptors, and various other proteins with an affinity ranging from the pM to the mM range. Furthermore, curcumin effectively regulates tumor cell growth via modulation of numerous cell signaling pathways and potentiates the effect of chemotherapeutic agents and radiation against cancer. Curcumin can interact with most of the targets that are modulated by FDA-approved drugs for cancer therapy. The focus of this review is to discuss the molecular basis for the anticancer activities of curcumin based on preclinical and clinical findings.
Collapse
|
150
|
Nanoparticle formulations to enhance tumor targeting of poorly soluble polyphenols with potential anticancer properties. Semin Cancer Biol 2017; 46:205-214. [PMID: 28673607 DOI: 10.1016/j.semcancer.2017.06.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 12/30/2022]
Abstract
Polyphenols have been extensively studied for their relevant anticancer activity. Quite often however their instability, extensive metabolization, low bioavailability and poor solubility limit their application in cancer prevention and therapy. Formulation in nanoparticles has been widely proposed as a means to overcome these limits, maximize localization and specific activity at tumor site. The present review is intended as an update of literature regarding nanoparticulate carriers aimed to deliver polyphenols to the cancer site. Three molecules were chosen, all of which were hydrophobic and poorly soluble, representative of different polyphenol classes: quercetin (QT) among the flavonoid group, curcumin (CUR) as representative of curcuminoids, and resveratrol (RSV) among the stilbenes. In particular, nanoparticulate systems suitable for poorly soluble drugs will be described and attention will be paid to characteristics designed to improve tumor targeting, specific delivery and interaction with tumor cells.
Collapse
|